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1 INTRODUCTION

A continuum description of materials with fine structure often leads to minimization and dynamic
problems that are extremely complex. In many cases, the reason is that the scale associated with the
crystallographic (fine) structure is not carried over to the continuum models. In the framework of
hyperelasticity, for example, one has to work with scale-free microscopic quantities as a consequence
of this defficiency.

Often a change in the microscopic internal organization of a material in response to external
stimuli corresponds to a passage from one local minimum of an energy density W to another.
In order to understand the responsiveness of microstructured materials, we are led to study the
equilibrium (relaxing) states of the stored energy functional

E(u) ¥ / W (Vu(z)) dz, (1.1)

where the deformation u : @ C RV — RY N > 1, is considered to be in the space Wbr(Q), for
some p > 2. Due to the presence of a number of different local minima of W, the stored energy F is
not expected to be quasiconvex. Hence, the energy may not attain its minimum. This means that
the minimizing sequences will not converge strongly, only weak convergence can be anticipated. Tt
is well known that the weak limits fail to carry any pointwise information due to the development of
unlimited oscillations and/or concentrations. In the case of composites, ceramics, active materials
and other “designer materials”, the lack of quasiconvexity is associated with the creation of finer
and finer structures. Other fine structures, such as lower-dimensional defects, also play a role, but
we will not consider them here. Therefore we do not deal with concentrations.

*This work was supported by the National Science Foundation, through the Center for Research on Parallel
Computation, under Cooperative Agreement No. CCR-9120008, and by the grand from the NASA Goddard Space
Flight Center.
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We will make further simplifications. We will consider only the so-called double-well problem.
This means that all equilibrium states of the material are characterized by the existence of only two
different matrices F; € RV*Y such that W(RF;) = 0, i = 1,2, for any rotational matrix R. The
energy density must vanish along smooth hypersurfaces RF; to comply with Galilean invariancy. In
order to allow a continuous deformation as stored energy is lowered, these matrices have to be related
by the Hadamard jump condition. This means that RFy = Fs+a®¥b, where R is a rotational matrix
and a and b are vectors. Thus the deformation gradient changes abruptly along a plane interface
(twin plane) with the normal b.

The Hadamard jump condition yields an over-simplified picture of the stress-free deformation in
the case of the double-well problem. If the material is constrained on the boundary by a macroscopic
deformation in the form of a convex combination of the equilibrium states, the boundary condition
cannot be met by a stress-free deformation. Long lamellae, having normal b, need to be created in
order to lower the residual stress (distributed most likely along the boundary of the specimen). Since
the non-quasiconvex stored energies do not carry any scale information refining the laminates creates
a laminated structure with a zero thickness. The loss of spatial structure means that only proba-
bilistic information can be retrieved about the microscopic characteristics determining macroscopic
material properties such as the elastic module.

This zero thickness is in obvious disagreement with experiments. Studies of martensitic materials
demostrate clearly that the long lamellae have some space between them. Moreover, experimental
evidence [18], [7], [23], [19], [20] shows that these stripes get split as they approach the crysta-
lographically incompatible constraints such as the above-mentioned boundary condition. As the
stored energy is lowered and the system moves to another local equilibrium even more splitting
occurs. However, the system never reaches the state at which £ = 0. For this reason, it seems
unrealistic to seek the global minimum of E if we strive to analyze fine structures.

There is rather an obvious problem associated with the equilibrium configurations at which
E > 0: these configurations correspond to local minima. Thus, we have to deal with profound non-
uniqueness. A possible remedy is to associate with the non-quasiconvex stored energy a “selection
principle”. This selection principle ought to be stronger then the entropy conditions for hyperbolic
problems [1], [2], [3], [4], []. Recent work indicates that introduction of time or higher-order
regularization can serve this purpose. Both approaches introduce a spatial scale which selects a
particular local minimum of the stored energy F.

There are at least three different approaches to incorporating the scale information into models
having elastic energy in the form of a non-quasiconvex variational integral: (1) by adding the surface
energy, (2) by following the minimization path given by the related time-dependent problem, and
(3) by following the path given by gradient-based minimization algorithms.

The first route has been undertaken in [33], [34], [35]. A penalty term is included in the definition
of the stored energy. The value of the penalty term increases with the number of interfaces created.
One possible choice for the penalty term is the laplacian of the deformation. This approach predicts a
number of experimentally verified facts. Most importantly, the addition of a penalty term that can be
interpreted as a surface energy renders the problem quasiconvex, and for an arbitrary minimization
sequence u, we have lim, o F(u,) > 0.

The second route is via time dependent-formulations. Considering, for example, conservation
of the linear momenta the investigation are related to asymptotics [21], [22], [44], [9], [30]. Tt is
now understood in one spatial dimension [22], and, in some cases in higher dimensions [30], that
for global and smooth deformations we have lim;_, o, F(u(¢)) > 0. The implicit spatial resolution is
most likely based on the character of the considered dynamics.

The third route is to follow the minimizing sequences generated by the minimization algorithms
[31]. Similar to the two approaches above, there is a length scale created during the first few
iterations which is then maintained throughout the minimization procedure.

All three routes share a common feature: they restrict the spectrum of possible minimizing
sequences so that the stored energy E attains its minimum. Since the minimum depends on the
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particular set of minimizing sequences, the intimate microscale details may depend on the choice
of approach. For instance, the scaling laws implied by the asymptotics could be different from the
scaling laws given by incorporating the surface energy.

The approach undertaken here is the following: we consider the Steepest Descent Algorithm
applied to the stored energy E augmented by a term that vanishes, in most situations, only when a
structure with unlimited fineness is obtained. Hence, we strive to cancel spatial scale which may be
introduced by the minimization method. The term we add to the stored energy E has the form

/ﬁvu@y_va@gfd%

where u is the homogenization of u. The precise definition of this term is given in the third chapter.
We use the the name “wiggly energy” to refer to the stored energy that includes this penalty term
since it is related to the approach introduced in [7], [23] and [6] in connection with the kinetics of
martensitic branching.

It is proven in the fourth section that the Steepest Descent Algorithm applied to the penalized
stored energy yields, in the continuous case, a minimizing sequence that does not terminate in any
of the local critical points of £. Since the method is not a prior: biased toward any scale, it will not
interfere with the scale introduced by the finite element method used to discretize the problem.

The computational aspects of this paper are related to the splitting of martensitic lamellae. The
numerical experiments model the actual experimental results [18], [7]. The goal of the computations
is to obtain consecutive splitting of the very fine lamellae that spread across only a few mesh lengths.
These numerical results indicate that martensitic branching can be computationally simulated via
careful interpretation of the homogenization.

The paper is organized as follows. The notation is introduced and the problem is formulated in
the second section. In section three, we introduce a version of wiggly energy. Then we prove some of
the properties of the minimizing sequences associated with it. Section four contains the convergence
theory for the combination of wiggly energies and steepest descent minimization. Two classes of
computational problems associated with martensitic branching are considered in section five.

2 FORMULATION OF THE PROBLEM

Let @ ¢ RY, N = 2,3 be a bounded domain with Lipschitz boundary, and, let u = u(z) =
{u; ()}, be the deformation. The deformation gradient Vu(z) € M~ >N where MN*N denotes
the space of N x N real matrices, is computed with respect to the coordinate system associated

with the undeformed domain . Matrix multiplication in the space MY*¥ is understood in the

sense A : B & Tr(AT B), where the matrix AT B is obtained by standard matrix multiplication.

Consequently, the matrix norm is given by ||A|| = VA : A, which is the natural Euclidian norm on
the space RY*N. We will use |.| to refer to a norm on the space of N-dimensional vectors, and we
will denote by SO(N) the space of proper rotations

Let §;, 1 = 1,2 be two linearly independent positive definite N x N matrices. In order to allow
a continuous deformation to minimize the energy we assume that there exist a rotation matrix R
and two distinct vectors a and b such that the Hadamard jump condition is satisfied. That is,

RE1 =3%24+a®b.

Here, a is the stretch vector and b is the normal to the plane interface across which s changes to

S1-
There exists a Borel measurable projection I : MN*N — SO(N)F1 |J SO(N)F2 defined by

I|A — TIA|| = min 1A - M]||.
MeSO(N)F.1 U SO(N)F2
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This projection is not unique. If IT; 5 : M3*3 5 {F,, Fy} we can find for any nonsingular matrix A
a matrix B(A) such that
II(A) = B(A)L 2(A).

It is easily seen that both the matrix B and the projection II; 5 are unique for given II.
We assume that the energy density W = W(p), p € RV*¥ corresponds to the double-well
problem. Namely, we will assume that

a) W RNXN L RE
b) W is coercitive,

(
(
(c) W is twice continuously differentiable w.r.t. its argument,
(
(

d)y W(F;) =0, for any F; € SO(N)3;, i=1,2,
¢) W(A)>0, forany A¢ | ] SO(N)3;, (2.1)
i=1,2
d2 2 : : [43 2
(f) EW(HU +tv)|t:0 > |7, if |v —Tlv| is “small”,
() [D*W()(Ve, V)| < AVl [V for any ¢, € WH*(Q),
We seek an approximation of
T inf{B(u) lue W'P(Q); u=Fz % (\F + A\ Fo)z, x € 0Q), (2.2)

where M1 + X =1, A >0,:=1,2, i =Fa+a®@b,p>2.

Remark.

Note that W cannot be rank-one convex along deformations which connect the equilibrium
states F;. Hence 1t is not quasiconvex with respect of the imposed Dirichlet boundary condition.
Therefore, there does not exist any function at which the infimum would be attained [[12],
Theorem 5.1].

3 WIGGLY ENERGIES

We assume that Q C RN has a Lipschitz boundary, which means in particular that Q is bounded and
meas(9Q) = 0. Thus, using Vitali’s covering theorem, we can recover at most a countable disjoint

set Qf défa?—i—e?ﬂ, ag e RV, 0<6{: < %,j: 1,2, ... such that Zl(ef)N =1, andQ:UiQ‘ZUPj,

where meas(P7) = 0. We scale the function u to each of the sets Qf by constructing

€

J
= def g J T4 J
U—F(li+5i“< > , r €Q;.

We introduce a family of energies E; by penalization of the original stored energy £. The
penalized energy reads

Ej(u) = /W(Vu(m)) + 1 |Vu - vl de (3.1)

Remark.
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1.  This form closely resembles the “wiggly energy” introduced in [7], [23]. “Wiggly energy” has
been introduced to restore as much laminate splitting as possible. It has the form

W + ep(ug/€),
where p is 1-periodic, smooth, and has nondegenerate minima and maxima.

2. Tt has been shown in [7] that the kinetic response function resulting from the introduction
of wiggly energy for the gradient flow coincides with general kinetic theory [6]. The theory
is concerned with stress-induced phase transformations in a single crystal of a thermoelastic
materials.

3. Note that u(z) = Fz, for all z € 3Qg, and Vu(z) = Vu (x;flf)’ for z € QZ

Theorem 3.1 Let u,, be the minimizing sequence of the energy E, subject to the condition u, = Fx
on the boundary of Q. Then

Vu, = F, asn— oo, nLP(Q), p€[2 00).
Moreover, if
En(un) < Ep(Fz), for some n > 1, (3.2)
then Vu, does not converge in the norm of any L -space.
Proof First, we observe that by (2.1)
En(u) > E(u) = 00 as ||Vul|p,q) — oo

Since u,, is a minimizing sequence, it has to be bounded in W?(Q) for some 1 < p < co. Thus, it
converges strongly to some function in L? () by Sobolev imbeddings. We have

oo _n P
/|ﬂn(m)—Fr|p dr:Z/ Fal + et up (a: nal)—Fr dz
Q i=1 : Ei
[s) _ n AP
=17 Qr & &;

=Y @ [Pl dy
=1 Q
<2/|F P d <l)p§w:(en)N 2/|F P d <1>p
X X — - = x xr — .
- n : ' n
Q =1 Q

Thus u, converges strongly to Fz in LP(Q), p € [1,00). Consequently, Vi, converges weakly to F
in LP(Q), p € [2,00). Since Vi, converges weakly to F' in some L?(Q) and u, is the minimization
sequence, then

n— 00

lim / [Vun (2) = Vi (z)|” dz = 0.
Q

Hence Vu, converges weakly to F'. This proves the first part of the Theorem.
The second part can be proven by contradiction. Suppose Vu, converges strongly in LP ().
Then it must converge to F'. Continuity of W leads to a contradiction:

En(Fz) > nh_}n;o En(un) = nlgrgo E(up) = Ep(Fz),

using the upper bound (3.2). This completes the proof. W
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Theorem 3.2 Let us assume that there exists a positive constant C', independent of u, such that

~
/W(Vu) de > C /||Vu —0Vu|’ dz | , for any v € (0,1]. (3.3)
Let u, be a minimizing sequence of the energy E, subject to u, = Fx on the boundary of Q. Then
we have for any m € bt
Jim (70, = F )l = Jim [V, = T2 gy = 0 (3:4)
for any p € [2, o0].

Proof (i) The proof of the strong convergence of the directional derivatives follows first [38] and
[28] in the closing argument after (3.5).
We observe that the Dirichlet boundary condition yields

meas(Q)F = /Vun(:z:) dz, for all n € .

Also, since Fy = Fo 4+ a @ b, we have for any m € bt
Fim = Fom = Fy,, and [TI(A)m| = |[Fym| = |Fom| = |[Fm|, VA eR" "

Thus we get for any g > 0 using the Young’s inequality

1
7/|Vunm ) — FYm|” de = /|Vun ? dx —7/|Fm| dz
meas( meas( meas(
= /|Vun > de — |Fym|®

meas(

= m!l(wn(r) — T(Vun(2)))m + (Vu, (z))m|* de — |Fym|

Cdo+ /(1 + ) (Vi (2))ml? do

— ey |14 5) (000 - 1 e

— |Fym|®

1
_Ht /|Vun (Ve ()| do+ p |[Fym)?.

~ pmeas(

D

2

1/
Taking u = <fﬂ [|Vun () — H(Vun(a:))||2 d:z:) we get a positive constant C', independent of n
such that

2

/|(Vun(;b) — F)ym|* dz < C /||Vun(1‘) — (Vg (2))|]* de | . (3.5)

In order to extend this inequality into the LP-spaces, we recall that that ||.||1/a is a convex function
of a for 0 < a <1 and therefore by application of the Riesz-Thorin theorem we have

1(Vun = F)mllpoq) < (Vun = F)ml|7ziq) (Van = F)ml| 1z (G
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1 _

a l—a
where 5 =3 +

s

total stored penalized energies E,, the energy estimate (3.3) and (3.5) imply that there exists a
ng € N such that for any n > ng we have

/Kv%@g_Fwwdx<L

a € [0,1], and s > p. Moreover, since u,, is a minimizing sequence for the

Hence we have for any s > 2 the estimate

N
S

/|(Vun(m) —F)ym|’dz| < /||Vun(m) —I(Vu, (2))|]* da < 0. (3.6)

Using the above interpolation inequality, we have from (3.6)

(Vta(@) = Fymlfq
22 < [1Tun(e) - Py o
Q

[(Vun(z) — F)m|;. 5,
N (3.7)
< [ IV unte) = (T un ()
The inequalities (3.6) and (3.7) yield
(B +205=t)
/|(Vun(a:) — Fym|’ dz < /||Vun(:b) — I(Vun (2))|]* da . (3.8)

We take s = p+ ¢, ¢ > 1 and correspondingly a = Iﬁ, that satisfies the inequality 0 < a <'1

for any p € [2,00). We obtain with this choice of s and « for the exponent in (3.8)

pa  p(l=a)  plp=2)+q(p—1) ger
ho s 2p+1)(p+a-2)

and % <5 < 1. Thus we have
~

1V une) = Pyl do < | [ 19un(e) = (Tua (@) dz | pef2i00)

Note, that v = % for ¢ = 1. Hence the proof of the first limit pass follows.

(i) The proof of the second part of the Theorem is taken from [38] and [28]. Let us assume that
N = 3. The lower dimensional case can be proven in the same way. Since IIVu, = B(Vu,)II; 2Vu,
we get a positive constant C, independent of b, F'; D and p, such that

C/HVUH(:C)—HLQVUH(:L‘)HP dz
Q
< /||Vun(:b)—HVun(:b)||p dm—l—/HHVun(:c)—HLZVU,L(:U)HP dz
° ° (3.9)

:/||Vun(m)—HVun(m)||p dr—}—/H(B(Vun(m)) — 1) 5 Vuy,(z)|[ dx

§/||Vun(m)—HVun(m)||p dr—}—C/HB(Vun(r))—IHp dx.
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In order to find the estimate for the last integral in (3.9) we show that there exists a suitable constant
C, independent of b, F' and p, such that

~

/|(B(Vun(m)) -Djfde<C /||Vun(:e) — H(Vun)(:e)||2 dz | j€E {Flml,Fzmz,g}l,O)

for some v € [%, 1). Here, m = Fymy x Famg, my -b=mg-b= Fymy - Famy = 0 and b is the normal
to the twin plane. We note that {Fym;, Foms, m} is a basis in R3 since F; and Fy are linearly
independent.

Having this estimate, it follows from the assumption (3.3) that for any minimizing sequence {u, }n
we have

[ 190(@) =2V ua @) de < CE(un),  pe(2,00
Q

thus the proof follows.

First, let j € {Fym1, Fyms}. In this case we have for any m € b+

(B(Vup(z)) = 1) Fim = (B(Vun(2)) — 1) II; 5Vu, (z)m
= (IVu, () — II; s Vu,(z)) m = (IIVu,(z) — F) m (3.11)
= (MVuy,(z) — Vuu(2)) m 4+ (Vu,(z) — F) m.

Thus (3.10) follows from (3.11) and the proof of the first part of the Theorem. Secondly, if j = m

we can use the identity

(B(Vun(z)) —=T)m = B(Vu,(z))Fimy x B(Vu,(z))Famg — Fimy X Famy
= (B(Vun()) = 1) Fimy x B(Vup (2) Fymz — (Fimy x (1=B(Vun(2))) Fima) (3 19)

to get (3.10) from (3.11). Hence the second limit pass follows from (3.10) and the first limit pass in
(34). m

The structure of the energy E, guarantees the convergence of microscopic quantities such as the
distribution of F;, i = 1,2. In order to show this property, we approximate the gradient Young
measure associated with the minimizing sequence u, by constructing an approximate probability
measure defined for any Borel subset M of MV*N as follows [8]

def meas{y € B, (x) | Vu,(y) € M}

o Vu, (M
o r. V(M) meas B, (z)

where B, (z) is the ball centered at z with the radius r. We show that

lim lim per v, N A1dp, + A2dr,, weakly-* in a sense of measure. (3.13)
r—04 n—oo
Let us assume that Xj is a collection of measurable subsets of Q such that the linear hull of their
characteristic functions forms a dense subset in some LI(€), ¢ € (1,00). We can rewrite (3.13) as
follows. Let » > 0 and D € Xy. We define for : = 1,2

def

D}, = {z € D|I(Vun(z)) = F, [[(Vun () = Vun ()] < 7},

then '
Har Vu, (Fi) = meas(D). .}/ meas(D).
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Hence, (3.13) reduces to showing that

meas(D}. )

—\
meas(D)

lim Iim
r—04 n—o0

= meas(D) lim lim |meas(Dfnyn) -\ meas(D)| =0.

r—oo h—04

(3.14)

Corollary 3.3 Let u, be the minimizing sequence of the energy F, subjected to u, = Fx on the
boundary of Q, and let us assume that the stored energy E, satisfies the estimate (3.3). Then (3.14)
holds true.

Proof The first part of the proof follows [38]. The second part uses the dual characterization of
the weak convergence.

Since Fy and Fy are linearly independent, and because A1 + Az = 1, (3.13) follows from (3.14) and
by showing that

. 1
nlgglo | (meas(Dryn)

— meas(D)) o+ (meas(nyn) — A meas(D)) F2| =0.
To prove this limit pass, we observe that for any D € ¥, we have

(meas(Di’n) — Ay meas(D)) Fy + (meas(nyn) — Ay meas(D)) Fs
= meas(Diyn)Fl + meas(nyn)Fz — meas(D)F
= (meas(Diyn) + meas(nyn)) IT4 5 (Vun(z)) — meas(D)F.

Thus
(meas(Diyn) -\ meas(D)) o+ (meas(nyn) — Ay meas(D)) Fy =
/HLgVun — Vuy,(z)de — /F — Vu,(z)dz — / T4 »(Vup(2)) de.
D\(D},uD2,) (3.15)
D D ’ :
The definition of Dﬁyn, i=1,2, yields
% [[II1 2(Vun)(z) — Vun(z)]| > 1, for all z € D\ (Diyn U Df}n) . (3.16)
Because ||H172(Vun(m))||Lw(ﬂ) < O, C independent of n, we have
/ 1 2(Vuy, (2))|| dz < Cmeas (D\ (D;, UDZ.))
D\(D},uD2,) ’ '
C
<= Iy 2(Vun ) (2) = Vun (2] do
T Jp\(Dp},uD2,)
(3.17)

1
2

meas (D\ (D}, UDZ )

<c o 20D ([ 2T 2) = D) i

r

2

< ([ I a(Vun)x) = Tuna) ds

Hence, we obtain from (3.15)-(3.17) existence of a positive constant C, independent of D and n,
such that
C | ((meas(D%yn) — Ay meas(D)) Fy + meas(nyn) — X; meas(D)) F2| <

) : (3.18)
/||H172(Vun(m)) — Vup(2)||” dz + /Vun(r) — Fdzx
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The estimates (3.9) and (3.10) yield for ¢ = 1 and p = 2
1/4 1

[ 190 @) = Tun@)l* dr | > | [ a(Tun(e) = Vo (2] d
Q (3.19)
Since Vu, — F in LP(Q) for any p € [2,00) due to Theorem 3.1, Theorem 2.14.2 in [29] yields for
¢g=p/lp—1)

/F — Vu,(z)de — 0, for any D € X

D

because of the above assumption that the linear hull of the characteristic functions of the subsets
from Xg forms a dense subset in L2(€2). Thus the proof now follows from (3.18), (3.19), Theorem 3.1,
Theorem 3.2, the assumption (3.3), and (3.14). W

4 'THE STEEPEST DESCENT MINIMIZATION OF WIGGLY ENERGIES

The minimization of wiggly energies is associated with computation of fine structures. We compute
the minimizing sequence with a simple gradient-based minimization—the Steepest Descent Algo-
rithm (SDA). We denote the L%(Q) scalar product by (-,-) and the gradient of the energy FE, by
Gy. For any u € W??(Q), the gradient is given by the variational relation

def d
(Gn0) S L (w4 19)

; = (DW,(Vu), V) for all ¢ € WH*(Q). (4.1)

t=0

The gradient G of the stored energy E is defined analogously. The SDA applied to the minimization
problem (2.2) with the introduction of wiggly energy (3.1) reads:
Let u® € WH2(Q) be given. Find upy1 € WH3(Q), uny1 = Fa on 0Q and o, € RT such that

a, & Argmin E, (up — aGp(un)),
Temi (4.2)
(tnt1,#) = (tn, ) = an(DWa (Vua), V), Vo € W 2(Q),

where W, (Vu) = W(Vu) + £ [Vu — vl

Since the Gateaux derivative (the first variation) is given by
AFa(u,) = (DW(Va), V) + (Ve — Va), (Voo — V) (43)
the variational problem (4.2) for u,41 € WH2(Q), upe1 = Fz on 99 reads
(unt1,0) = (Un, @) = an((Vn = Vi), (Ve — V@) — an(DW(Vus), Vi) (4.4)

for all ¢ € Wol’z(Q). The second Gateaux derivative is given by

&En(u. ) = [ D*W(T0)(Vo, V) + (T = V) (Vi — Vi) da.
193

Hence

dzEn(u,go,go):/D2W(Vu)(Vgo,Vg0) d:v+/|Vg0—VgB|2 dzx.
0 Q
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Remark.

The SDA is a “regularity preserving” algorithm. That is for any finite n, the iterates u,
possess the same regularity as the initial guess. In contrast, the SDA applied to a wiggly
energy decreases the global regularity to C°(Q) in general.

Lemma 4.1 Let the sequence {u,} be given by the Steepest Descent Algorithm (4.2) associated with
the energy E,,. Then
2
Ept1(tnt1) < En(un) = 500 [|Gn(un)||12(q)

for any a, € [0, %] (short step).

Proof The energy density W and the penalty term depend only on the deformation gradients.
Thus the definition of the homogenized term u, (cf. the Remark following the definition of V)
implies that

Eny1(tng1) = En(tngr).

We have for some 6 € (0, 1) due to (2.1 g)
Ent1(uny1) =En(unt1) = En(un) + (DWa(Vun), V(tnt1 — un))

1
+ 3 / D2I/Vn(Vun + 0V (tunt1 — un))(V(Ung1 — tn), V(tny1 — up)) dz
19)

1
<Bn(un) = o [|Gn (un) 1120y + 5405 G (tn) 7200

The proof now follows from the fact that the quadratic polynomial —a,, + %Aafb has minimum at

a,=1/A. 1
Lemma 4.2 Let the sequence {u,} be given by the steepest descent algorithm (4.2). Then
51V (s = un) = V(tnts — @n)|72q) + Eluns1) <E(un) = an(Glun), Gn(un))
2
+ 3807 ||Ga(un)||z2 (0

for any a, € [0, %] (short step).
Proof We have
E(unt1) = E(un) + (DWa(Vn), V(tnt1 —tn)) = (V(un — ), V(unp1 = un) = V(tng1 = tn))

1
+ E/DQWH(UH + 0(tnt1 — Un)(V(tng1 — tn), V(Ung1 — up)) dz
Q

~ [V (g1 = ) = V(@ng1 — ) ||72g -
Similar to the proof of the Lemma 4.1
E(un1) < E(un) = an |Gn(wn) |72y + 5402 |Gn (un)|2(q
— (V(tn = ), V(un41 = tn) = V(iing1 = ) = 5 ||V (tng1 = ) = V(tnt1 = i)l 130 -
Algorithm (4.2) yields
~(V(tn = i), V(tng1 = ) = V(tnt1 = i) = —an(G(un), Gn(un)) + an [|Ga(un)| 120 -

Thus the proof follows. W
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Remark.

It follows from Lemma 4.1 that

S Lo |G () |22y < Bouo) = Timayco B (1) < o0, (4.5)
n=0

Thus ay ||Gn(Un)||ig(m — 0 as n» — oo. Assuming that a, > 0 for any n € N yields
||Gn(un)||L2(ﬂ) —0asn— oo.

Corollary 4.3 Let the sequence {un} be given by the Steepest Descent Algorithm ({.2) associated
with the energy E,. Let us assume, moreover, that a, > ag > 0. Then

nli}rrgo [|Vun — Vﬂn||L2(ﬂ) =0. (4.6)
So that, in particular,
nh_}rﬂlo E(u,) = 0. (4.7

Proof The definition of the SDA (4.2) with ¢ = u, and up41 — un = —,Gp(uy,) yields

||Un||L2(Q) ||Gn(un)||L2(n) > |[[Vun — Vﬁn”i%ﬂ) + (G(un), un)| - (4.8)

Hence
[(G(un), un)| < |[tnllL2(q) 1Gn(un)llp2q) -

Since the minimizing sequence u, is uniformly bounded in L?(Q2), we obtain from (4.8) and the
above inequality a positive constant C' > 0 such that

IVt = Vinl|72q) < 2 llunll 2y 1Gn (un)ll L2y < CllGn(un)ll g2y -

Since a,, are uniformly bounded from below by the assumption, the above inequality implies that

Uy, 18 indeed a minimizing sequence of F,,. The proof now follows from Theorem 3.1. W
Remark.
1. The next theorem relates to the question of the speed of stabilization. The assumption is that

for some ¢ € [0,1/2] we have
1Gn (wnt1 + G (un)ll 2y > [En(tns1 + G (un)) = ol =7

for t € (an — €,an + €), and small ¢ > 0. This is the Lojasiewicz-Simon’s inequality [36],
[37], [45] that holds true for the analytic densities W. This inequality is proven for twice
continuously differentiable densities W and minimizing sequances (i.e. not for an arbitrary
functions near local minima) in [31].

2. The convergence of Yo"« ||Gn(un)||L2(Q) follows also from the additional assumption that

S o an < 0o. To see this we can use the Jensen’s inequality. We have for any g > 0

(Z an ||Gn(un)||L2(Q)) < (Z an) > an ||Gn(un)l|§j£§ .
n=0 n=0 n=0

Hence the convergence result follows from Lemma 4.1 providing 8 = 1. Note, that the assum-
tion Y07 (@, < oo is incompatible with the assumtion of Corollary 4.3.
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3. The additional informations about the speed of stabilization of the minimizing procedures
relate closely to the formation of discontinuities. In general, the slower the convergence the
better in a sense that more discontinuities can be formed. A model calculation is given in the
remark following the proof of the next theorem.

The proof of the next theorem follows the idea of stability Lemma 4.1 proven in [45].

Theorem 4.4 (Speed of stabilization) Let the sequence {u,} be given by the Steepest Descent Al-
gorithm (4.2) with ug € W%(Q). Let us assume, moreover, that there exists ¢ > 0 such that for
t € (an — €, an +€) we have

|G (tn 41 + tGn(un))ll 20y > | En(tng1 +tGn(un)) —eol ™", 0 €[0,3]. (4.9)
Then
Z ||Gn(un)||L2(Q) < oo. (4.10)
n=0

Proof Tt follows from the definition of the SDA (4.2) that
2
(Unt1 = tn, Gn(un)) = — an ||Gnlun)||p2q) »
s = a2y = = tn (G (), s — ).

Hence
2 2
— (14 @) (G (tn), 41 = ) = 0 |G (00) () + 1 = oy -

If a, <1 we have

(14 an)(Galun), tnpr = tn) 2 200 ||Ga(un)llp2q) [un+1 = unllp2(q) -

Since L < =L in this case, we obtain

1
2 200y,
1G ()l 20y Mt = el ) < = (G (1), s — ). (4.11)

Similarly, we can obtain (4.11) in the case o, > 1.
Writing 4, = tp41 + @nGr(uy,), we have for any a, > 0 the inequality

1G (it + @G (1) gy 1m 1 = Ly < ~(Gin (1 + nGin (), 1 — )

Taking ¢ sufficiently close to ay,, writing u, 1 +tGy (Un) as up — (n —1)Gp (uy), applying the Taylor
expansion of G(u, — (an —t)Gp(uy,)) around the function u,, and using the W?2*(Q) regularity of
up, we can obtain this inequality with ¢ instead of a,. Thus we have for 8 > 0

d
7 (Bn(uns1 +tGn(un)) — c0)’
_ 1
=40 (En (un+1 + th(un)) - 60)9 ! <_a_> (Gn (Un+1 + th(“n))y Un41 — Un)
; n (4.12)
2 —— (Bn(unt1 +tGn(un)) — ¢0)" ™ |G (a1 + 1Go(un))ll oy lltntr = wall 2

Using the assumtion (4.9) we obtain

d s 0
5 (Bn(unt1 +1Ga(un)) = co)” > o lltun+1 = tnllp2(q) - (4.13)
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Integration of (4.13) over (e, — €, @, + €) for some € > 0 gives

2¢6
= i1 = tnll gy < (Falitn = Gin(n)) = €0)° = (B (un + G () = o)’

Since the energy FE, is decreasing along the sequence u,, generated by the SDA | and the projection
step does not change the total stored energy, we have

En(tnt1) < En(un) and En(tn) = Eng1(tn).

Thus, for sufficiently small € > 0, we obtain
En(un — €Gn(up)) < En(un—1) and  — Ep(un + €Gp(upn)) < —En(tn). (4.14)
Hence 9¢0 ) )
. 1 = tnllpage) < (Batn-1) = co)” = (En(un) = eo)"
Thus

PRI | 8
2692 o lltuntr — Un||L2(n) < (E1(uo) — o),
n=0 "

and the proof follows. W

Remark.

1.

Since the sequence {Vu,} does not converge strongly in the norm of the L2-space and yet
Vu, — F weakly in L%(Q) as n — oo, we can assume that
1 <||Vu, — F||22(Q) , for n sufficiently large.

Hence, assuming for simplicity that the u, are smooth, we have

1< /(Vun(m) — F)(Vuu(z) — F)dz = —/(un(:v) — Fz) Aup(z) de.

Q Q
Using the compactness of the imbedding of (C(ﬁ))* into W=7 for p > n, we obtain
1< Hhtn = Fallyagey 1Al ey - (4.15)

Assuming (cf. Theorem 4.4) that ||upm41 — um||L2(Q) ~ 1/m'*? 3 > 0, we obtain the following
estimate

o] o] B
1 1/1
i = Pl < 3 limss = unlioy < 30 iz ~ 5 (3) - (@10

Hence, we have from (4.15)

1A wall ey ~ Bn”

The calculations described below indicate that |[umt1 — uml[;2(q) ~ 1/m*? | for some 3 >

1/2. Thus, at each iteration, the algorithm ought to seed at least one new oscillation leading
later to a discontinuity.

The growth of ||A u”H(C(Q))* is usually constrained by the outer framework in which the

gradient-based minimization is applied, most often by the finite dimensional approximations.
On the other hand, the decrease of the term ||uy, — Fm||L2(Q) is controlled by the minimization
algorithm at hand. Hence, in the case of mismatch of the two mechanisms we can obtain a
strong convergence to some local minimum of the stored energy E. The question of the speed
of increase of ||A uﬂ”(c(ﬁ))* is studied in [31].
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5 THE IMPLEMENTATION AND NUMERICAL EXAMPLES

Working with the homogenized term in the definition of wiggly energy (3.1) is difficult. The definition
requires projection of coarse structures onto a finer and finer pattern without any limitation in the
resolution.

It 1s obvious that the construction of 4, cannot be followed literally in finite dimensions. For
example, an implementation using finite elements is limited by a fixed number of degrees of freedom
on any given element. Hence, we cannot increase the number of degrees of friedom with increasing
n as is required by the construction of u,. To deal with this limitation, we will construct a sequence
of projections from the finite element space V}, onto the spaces Vj/2, Viy4, ... related to a finer
resolution, and related to the spaces with progressively more degrees of freedom. An example in
two spatial dimensions for quadrilateral finite elements would be a combination of the Vj-bilinear,

Vi /2-biquadratic, Vj,4-bicubic, ... . finite element spaces. Higher polynomial spaces are used to
capture complicated function profiles.
We split the deformation into a sequence of summable components u*, i = 1,2, ..., which would

correspond to higher and higher frequency remainders in its Fourier expansion, i.e.

We write the SDA for the energy E,, in terms of u® as follows: Let Upg1,h = “rll+1 pt o+ unNﬂ“ﬁ,

and let a, be given by (4.2). Moreover, let V}/; be properly formed finite element spaces that are
conforming w.r.t. the space W1%(Q). The system for Uy 41 p € Viyi reads

[t = [ s (902 TaE e - Vi
Q Q Q

_ a;/DW(vun,h)wh de,  Ven € Vi,
Q

/ui+1,h/299h/2 dz = /“Z,h/zSDh/? dx

0 Q
—an /(vurll-}—l,h/Z — YV}, a)(Vens2 — Vgnsa) dz,  Yonss € Viya,
0
3 _ 3
/Un+1,h/380h/3 dr = /Un,h/ssoh/s dzx
Q Q (5.1)
—ap /(vu721+1,h/3 — YV, 43)(Vens— Vons)de, Yons € Vigs,
193

Nmax _ Nmax
/un+1,h/NmaxSDh/Nm‘“7 dz = /un,h/Nmaxsoh/NmGl“ da
Q Q

— Qp /(Vugﬁ?ﬁ/_]\}mm - Vﬂﬁ?/%max)(vsﬁh/Nmax - v@h/Nmaa)) dl‘, VQDh/Nmax S Vh/Nmax
Q

We define

uiyh/i(x)EFai/i—}-?—.uflyh/i( Z’”’)’ forz € Q,;, j=1.2,...Nmas(h/i).
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The prolongation operator '
”Z;EHU Vi = Vi)

is given by

/”2%i+1)uh/i(fb)sﬁh/(i+1)(m) de = /Uh/i(ib)@h/(iﬂ)(m) dz, Veon/(i+1)(2) € Vay(itn) (5.2)
5.2
Q Q

and we define for 1 =1,2,... , Nmaz — 1

i def
Upg1,0/(i+1) = Thyi Up41,h-

Remark.
1.  Algorithm (5.1) reduces to the standard Steepest Descent Algorithm for Nmaz = 1.

2. If we were to define the gradient G; h/io t>1, by

(Ghpyis £h7i) = /(Vuf:l,h/i =V ) (Vensi — Vensi)de, Vensi € Vi
Q

with G , €' G, 1, then

Nmaz

%
Un41,h = Un h — Qp § Gn,h/i'

i=1
Hence, we can view Algorithm (5.1) as a multiple-direction search strategy. The algorithm
fails to produce new directions if

Gi,h/i:éi,h/i: for some:=1,2,....

5.1 THE TWO-DIMENSIONAL EXAMPLE OF SCALAR DEFORMATION

Tt has been proposed in [40] to study the problem (2.2) by the method of convex integration. The
problem (2.2) is reformulated within this framework as follows: Find a weakly differentiable map u
satisfying the following differential relation and boundary condition

Vu(z) € {Fy, Fa}, a.e. in £, u(z) = Fe, =z €. (5.4)

It has been proven in [40] that if rank(F; — F2) = 1 that there exists a sequence of approximations
u. of u such that

dist(Vu(z), {F1, Fa}) <&, in Q
sup |ue(z) — (AFL + (1 = A)Fo)z| <, and (5.5)
Q

us(z) = (1 =N F1 + AF2)z, € Q.

Hence, the problem (5.4) can be solved with arbitrary precision but not exactly.
A typical sequence of approximate deformationsw : R? — R that satisfy (5.5) can be constructed
as follows [40]: Let @ = (—=1,1) x ((A = 1)e, A¢), where A € (0,1) and € > 0 represents a parent

element. Taking for simplicity

b def —des and Fy &t (I—2X)ey (5.6)



The Relaxation of Non-Quasiconvex Variational Integrals 17

where €5 = (0,1)7, we can define

—Azy, if 29 <0,
(1=Nwz, ifzy >0, (5.7)
w(zy, z9) = A(1 = A) |zy| + (21, 22).

Wz, 22) = —eA(l = A) + {

Thus,

Vﬁ]((l?l,;L‘Q) € {Fl,Fz},
w(z1,0) = —eA(1 = A),
W(xy, ev) = Wh(zg, —e(1 — X)) =0, but w(=1,22) = w(l,z2) #0,

w(+1 F m_Q,IQ) =0, hence 0=((1=AF, +AF)z, VYreR? (5.8)

ex
dist{Vw, {F1, Fa}} < eA(l = A).

w|6Q:

The construction can be extended from @ to any bounded Q C R? with Lipschitz boundary by using
scaled copies of @ to cover the whole of Q.

We use the method (5.1) to computationally recover the construction (5.7). The method should
reproduce scaled copies of w which will create oscillations. These oscillations will occur on the set
of “small” measure, while in the bulk of the domain the deformation should be laminated, or nearly
so, with finite spacing. Hence, let

Q:(O,Q)X(0,1)2Q1UQ2

where Q; = (0,2) x %(z — 1,4), ¢ = 1,2, are mapped onto the parent element @ so that we can

construct corresponding w; = w|Q via (5.7). The initial deformation is given by

def . c
= w;, 1 =1,2.

Ug )

Qi

We have done our calculations in this example using the algorithm (5.1) with N = 3. The finite
element spaces Vj, Vi/2 and Vj 4 are associated with meshes of 32 x 64, 64 x 128 and 128 x 256
gridpoints, respectively. The finite elements used in these calculations are: bilinear 1-finite elements
for the space Vj, biquadratic (Qz-elements for the space Vj, /2 and biqubic @3-elements for V}, 4.
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Figure 1: The schema of the projections from Vi onto V32 and V4. The upper left picture represents
the initial deformation and the remaining two drawings are scaled copies of up. The different levels of gray
indicate the choice of the cover Q] in the definition (3.1) of wiggly energy. Here, the V}, j2-cover of  consists
of eight rectangles @}/, = a: +(0,1) x (0, i), t=1,2,...,8 with an obvious choice of a;. The V},/4-cover of
Q is constructed similarly. Notice that the algorithm (5.1) does not exactly follows the symmetries imposed
by these projections. This is visible by comparison with Figure 2. The second generation is placed in
the middle of the initial two diamond-like structures where none of the projected copies is placed by the

projection strategy.

The numerical experiment is set up to approximate the value of 7 in (2.2) with the energy density

W (ug, uy) def (uy(z,y)* — 1)2 + ug(z, y)? (5.9)

which corresponds to the above choice (5.6) of Fy and F3. The result of this numerical experiment
is plotted in Figure 2. The picture shows that the calculation has been able to capture two new
generations of the initial diamond-like shaped deformation. The most important and sensitive feature
of the algorithm (5.1) is the construction of the homogenized terms. In these calculations, the domain
Q is subdivided into four and eight subdomains, cf. Figure 1. Hence, the calculation is biased towards
reproduction of the initial deformation on finer scales.

Remark.

Note that application of the algorithm (5.1) to reconstruct a sequence that converge strongly
to a functional limit is not contradictory. The reason is that we have to truncate the algorithm
by taking Nmaz finite, Nmaz = 3 in the computations described above. Thus we have
observed three new generations of the initial deformation. Taking Nmaxz > 3 we would observe
more scaled new generations of the initial deformation. Finelly, the strong convergence is a
consequence of the avalaible spatial resolution.

5.2 THE COMPUTATIONAL EXAMPLES OF MARTENSITIC BRANCHING

A detailed observation of changes of fine structures that occur during various parts of a hysteretic
process in experiments with bi-axial loading of a rectangular specimen made of Al-Cu-Ni [18], [7],
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. smeemeeetlitnd,

Figure 2: The result of the finite element calculation of the problem to minimize the total stored energy
with the density (5.9) subject to the condition u|aﬂ = 0. The problem does not have a minimizer because
the boundary condition cannot be met. Therefore the solution requires the creation of fine structures. The
darker the shade of gray, the closer the y—derivative of the solution to either +1 or —1. The result was
obtained using Algorithm (5.1) with N = 3. The finite element spaces Vi, V},/» and V},;4 were associated
with 32 x 64, 64 x 128 and 128 x 256 gridpoints, respectively. The finite elements used in these calculations
were bilinear (,-finite element for the space V}, biquadrtic FEs for the space V},;; and bicubic for V}, ;4.

indicate the following [23]: At some critical stress, thin plates and needles of martensite begin to
appear wn the specimen, cf. Fig. 3. However, an increase in the stress is not accompanied by
a monotonic change in the microstructure. A small change in the stress causes hardly any change
until the tip of the martensite needle suddenly splits. Later, each of the pair of tips thus created splits
again. This happens many times to many laminates. Splitting of a martensitic needle corresponds
to the passage from one of these local minima to the next.

Numerical approximation of the numerous consecutive splittings of lamellae (martensitic branch-
ing) is difficult for two reasons. First, the nonexistence of minimizers for the non-quasiconvex energies
is reflected in the finite dimensional setting by creating oscillations (associated with the discontinu-
ities in the gradient of the relative minimizers) on the scale of the spatial resolution. Second, the
splitting of lamellae would require computations of oscillations even finer then the available reso-
lution in some parts of the computational domain. This i1s not possible because the approximate
function has to be continuous when restricted to a particular element. Hence the martensitic lamellae
have to spread over several mesh lengths for the splitting to happen. Typically, the gradient-based
methods would not create branching [14], [15] because they tend to produce the finest oscillations
possible for a given mesh away from the boundary. From the point of view of a function space,
the solutions which do not contain splitting seem to correspond to a very large and shallow local
minimum. The solutions which do branch near the boundary are most likely associated with a deep
and narrow local minima surrounded by a large flat plateau. Therefore they are difficult to find.

There is one more limitation associated with the branching. It has been proven in [28] for the
double-well problem that if the discrete approximate deformations converge to appropriate laminated
microstructure then for any 0 < h < hg << 1 we have

lun — Fall,;

o 18 wnll e > meas(@)|IF: - ol (5.10)

This result is indeed restrictive. Depending on the complexity of the fine-structure, the term
[|A wh”(c(ﬁ’ﬂga))* can behave as O(h™7), where v € (0,1/2]. In the simplest possible case of the
twinned microstructure representing the equilibrium of the double-well problem, it has been shown
that v = 1/2 [38], [39]. Tt is not difficult to construct microstructures of the Chu-James type
(numerous splitting of the lamellae) for which ¥ << 1/2, making these fine-structures virtually
uncomputable by standard methods. This indicates that the computation of even a limited number
of consecutive splittings, say of two or three generations, requires considerable resources.
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Figure 3: A typical microstructure seen during the bi-axial experiments of Chu and James [18]. The width
of a band changes very little, until it suddenly splits. These tips are visible in the region where the bands
has different orientations. As the loads are changed during complete transition, each tip undergoes several
generations of splitting. The computational modeling is focused on understanding of the passage from one
local minimum to another which is triggered by branching. The picture is reproduced with the explicit
permission from authors.

To model the splitting, the computational test is set up to compute fine-scale structures of
an austenite-finely-twinned-martensite interface in a single crystal of Indium-Thallium. These cal-
culations are closely related to Chu-James microstructures of compound twins in a single crystal
Al-Cu-Ni [18], [7]. These two examples share the common feature that not only very fine laminates
have to be computed, but these laminates are also subject to further refinement by splitting to
accommodate the crystallographic incompatibility. The particular choice of W in (2.2) is as follows:
We work with the Ericksen-James energy density

3011_1 2+ 3022_1 2+ 3033_1 ?
TrC TrC TrC
C 3011 ) (3022 ) (3033 )
+ = ( -1 -1 —1
2\TrC Tr C TrC ) (5.11)
2 2 2
TrC TrC TrC

36
+ (Gl + Ol + Ol + Gy + G + C3) + F(Tr € - 3)”.

W(C) = %

where C is the right Cauchy-Green tensor, i.e. C = Vu’ Vu, and
Cy = Cy(e) = diag(1 +2¢,1 —¢,1 —¢),
Cy = Cy(e) = diag(1 — e, 14 2¢,1 —¢),
C3 = C3(e) = diag(l — ¢, 1 — ¢, 1+ 2¢)
with 0 < € << 1 and
b=10.38, ¢=-29.23, d=562.13, e=3.26, f=5.25.

The specimen is taken to be
Q=(0,4) x (0,1)%
and the boundary conditions are
0= DW(Vu)n, onx =4,

) (5.12)
u = 3(RU; + Us)x, on 0Q\{z = 4}.
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The R is the rotational matrix given by the Hadamard jump condition and U; = +/C;. Note that
the Young measure associated with these boundary conditions is uniquely determinated, cf. [[11],
Theorem 7.1, Theorem 7.3]. The calculation has been done in the rotated coordinate system so
that b = (0,0,1)7. The rotation of the coordinate system aligns the expected twin planes with the
discretization of 2. We recall that the normal to the twin planes is given by the vector 4. The
deformation gradient of the solution has to oscillate between RU; and Us. The rotation of the
coordinate system yields a solution having the deformation gradient constant in the z-direction.
Obviously, the boundary condition cannot be met; hence the infimum cannot be attained. The
finer numerical test comes when the energy is considerably decreased by creating branching near the
incompatibility at = 0 given by the boundary condition. Note, that there is no incompatibility
other than at z = 0 after the rotation of the system. In the continuous case, the branching is the
consequence of the presence of surface energy, which prevents nucleation [33], [34], [35].

The computational result obtained by the standard conjugate gradient method is plotted in the
upper part of Figure 4. The result of the multi-level minimization scheme (5.1) is plotted in middle
of Figure 4. The lower part of this figure is taken out of a part of Figure 3. The comparison of the
two results suggests that the multi-level method (5.1) can model splitting to some extent.

Figure 4: The upper picture represents a laminated microstructure obtained by the Conjugate-Gradient
algorithm. The lower configuration has been computed using the multi-level algorithm (5.1). It represents
the cross-section of the speciman at y = .5. The darker the shade of gray, the closer is the gradient of the
solution to either RU; or Us. This configuration closely resembles the branching shown in the lower picture,
predicted by the models using surface energy [33], [34] and observed in experiments [18], [7].

The initial state is biased in these calculations toward the branching by starting with the solution
that oscillates over four mesh lengths in the z—direction. Algorithm (5.1) was used with N = 2.
The underlying spaces were chosen to be Q1 on the mesh of the size 16 x 32 as well as on the finer
mesh of 32 x 64 gridpoints. The projection was done by dividing the computational domain into
two subregions containing one initial lamella on the coarse grid of 8 x 32 gridpoints. Each of these
regions were then projected onto two finer subregions of size 8 x 64 gridpoints. There were 8 x4 = 32
grid points in the z—direction to keep the projection consistent.
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