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1. INTRODUCTION

The number of lattice points, N(R), that lie in the closed circle of radius
R about the origin is related to the distribution of the eigenvalues of the
Laplacian in various cases. The magnitude of the deviation of this number
from the area of that circle,

d(R) = N(R) — ©R*, (1)

is an open question in number theory. Indeed, Gauss [5] seems to have first
raised this question in 1800, and he showed that

[d(R)| < KR’ (2)

for & = 1. The least value of 8 for which this is true is not known, and that is
the basic Gauss lattice problem, which is one of the leading open questions in
number theory.
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The spectral problems relate to the eigenvalues of the reduced wave
equation:

Po 0%
W —+ 8—y2 + )\(b =0. (3)
Solutions are
¢(x,y) = A exp i(pz + qy) (4a)
provided that
A=p*+¢*. (4b)

Of course a domain, €2, and boundary conditions on 02 must be specified. For
a square of side L with periodic conditions, say,

9(0,y)=0¢(L,y) , ¢(z,0)=¢(z,L) (5)
it follows that p and ¢ must be
2 2
p=Fm , q=n o om,n=0,%£1,£2,--- . (6)

The number of linearly independent such eigenmodes that can exist with
eigenvalues A < Apax is just the number of lattice points (m,n) satisfying

L 2
m2 + ?12 < R2 = (_> Amax ; (7)

2T

that is N(R) as defined above. If in place of the periodicity (5) we impose
Dirichlet conditions

¢(0,y) =o(Ly) =0 , ¢,0)=¢(z,L) =0,

then p and ¢ must be, for independent eigenmodes,

n :omn=12---. (8)

No(R) = i{N(R) — 4[R] - 1}, (9)

where we have used [z] =(largest integer < z). The relation (9) results from the
fact that only lattice points in the open positive quadrant are to be included.
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The relation between N(R) and Ng(R) seems to have caused some confusion
in an early reference to the quantum aspects of the counting problem [2,3]. If
we replaced €2 by a rectangle rather than a square, the circle would be replaced
by an ellipse. In three dimensions, if the square is replaced by a cube, the circle
is replaced by a sphere.

In quantum systems the eigenvalues are the energy levels of the system
and the distribution of these levels and their variation are of interest. The
erratic variation of d(R) with R suggests the notion of quantum chaos (see
Figure 1).

The lattice problem has been studied in great detail by mathematicians

and physicists. Over the years many upper bounds, say 6 > 0, have been
obtained. A list of these bounds and their discoverers is contained in Table I.

TABLE I

Date Investigators 6 o

1800 | Gauss [5] 1

1906 | Sierpinski [17] 2 =0.6666

1915 | Hardy [7] % + € (conjectured), 6 > 1 proven

1928 | Nieland [16] Z—I = 0.6585365 328

1929 | Littlewood & Walfisz [14] | 27 = 0.6607142 448

1935 | Titchmarsh [18] 72 = 0.6521739 184

1942 | Hua [11] 3 =0.6500 160

1962 | Yin [19] 21 —0.648648 148

1985 | Kolesnik [13)] 28 — 0.6480186 143

1988 | Iwaniec & Mozzochi [10] 1—71 +¢e=10.636363 + ¢ 88

1993 | Huxley [9] 28 =0.6301369 73
The strange fractions in this table all have the form 6 = %(1 — %) for some

integer o which is also listed. Huxley [9] makes the observation that the
methods being employed to get the more recent results cannot be expected to
yield o0 < 64 and thus will give at best = % = 0.625. The current least value
due to Huxley is true not only for the circle but for any smooth convex closed
curve (for which R is the “magnification” factor of the “unit” curve).
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2. NUMERICAL APPROACH

Since all the rigorous bounds are relatively far from the ideal %—FG conjectured
by Hardy, it is perhaps of some interest to obtain numerical evidence of the
behavior of d(R). This has been done [4,15,12,1] but with no suggested
improvements. These previous attempts sampled d(R) at various sets of
uniformly spaced values { R;}. But as d(R) is not a well-behaved function of R,
such samplings do not yield any useful information. Indeed N(R) is a piecewise
constant function of R, continuous from above, with jump discontinuities at
those values of R for which R? is the sum of the squares of two integers.
Thus we can uniquely determine N(R) in R < Rpax by simply tabulating the
values (Ry, N(Ry)), where the Ry, are the consecutive values, k = 1,2,3, - -,
at which N(R) jumps. Obviously, if a lattice point lies on the circle with
radius Ry, then Ri must be an integer and thus Ri 112 Ri + 1. So, although
the spacing between consecutive jumps in N(R) may decrease as R grows, it
is bounded below by:

0k = Rpp1 — Ry > /Ri+1— Ry,
> 1.
> Ry [\ /14 — 1] (10)

Also, if R? = p? + ¢? for some integers p and ¢, then at least one of these
integers must be greater than 2 R,. Thus the spacing between jumps in N(R)
cannot be greater than is implied by

R <Ri+ 2Ry +1,

and hence

(SkSRk[Ml-i-RLiﬁ-R—f—l] .

From (10) and the above we get that:

mrel)susheold).

The conceptually simplest way to tabulate the piecewise constant function
N(R) for 0 < R < Rmax (an integer) is to generate the numbers R2, = p* + ¢*
for all integers p,q = 0,%£1,---, = Rnax. Then sort the resulting list into
ascending order and count the number of entries up to each jump in the list.
Recording the cumulative number of entries and the value of R%q immediately

after the jump yields the coordinates (R2, N(Ry)) of the vertices of N(R)



NUMERICAL STUDIES OF THE GAUSS LATTICE PROBLEM 5

versus R? at the k™™ jump. Obviously N (Ry) versus Ry can be recorded
if required. One must remember not to tabulate beyond the value RZ__,
as not all such contributions need come from lattice points in the square

[ — Rnax, Rmax]2. The last jump recorded we denote by the index kpax.

From the values of N(Ry) we compute d(Ry), being sure to use as many
significant digits in 7 as necessary, and then we determine the convex hull of
the set:

{Pe}im= = {log Ry, log |d(Ry) | }im= . (12)

To accomplish this we first replace the set { P} by the set {]5]} containing
the cumulative maxima of log !d(Rk) | That is, we eliminate those consecutive

P, for which log |d Ry) | <log |d ‘ for k > j + 1. The remaining set {]5 }

is such that both {log R;} and {log ‘d ‘} are monotone increasing. We
relabel the indices so that j runs through consecutlve integers. The piecewise
linear function of log R, say ﬁ(log R), which joins adjacent points of {]5] Hm s
strictly increasing but not necessarily convex. Starting at j = 2, we eliminate

Alog |d( R Alog |d(R; . 9. . .
the point P if Og‘ ) | < Zgllg(Rjil)‘, then reduce all indices ¢ > j by

one and continue the ehmination procedure starting now from the larger of 2

and j — 1. The remaining set of points {P;}* has a convex piecewise linear

interpolant, P (log R); this is the convex hull of the original set {Pk}lfma". The
slope of the final segment of this convex hull is the best estimate of the least

upper bound on 6 that we can get from our original set of data {Pk}’fma".

If subsequent calculations extend the range of data to larger values of Ryax
we need simply find the convex hull of the new data, adjoin it to the current
data and then determine the hull of the enlarged set.

3. COUNTING PROCEDURES

Two of the previous attempts to compute d(R) contain serious errors. In [15]
the square root is fit by a table in order to speed up the calculations. But the
table contains an error and thus the results for R > 3000 are incorrect. This
error was reported in [12]. The most recent work, by Bleher, Cheng, Dyson and

Lebowitz [1] containing Tables 1la of min{== ) ~|r < R} and 1b of max{ |r <

R} cannot be correct. Simply note that %1) =1—-—7m = —2.1415928 - - -

However, all the entries in Table la for R? < 3025 have entries larger than
d(1). Upon comparing carefully their results with those of the present work,

we have found that they have computed Q rather than (T) . Thus all their

entries must be multiplied by the factor 27 = 2.506628--- and then we
obtain essentially exact agreement. Private communication With one of the
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authors has confirmed the error. Fortunately, it does not invalidate their main
results.

It was suggested in [12] that estimates out to R = 10® would be required
to get numerical evidence to support 8 < 0.6, an improvement on the
current best proven bound. If we attempt to tabulate N(R) it would require
N(R) ~ 3 x 10'6 lattice points or 2 x 10'7 bytes of storage. The INTEL
Touchstone-DELTA has 568 nodes with 16 Mb/node for a total of 9 x 10°

bytes. Thus with 10® DELTA machines we could store the data. But time
estimates are equally prohibitive.

Thus our previous estimate had better be far off if numerical evidence
is to be helpful. Indeed, our tabulation results seem to show that significant
improvements can be obtained with much more modest estimates, say R ~ 10°.
In other words, sampling procedures do not shed any light on correct results
but complete tabulation as suggested in [12] seems to do so.

To tabulate all values of p? + ¢® out to R? = 10'° is not too difficult. But
we wish to do it in a way that allows future improvements when the machines
and/or the cycles are available.

Our tabulation procedure uses independent nodes on a parallel computer
as follows. We choose a value Rpax up to which we will tabulate N(R) and
special values of d(R). If our machine has P processors or nodes we divide the
disk 7 < Rmax into concentric rings R; < r < Rj41 such that the rings have
approximately equal areas, i.e., with Ry = 0:

RQ

2 2 .

m(R} 1 — Rj) :w% : j=0,1,---,P—1.

We associate processor P, with the & ring having inner radius R}, and outer

radius Ry, 1. Then initially, for 0 < k < P — 1, processor P}, computes N(Ry)
by the fast algorithm devised in [12]. Next processor P, computes and sorts
by magnitude the set {R?j — R% : R% < R?j =i 4+52 < R%_H}. In doing this
we use the obvious fast procedures

R =R, +£2j+1,

noting that a multiplication by 2 in binary is just a shift so that RZZ’ 118 formed

from RZ-2 j by means of one shift and two adds — i.e., no multiplications need
be employed if floating point arithmetic is avoided during this counting stage.
The same is true in forming RZ, ;- We use the sets {Rfj — R} rather than

{Rlzj} so that fewer significant digits need be stored.

From the sorted sets each processor, P, computes the deviation increments
6d(R) = [N(R) — N(Ry)] — n[R* — Rj] for R, < R < Rj.1. Then the
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deviation envelopes for d(R) = d(Ry) + 0d(R) are determined and the convex

hull of log |d(R)| versus log R is obtained. For the enumeration carried out to
Rmax = 55,848, we get that

0 <0.575. (13)

This suggested bound is significantly better than the best rigorous bound
0 = 0.6301369 due to Huxley. Of course, it is possible to justify a bound
obtained from the convex hull process if we could get sufficiently sharp bounds
on the magnitude of the jumps in N(R) versus the distance between maximal
jumps. Then it could be possible to verify that the true convex hull up to
a given Rpax had been obtained. Of course, the jump in N(R) is just the
number of ways in which R? can be written as the sum of two (integer) squares
— another well-worked problem in number theory.

Graphs of some of our results show in Figure 1 the jumps in d(R) versus
R2. In Figure 2 we show the cumulative maximum positive and negative
deviation bounds by plotting |d(R)| versus R? on a log-log scale. It is stated
in [1] that the negative deviations grow faster than the positive ones and this
phenomenon shows clearly in our figure and in Fig. 1 of [1|. Finally, in Figure

3 we plot —1% versus R. Hardy showed [7] that
R2(log R)%

ST

d(R) = Q(R?(log R)7) . (14)

This implies that for some constant, K, the values |d(R)| exceed K Rz (log R)%
for infinitely many values of R as R — oco. With, say, K = 5 we see that our
tabulations do not even hint at this Q-result.
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