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Abstract

Communication analysis and code generation for data parallel languages are naturally formulated
as operations on integer sets. Principal analysis and code generation tasks require manipulation of
sets of data, sets of processors, and sets of iterations. We describe a practical, executable, equational
framework for analysis and optimization of High Performance Fortran based on abstract operations on
sets of integers. This framework serves as the basis for the Rice dHPF compiler. We describe tradeoffs
in the framework’s implementation, the formulation of important analyses and optimizations using the

framework, and a set-based code generation strategy that supports the framework.

1 Introduction

Data-parallel languages like High-Performance Fortran (HPF)[21] hold out the promise of a high-level,
portable, parallel programming model usable by non-computer-scientists. To achieve wide acceptance, such
a language will require parallelizing compilers that can extract consistently high performance from a wide
variety of applications. The Rice dHPF compiler project is developing a range of optimization techniques
that can help deliver such consistent levels of performance.

To achieve these levels of performance, we believe two requirements must be met. First, the compiler
should have the maximum possible flexibility in its computation partitioning strategies, and not restrict the
partitioning to follow the widely-used owner-computes rule [25] or restrict all statements in a loop to have
the same partitioning [1]. The dHPF compiler incorporates a flexible computation partitioning (CP) model,
in which each statement (including control flow) has one or more computational “homes” that specify where
instances of the statement will execute. Second, the compiler must provide a wide variety of optimization
techniques and apply these with as few restrictions as possible on the form of references, data distributions,
and computation partitionings.

Program analysis and implementation techniques in current compilers, however, do not appear flexible
enough to support a general class of computation partitionings and program optimizations. Most research
and commercial data-parallel compilers to date [23, 6, 22, 28, 17, 10, 11, 13, 7, 12, 31] (including the Rice
Fortran D compiler) perform communication analysis and code generation using pattern matching. While
such approaches can provide excellent performance where they apply, they may provide poor performance
for patterns they cannot handle. More importantly, pattern-based compilers require a relatively high de-
velopment cost for each new optimization because the analysis and code generation for each case must be
expressed in terms of specific patterns; this makes it difficult to achieve wide coverage with optimizations to
offer consistently high performance.

A few research groups have used systems of linear inequalities to provide a more general and flexible

approach than patterns for compiling data parallel programs [3, 2, 5, 1]. In most cases, these have been



used primarily for code generation based on Fourier-Motzkin elimination (FME) [26, 3]. Amarasinghe and
Lam [1] also describe how inequalities and FME can support array dataflow analysis and a few specific
communication optimizations, but these primarily operate by direct manipulation of inequalities. Further-
more, their representation could not represent general non-convex sets or a general set union operation, so
optimizations using them are limited in scope [1, 5, 2]. (For example, their representation would not support
our CP model, or optimizations such as coalescing of arbitrary affine references to an array [1].)

The Rice dHPF compiler is based on a practical, executable, equational framework that enables data
parallel program analyses and optimizations to be expressed in terms of abstract operations on integer
sets. Early work on compiling data parallel programs describes basic compilation steps in terms of set
operations [16, 22]; however, this was viewed only as a pedagogical abstraction and the corresponding
compilers (Kali and Fortran D) were implemented using pattern matching techniques. Using our equational
framework, we have devised and implemented simple, yet general, equational formulations of the major
partitioning and communication analyses as well as a number of important optimizations. All of the analyses
and optimizations within this framework fully support our general computation partitioning model, permit
references with arbitrary affine subscripts, and are independent of the specific data layouts. The framework
and the optimizations have been implemented in the Rice dHPF compiler, which currently compiles HPF
programs to message-passing Fortran with MPI.

This paper describes the equational framework, tradeoffs that arise in the implementation of the frame-
work and how they were addressed in dHPF, and the formulation and implementation of important analyses
and optimizations within the framework. Optimizations we have formulated as integer-set equations address
message overhead, message latency, the costs of non-local storage management, and scalar efficiency of the

generated code. These optimizations include:

e message vectorization for arbitrary regular communication patterns;
e message coalescing for arbitrary affine references to an array;

e loop-splitting transformations to overlap communication with computation within a single loop-nest,
and also to reduce the overhead of accessing buffered non-local data;

e a combined compile-time/run-time technique to reduce explicit data copies for a message; and

e constraint propagation to simplify code using constraints from enclosing control-flow.
We describe a hierarchical code generation strategy that supports the optimizations and our general CP
model. Finally, we present some preliminary benchmark measurements that provide a baseline for the
performance of dHPF’s generated code.

In the following section, we describe our integer-set based equational framework and the formulation
of optimizations using integer sets. In Section 4, we describe our code generation strategy and the use
of constraint propagation to simplify the generated code. Finally, we present benchmark measurements,

contrast our work with previous work, and then offer some concluding remarks.

2 The Integer Set Framework and its Applications

The following subsection explains the framework of primitive sets and mappings that underlies integer-set-
based functions in the dHPF compiler. We then describe how key analyses and optimizations are implemented

in terms of these abstractions.

2.1 An Integer Set Framework for Data-Parallel Compilation

An integer k-tuple is a point in Z¥; a tuple space of rank k is a subset of Z¥. Any compiler for a data-parallel

language based on data distributions operates primarily on three types of tuple spaces, and the three pairwise



mappings between these tuple spaces ([1, 16, 22]). These are:!

datay, the index set of an array of rank k,k > 0
loopy, - the iteration space of a loop nest of depth k, &£ >0
procg - the processor index space in a processor array of rank &k, &k > 1
Layout : proc, — datay, : {[]2] — [a] : array element a € datay is allocated to processor p € procn}
Ref : loops, — data,, : {[i] — [a] : array element a € datay is referenced in iteration i € loopy }
CPMap : proc, — loopy : {[]2] — [1] : statement instance i € loopy, is assigned to processor p € procn}

Scalar quantities such as a “data set” for a scalar, or the “iteration set” for a statement not enclosed in any

2 For example, the computation

loop are handled uniformly within the framework as tuples of rank zero.
partitioning for a statement (outside any loop) assigned to processor P in a 1-D processor array would be
represented as the mapping {[] —[p]l:p= P}. Hereafter, the terms “array” and “iterations of a statement”
are taken to refer to scalars and outermost statements as well. Note that any mapping we require, including
a mapping with domain of rank 0, will be invertible.

We formulate many of the key compiler analyses and optimizations in dHPF directly as abstract set
operations on these sets and mappings. This requires an integer set package that supports all the key set
operations including intersection, union, difference, domain, range, composition, and projection. (Appendix
A defines some of these operations). Pugh et al. at the University of Maryland have recently developed
algorithms for integer set problems represented by Presburger formulas [24]. They use advanced Fourier
elimination techniques to provide two key capabilities: a general class of integer set operations including
set union and non-convex sets, and an algorithm to generate efficient code for multiple iteration spaces [18§].
These algorithms are implemented in an integer set package, the Omega library. From the viewpoint of
HPF compilation, a significant drawback of their techniques is that they provide only limited handling of
symbolic quantities. We used the Omega library to implement the integer set framework in dHPF, but
extended the framework to circumvent these limitations. In Section 3, we discuss these tradeoffs and how
they were addressed in our implementation.

In practice, the sets Loop and Proc and the mappings Layout and Ref are constructed directly from
our IR, and form the primary inputs for further analyses. Their construction takes advantage of a powerful
symbolic representation in our compiler, namely global value numbering, A value number in dHPF is a handle
for a symbolic expression tree. Value numbers are constructed from dataflow analysis of the program based
on its Static Single Assignment (SSA) form, and their construction subsumes simple expression simplification,
constant propagation, auxiliary induction variable recognition, and range information for expressions of loop
index variables. A value number can be reconstituted back into an equivalent Abstract Syntax Tree (AST)
representation of the expression.

Figure 1 illustrates simple examples of the primitive sets and mappings for an example HPF code frag-
ment. The construction of the Layout mapping follows the two steps used to describe an array layout in
HPF, namely alignment of the array with a template and distribution of the template on a physical processor
array (the template and processor array are each represented by a separate tuple space) [21]. The ON_HOME

CP notation and construction of C'PMap are described in the following section.

1'We use names with lower-case initial letters for tuple sets and upper-case letters for mappings respectively.
2The set {[] : cond} should be interpreted as a boolean that takes the values true or false, depending on whether the
condition cond (expressed as constraints on global variables) is satisfied.



real A(0:99,100), B(100,100) symbolic N

processors P(4) proc ={[p]: 0<p<3}
template T(IOO,IOO) AlignA = {[al,al] — [tl, t2] thh=a1+ 1At = 02}
align A(I,J) With T(1+17J) AlignB = {[b17b2] — [t17t2] : t2 = bl}
align B(i j) with T(x,i) Disty = {[t1,t2] > [p]: 25p+ 1< t2 < 25(p+1) A0 < p < 3}
distribute t(*,block) onto P Layouta = Dist;' o Aligny’
read(*), N = {[p] = [a1,a2] : maz(25p + 1,1) < az < min(25p + 25,100) A
doi=1,N 0 < a1 <99}
doj=2 N+1 Layoutp = Dzst;1 ) Alzgn];1 ‘ ' »
! oN_HOME B(j-1,i) = {[p] = [b1,b2] : maz(25p+ 1,1) < by < min(25p + 25,100) A
AGi) = B(-L,) 1< b < 100}
enddo lOOp = {[11712] Zlgll §1\7A2S12 SIV-‘rl}
enddo C’PRef :{[11712]%[1317132]11)2:11 /\bl 212—1}

CPMap = Layouty o CPRef™! ﬂmnge loop
= {[p] — [11712] 01 S ll S 1’I’LH’Z(]\77 100) AN
maz(2,25p +2) <l < min(N + 1,101, 25p + 26)}

Figure 1: Construction of primitive sets and mappings for an example program. Aligna, Aligng, and Distr
also include constraints for the array and template ranges, but these have been omitted here for brevity.

2.2 Computation Partitioning Model

A major goal of dHPF is to support a general class of computation partitionings that enable high performance.
This requires that all the analysis and code-generation phases in the compiler fully support any partitioning
in this class. This would be impractical with a pattern-matching approach; the abstraction of an integer set
framework has proved essential for making such analysis and code generation capabilities practical.

The widely-used owner-computes rule specifies that a computation happens on the owner (i.e., the
“home”) of the left-hand-side reference. In dHPF, we generalize this rule and permit the computation
partitioning (CP) to be the owner of one or more arbitrary data references. Consider a statement enclosed
in a loop nest with iteration space z; the CP of the statement is specified by a union of one or more ON_HOME
terms: CP : Uﬁz?ON_HOME{Ak(fk (g))} An individual term oN_HOME{Ag(fx (7))}, specifies that the dy-
namic instance of the statement in iteration { is to be executed by the processor(s) that own the array
element(s) Ag(fx(2)). This set of processors is uniquely specified by subscript vector fi(#) and the layout
of array Ay at that point in the execution of the program.® This implicit representation of a computation
partitioning supports arbitrary index expressions or any set of values in each index position in f;(i). To
support analyses and code generation for such CPs, for each statement we compute C'PMap, an explicit
integer tuple mapping from processors to iteration spaces. Construction of C'PMap requires the expression
for each index position in fx(Z) to be an affine expression of the index variables, i, with known constant
coeflicients, or a strided range specifiable by a triplet [b:ub:step with known constant step.

We construct C'P M ap to represent the computation partitioning for a statement as follows. Let Layout g,
Refi, and Loop represent the layout of array Ay, the index expression fi(Z), and the enclosing loop
iteration space, respectively. The mapping for a single term ON_HOME{Ag(fx(Z))} is a simple compo-

sition of the layout and reference mappings, restricted in range to the loop index space: C'PMap, =

3In the presence of dynamic REALIGN and REDISTRIBUTE directives, the formulations and analysis using integer sets
require no change as long as only a single known layout is possible for each reference in the program. Multiple reaching layouts
would require cloning procedures or generating multi-version code to satisfy this condition.



(Layout ax, o Refk_l) ﬂmnge Loop. The mapping for the full CP is the union of individual mappings:

CPMap = U7 (Layout ax o Refk_l) N Loop. (1)

range
This mapping specifies the processor assignment for a single statement instance in loop iteration ;. The map-
ping can be vectorized over a range of iterations L of one or more enclosing loops to represent the combined
processor assignment for the set of statement instances in those loop iterations, denoted Vectorize(CPMap, L).

These directly form inputs to several of the other analyses, described in the following sections.

2.3 Implementing explicit communication

For message-passing systems, data-parallel compilers must compute the set of data that needs to be ex-
changed between processors and generate efficient code to pack, communicate, unpack, and reference the
non-local data. Two key communication optimizations on such systems are message vectorization and mes-
sage coalescing. Vectorization attempts to hoist communication for a reference out of one or more enclosing
loops in order to send a few large messages instead of many small messages between each pair of processors.
To synthesize vectorized communication, the compiler must compute the set of data to send between each
pair of processors; these communication sets depend on the reference, layout, and computation partitioning.
Message coalescing combines messages for multiple references to eliminate redundant communication and to
further reduce the number of messages. Coalescing requires merging the above communication sets (i.e., set
union).

We directly compute the communication sets for each communication event using a sequence of integer
set operations, independent of the specific form of the reference, layout, and computation partitioning. Later,
we generate code from these sets directly. This abstract formulation greatly simplifies the core of the dHPF
compiler and enables efficient handling of general classes of computation partitionings and affine references.

Early phases in dHPF compute which references are “non-local” (i.e., might access non-local data),
where to place communication for each reference, and which sets of references can have their communication
coalesced. We currently assume a model of communication where data computed on a processor other than
the owner is first communicated to the owner, and read references obtain off-processor data only from the
owner. Therefore, a write reference is “non-local” if the location 1s owned by one or more processors besides
the processor executing the write. A read reference is non-local if the location is not owned by the processor
executing the read. We refer to the entire sequence of messages required for a set of coalesced references as
a single logical communication event.

Given the sets of coalesced references and the placement of communication, we compute the commu-
nication sets for each logical communication event using the inputs and set equations shown in Figure 2.
Due to constraints in supporting multiple processor arrays (described below), we compute two separate
maps, SendCommM ap(m) and RecvCommM ap(m) for a fixed representative processor m (or myid). The
maps respectively specify the data that processor m must send to each other processor p and the data that
processor m must receive from each other processor p.

The key operations are as follows. Steps 1 and 2 compute the map DataAccessed, which specifies the
entire set of data (local and non-local) accessed by each processor p, via reference r in all iterations of the
loops out of which communication has been vectorized. Then, the non-local data referenced depends on
DataAccessed, and the local data owned by each processor, Layout, (in our model, it is the difference of
these for a read, but the intersection for a write). These operations cannot be performed directly because
the domains of these two maps might represent different processor arrays. Instead (step 3), we convert the
maps to sets of data for the fixed processor myid (represented by the singleton set {m}) and perform the

difference or intersection on sets in the data domain.



Inputs:

ReadRefs,WriteRefs : the coalesced read and write references
Ref, : map representing reference r, Vr € ReadRefs U WriteRefs
CPMap, : computation partitioning map for reference r
Layouta, : layout of the referenced array at reference r
Veomm @ loop-level of innermost loop enclosing communication for r after vectorization
Algorithm:
(1) CPMap! = VectorizeRangeVars(CPMapy,Veomm) (see Appendix A.)
(2) DataAccessed, = CPMap) o Ref,
(3) nlDataSet,(m) = {[g] : off-procesor array elements referenced by processor m }

DataAccessed,({m}) — Layout ar({m}) if r € ReadRefs
- DataAccessed,({m}) N Layout a,(~{m}) if r € WriteRefs

(4) NLCommMap,(m) = {[E] — [a] : off-processor elements referenced by proc. m and owned by proc. p }
= Layouta, ﬂmnge nlDataSet,(m)
(5) LocalCommMap,(m) = {[E] — [a] : array elements owned by proc. m to be communicated with proc. p }
= DataAccessed, ﬂmnge Layout ar ({m})
(6) SendCommMap(m) = U LocalCommMap-(m) |J U NLCommMap,(m)
rEReadRefs rEWriteRefs
(7) RecvCommMap(m) = U NLCommMap-(m) |J U LocalCommM ap, (m)
rEReadRefs ‘ rEWriteRefs
(2)

Figure 2: Equations for computing communication sets

We then compute two maps describing the local and non-local data (w.r.t. to the fixed processor m) that
must be communicated with each other processor (steps 4,5). The non-local data map (N LCommM ap, (m))
specifies data referenced by m to be communicated to or from each processor p that owns the data. This
map is the restriction of the range of the Layout, map to the non-local data set, nlDataSet,(m). The local
data map (LocalCommM ap, ) specifies data owned by m to be communicated to each other processor p that
references the data. This map is the restriction of the range of the DataAccessed, map to the local section
owned by m.

Finally, we use LocalCommMap and N LC'ommM ap to compute the data to send to and receive from
each processor (steps 6,7). N LCommM ap,(m) specifies the data to be sent by m if r is a write, and received
if ris aread. LocalCommM ap,(m) gives the data to be received by m if r is a write and sent if r is a read. *

SendCommMap and RecvCommMap are used by the code generator to synthesize communication.
Several alternative communication strategies can be directly supported. To implement pairwise, point-to-
point communication we synthesize separate loops to iterate over the domain (processor set) and the range
(data set) of each map. (The data loop is only required if data must be packed to or unpacked from a buffer.

The following subsection describes a general algorithm to determine if these operations are necessary.) This

4Note that for a replicated array, LocalCommMap,(m) as computed in step 5 specifies that all processors m # p should
provide data to p on a non-local read. We can eliminate the extra communication during code-generation by choosing a single
owner to perform each send, e.g., by choosing the particular processor m whose index is equal to p; € p in each dimension

along which the array is replicated.



general approach provides efficient communication for arbitrary static communication patterns, and is even
sufficient to obtain high performance on important special cases such as shift and transpose communication
patterns. It is straightforward to extend this to exploit special communication primitives such as broadcast,

where point-to-point communication would be less efficient.

2.4 Recognizing in-place communication

Common MPT implementations permit data to be sent or received “in-place” (avoiding an explicit data copy)
when the address range of the data is contiguous. To increase the likelihood that communication can be
performed in-place, we develop a combined compile-time/run-time algorithm for recognizing contiguous data
based on our capability of generating code from integer-sets.

FORTRAN arrays are stored in column-major order. Accordingly, a communication set C for data in an
n-dimensional array A represents contiguous data if there is some dimension & such that, for the high-order
dimensions 1 < ¢ < k, the set spans the full range of array dimension ¢, along dimension k the set has a
contiguous index range, and in the low-order dimensions k+ 1 < j < n, the set contains a single index value.
Let A represent the index set of the array, and define S¢;s to be the projection (i.e., range) of set S in

dimension ¢, 1 < i < rank(S). Then the above condition can be formalized as:

kst 1<k<n A NI (Cas=As)
A isConvex(Ceps) A /\ZEZ+1iSSingleton(C<i>)

The predicate isConvex(S) is true iff the set S is convex, and the predicate isSingleton(S) is true iff S
contains a single element.

To permit runtime evaluation when necessary, we reduce each of the tests to a satisfiability question for
which we can synthesize an equivalent conditional to be tested at run time. The first condition reduces
to testing if the set (spanOfDim(A, ) — project(C,i)) is not satisfiable. The predicate isConvex(S) reduces
to testing if the set (convexHull(S) — S) is not satisfiable. The predicate isSingleton(S) also reduces to a
satisfiability test, but we omit the details here.

To avoid evaluating O(n?) predicates at compile-time, we use a single scan of the dimensions (leftmost
first) to find the first dimension k& for which Ccgs # Acks, and check the predicates for k...n. If these
predicates cannot be proven, we synthesize code to repeat this scan and check at runtime, when it can be
done precisely by evaluating at most n + 2 predicates. In general, this test can be performed much faster
than packing a buffer of modest size. If the decision must be made at runtime, we generate two versions of
code (with and without buffer packing). This approach, based on explicit integer sets, enables us to exploit
in-place communication for arbitrary communication sets, independent of data layouts and communication

patterns.

2.5 Implementing Loop-Splitting For Reducing Communication Overhead

Previous researchers [22, 30] have suggested iteration reordering techniques to ameliorate two types of com-
munication overhead: the cost of referencing buffered non-local data, and the latency of communication.
Both techniques involve splitting a loop to separate the iterations that access only local data from those that
may access non-local data. Buffer access costs arise because a run-time check may be needed to access local
or non-local data when appropriate. After splitting the local and non-local iterations, no checks are needed
for references in the local iterations. The latency of communication can be (partly) hidden by splitting
because communication required for non-local iterations can be overlapped with local computation.

The only implementation of this approach we know of is in Kali [22], where the authors used set equations



Inputs:

CPMaps; : CP map for each statement s in a loop nest
ReadRefs, WriteRefs : mnon-local read and write references in the loop nest
Ref. : map representing reference r, Vr € CommRefs = ReadRefs U WriteRefs
CPMap, : CP map for reference r

nlDataSet, (m) : set of non-local data accessed by processor m (myid)
Algorithm:
eplterSet, = CPMap,({m})
nllters, = Refr_l(nlDataSetr(m)) ﬂ eplterSet,
nlReadlters = UreReadRefsNLItersr
nlWritelters = Urewr“eRefsNLItersr
nonLocallters = nlReadlters U nlWritelters SEND data for non-local reads
locallters = U CPMaps({m}) — nonLocalIters execute NLWOlIters
sloop stmts execute Locallters
. RECV data for non-local reads
nlRWIters = nlReadlters ﬂ niWritelters execute NLWOIters | )] NLRWIters
nlROIters = mnonLocallters — nlWritelters SEND data for non-local writes
nlWOIters = mnonLocallters — nlReadlters RECV data for non-local writes
(a) Computing local/nonlocal iteration sets (b) Scheduling loop iterations

Figure 3: Loop splitting to overlap communication and computation.

to explain the optimization but used pattern-based analysis to derive the iteration sets for a few special cases.
This approach is only practical for a small number of special cases, and may be even more limited when
statements in a loop have different CPs.

We extend the equations in [22] to apply to arbitrary sets of references, and any CP in our CP model, using
the sets and mappings described in previous sections. We only describe loop-splitting for communication
overlap here, because it subsumes splitting for buffer access. Since, in dHPF, some iterations may also
compute values for non-local data, we separate the set of iterations into four sections: those that access only
local data (locallters), and those that only read, only write, or read and write non-local data (nl ROTters,
nIlWOTters and nlRW Iters respectively). These sets are computed as shown in Figure 3(a) for a loop-
nest containing one or more potentially non-local references, r;,1 < 7 < n. The key step is computing
the iterations that access non-local data for each given reference r. This can be directly computed from
nlDataSet, (m) (obtained from the equations Figure 2), simply by using the mapping Ref ' to derive the
iterations that access these elements. Locallters includes all iterations assigned to processor m that are
not in nllters, for any r, and the other sets are computed simply by grouping nllters, by read and write
references.

We schedule the communication and computation for this loop nest in the sequence shown in Figure 3(b).
Since the iterations of NLRW (if any) must all be placed either before or after Locallters, we simply place
them after (merging them with NLWOTters). They could also be merged with NLROTters; a simple
heuristic could be used to choose between the two alternatives. This sequence overlaps the read commu-

nication latency with the execution of NLW OIters and Locallters. 1t also overlaps write communication



latency from N LW Olters with the execution of Locallters and N LROIters.

Note that this form of splitting also subsumes splitting for non-local buffer access, since the local iterations
are separated here as well. References in the local iterations do not need buffer-access checks, and a reference
r in a non-local loop section (e.g., NLROIters) also does not need such checks if nl ROTters C nllters,.

Code generation from these sets subsumes the operation of partitioning the loop by reducing the loop
CPMaps({m}). Therefore, code

generation for loop-splitting is performed as part of the overall code generation framework for computation

bounds, since each of the four loop sections is a subset of Us:loopstmts

partitioning, described in Section 4.

3 Implementation of the Integer Set Framework

The sets and mappings that arise in our compiler require a fairly comprehensive integer set representation,
including the ability to represent set union (or disjunctions of constraints), and set difference. For example,
the union operation is required for a C'PMap consisting of multiple individual oON_HOME terms, for the
CPMap of a loop iteration containing multiple statements with different CPs, and for the data set of a
communication event when communication for multiple references is coalesced.

Limited set representations such as Regular Section Descriptors [14] and Data Access Descriptors [4],
as well as previous implementations of systems of linear inequalites supported by Fourier-Motzkin Elimi-
nation [2, 5, 1], do not support general non-convex sets set (and consequently, do not support general set
union, difference, or complement operations). Their major advantage, however, is that they can support
affine expressions with symbolic (i.e., unknown constant) coefficients.

In contrast, the Omega library from the University of Maryland (originally developed to support the
Omega test for dependence analysis) provides a powerful implementation of a general class of integer set
operations, including set union, using a generalization of Fourier elimination techniques [24, 19]. Omega
also supports generation of efficient code for multiple iteration spaces (such as loops containing multiple
statements with different CPs) [18]. While the underlying algorithms have poor worst-case performance,
such cases appear very unlikely to occur in practice [24].5

From our perspective, a more significant limitation of the Omega library is that it does not permit
unknown coefficients in affine constraints. These are required for all the HPF distributions when the number
of processors is not known at compile time, for the cyclic(k) distribution with unknown &, and for loops with
unknown strides. We have used the Omega library for our implementation, and extended our framework to
circumvent the limitation on symbolic parameters in data layouts, as described below. Loops with unknown
strides are not supported by our framework, and would have to fall back on more expensive run-time
techniques such as a finite-state-machine approach for computing communication and iteration sets (for
example, [20]), or an inspector-executor approach.

In the presence of a symbolic number of processors or symbolic k, we use a virtual processor (VP) model
that naturally matches the semantics of templates in HPF [15]. We also add an additional optimization step
to reduce runtime overhead in the resulting code. This optimization was also used by Gupta et al. [12] but
was based on detailed analysis of specific patterns, whereas we use a general integer-set-based algorithm,
described below.

For our VP model, we use a virtual processor array for each physical processor array, using template
indices (i.e., ignoring the distribute directive) in dimensions where the block size or number of processors is
unknown, but using physical processor indices in all other dimensions. We construct the Layout mapping as

a map from VPs to data elements. All the analyses described in the previous sections operate unchanged on

5We are investigating approaches for detecting and avoiding such cases within the compiler.



Inputs: Same as in Figure 2

Algorithm:
busyV PSet, = Domain(CPMap,)
Vibsasen = { Bt Lotar 7€ feans,
allNLDataSet, = NLDataAccessed,(busyV PSet,)
vpsThatOwnN LData, = LayoutZi (all N LDataSet,)
vpsThatAccessN LData, = Domain(NLDataAccessed;)
activeSendV PSet = U vpsThatOwnN LData, U U vpsThat AccessN L Data,
r€ReadRefs re€WriteRefs
active RecvV PSet = U vpsThatAccessN LData, U U vpsThatOwnN LData,
r€ReadRefs r€WriteRefs

(a) Equations for computing the active virtual processors
real A(1:100)
processors PA(P1,P2)
template T(100,100)

align A(i,j) with T(i,j) vpArray {[v1,v2] : 1 < v1,v2 < 100}
distribute t(cyeclic,cyclic) onto PA loop = {[i,7]: PIV +1<1,5 <100}
CPMap = {vi,v2] = [5,7]:i=vi Aj=v2 A PIV < v1,vz < 100}
dodi = PI\}i?—VL 100 ReadRefs = {[r]:r =" A(PIV,j)’}
0 j = PIV41, 100 _ ,
' on_roME { Aij) } busyV PSet = {[vi,v2]: PIV < v1,v2 <100}
A(ij) = -+ + A(PIV,j) NLDataAccessed = {[vi,v2] = [PIV,v2]: PIV < v1,v2 < 100}
enddo activeSendV Pset = {[vi,v2]:v1 =PIV A PIV < v1,v2 < 100}
enddo activeRecvV Pset = busyV Ps
(b) HPF code for Gauss loop (c) Active virtual processors in Gauss loop

Figure 4: Active virtual processors for computing, sending and receiving

the virtual processor domain. During code generation for each specific problem (e.g., generating a partitioned
loop), we add extra enclosing loops that iterate over the VPs that are owned by the representative physical
processor myid. Also, when generating code for communication, we must aggregate the messages to all the
VPs belonging to the same physical processor.®

The additional optimization mentioned above is used to reduce the runtime overhead of the extra virtual
processor loop. With this optimization, we compute the entire set of VPs that are active in each given
operation (a partitioned computation, sending data, or receiving data). In a partitioned loop, for example,
some VPs for a given physical processor may have no iterations to execute. Given these active VP sets, each
physical processor only needs to iterate over the subset of its VPs that are active in the operation, and not
all its VPs, eliminating the need for runtime checks inside the virtual processor loop.

The set of active VPs for each problem is computed as shown in Figure 4(a). The active VPs (denoted
busyV P Set) for any partitioned computation is simply the domain of the C PMap. The active VPs that must
send or receive data (for each logical communication event) can be computed using a map from processors
to non-local data referenced by each processor (N LDataAccessed). As explained in Section 2.3, however,

this map cannot be computed when multiple processor arrays appear in the domain of the same C'P. In

6We are currently implementing these extra code generation steps. We have tested the virtual processor model using the
Omega calculator (an interactive front end to the Omega library), and incorporated the model into the integer set framework
implementation, including the equations to optimize runtime overhead.
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such a case, which we expect to be rare, we would fall back on using runtime checks.

The results of these equations are illustrated for the Gaussian Elimination example in Figure 4(b,c),
where the reference to the pivot row, A(PIV,j), requires off-processor data. The busyV PSet reflects that
only VPs corresponding to the lower, right portion of the matrix A are active. activeSendV PSet and
active RecvV PSet indicate that only VPs owning elements in the pivot row (PIV) must send any data, but
all VPs active in the computation (busyVPs) must receive non-local data. In practice, we can generate code
so that only one VP per physical processor will receive each such element.

In addition to using the virtual processor model, one additional implementation detail arises in the
presence of multiple processor arrays and a symbolic number of processors. The union operation used to
compute C'PMap (Equation 1) cannot be performed directly when the arrays Ay are distributed on different
processor arrays (even though these represent the same set of processors). (Effectively, each actual processor
is represented by different tuple elements in the different domains). One alternative is to map processor
indices in every processor array to a common 1-D processor array by linearizing the indices. However,
when the number of processors in any dimension is symbolic, this mapping would require a product of two
symbolics, which cannot be directly represented in Omega.

Instead, we perform the above union implicitly, simply by maintaining a list of the individual mappings,
C Py, using a data structure called a TupleList. The TupleList implementation supports all the standard
operations on sets and mappings, including inverse, intersection, union, difference, domain, range, and
composition with a set or mapping. Further operations involving C'P M ap operate directly on TupleLists
instead of single sets or mappings. (The number of entries in such a list is always bounded above by the
highest number of items n in the relevant CPs.) In most cases, we eventually are interested in the range
of the mappings in the resulting TupleList (e.g., for the iteration spaces in a computation partitioning or
the data elements in a message sent to each processor). Note that only the domains of the entries in the
CP M ap TupleList are of different ranks; the ranges all have identical ranks. The range of such a TupleList
can therefore be directly represented as a single set. Therefore, no precision is eventually lost, even through
entire sequences of operations on TupleLists. The primary limitation arises in computing the domain of such
a TupleList (e.g., to compute the set of processors that must execute a SEND). This set cannot be computed
explicitly f there actually exist multiple processor arrays used within the same C'P, and the number of
processors in any dimension is symbolic. We expect the former condition to be infrequent in practice, and
handle it with some runtime support, as described in Section 2.3.

The techniques described above make it possible for us to take advantage of the capabilities of the integer-
set framework without being unduly limited by the limitations on the representation of symbolic quantities.
The additional complexity introduced by these techniques are largely encapsulated in the implementation
of the framework, and (we believe) are greatly outweighed by the analysis capabilities and flexibility the

framework provides.

4 Code generation for general computation partitions

With the general CP model of Section 2.2, efficient partitioned code may require a loop to be split into
multiple convex sections in order to avoid expensive runtime checks. This introduces a tradeoff between
bottom-up and top-down code generation: a top-down strategy provides precise information about enclosing
scopes (because they will have already been partitioned), but may require many more applications of the
partitioning algorithm than a bottom-up strategy. For example, in a 2-deep loop-nest where each loop is
eventually split into two sections, a top-down strategy would invoke the loop partitioning algorithm three
times. A bottom-up strategy would invoke it only twice, but at the inner level, it would have no information

about the two separate sections that will result at the outer level. We use a two-pass algorithm to resolve this
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tradeoff, using the more efficient bottom-up strategy to synthesize a correct (and fairly efficient) partitioned
SPMD node program, and then use a much simpler “top-down” algorithm to further simplify the resulting

code.

4.1 Realizing computation partitions

To partition a procedure based on CP assignments, we perform a post-order traversal of a tree-based data
abstraction of the procedure, applying code generation transformations as needed at each node in the tree.
A node in the tree represents a single DO statement, a single branch of a conditional branch, or a sequence
of simple statements with a uniform CP (each of the former two is referred to as a “scope”). Different
code generation algorithms can be applied at each node in the tree. For example, for a loop, we currently
support two strategies: simple bounds reduction, or loop-splitting (as in Section 2.5) combined with bounds
reduction for the individual loop sections. Two other alternatives applicable to loops with irregular data
layouts or references, namely runtime resolution and an inspector-executor strategy, are under development.

To partition a single loop or loop-nest with regular computation partitionings that can be represented
explicitly as integer mappings, we Omega library’s algorithm for code generation with multiple iteration
spaces [18]. The function reduces loop bounds and also lifts guards out of inner loops when multiple
statements with non-overlapping iteration spaces exist. An important optimization we apply is to provide
available information about enclosing scopes so as to simplify the resulting code. For example, consider the
loop nest in Figure 5. To generating code for the inner (j) loop alone, we fix the value of ¢ at a symbolic
value J. We then use LoopC P2(I) as “kmown” information because the constraints in LoopC Py(7) will be
enforced when partitioning the enclosing 7 loop. Therefore, the inner loop is partitioned using the operation
CodeGen(C'Py(I,7),CPs(I,j) | LoopCP2(I)) (see Appendix A). Then, the outer loop is partitioned using
CodeGen(C' Py (j), LoopC Py(7) | LoopC Py()).

doi = 1, N LoopCPi() = Project(CPi(t1) U LoopCPs(1), {[i]]: 1<i<N})
(Sii)(lj): . CPiGi) = {[ij]: myid owns A (f1(i))}
SZ(i,j)7 LoopCP;(1) = Project(CPs(1,j)UCPs(1,5), {[7]:1 <7< M})
83(i.j) CP(i,5) = {[i]: myid owns A2(f2(1, 7)) }
enddo CP:(i,5) = {[i,7]: myid owns As(fs(1, 7))}
enddo

Figure 5: Example showing iteration sets constructed for code generation.

4.2 Control flow simplification

The bottom-up algorithm for realizing CPs can result in excess code in inner scopes, because of imper-
fect information regarding the partitioned code of outer scopes. Furthermore, when communication state-
ments are placed inside a loop due to a loop-carried dependence, the communication code generated from
SendCommMap and RecvCommMap (Section 2.3) includes control conditions to ensure that processors
execute only their assigned communication. These conditions may also include superfluous guards, given the
constraints of enclosing partitioned loops.

To illustrate the problem, Figure 6(a) shows source code for a loop from the Erlebacher benchmark and
Figure 6(b) shows the skeletal SPMD code resulting from bottom-up code generation followed by commu-
nication code generation. In the generated code, many of the guards are infeasible or tautological because
the outer j loop is split into three sections (j = 16pmyid; + 16, { 16pmyid; + 15 > j > 16pmyid; + 1}, and
J = 16pmyid;) to avoid runtime checks on the communication calls, but this information was not available

when partitioning the 2 loop.
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parameter (N=64) j = 16 * pmyidl + 16
real a(N), b(N), £(N,N) if (16 * pmyidl .ge. j - 15) then
CHPF$ processors p(4) do i =1, 64

CHPF$ template t(N,N)

K R if (16 * pmyidl .eq. j - 16 .and. pmyidl .le. 2) then
CHPF$ distribute t(*,block) onto p Py 4-J Py

RECV
CHPF$ align f(i,j) with t(i,j) if (16 * pmyidl .le. j - 16) then
CHPF$ align a(j) with t(*,j) doi=1, 64
CHPF$ align b(j) with t(*,3)
do j=N,2,-1 do jminus = -(16 * pmyidl) - 15,
do i=1,N min(-(16 * pmyidl) - 1, -2)
. . . . . . . . = —Jjmlnus
£(1,3)=( (1, J)-a@) £ (1, j+1)) *b(j) if (1% * pmyidl .eq. j .and. pmyidl .ge. 1) then
enddo SEND
enddo if (16 * pmyidl .ge. j - 15) then
doi=1, 64
(a) HPF source for a fragment from the Erlebacher ..
benchmark. if (16 * pmyidl .eq. j - 16 .and. pmyidl .le. 2) then
RECV
j = 16 * pmyidl + 16 if (16 * pmyidl .le. j - 16) then
if (pmyidl .le. 2) then do i =1, 64

RECV

if (pmyidl .ge. 1) then
doi=1, 64 Py &

j = 16 * pmyidl
s if (16 * pmyidl .eq. j .and. pmyidl .ge. 1) then
do jminus = -(16 * pmyid1l) - 15, SEND

nin(-(16 * pmyidl) - 1, -2)
j = -jminus (b) Generated code before simplification.

doi=1, 64

if (pmyidl .ge. 1) then
j = 16 * pmyidil
SEND

(c) Generated code after simplification.

Figure 6: Control-flow simplification for a pipelined loop from Erlebacher.

We can exploit constraint information from outer scopes to simplify control flow in inner ones. A reverse-
postorder traversal of the control-dependence graph (ancestors before descendants) computes constraints
at each node that are guaranteed by constraints (conditionals and loop ranges) of its control dependence
ancestors. These constraints are represented directly by integer sets of rank 0, where non-affine expressions
are simply reduced to conditions on synthetic global variables. Then, in a postorder traversal of the graph,
we use Codegen(S | C) to simplify or eliminate code at each control-flow node, where S denotes the original
constraints for that node and C' the guaranteed constraints from CD ancestors. The final, simplified code
for the Erlebacher example loop is shown in Figure 6(c).

It is interesting to note in the Erlebacher example that the final placement of the communication code is
exactly what the optimization known as vector message-pipelining aims to achieve [30]. This optimization
moves pipelined shift communication occuring in boundary iterations of a partitioned loop out of the loop
in order to eliminate runtime checks on the communication statements. This optimization is quite complex
to implement in a general way using pattern-based techniques, but in dHPF it is easily obtained as a direct
result of bounds-reduction followed by control-flow simplification (although neither step individually would

achieve this effect, as is evident from Figure 6).
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5 Preliminary Results

With two exceptions, all the analyses and optimizations described in the previous sections have been fully
implemented. The exceptions are code-generation support (to generate two-version code) for finding in-place
communication at runtime, and code-generation support for the virtual processor model. The dHPF compiler
currently generates FORTRAN 77 or FORTRAN 90 SPMD programs using MPI [27] for communication.

The goal of the work presented so far is primarily to demonstrate that it is practical and extremely
powerful to use an integer set framework for implementing key analyses and optimizations in an HPF
compiler. In particular, this approach greatly simplifies the implementation (even with a very general
computation partitioning model) and simultaneously enhances the generality and flexibility of these analyses
and optimizations. Many of the specific optimizations described here are not new (although few if any
compilers have implemented more than a few of these in a general way), and therefore evaluating the impact
of these optimizations on applications is not directly relevant here (but is a subject of our current work).

We present some experimental results to show that the overall implementation of the optimizations is
practical and effective enough to achieve moderate-to-good speedups for realistic kernels and benchmarks.
These results are preliminary and no tuning has been performed so far on the compiler to improve the
performance of the generated parallel code. We present results for two benchmarks: Tomcatv—a mesh
generation code from the SPEC92 benchmark suite, and Jacobi—a simple 4-point stencil kernel with a
convergence loop. We distributed the key arrays (block,*) in the former and roughly square (block,block)
in the latter. The number of physical processors was specified to dHPF at compile time. The compiler
required about 3 minutes on a SparcStation-10 to compile Tomcatv with all optimizations, and much less
for Jacobi. The Fortran code generated by dHPF was compiled with the SGI TRIX 6.2 £77 compiler at
optimization level -O3. Figure 7 shows the resulting speedups on a cluster of four SGI Power Challenge-L
multiprocessors with four-processors each, interconnected by a HIPPI switch.

For Tomcatv, the compiler provides moderate speedup up to 16 processors, partly because of extensive
communication as well as two global reductions within the main computational loop. The compiler selected
non-owner computes computation partitions for two array assignment statements, and generated different
partitionings for different statements in several of the loops. Nevertheless, the scalar efficiency of the gener-
ated code is quite good (partly shown by the speedup of 0.94 on 1 processor). There were no opportunities
for in-place communication with the (block, *) distribution, but nearly all data received was unpacked into
overlap areas [9] which reduces guard overhead for using the data. The compiler also recognized and im-
plemented two reductions. We considered these results to be acceptable before any compiler tuning, for a
cluster system with relatively high communication overhead (e.g., a four-byte node-to-node message costs
about 119 us).

For Jacobi, the speedup only scales linearly up to P = 8 with a small problem size, but shows roughly
the expected linear speedup for a larger problem. The latter curve shows superlinear speedup beginning at
6 processors as the problem begins to fit entirely in cache. The optimizations applied here included loop
splitting for communication/computation overlap, bounds reduction, using in-place communication (with
overlap areas), and recognizing the reduction for the convergence loop. Loop splitting does not realize much
overlap because our compiler currently uses an MPI primitive with sender-side buffering that prevents overlap

of communication and computation at run time.

6 Related Work

As explained in the Introduction, most research and commercial data-parallel compilers to date use pattern-

based approaches for implementing basic communication and iteration set analysis [23, 6, 22, 28, 30, 31, 10,
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Figure 7: Preliminary speedups for two benchmarks on SGI Power Challenge Cluster / MPI

11, 13, 7, 12]. This is a fundamentally different approach from that taken in this paper, and its strengths
and weaknesses have been discussed in the Introduction. There is also a large body of work on techniques to
enumerate communication sets and iteration sets in the presence of cyclic(k) distributions (e.g., [12, 8, 20]).
These techniques likely provide more efficient support for cyclic(k) distributions but would be much less
efficient for simpler distributions, and are much less general in the forms of references and computation
partitionings they could handle.

The previous work on using linear inequalities and Fourier-Motzkin Elimination [26] for code generation
share our goal of improving the generality, the level of abstraction, and the quality of code in data-parallel
compilers. Three groups (Ancourt et al. [2], the Paradigm compiler group [29] and SUIF [1]) applied these
techniques to support code generation for communication and iteration sets described by linear inequalities.
The representations used by these groups were unable to describe general non-convex sets, which limited
the scope of their techniques (e.g., it precluded addressing problems such as coalescing communication for
arbitrary affine references or splitting iterations sets). The SUIF work [1] assumes that all statements in a
loop have identical computation partitionings. In contrast, we support both communication analysis and code
generation for a much more general computation partitioning model than previous compilers. Our virtual
processor model for distributions on symbolic numbers of processors is similar to the SUIF model, although
they use it for any cyclic(k) distribution. The latter work also describes how several basic communication
analyses and optimizations can be performed using their representation based on linear inequalities, such as
message aggregation and redundant communication elimination. Unlike these previous projects, however, we
develop a descriptive equational framework to support general communication analyses and optimizations,

and show how to express several important optimization steps in this framework.
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Finally, Pugh et al. developed efficient techniques for Presburger simplification and for code generation
with multiple mappings, and incorporated these in the Omega library. In this paper, we have described
how this technology can be applied to significantly enhance the computation partitioning, communication

analysis, and code generation capabilities of a data-parallel compiler.

7 Conclusions

In this paper, we have described an integer-set-based approach for analysis and code generation for data
parallel programs. Our implementation of this approach in the Rice dHPF compiler has shown that the
approach greatly simplifies the implementation of many key analyses and optimizations (even with a general
computation partitioning model), and yet enhances their generality and flexibility. To implement this frame-
work in dHPF, we used an integer-set package (the Omega library) which provides powerful simplication and
code generation operations for integer-sets, but extended the framework to circumvent limitations imposed
by the package in representing symbolic data distribution parameters.

We used our framework to construct a number of key analyses and optimizations including computing
communication, iteration, and processor sets for our general computation partitioning model, performing
message vectorization and coalescing for general patterns and array references, more accurately detecting
when data can be communicated “in-place”, and splitting loops for reducing buffer access overheads and for
overlapping communication with local computation. Finally, we have described an efficient hierarchical code
generation strategy that makes it possible to harness complex algorithms for synthesizing efficient partitioned
code for our general computation partitioning model.

Perhaps most important, we believe our equational framework and supporting program analysis tech-
nology can greatly simplify the development of sophisticated new optimizations expressible as integer sets
operations. Thus, the framework provides a simple, uniform, and powerful foundation for analysis, optimiza-

tion and code generation of data-parallel programs.
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Appendix A. Definitions of integer set operations

Some of the less common operations on sets and maps are explained below. We follow the notation in the

Omega package [19] to define these operations, using the following sets and maps:

S1 = {[ir...in]: fsr(in...1n)}

S2 = Al in]: faain i) }
Rl = {[ir. in] = [ dm): fri(in e in, g1 jm)}
R2 = {[h...im]—)[jl...jp]IfR2(i1...im,j1...jp)}

Composition : R1 o R2 ctn) = g1 gpl i Jarccoam st fra(ir - ctn, 1. oam) A frRe(@1 o cam, g1 ]p)}
Composition : R1(S1) < gm)t3ar.ian st fr(ar.can, g1 dm) A fai(an . ..ozn)}

Project(S1,52) = {[il eitnek] t Jon_k41 ... an 8.t

-
—— ——
— —
., =
= 2

f51(i1 .. .in_k,ozn_k+1 .. Ozn) A fs2(0(n_k+1 .. .Ozn)},k <n

RestrictVars(S1, v) :

—~—
—
o
fliy

..in]ZilzllA Aiy:]y
Afsi(li . Loyivgr.. i)}, 1<v<n

(where I ... I, are dummy symbolic variables)

RestrictRangeVars(R1,v) : = {[il cotn] S gm] = A A Gy =T
Afri(in..in, Ji oo o jugr.gn)}, 1<v<n
(where Ji ... J, are dummy symbolic variables)
Codegen(S1...Sv | Known) : S1...Sv:iteration spaces for v statements.
Known (a set of rank 0) : Constraints on global variables in S1...Sv
that will be externally enforced.

Synthesizes a code sequence to enumerate the tuples in S1...S5v in
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lexicographic order, where the same tuple in different sets is ordered as:
(€ Sy) < (i€ Sk),j <k
Codegen(S1 | Known),n=0: Synthesizes an [F statement that executes its body if the condition fs; is satisfied

(assuming the constraints in Known are externally enforced)
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