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Abstract

We analyze a space-time domain decomposition iteration, for a model advection
diffusion equation in one and two dimensions. The asymptotic convergence rate is
superlinear, and it is governed by the diffusion of the error across the overlap between
subdomains. Hence, it depends on both the size of this overlap and the diffusion
coefficient in the equation. However, it is independent of the number of subdomains.
The convergence rate for the heat equation in a large time window is initially linear and
it deteriorates as the number of subdomains increases. The duration of the transient
linear regime is proportional to the length of the time window. For advection dominated
problems, the convergence rate is initially linear and it improves as the the ratio of
advection to diffusion increases. Moreover, it is independent of the size of the time
window and of the number of subdomains. In two space dimensions, the iteration
possesses the smoothing property: high modes of the error are damped much faster
then low modes. This is a result of the natural smoothing property of the heat equation.
Numerical calculations illustrate our analysis.

1 Introduction

We analyze a space-time domain decomposition (DD) iteration for a model advection dif-
fusion equation in one and two dimensions. Our study is motivated by several applications.
The algorithm provides the foundation for an efficient solution of parabolic problems on
parallel machines, because it minimizes communication. In the numerical simulation of
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problems with multiple time scales, and some solidification problems, an adaptive refin-
ment in both space and time is required. This scheme allows the use of different time steps
in different space-time subdomains. The method can also be used as a fast iterative solver
for implicit schemes, on a serial machine.

The numerical implementation of this iteration is closely related to the waveform-
relaxation method, for the solution of systems of ordinary differential equations (ODEs)
[1]-[15]. Specifically, space-time DD is equivalent to a block waveform-relaxation method
with overlapping splittings, applied to the semi-discretized parabolic equation.

Jeltsch and Pohl [16] extended the theory of waveform relaxation to the case of over-
lapping splittings. They showed that the rate of convergence is superlinear, in a finite time
window. Qur analysis of the continuous iteration shows that the asymptotic convergence
rate is governed by the diffusion of the error, across the overlap between subdomains. This
yields a much higher rate of convergence then the one implied by the waveform-relaxation
theory, in view of the Gaussian nature of diffusion. Moreover, we find that the convergence
rate depends on the size of the overlap between subdomains, the size of the time window
and the diffusion coefficient in the equation. It is independent of the number of subdomains,
provided the size of the overlap between subdomains remains fixed.

Gander and Stuart [17] analyzed domain decomposition as a form of waveform relax-
ation, for the one dimensional heat equation, on the infinite time interval. They found that
convergence is linear and that the rate deteriorates as the number of subdomains increases.
Our analysis for the heat equation shows that on large time intervals, convergence is ini-
tially linear with the the same convergence rate as for the infinite time interval. Moreover,
the duration of the transient linear regime is proportional to the length of the time window.

In advection dominated problems, we find that convergence is initially linear with a
convergence factor that is governed by the ratio of advection to diffusion. Specifically, it is
an exponentially decaying function of magnitude of this ratio, and it is independent of the
size of the time window. Hence, this iteration is particularly well suited for such problems.

The results obtained for the one dimensional model problem are also valid in two space
dimensions, albeit in a different norm. In addition, in two (or more) space dimensions, we
find that the iteration has the smoothing property: high modes of the error are damped
much faster then low modes. This property is a result of the natural smoothing property
of the heat equation, and it is independent of the length of the time window.

The analysis of this paper highlights the dependence of the convergence rate of the
iteration on the parameters in the domain decomposition. This raises the question of
which decomposition yields the minimum elapsed time for solving the problem to a given
accuracy, on a specified parallel computer. We model this problem and discuss the means
for it’s solution.

In section 2 we present the algorithm and the model equations. Then in section 3 we
present some preliminary error analysis. In section 4 we derive the asymptotic convergence
rate of the iteration, for the one dimensional problem. We also analyze the transient linear
rate, for advection dominated equations. In section 5 we analyze the transient linear rate



for the heat equation, in a large time window. In section 6 we extend the analysis to
the two dimensional advection diffusion equation. We also derive the smoothing property
of the iteration. In section 7 we discuss the optimal decomposition problem. Numerical
calculations that demonstrate the accuracy of our results are presented in section 8. We
end with some conclusions and future directions in section 9.

2 The model problem and the algorithm

We consider the one-dimensional advection-diffusion equation in [z, 23] X [0, 00)

ou  ,0%u 0Ou

E_anrba—gc—c?quf(x,t), t>0, (1)
u(z,0) = h(z), (2)
u(z,t) = i(t), ulzn,t) = gn(t), (3)

and it’s two dimensional counterpart in [z, zp] X [yi, yn] X [0, 00)

% — a®Au + blsin(0), cos(6)] - Vu + (2,4, 1), (4)
u(z,y,0) = h(z,y), (5)

u(wl,y,t) = 9x; (y’t)’ u(xhayat) = Y9z, (y,t),

u(zaylat) = Gy, (yat)’ u(a:,yh,t) = gyh(yat)- (6)

In equations (1) and (4) the coefficients a, b and ¢ are assumed constants.

We solve the problems (1)-(6) by a domain decomposition (DD) iteration in which
2 x [0,00) is partitioned into space-time subdomains. Time is partitioned into windows of
length T" and we denote the resulting space-time windows by

Wn=Qx[nT,(n+1)T], n=0,1,---. (7)

Each space-time window is further decomposed into subdomains by partitioning space.
In one dimension Q = [z;,z}] is decomposed into sub-intervals of length S, and in two
dimensions Q = [z;,z] X [y, hp] is partitioned into strips of width S. Other possible
decompositions are described in section 6. Adjacent space-time subdomains overlap in
space, and the width of the overlap is denoted by A. Figure 1 depicts the decomposition of
[x1, zp] % [0,2T] into two time windows which in turn are decomposed into three space-time
subdomains.

The problem is solved successively in Wy, W1y,--- to accuracy €, by a subdomain it-
eration with red black ordering. For example, figure 2 indicates the decomposition of
Wy = [zo,z2] X [0,T] into two space-time subdomains. The red and black subdomains are
[0, 21] % [0,T] and [z1,z2] X [0,T], respectively. We denote the red and black iterates by
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Figure 1: Decomposition of the domain [z¢,z3] x [0,27] into two time windows and six
space-time subdomains. The light grey areas are the overlap between the black subdomain
and it’s red neighbors. The overlap of the bottom red subdomain with it’s black neighbor
is shaded in dark grey.

uf(z,t) and ul(z,t) and we assume that u}(z,t) is given. At iteration k > 1, u}(z,t) is
computed by solving equation (1) in [z, z1 + A] X [0, 7], subject to the conditions

ug(z,0) = h(z), (8)
up(zo,t) = qi(t), uf(z1+ A1) = uj_i(z1+ A1), (9)
Then u(z,t) is computed by solving equation (1) in [z1 — A, z5] x [0,T], subject to
uj(z,0) = h(z), (10)
wl(za,t) = gn(t), ul(zy—At) = uf(z — A,t). (11)
We denote the k’th iterate by uk(z,t),
wiet = {0 ZERT g

for k > 1.

The initial value in W,,, u(z,nT'), is obtained from W,,_; for n > 1 and from the initial
condition of the problem, for n = 0. Successive time windows do not overlap in time.

3 Error analysis for the 1-D model problem

3.1 The error equations

We now derive equations for the error in the DD iteration for problem (1)-(3). We first
assume that Wy = [zg,z2] X [0,T] is decomposed into two space-time subdomains, as



depicted in figure 2. The errors in the red and black iterates are defined by
& =u—ul, e = u—ul, e = u—u, (13)
with wuy defined in equation (12).

In order to determine e}, we subtract equations (1), (8) and (9) for u}, from equations
(1)-(3) for u to obtain
Oe, 5 0%l e, o

- bk _ 2 14
ot~ T o Ve O (14)
ex(z,0) = 0, (15)
ep(z0,t) = 0, eh(z1+A,t) = e ((z1+ A1) (16)
In a similar fashion we find that the error in [z1 — A, z2] X [0, T'] satisfies
Oej 0% | 0ep 5
Tk p—k _ 17
ot ¢ oz? + Oz K (7

and the conditions
ez (z,0)

) = Oa
ei(xl —A,t) = ep(z1 — A ), ez(:vg,t) = 0. (19)

The recursive system of equations (14)-(19) determines the evolution of the error in this
iteration as a function of the iteration number k. When the number of subdomains N > 3
we derive a recursive system of N equations of the type (14) and (17), coupled through
their boundary conditions, using the same method as for the two subdomain case.

In order to obtain an explicit expression for the error from the recursive system (14)-(19)
we first derive the solution to the generic equation

de 0% de
e —a@—l-ba—z—ce, (20)

with e(z,0) = 0 and Dirichlet conditions at x = z; and x = 1z, in Appendix A. We
find

e(z,t) = ea(wfwl)lC(t,wh —xz,a,b,c) xe(x),t) + ea(wﬂ”h)lC(t,m —z,a,b,¢) x e(xp,t), (21)

where -
K:(tauaa'ab7 C) = Z {F[t7 ATL(,U’)7a>’Y] - F[t’/j’n([u’)aaav]}’ (22)
n=0
b? b
2 2
= — —_ —_— 2
" 4q2 te, o 2a? (23)
A(u) = 2n+1)L—u and pup(u) = 2n+ 1)L + u, (24)
2
n n 2
F = ' -t 9
(t’nﬂa) 2ﬁat3/2 eXp ( 4a2t 7 t> bl ( 5)
and
L = Iy — Ty (26)



3.2 Preliminary analysis

We begin by deriving simple bounds for expression (21) which we use in the convergence
analysis of the iteration, in the next sections.

Lemma 1 Let F be defined in equation (25). Suppose that e(t) > 0 is a non-decreasing
function and that the scalars X\, p satisfy 0 < X\ < u. Then for any v

T
| 4PN am) = Fr e e(T = 1)dr 2 0. 27)
0
Proof: The ratio ) )
F(taAaaa’Y) A K —A
_ A 2
F(t, p,a,7) ueXp< 4a?t )’ (28)

is a monotonically deceasing function of ¢ that tends to infinity as ¢ — 0 and to A\/u as
t — oo. Hence, there exists a unique scalar ¢* such that

F(t,\a,v) > F(t,p,a,y) for 0<t<t*, (29)

and
F(t,\a,7) < F(t,p,a,y) for t* <t (30)

We now rewrite the integral (27) as the sum
min(t*,T) \ ,
/ [F(T7 A? a, fY) - F(T, My Qa, ’)/)]67 TC(T — 7')6_7 TdT +
0

T
[ P - Frmam] e’ e - e r, (31)

min(t*,T)
and we note that

e =)™ = min o(T )" = max e(T 1), (32)

in view of the monotonicity of e(t). Combining equations (29)-(32) yields the following
lower bound for the left size of (27)

/OT (F(r,\a,7) — F(r, 1,a,7)} e(T — 7)dr >

o(T — t*)e 't / o[- —/TLexp © N\ 33)
2\/_at3/2 %) "y 2ymar P\ 17

The change of variables 7 = ﬁ and 7 = 7 \[ in the first and second intergal of expression

(33), respectively, yields the following bound and proves the Lemma

T 2 *\ —72t 2aVT _T
/0 {F(r,\,a,7) — F(r,p,a,7)} e(T — 1)dr > \/—7_Te(T —t")e /Za:\ﬁ dr. (34)




We now introduce the following truncated sums for the kernel (22)

N-1
m(tauaaa b, C) = F[t7 )‘O(u)aaa'ﬂ + Z (F[t7 >\n+1(U),CI,,’)’] - F[t7 ,u'n(lu’)aaa'),])a (35)
n=0
N
}C_N(tauaaa b, C) = Z (F[ta)\n(u)’a77] - F[ta ,U'n('u')aa'a’)']) ) (36)
n=0

with v defined in (23) and prove

Corollary 1 Suppose that e(t) > 0 is a non-decreasing function and that 0 < u < L

Kn(t,u,a,b,¢) xe(t) < K(t,u,a,b,c)*e(t) < Kn(t,u,a,b,c)x*e(t). (37)

Proof: We obtain both inequalities in (37) by determining the sign of the remainders
K(t,u,a,b,c) * e(t) — Kn(t,u,a,b,c) * e(t) and K(t,u,a,b,c) x e(t) — Kn(t,u,a,b,c) x e(t),
using Lemma 1 and the fact that

An (1) < pp(u) < Apgr(u). (38)

Here, A, and p, are defined in equation (24).

Od
The special case N = 0 of Corollary 1 is
Corollary 2 Suppose that e(t) > 0 is a non-decreasing function and that 0 < u < L
K(tu,a,b,¢) *e(t) < FIt, ho(w), a,7] * (t). (39)

We note that in this inequality, the expression on the left corresponds to the solution of
equation (20) in a bounded domain, with a homogeneous condition on one of the bound-
aries. The formula on the right corresponds to the solution in the quarter plane, with the
requirement that |e| — 0 as |z| — oo. It is obtained by neglecting all corrections introduced
by the images in the sum (22), for the derivative of the quarter plane green’s function.

In view of the non-negativity of F' and e in the right of inequality (39) we find that

Flt, Xo(u),a,7] *e(t) < Iggg{e(T) I(t,n,a,7), (40)



where .
I(t,n,a,7) = /0 F(r,n,a,7)dr.
In order to estimate I, we introduce the change of variables

_
2a+/T

in (41) and we find using [18]

1
I(t,n,a,y) = 5 {elan'erfc (2@71/1_5 + 7\/5) + e aerfe (2;1/7?

Here erfc(z) is the complementary error function

2 o0
erfc(z) = \/—7?/ e~ dt,
z

which admits the expansion (see: [18])

2

—Zz
erfc(z) = f/?rz(l +0o(1)), z— o0,
and the bound N
—z
erfc(z) < ¢ , z>0.
Tz

We now derive bounds for 1.

)}

Lemma 2 Let I be defined in equation (41) and suppose that n,a > 0.

1. If y =0 then for any t > 0

t 2a n?
It’ 9 ’ < - T 9,
(tnam) < 25 exp< m)

2. If7>0andn2%thenforanyt>0

1 [a n?
I(t < (14 = —
( 77)10',’7) = ( + 2 27_”77) exp ( 4a2t>

3. If v > 0 then for allt >0

1l [a m)
< — ) — _
I(t,n,a,v) < (1 + 2 27”)’)’) exp ( .

(41)

(42)

(43)

(44)

(48)



Proof: The bound (46) yields

an U 1 Uk 2
e’e erfc (— + 7\/5) < exp (—— -y t) . (50)
- n 4a2t
201\/% ﬁ (2&\/2 + ’}’\/'Z) .
The exponential and the pre-exponential factors in this expression are maximized at
N
= 51
ot (51)

and this yields the bound

o] 7 a Y
Terte (1 4 t) <./ (__). 52
e erc<2a\/¥ YVt Sy exp . (52)

We use this inequality and the fact that erfc(z) < 2 in expression (43) to obtain (49).

The substitution (51) for ¢ in the pre-exponential factor of expression (50) yields

eﬁerfc(L-F \/i) < ]2 ex _77_2 (53)
2a/t 7 =V 2mny P\ " 4a2t |

The bound (46) implies that for ¢ < %

e‘%erfc( U —fy\/i) < 21/Lexp _7)_2 (54)
2a+/t - ynm 4a2t |’

while inequality erfc(z) < 2 implies that for ¢ > 4—;%

e a erfc (2;1/1_5 — 7\/%) < 2exp (—Z—) . (55)

We now use inequalities (53)-(55) in equation (43) to obtain (48).

Inequality (47) follows from identity (43) and the bound (46) for erfc(z).

Lemma 3 Suppose that e(z,t) is the solution to equation (20) in [z;,zp] X [0,T] with
e(z,0) = 0 and Dirichlet conditions at © = x; and © = zp. Suppose that e(z,t) is also a
solution to equation (20) in [z, zp] % [0,T] with e(x,0) = 0 and that

é(zi,t) > le(zy,t)|, &(zp,t) > |e(zp,1)]. (56)
Then for all (z,t) € [z, zp] % [0,T]

é(z,t) > le(z,?)|- (57)



Proof: Both u = ¢ — e and w = e + e satisfy equation (20) with non-negative boundary
conditions. Hence u and w are non-negative, as shown in Appendix B for equation (20).
This proves inequality (57).

O

Lemma 4 Suppose e(t) > 0 is a non-decreasing function and that h(t) > 0. The convolu-
tion

H(t) = h(t) *e(?), (58)

s a non-negative and non-decreasing function of t.

Proof: Suppose to >t >0
Hity) — H(t) — /0 ) [elts — ) — ety — )] dr + ;2 h(r)e(ty — )dr.  (59)

In view of the monotonicity and non-negativity of e both integrands in equation (59) are
non-negative. Hence, H(ty) > H(t1) and this proves the lemma.

O
Lemma 5 Suppose 0 > 0 and let
_ 012

i) = (%] Yoy (LAEZ PRI, (60

Then _

- _ 2

S () = exp G%) (140(1)), k- oo. (61)

j=0

Proof: We derive the asymptotic estimate (61) by essentially using Laplace’s method for
sums [19]. First we note that for all j =0,...,2k — 3

ar(j + 1) ( 02(k—1)A>
— < 2(k -1 - . 62
T < o - nyew (-2 (62)
It follows that for sufficiently large k, say k > ko
)+ 1
@+ g o ak-s, (63)
ak(5)
and ag(j) is a monotonically decreasing function of j. Hence for all k£ > ko
2%k 2 2
, [(2(k — DA] ( ak(1)>
< ——— | {1+2(k—1 64
jgoak(J) < eXP( n 2k -1 0)) (64)
and this proves the Lemma, in view of inequality (62).
O

10
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Figure 2: The decomposition of Wy = [zg, z2] X [0,T] into two subdomains.

4 Convergence analysis for the 1-D model problem

We now consider the DD iteration of section 2 for the one dimensional model problem in
Wy = [zo,zn] X [0,T]. We first derive a general bound, which we then use to obtain the
asymptotic convergence rate of the iteration, and the transient linear regime for advection
dominated equations.

4.1 General analysis

We now introduce the notation

(@l = guax le(w, 1), (65)
le@n) e = __max _ le(z, 7, (66)

and we prove

Proposition 1 Consider the space-time DD iteration for the one dimensional problem (1)-
(8), and suppose S > 2A. Then for any 0 <t <T

2k—2

Werlle o oten—205~ ((26=2 1y 4k — 1)A + j6, a, ), (67)
o Il 2\
0 = S—2A, (68)

where « and vy are defined in equation (23).

Proof: We derive bounds for |ef (z,t)| and |€? (z,t)| which we denote by &, (z,t) and &% (=, t),
respectively. We use an inductive construction which ensures that the bounds are non-
decreasing functions of . Initially we define

eo(z,t) = Ae™ || eq |l (69)

11



e ¥N a<0
A = { e 0% 4> (70)

and we note that &} is a non-decreasing function of ¢. The derivation for k > 1 is presented
in an incremental fashion. We first assume that Wy = [zg, z2] x [0,7] is decomposed into
the red and black subdomains [zg,z1] X [0,7] and [z1, z2] X [0,7], as indicated in figure 2.
Then we present the general case.

Case I: Two subdomains

The error in the red subdomain at iteration k& > 1, €, is determined by ez_l, through
equations (14)-(16). In order to define &} we first substitute & _, for e | in boundary
condition (16), and solve the resulting problem using formula (21) to obtain

lef(z,1)] < e*@ T AK(t,z — z0,a,b,¢) x b (z1 + A, ). (71)

This inequality follows from Lemma 3 and the inequality \62_1\ < 52—1- We now define éj,
as the bound for K * ézfl obtained from Corollary 2

ei(z,t) = e @R F[t No(z — 20),a,7] * eb_y(z1 + A, t). (72)

The monotonicity of €}, follows from the monotonicity of e}, and Lemma 4. Similar
arguments yield

e (x,1)] < @ TFAK(E, 30 — ,0,b,¢) % & (1 — A1), (73)
e (x,t) = @ THAIER No(z2 — 3),a,7] * E(z1 — A, 1). (74)
In equations (72) and (74) Ag(u) = S + A — u, in view of definition (24) for Ag.

The maximum principle for equation (14) (see: Appendix B) and Lemma 3 imply

leg(z,1)] < Joax, leh_1 (1 + A, 1)), (75)
b r _
leg(z,t)| < 01;1?;%'%(”” A, (76)

It follows from these inequalities and the monotonicity of &, ; that
ek lle < ek (21 + A, ). (77)
We evaluate this bound by combining equations (72) and (74) repeatedly, using the identity

F(ta 771,0,7) *F(tﬂ?%aﬁ) = F(tﬂh +772aaa7)7 (78)

which follows from identity (187) in appendix A and the convolution Theorem for the
Laplace transform, to obtain

52(331 + Aat) = Aea($1+A)F[t,4(k - I)Aaa,')/] * ” €0 ||t . (79)

Equations (77), (79) and the monotonicity of || eg ||z yield

t
el < A o o [ Flr,a(k = 1)A,0.9) (80
0

12



and it follows from definitions (41) for I and (70) for A that

lek lle o glaies—o) I(t,4(k — 1)A, a,7). (81)
| eo It

Case II: N subdomains

In general, Wy = [zg,zn] % [0,T] is partitioned into N subdomains, [z;,z;41] % [0,77],
j=0,...,N —1, which we color red when j = 2¢ and black otherwise. We assume, without
loss of generality, that N is odd.

In all black subdomains [z9;41,Z2i4+2], 1 =0,...,(N —1)/2 —1

e (z,t) = e@mnFAE[ Ao (zoip0 + A — x),a,7] * € (w241 — A1) +
@ @it 2= M Flt N (3 — Zoig1 + A), a,y] * &y (32502 + A, 1) (82)
In interior red subdomains [z9;,z9;41], 1 =1,...,(N —1)/2 -1
& (x,t) = e @ BRI ElE No(zoiq1 + A — x),a,7] x &0 (225 — A1) +
@it = B[t No(x — 2o + A), a,7] % 81 (Toip1 + A, 1). (83)

In equations (83) and (82) Ao(u) = S + 2A — u, in view of definition (24) for A.

In the red subdomains [zg, z1] x [0,7] and [zn_1,2zN] X [0,T]
lef (@, t)] < e ETTTAIP[E Moz — 20, 0,7] * 8y (w1 + A1),
|62($a t)' < ea(xin_l_}—A)F[ta /\O(wN - IL'), aa’)’] * 5271(37N—1 - Aa t)a (84)
respectively, and in order to simplify the analysis we define €} (z,t) as
ea(a:—ml—A) {F[ta AO("E - "EO)a a, ’7] + F[t’ Ao (:L'l - "E)’ a, 7]} * éZ—l(xl + Aa t)a (85)
in [zg, 1] % [0,T] and as
ea(w_wN_H_A){F[ta /\()(-'EN - l‘), aa’Y] + F[ta )\0(1‘ - wal)a (I,,’)’]} * éz—l(wal — A, t) (86)
in [zy_1,2n] X [0,T]. In these equations A\g(u) = S + A — u.

We denote by X4 the z coordinate of all points in the interior of black subdomains that
are at distance A from the boundary

X8 ={zoi1 + A, moy2—A | i=0,...,N/2—1}. (87)
The maximum principle for equation (14) and Lemma 3 yield
leklls < max & _(za,t). (88)
mAEXbA

We evaluate this bound by induction using relations (82), (83), (85) and (86) to obtain

é’];(CCA,T) = Ae™® [F(t72Aaa'a’Y) + F(ta Saaaf}’)]Q(kil)* * || €0 ”ta (89)
for all za € XbA. Here F** is defined by
Flktl)x — py phx pl* = F, (90)

Identity (78), the monotonicity of || ey ||+ and definition (70) yield the bound (67).

13



4.2 Asymptotic convergence rate

We now show that the rate of convergence of the space-time DD iteration is super-linear.

Theorem 1 Consider the space-time DD iteration for the one dimensional problem (1)-
(3), and suppose S > 2A. Then for any 0 <t <T

bl (@ —20) - §
foufe < <5 o (L 0oy, kom0

Proof: We use the bounds (47) and (48) in inequality (67) of Proposition 1 to obtain

Il ex It bl =ag) 2672 ( 2% — 2 > 4k — 1)A + jO]?
< 2 . _ '
Teole < BWe »7 2 (757 e e (92

This inequality is valid for all £ when v = 0 with

B(k) = W\/Elma (93)

and it is valid for k > a/(4Avym) + 1 when v > 0 with

B(k) = 1+%1/m. (94)

Inequality (91) follows from the bound (92), in view of Lemma 5.

The analysis of the semi-discrete iteration by the theory of waveform relaxation and
multisplitting [16], yields the following bound for the decay of the error in the iteration

k
2 <o) - ofewbskorteren o). o oo
0 1t '

Here, the constant C deteriorates as the mesh parameter decreases to 0, in view of the stiff
nature of the system of ODE’s that results from the discretization of a parabolic PDE by
the method of lines. Moreover, the dependence of the rate of convergence on A and the
diffusion coefficient a? is not apparent in (95). The quadratic exponent in expression (91),
which results from the Gaussian nature of diffusion, predicts a substantially faster rate of
convergence. We also note that the bound (91) for the continuous iteration is independent
of a mesh parameter.
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In conclusion, the algorithm is particularly well suited to problems with small diffusion

coefficients. Indeed, when the ratio

A2

a®T
is large the convergence rate is high. Hence, a small diffusion coefficient allows the use of
a small overlap and a large time window, while maintaining a high rate of convergence.
Moreover, it allows the use of a large number of subdomains, without adversely affecting
the convergence rate, in view of the inequality S > 2A.

4.3 Advection dominated equations

We now analyze the iteration when the ratio of advection to diffusion, |b|/a?, is large. We
first prove

Theorem 2 Consider the space-time DD iteration for the one dimensional problem (1)-
(8), and suppose v > 0, with -y defined in equation (23). For allt > 0 and k > a/(4Avm)+1

ltl(2 y ~20) 2k—2

[l ex lle < B(k)e e [exp (_QA_7) + exp (_ﬁﬂ . (96)
leo s a a

Here, B(k) is defined in equation (94).

Proof: Proposition 1 and inequality (49) of Lemma 2 yield the bound

|| ex It by —s0) 72 /o o |
Fery < B0 5T X (H77 Jow (b - DA+ /e, 00
J=0

which is valid for k£ > a/(4Avx) + 1. This bound is equivalent to inequality (96), in view
of the definition of 6 in equation (68).

The average convergence factor at iteration k, pg, is defined by

oo = (leley™, -

I eo [l¢

and the asymptotic convergence factor, p, is then

Theorem 2 yields a bound for the asymptotic convergence factor, in the linear regime

p < [exp <_2éT’y> + exp (—%)]2. (100)

The improvement of this factor as the ratio L%' increases, follows from the inequality

SN [

a — 2a?’

with v defined in equation (23). We also note that this factor is independent of T'.

(101)
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4.4 Sharper estimates for the heat equation

We now derive sharper estimates for the decay of the error in the iteration for the heat
equation. First, we note that the magnitude of the error is maximized on the boundary of
a red subdomain i.e. we replace inequality (88) by the sharper inequality

|l ex ||t < €r(zj,t), j=1,...,N—1. (102)
This yields the bounds
| ek |l ((4k — 3)A)
< erfc{——), N =2 103
Teol = Yai (103
k—1 .
k-1 (4k—3)A+]0)
< : fo[— 2= TP N =3, 104
< ;)( j )erc( 20V (104)
- 2’5( 2% — 2 >erfc<(4k—3)A+j0) (105)
- Jaurd J 2a+/t
o ok-2 (4k — 3)A+ S+ 6
> ( . ) erfc ( ) N >4, (106)
=0 J 2a+/t

for two three and four subdomains, respectively. The arguments of Lemma 5 can be refined
to show that each one of the sums above has the same order of magnitude as it’s maximal
term. In section 8, we compare the maximal term of the sum (104) with the error in
numerical calculations with three subdomains.

5 The heat equation in a large time window

We now study the convergence of the DD iteration for the heat equation, in large time
windows. The error initially decays at a linear rate before it transits to the superlinear
regime.

5.1 The large time limit

We begin by proving a few preliminary Lemmas.

Lemma 6 The function K(t,u,a,b,c) in equation (22) is continuous in t and non-negative
fort>0and 0 <u < L.

Proof: Continuity follows from the continuity of F' in (25) and the uniform convergence
of the sum (22), which we show by noting that

3/2 2
6) o 1 (107)

< [= S ——
max F(t, An(u),a,7) < (e NIRRT
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In order to show that K(t,u,a,b,c) > 0 we consider expression (21), which is the
solution to equation (20) with Dirichlet data. This solution is non-negative when the data
is non-negative, as shown in Appendix B. Hence I > 0, in view of it’s continuity.

O
We now introduce the function
o0
é(u, L,a,T,t) = Z X[nL+ﬁ ("+1)L*5}(t)a (108)
n=0 avVT > aVT
where I
p="" (109)

2 ?
and y is the indicator function of an interval. In the following Lemmas we essentially show
that for a continuous integrable function f

l. o0 u o0
Jim /0 fodr = 2 /0 fdt.

Lemma 7 Let ¢(u,L,a,T,t) be defined in equation (108) and suppose that 0 < t; 1 <t; <
t and that 0 < u < L then

T—o0

. t U t
lim /0 X[tjfl,tj]gb(uaL’a”T?T)dT = E~/0 X[tjfl,tj]' (110)

Proof: For a given T, we define the integers ny and no such that

— 1)L L 1)L
M <t; 1< M’ el <t; < w (111)
aVvT aVT aVT aVT
Hence,
t u [t
‘/0 X[tjil’tj]QS(U,L,a,T,T) - E/O X[tjfl,tj] >
2L "
ﬁ —+ /"Z\I{T ql)(’U,,L,G,,T,T)dT — %(t] — t]'_l) . (112)
a —4
aVT
Now, we note that
nLI; u (’rLQ - nl)L
" (u, Lya, T, 7)dT = — ") (113)
and we use this expression and (111) in inequality (112) to obtain
t u [t 2
‘/0 X[tj_l,tj]¢(u7Laa7T’T) - EA X[tj_l,tj] < a T(L+u) (114)

Taking the limit 7' — oo in (114) proves the Lemma.

17



Lemma 8 Let K(t,u,a,b,c) be defined in equation (22) and suppose that 0 < u < L. Let

T
o) = [ K(r,u,0,0,0dr (115)
0
then g(T') is non-decreasing and
u
i = —_. 11
Jim g(T) =+ (116)

Proof: The monotonicity of g follows from the non-negativity of the kernel X(t,u,a,0,0)
which was noted in Lemma 6. In order to prove the limit (116), we use the definition of K
in (22) and evaluate the integral (115) using equations (43) and (44) to obtain

o) = 2 [T e ot La T, (117)

where ¢ is defined in equation (108). Now, we use the representation (117) of g(T") and the
fact that erfc(0) = 1 to note that for any € > 0 there exists a t. such that

2 tg te
%—g(T)‘ < g + %/0 e_T2dT—/0 e $(u, L,a, T,r)dr|.  (118)
Then, we define
dt =te/n, t;=jdt, j=0,1,...,n, (119)
n
_¢2
fn(T) = ZX[tj_l,tj]e tj_l’ (120)
j=1

which we use in inequality (118) and show that for sufficiently large n

U 2

w [t te
E—g(T)‘ < %6 + ﬁ Z/o fn(T)dT—/O ¢(u, L,a, T, 1) fr(1)dr], (121)

in view of the integrability of f, and ¢f,. The right of inequality (121) is bounded by e,
for sufficiently large 7', in view of Lemma 7. This proves the Lemma, since € was arbitrary.

O

Corollary 3 Let K be defined in equation (22) and 0 < u < L then

1. For anyt >0
le(t) * K(t,u,a,0,0)] < Zlel, (122)
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2. If in addition e > 0 and e(t) > e(Te) for allt > T,. Then for any n > 0 there exists
a number Ty, such that for all t > T, + T,

e(t) * K(t,u,a,0,0) > —(1 —n)e(Te) (123)

S

Proof: Inequality (122) follows from the mean value theorem for integrals and Lemma 8.

For a given 7 there exists T;, such that

T, u
K(r,u,a,0,0)dr > E(l—n), (124)
0

in view of Lemma 8. It follows that for ¢t > T}, + T,
TW
e(t) x K(t,u,a,0,0) > / e(t — 7)K(7,u,a,0,0)dr, (125)
0

and that e(t — 7) > e(Te) for all 7 in the range of integration. Combining this fact with
inequalities (125) and (124) yields the bound (123).

Corollary 4 Suppose e(x,t) satisfies equation (20), with b= c =0 in [z, zp] X [0,T]. Let
ai(t) = e(zy,t), gn(t) = e(xp,t) and suppose that e(z,0) = 0. Then

1. For anyt >0
T —
le(z,7)l; < |gnl: +
Ty — Iy

Lh

—
126
2= lal (126)

2. If in addition g;(t) > g;(Te) > 0 and gn(t) > gn(Te) > 0, for all t > T,. Then for any
n > 0 there exists a number T, such that for all t > T, + T,

T—x Thp— T

1
dn (Te) +

elayt) > (1—n) | e

gl(Te) - (127)

Proof: The proof follows from formula (21) and Corollary 3.

5.2 Convergence analysis

If T is sufficiently large, the error initially decays at a linear rate. Moreover, the number of
iterations in the linear regime is a linear function of T'. We now derive this result under the
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assumption that the initial error ep(x,t) > 0 and that there exists a small positive number
v and a time 7T, such that
eo(z,t) = (1—v) | eo ls, (128)

for all z € [zo + S/2,zn41 — S/2] and t > Te.

We first study the case of two and three subdomains. We derive lower and upper bounds
for the error that decay at a linear rate. The lower bound is valid for a finite number of
iterations, and both bounds become arbitrarily close as T — oo. The upper bound agrees
with the result of Gander and Stewart [17] for the infinite time window.

Theorem 3 Consider the space-time DD iteration for the one dimensional heat equation
(20) in [z, zNn+41] X [0,T] with N + 1 = 2,3 subdomains. Suppose the initial error satisfies
assumption (128). Then for any n > 0 there exists a time T, such that if k < (T —T,)/(2T,)

_ € _
(L—nkP 1 -v)C < H e’g ”i < ple (129)
where -
1 1-A/S\*"
¢= 1+A/S’ p= (1+A/S> ' (130)

Proof: We derive the upper bound for the error using an inductive construction analogous
to that of section 4. In this construction we use inequality (122) instead of the right
inequality in (37). This yields the right inequality in (129).

In order to derive a lower bound we define

f=1-1-n, (131)

and T, such that inequality (127) holds with 7 substituted for . We first consider the case
of two subdomains. We show by induction that for t > T, + (2k — 1)T;,

— o (1= A)S\ 2D
o) 2 TR0 - (RS Ta-n el 03)

using Corollary 4 and assumption (128). Combining this result with definition (131) and
the inequality
ep(z1,t) <l e |t (133)

yields the left inequality in (129) for N + 1 = 2. The analysis for three subdomains is
analogous.

We now analyze the case of an arbitrary number of subdomains. We derive a linear
lower bound which is valid for a finite number of iterations. The convergence factor rapidly
deteriorates as the number of subdomains increases.
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Theorem 4 Consider the space-time DD iteration for the one dimensional heat equation
(20) with N+1 > 4 subdomains in [zg, zn+1] X [0,T]. Suppose that the initial error satisfies
assumption (128). Then for any n > 0 there ezists a time Ty, such that if k < (T'—T.)/(2T;)

k
H Zlg ||||E = (1 N #) (1=mt1-v), (134)

for N even. For N odd inequality (134) holds with N — 1 substituted for N.

Proof: We define the hat function

2 (1—v) | ol §/2 <z < (N+1)5/2
go(z, N) = CNEDSIT( _ ) ||, (N+1)S/2<z<(N+1)§-5/2  (135)
0 elsewhere.

We also define 7 and T, as in Theorem 3.

We first assume that V + 1 is odd. In this case the subdomain [z /2, Tn/211] X [0,T]
and the sub-domains near the boundaries z = zy and z = x 41 are red. Then we note that

ed(z,t) > ¢o(x —xzo,N), t>To, (136)

in view of assumption (128). Moreover ¢q(z — zo, N) is convex in all subdomains, with the
exception of the red subdomain [7y/2, Tn/241] X [0,7]. When combined with Corollary 4
the convexity of ¢¢ yields

ei(z,t) > (1 —0)po(x —zo, N), t>T,+ Ty, (137)
for z & [z N/2: TN/2 11]- An explicit calculation with Corollary 4 yields

et 2 0-i) (1- T2 oz, W), 2T, (39

for € [Tn/2,Tn/241]- This inequality is valid in all red subdomains, in view of inequality
(137). Then, we use Corollary 4 and the convexity of ¢g in all black subdomains to obtain

1424
Bt) > (1— ) (1_+T/S> ¢o(z — z0,N), t>T,+2T,. (139)

Repeated application of the above arguments and the use of definitions (135) and (131)
yields inequality (134).

When N +1 is even we use the same arguments as above with ¢(z—x, N—1) substituted
for ¢(x — zo, N), thereby reducing the problem to the previous case.
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Figure 3: The decomposition of space into three vertical strips. The dark areas represent
the overlap of a red subdomain over a black one. The light grey areas represent the overlap
of the black subdomain over a red one.

Finally, we note that inequality (126) implies that the magnitude of the error in this
iteration is bounded by || eg ||+- In conjunction with Theorem 4 this provides a linear lower
an upper envelop with convergence factor that is arbitrarily close to 1 as N — oc.

In a practical application, it is desirable to choose T sufficiently small so as to avoid the
transient linear regime. Indeed, the super-linear convergence rate, does not degrade with
the number of subdomains, provided A is fixed. Moreover, the super-linear rate improves
as diffusion decreases while the linear regime is independent of the diffusion coefficient.

6 The two dimensional advection diffusion equation

We now analyze the space-time domain decomposition iteration for equations (4)-(6) in
Wo = [z, zp) X [y, yn] X [0,T]. We consider a decomposition of space into strips of width
S, as depicted in figure 3, for three subdomains. We note that each strip may be further
decomposed into yellow and green cubes, as depicted in figure 4. In this case, we solve the
problem in green subdomains of red strips followed by the yellow ones. Then we perform a
green yellow sweep in black strips.

6.1 Error analysis for a decomposition into strips

We now derive equations for the error in the iteration, for the case of two subdomains.
Hence, Q = [z0, z2] X [y, yn] and the red and black subdomains are [zg,z1] X [y, yn] % [0, T]
and [z1,z2] X [y, yp] X [0, T], respectively. We proceed as in section 3 to obtain an equation
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Figure 4: The decomposition of space into three vertical strips each of which is then de-
composed into three cubes. The shaded areas represent the overlap between subdomains.

23



for the error in the red subdomain and it’s overlap

Ok _ 2Ae], + blsin 6, cos 0] - Ve,
815 =a € s ¢, COS €L,

62(30,?/,0) = eZ(Q:anat) = ez(xaylat) = 62(37,@/}1,15) =0,
67,;(.’E1 + Aayat) = 62_1(1‘1 + Aayat)'

In the black subdomain and it’s overlap the error satisfies

Dei. _ 2Ael 4 b[sin 6, cos 4] - Vel
ot = a"Aeg sin ¢, cos [

62(.’17,’(!/,0) = 62(3321:% ) = ek( Z, Y, ) (xayh,t) =0,
ek(ml A Y, ) - Gk($1 - A,y,t)-

We solve equations (140)-(145) by separation of variables [20] to obtain

(o]
l'y, ZMkn"Et y)a IL'y, ZMknxt )
where
2 _bcosé ™
Nu(y) = e 22 Ysin(wy(y — 1)), wn= .
Ynh — Yl Yh — Y1

The Fourier coefficients M, ko and M, ,’c’,n satisfy

oMy, ,O* My, ; eaMT o2 Y
e = a? 72 © 4+ bsin e kns =

Mlz,n(w()’ t) = Mlz,n(xa 0) =0, Mlz,n(wl + A, t) = M]?—l,n(l'l + A, t),

oMy,  LOPMp, ; HaM};
G = gz Thsind—p

Mllcj,n(xQ’ t) = Mk,n(xa O) =0, Mls,n(xl - Aat) = Mlz,n(wl - Aa t)

t—CEME,, n=1.2,...

Mgﬂn(w’ t) = MO:”(‘T’t)’ 'Tl S Z S $2’

where
Yn

Mo (3, 1) = / p()eo(z,y, ) Nu(y)dy,

1

eo(x,y,t) is the initial error,

o2 — (bcos@>2 N ( na )2’
" 2a Yn — Yi

and

(140)

(141)
(142)

(143)

(144)
(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)



The original problem (140)-(145) has been transformed into a sequence of problems
(148)-(151) that govern the evolution of each mode of the error in the iteration. We denote
the coefficient of the n’th mode of the error at iteration k£ by My ,(z,1)

B M,’c"’n(m,t) x € [zo, 1]
Mk,n(xat) = { Mllc),n(x’t) 7 € [z1, 3] (156)

and the error at iteration k by e (z,vy,1t)

(z,9,1) Z My (2, ) Ny (y)- (157)

When the number of subdomains N > 3, we proceed in an analogous fashion to obtain
for each mode of the error a recursive system of N differential equations, coupled through
their boundary conditions.

6.2 Convergence analysis

The convergence behavior of the iteration for the two dimensional model problem is essen-

tially the same as in the one-dimensional case. Indeed, let || - ||2,; denote the norm
oh 1/2
= t)dzd 158
lelloe= max, ([ [" ptw)e* ey )dady) (158)

with p defined in equation (155) then

Theorem 5 Consider the space time DD iteration in strips for the advection diffusion
equation, problem (4)-(6). Suppose that the initial iterate uy € C'(Wy).

1. If S > 2A then for any 0 <t <T

4(k —1)2A2
a?t

| ek [l2,4 < Cexp ( ) (14+0(1)), k— o0 (159)

2. If |b| > 0 then for allt >0 and k > 1 + [(2A(b/a?)7]

Alb S|B[\ 1%
et loa < 0D@) [oxp (<20 1 oxp (-501)] (160

In these equations

1
k= DA

and C is a constant which depends on the initial error.

D(k) = (161)
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Proof: The recursive system of equations for My ,,, derived in section 6.1, is identical to the
system of equations of section 3. Hence Theorems 1 and 2 apply to each mode separately,
and they yield

4(k — 1)2A2?
| Min e < || Moy ||t01exp<—%> (1 +o(1), (162
Alb S[b[\1%* 2
| Mea e < 1 Moa e 100 [exp (<55) v (<30)] a6y
where ) )
|6sin8|(zpr—zq)
7 = (i) +< nre ) L Ch=e . (164)
2a Yh — Yl

Inequality (163) follows from inequality (96) in view of the relation y/a > |b|/(2a?), which
is valid for all n. Moreover, the o(1) term in inequality (162) is independent of n. This is
shown by inspecting the proof of Theorem 1 and using the left bound for 7/a

™ nm 07

< < - (165)
Y — Ui Y — Y1 a

We now use the representation (157) for ey, and the orthonormality of { N, (y)},> ; with
respect to the inner product

Yh
(f.9)= [ pw)f ey, (166)
v
(see: [21]) to obtain
o0 1/2
Il ex ll2e < Van—z (Z | M ||?> - (167)
n=1
Then we note that
00 1/2 -
Mo |1)? < —0y, 168
(Z:l(ll o [[2) > 75 (168)
where Y
2 beosdy | Je bcos
= — 3/2— a2 _0 -
Co = (yn — 1) - Hvlf}ox{e 1y t oz e } (169)

We obtain this inequality by integrating equation (153) for M, by parts to obtain

C:
(Mon(a, )] < 22 (170
This manipulation is justified since ey € C'(Wj), in view of the fact that both u and ug are
in C'(Wp). The right side of inequality (170) is independent of both  and ¢ and this yields
the bound (168). Combining the bounds (162) and (163) for || M}, ||; with inequalities
(167) and (168) proves the Theorem.

26



6.3 The smoothing property of space-time DD

Space-time DD iteration possesses the smoothing property [22]: high modes of the error
are damped much faster then low modes. Indeed Theorem 2 and the relations (165) imply
that for all k > 1+ (y, — u1)/(4A72)

| My ||¢ [ ( n7r2A) ( nmwS )]2(’“—1)
T < C1D(k) |ex — + ex — , 171
| Mo [l¢ 1D(k) |exp Yn — Yl P U —w ()

D(k) = 1+$\/%, (172)

and C is defined in equation (164).

where

The asymptotic convergence factor of the n'th mode,

p(n) = [exp (— nm2A ) + exp (— nmS )]2, (173)

Y — Ui Yo — Yt

is independent of T', because it results from two complementary phenomena. For short
times, the error in the interior of each subdomain is small because it has to “diffuse”
through the overlap. This is indicated by the term —% in the exponent of equation (50).
As time increases the smoothing property of the heat equation takes over and damps the
high modes of the error much faster then the low modes, as indicated by the term —v?t, in
that exponent. The maximum of this exponent decreases with increasing mode number, as

indicated by the convergence factor (173).

7 The optimal partitioning problem

The analysis of the previous sections, shows that the convergence rate of the iteration,
strongly depends on the decomposition parameters, A, T" and S. We wish to choose these
parameters in a way that will minimize the elapsed time on a given parallel machine. In
this section we model this problem, and discuss means for it’s solution.

The time required to solve the model problem in € x [0, 7] to accuracy e, is given by
the function E

T
E= ?f N(e, A, S,a,v,T)[P(A, S, h, €) + C(T, h)]. (174)

Here, N(e, A, S,a,v,T) is the number of DD iteration required to solve the problem to
accuracy €. It can be estimated by the analysis of the previous sections. P(A, S, h,e€)
denotes the computation time at each iteration, with A the discretization parameter. The
communication cost at the end of each iteration is denoted by C(7',h). We wish to find
A, S and T that minimize E.

The function P depends on the algorithm for solving the subproblem and on the com-
puter we use. In a future report we shall develop a model for P based on complexity
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estimates of the algorithm and on experimentation with several computers. The goal is to
determine a small set of parameters that determine P for a given computer, via a simple
functional relationship. The value of these parameters is determined by a small number of
experiments.

Communication time is composed of two costs. Initiating communication has a fixed
cost, which can be measured on a given computer. The time for transmitting a certain
amount of data is usually assumed a linear function of the size of the data. The slope
depends on the load on the computer at a certain point in time, and may be measured
when the computation is initiated.

In the minimization of E the following tradeoffs are apparent. On a fixed time window
T, a large overlap dramatically reduces N, as indicated by expressions (1), (159) and (171).
However, it increases the size of each subproblem and reduces the maximum number of
subdomains, thereby increasing P. A small time window T also reduces N but increases
Ty/T. In the limit 7 — 0 the number of communication requests converge to infinity.
This yields an unbounded elapsed time as 7" — 0, in view of the fixed cost for initiating
communication.

8 Numerical calculations

We begin by comparing the error estimates of section 4.4 for the one dimensional problem,
with the decay of the error in an actual computation. We solve the problem in Wy =
[0,1] x [0,.25], with 3 subdomains of width § = 1/3. The diffusion coefficient is a? = 1/2
and b = 0. In our computations we discretize the equation with the Crank-Nicholson
method. The mesh parameters are Az = 1/210 and At = 1/50. Figure 5 indicates

| ex llr
) 175
10 || eo ||T ( )

as a function of the iteration k, for three different values of the overlap A. The dashed
lines indicate our estimate for the error. Our bound is in very good agreement with the
computation and it’s asymptotic nature is apparent.

We now compare the observed transient linear regime for the heat equation, in a large
time interval, with the predictions of section 5.1. In this computation A = S/7 and T varies,
T =1,2,3,4. Figure 6 indicates the error (175) as a function of the iteration number k.
The transient linear bound of Theorem 3 is also indicated in this figure. It’s validity for
a finite number of iterations is apparent. Moreover, the duration of the linear regime is
clearly proportional to T', as predicted by the analysis. In a second set of calculations we
solve the problem in Wy = [0,17/3] x T', with 17 subdomains of width S = 1/3. The results
are presented in figure 7. A comparison with figure 6 shows the deterioration of the linear
bound as the number of subdomains increases, as predicted by Theorem 4. In contrast,
the asymptotic convergence rate, depends only on the size of the overlap as indicated in
Theorem 1.
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Figure 5: The magnitude of the error is indicated in solid and + for A = §/20, A = S5/10,
A = 35/10. The dashed line indicates the estimate of the bound.
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Figure 6: The log,, of the relative error for T =1, T'=2, T = 3 and T = 4, is indicated

in + from left to right, respectively. The dashed line indicates the transient linear bound.
The number of subdomains is 3.
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b | Bound for p | Measured py
10 0.1777 0.1766
20 0.0225 0.0288
30 0.0033 0.0046

Table 1: The bound for the asymptotic convergence factor versus the measured average
convergence factor.

We now compare the observed transient linear rate in advection dominated equations,
with the analysis of section 4.3. Here, the diffusion coefficient is a®> = 1/2 and the time
window T = 4, is relatively large. The advection coefficient varies, b = 30,20,10. In
Figure 8 we observe rapid convergence, in contrast to the case b = 0, indicated in figure 6.
The improvement in the convergence rate, as the ratio b/a? increases, is apparent. In our
computations, we measure the average convergence factor, defined in equation (98). Table 8
presents the measured convergence factor versus the bound for the asymptotic convergence
factor of equation (100). There is good agreement between the two.

9 Conclusions and future directions

Space-time DD performs best on equations with a small diffusion coefficient and advection
dominated equations. The smoothing property of the iteration, in two or more space di-
mensions, provides the foundation for a hybrid domain decomposition multigrid algorithm.
We develop this algorithm in a subsequent paper [23] and compare it with the multigrid
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Figure 8: The log,, of the relative error for b = 30, b = 20 and b = 10, is indicated in solid
and + from left to right, respectively. Here a? = 1/2 and T = 4.

waveform-relaxation method [6], [13].

The super-linear convergence rate, presented in Theorems 1 and 5 is strongly related
to the Gaussian nature of diffusion. This leads us to believe that analogous results can be
derived for equations with variable coefficients and possibly non-linear problems, in general
domains.
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A Solution to error equation

In this appendix we derive the solution to equation

Oe 5 0% de
ik @+b%—ce (176)

in [z7, ] % [0, 00) subject to the conditions
6(.73,0) =0, e($lat) = gl(t)’ e(xhat) = gh(t)' (177)

We use the Laplace transform method (see: [20]) to obtain the equivalent problem

b s+ c?
Dpat 0, = S0 =0, (178)
O(zy,5) = Gi(s), P@(zn,s) = Gr(s), (179)

B(x, ) — /OteSTe(T)dT, Gi(s) = /0 e Ta(r)dr, Gals) = /0 L Ton(r)dr.  (180)

The solution to equations (178)-(179) is

(w—zy) SIDh(B(zh — 7)) ysinh(B(z — z;))

— e a(z—zp, 181
b 2 st
@= 9 ﬁ”(@*a—Q) : (182)
We use the substitution
sinh(gu) _ ¢ (¢ — ) (159
sinh(BL) 1— e 280 ’
in this expression and expand 1/(1 — exp(—25L)) in Taylor series to obtain
®(z,s) = Gi(s)e® ™~ 3 {exp[~BAn(zn — )] — exp[~Bpn(zn — z)]} +
n=0
G(s)e® @) 3~ {exp[—BAn(z — @1)] — exp[—Bpn(z — 2]}, (184)
n=0

where the functions A\, and y,, are defined in equation (24).

In order to determine e we now compute the inverse transform of each term in the sums
(184) using the identities (see: [18])

k k?
L7 {exp(—kv/5)} = 2\/7_I_Wexp (—@> , k>0, (185)

and

LY{G(s+h)} = e ML H{G(s)} (186)
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to obtain with n = A, or n = uy,

L7 {exp (=Bn)} = F(t,n,a,7). (187)

Here £~! denotes the inverse Laplace transform and

. (188)
'Y - 4(12’
n n? 2
F(tana aa’)I) = W €xXp <_m - t) - (189)

We now use identity (187) and the convolution Theorem for the Laplace transform in
expression (184) to obtain

e(z,t) = eo‘(m_m’)lC(t, ZTp —T,a,b,c) x g(t) + ea(m_wh)}C(t,x —zy,a,b,¢) x gp(t), (190)

where

K(t,u,a,b,c) = e 7t Z {F[t, \n(u),a,v] — Ft, un(u),a,]} (191)

n=0

and 1y is defined in equation (188).
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B A qualified maximum principle for the error equation

We now show that solutions to equation (192) below

Oe , 0% Oe o
de _ de _ 192
iy a8w2+b8m c“e, (192)

satisfy a maximum principle in [z, z] X [0,7] when the data is non-negative. Specifically
we assume that e > 0 on

0 ={m} x [0,T]U {zp} x [0,T] U [z, 7] x {0} (193)

and we show that

1. The maximizer of e € .

2. The function e is non-negative throughout [z, 2] x [0, 7.

We use similar arguments as in [20] for the heat equation. Let (z¢,%p) be the maximizer of
e and suppose by contradiction that (zg,ty) & 0. Then at (zo,to)

Oe 0% Oe
— = — < —_— > > 0.
=0, S50, 220, e20 (194)
Let
P(z,t,e) = e(z,t) —e(t —to). (195)

If € is sufficiently small, the maximizer of 1, (z1,%1), is sufficiently close to (zo,%o) such
that (z1,t1) € 0 and e(z1,%1) > 0. Moreover at (z1,11)

% o0 o
< S -z > 1
0x? — 0, O 0, ot — 0 (196)
and therefore at (z1,%1)
d%e Ode Oe
— << — = — > (.
92 = 0, g 0, N >0, e>0 (197)

~

This contradicts equation (192) and proves that (z1,%1) € 0.

~

Let (xg,ty) denote the minimizer of e and suppose that e(zg,tg) < 0. Then (zg,ty) & 0
and therefore

Oe 0% Oe
or O g2l g =0 e<d (198)

there. This contradicts equation (192) and proves that e > 0 throughout [z, z5] X Q.
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