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Spend A Summer With A Scientist
Paola Argaez

Mentor: Dr, Richard Tapia

This summer program was a valuable experience for me as an undergraduate student. I
learned a lot from graduate students as well as other undergraduate students involved in
this program. Their experiences have helped me to look beyond an undergraduate career.
Because of their different backgrounds, their excellence ideas and view of the future, I can
now understand and appreciate how important diversity is in this country.

As part of the Spend a Summer with a Scientist program, I had a project to complete. My
main goal was to learn to use Latex. Latex is a software program that scientists, engineers,
and graduate students use to write their technical reports and presentations. My goal was
to use Latex to format and edit a book consisting of some notes for an optimization course
taught at Rice University. These notes which were written by Dr. Tapia, will be use as
the class course textbook for the fall 1997 eventually will be formally published as a book.

The process of learning Latex was totally new for me because I had no experience with
such a computer language. I had previously written papers for my classes, but in this case
a regular editor would not do it, since editors do not deal with such symbols as integral,
matrices or even other complex mathematical expressions. In the process of writing in Latex
I also learned Unix which is the operating system I worked with. I could not completed
my project without learning both Unix and Latex. In the end after so many mistakes and
frustrations, I finished the project. Besides doing the project I also learned some Linear
Algebra and Vector Calculus in order to prepare for the next semester. An important issue

that I learned in Linear Algebra was a classical problem for Algebra and Geometry:

arx + by = Cis by (1)
ag + be = OQ, 12

for this system of linear equations we can have any of the following three solutions:

1. A Unique Solution: which is when the lines intersect.

2. An Infinite Number of Solutions: when both lines represent only one line.




3. No Solution: when the lines are parallel or have the same slope.

Equation (1) can be expressed as a product in the following way
AX =b
where
A= [ala bla az, 62]
X = [.17, y]T7 b= [ch C2]T'

Using Linear Algebra the solution of the system is given by:
X =A%

where AT is the pseudo-inverse of the matrix A.

The pseudo-inverse has the following properties: Any Matrix has a unique pseudo-inverse
At such that satisfies:

(1) AATA=A

(11) ATAAT = AT

(127) (AAT)T = (AAT)

(iv) (ATA)T = AT A.

The solution is interpreted in the following way:

1. A Unique Solution
X=X

where
Al = AT,
2. An Infinite Number of Solutions:

minimize || X]||2

subject to AX =b.



3. No Solution:
minimize || X2 3)
subject to ||AX — bl|s.
Overall it has been a great summer for me. The people in the program were very
friendly and helped me tremendously when I needed it. But most important, I learned

a lot about Linear Algebra, Latex and the axe editor.



William Christian Jr.
Spend a Summer with a Scientist - 1997

CRPC
Rice University, Houston, TX

Consider the standard Integer Programming problem (IP)

minimize clx
subjectto  Axr < b

z > 0

r e ZL.

A typical approach to solving these problems is to generate inequalities which
successively “cut oft” infeasible regions of the polytope P = {;r: € Rkt Az < b}.

With the support of the Spend a Summer with a Scientist program I inde-
pendently surveyed several classic and more recent texts of Integer Program-
ming and Operations Research. The subjects included Linear Programming,
Integer Programming, Probability and Data Structures.

In addition, I began to code a Branch and Bound code to solve general
Integer Programming problems. After completing this code, I shall begin to
implement different classes of cutting plane algorithms.

Although this research with the Spend a Summer with a Scientist program
was preliminary, it is the foundation for my future work.



On the Use of the Multivariate Skew-Normal
Distribution for Directly Modeling Ambient
Ozone Levels*

Nancy L. Glenn**

August 8, 1997

Abstract

There are several models that predict ambient (ground level) ozone pollution by
transforming the data. However, transformations sometime increase prediction error.
Our goal is to directly model ambient ozone levels in regions located away from
monitoring stations. Our objective is not to predict future ozone levels.

Some Key Words: Multivariate skew-normal distribution; Bivariate skew-normal
distribution; Ambient ozone.

* Research supported by the Center for Research and Parallel Computation, Rice University, Houston, Texas

** Graduate Student, Department of Statistics, Rice University, Houston, Texas



Introduction

Ambient ozone (O,) pollution is a major environmental problem in
many metropolitan areas in this country. In particular, the Houston, Texas
area is second to Los Angeles in nationwide ambient air quality (Carroll,
Chen, George, Li, Newton, Schmiediche and Wang, 1997). There are
several models for estimating O,, however, many modeling strategies use
transformed data. Our objective i sto use the multivariate skew-normal
(MSN) distribution to directly model data in an attempt to reduce prediction
error. The data, provided by the Texas Natural Resources Conservation
Commission, are hourly ozone measurements of the Houston-Galveston
area for 1980 - 1993.

The Multivariate Skew-Normal Distribution

The MSN distribution, a parametric distribution which has an extra
parameter to regulate skewness, includes the normal as a special case. Its
density is given by

f(z; N)=2¢(z) d(Az), zOO. (1)

o 2), P(2)

denote the N(0,1) density and distribution function, respectively (Azzalini
and Valle, 1996). O'Hagan and Leonard (1976) introduced the MSN
density as a prior density for estimating normal location parameters.

The MSN distribution is seldom used in practice, however, Azzalini
and Valle (1996) superimposed contours of the bivariate skew-normal



distribution onto Australian athletes' data since observed points and the
fitted density indicated skewness. One advantage of using this distribution
is that it allows one to retain variables on their original scale, making them
more interpretable.

Ambient Ozone Levels

The recombination of oxygen after ionization by photochemical
reactions form O, (Guttorp, Meiring and Simpson, 1997). Various species
of Nitrogen Oxide (NO,) are primary precursors to O, (Cox and Ensor,
1995). Temperature, as sunlight, is another contributor to the formation of
O,. We will consider the pairs o fvariables (temperature, ozone) and
(NO,,0zone) and use the bivariate case to model O,.

Preliminary Results

Figures 1 and 2 are scatter-plots of (temperature, ozone) and
(NO,,0zone), respectively. Observed points display skewness in each of
the components. We use the conditional mean, given by Azzalini and Valle
(1996), to predict O..

B v _7=7) TR K Pr-B - 22) . (2)

where H(x) denotes the hazard function of the standard normal density.

Further Research



Some components of pollution modeling are not incorporated into
equation (2). For example, emission and deposition of precursors, diffusion
and turbulent motion, and chemical reactions involved in the creation and
destruction of O, (Cox and Ensor, 1995) are not accounted for. In future
research, we will incorporate these and other features into the model,
specifically define parameters of the distribution and access the quality of
the model.

We will also address the topic of missing data since this is an issue
with the NO, data.

The data set that covers through 1996 will soon be available, so we
will compare this with the present data.
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Regina Hill
Spend a Summer With a Scientist Final Report
Summer 1997

This summer I worked on formulating the Galerkin finite element method
for the wave equation in one-dimension with my mentor, Dr. William Symes
in the department of Computational and Applied Math at Rice University.
The wave equation is a partial differential equation that gets its name
because its solutions take on wave-like forms. An example of the wave
equation is

Ut - Ugy = 0.

This is the simplest form of the wave equation. We will use this form
until we are comfortable with the fintie element method. The first step
in formulating the Galerkin FEM, is to choose a basis of trial functions.
The trial functions form a polynomial approximation to the solution of
the differential equation. The higher the degree of your trial function
the better the approximation to the true solution and the harder the
formulation of the FEM (finite element method). So, we start off with a
simple first order (or linear) trial function. We will call the trial
functions ¢.

Now that we have our trial functions we can find the weak
form of the FEM by multiplying by ¢, and integrating by parts.

The weak form is

1
/ (i + s p)de
0

The Galerkin FEM means we let some function u” be an approximate
solution to the wave equation.

uh(z,t) = Y| Q)i (x)

where @;(t) are weights on the approximating functions ¢;(x).

Next, we perform numerical integration on the weak form with our
approximate solution u”(z,t) substituted for u. The system of equation
obtained from numerical integration is

(0%, d¢; 0
j=1

where k=1...N
In vector form our equation is
MQ"+ KQ =0.



where

OO -
O o
I S )
[ e N

and

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

We then solve this system using finite differences.

The solution to our system can be expensive to compute, so we want to
somehow decrease the expense of solving our system, without losing much
accuracy. We want to use Mass Lumping, which is a process by which we
approximate the tridiagonal matrix M by a diagonal matrix. We would expect
that the accuracy of the finite element method would decrease significantly
by such an approximation. Interestingly enough it turns out that when
using linear trial functions and a nodal quadrature rule for numerical
integration, the mass matrix is diagonal and the diagonal elements are
the sum of the terms in the tridiagonal mass matrix. Future work will
be to determine what happens to the accuracy of the method when you use
higher order elements, or move to higher dimensions.



Comparison of Coleman-Li and Perturbed KK'T
Formulations for Nonlinear Optimization with
Simple Bounds

Diane Jamrog

August 8, 1997

1 The Minimization Problem.

The minimization problem is to compute a local minimizer, x,, of a smooth
nonlinear objective function, f(z), subject to simple bounds on the variables.

min f(z)
st. <z<u

where z, [, u €N, I <u, f:R" 5> RN.

There are many algorithms to solve constrained optimization problems. My
research this summer was to compare two formulations for such a minimiza-
tion problem and determine which formulation performs better when Newton’s
Method is applied to each formulation. The two formulations compared are the
Coleman-Li formulation and the perturbed KKT formulation.

1.1 The Coleman-Li Formulation.

In the Coleman-Li paper, An Interior Trust Region Approach for Nonlinear
Minimazation Subject to Bounds, T. Coleman and Y. Li propose a strictly feasi-

ble trust region method for the problem given above, defining the feasible region

as F & {z : | < 2 < u}. Their method involves choosing a scaling matrix D

and a quadratic model 9. They choose Dg by examining the optimality con-
ditions.

Let g(z) def Vf(z). Define v(z) : R — R, for each component 1 < i < n,

as follows:



ifg; <0 and u; < oo then v; = x; — uy
ifg;i >0 andl; > —oco then v; = z; — I
ifg; <0 and u; = oo  then v; = —1
ifg; >0 andl; = —c0 thenv; =1

Now define D(z) = diag(|v(z)|71/?), so that D=2 is the diagonal matrix
with the ith diagonal component equal to |v;|. Note that diag(z) denotes an
(n x n) diagonal matrix with the vector z defining the diagonal entries, (as in

Matlab).

Let g. def g(z«). Now the first order necessary conditions for z, to be a local
minimizer, as stated in the Coleman-Li paper, are:

gxi =0 ifl; <zoy <y
Gxi S 0 if Ty; — U
Gxi Z 0 if Lyj — ll

With the scaling matrix D defined as above they consider the following
system of nonlinear equations:

which is an equivalent statement of first order necessary conditions. This is
essentially their formulation of the problem.

The system is continuous but not everywhere differentiable, particularly
when v; = 0. This i1s avoided by the strict feasibility of the iterates which
force |v;| > 0. Assume zj € int(F) = {z : | < = < u}, that is, the iterates
are strictly feasible. Then a Newton step, dg, satisfies the following system of
equations:

(Dp V2 fi + diag(gx) J{ )de = —Dj gi
where JV(z) € R"*™ is the Jacobian matrix of |v(z)| whenever |v(z)] is differ-
entiable.

1.2 The Perturbed Karush-Kuhn-Tucker Formulation.

The Perturbed KKT formulation for this particular minimization problem was
derived through my understanding of Rice University’s Technical Report 92-
40, On the Formulation and Theory of the Newton Interior-Point Method for
Nonlinear Programming, co-authored by A. El-Bakry, R. Tapia, T. Tsuchiya,
and Y. Zhang. The problem can be equivalently stated as:

min f(x)
st.  g(z) >0 where g(z) =2z —1
h(z) >0 hz)=u—=z



Thus, g(z) > 0, h(z) > 0 imply z € F.
The Lagrangian for the above problem is
L(IJ Y Z) = f(l‘) - yTg(‘E) - zTh(,L‘)
Thus, Vi L(z,y,2z) = Vf(z) — Vg(z)y — Vh(z)z, with Vg(z) = I and Vh(z) =

—1, so

Vel(z,y,2) =Vf(z)—y+ =z

The KKT conditions are:
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where Y denotes a diagonal matrix with diagonal y.

Thus the Perturbed KKT conditions are:

Yg(z) = pe
Zh(z) = pe
(y,2) > 0

where e 1s a vector of ones whose dimension will vary with the context.

Thus we are finding a Newton step for this system of equations:
Vi) —y+2z=0
Yg(x) —pe=0
Zh(z) —pe =0

The above system may also be denoted as F(z,y, z) = 0. Consequently, a New-
ton step, d, satisfies F'(z,y,2)d = —F(z,y,z), or

VZf(z) —1 1 Az Vik)—y+=z
Y XL 0 Ay | = — Yg(z) — pe
-7 0 U-X Az Zh(z) — pe

where d = (Az, Ay, Az).



2 Numerical Experimentation.

I wrote Matlab code to implement the Coleman-Li, KKT and Perturbed KKT
formulations in conjunction with Newton’s Method. I performed many experi-
ments, in the end, varying only the parameter, v, which determines the position
of the initial point, xg.

To simplify matters we design a convex quadratic nonlinear function f(z).
As a result there will be only one optimal solution, a global minimum. We
generate a random (n x n) matrix, A, and a random (n x 1) vector, b, and
define our function as

f(x) = .5(Az)T (Az) — b7z

We choose n = 10, that is, f: R1° = R, u = (.5, .5, .5, .5,.5,.5, .5, .5,.5,.5)
and [ = —u.

We generate 100 random initial points zg;, including yu and 4! where 0 <
v < 1. To do so we generate 100 random (10 x 1) vectors, v;, i = 1...100,
with entries of 1, 0 or —1. These vectors are then multiplied both by .5 and the
scaling factor 5, where again 0 < v < 1, so that they become strictly feasible
points. Thus,

Zo; = .OYY;.

If v is close to 1, then the initial point will be close to the boundary. If v is
close to 0, then the initial point will be close to the origin. Since the entries of
the vectors v; consist of 1, 0 or —1 these vectors represent points on the center
of the faces or points of the edges of the faces of this 10-dimensional “cube”.
For instance in 3 dimensions, that is, n = 3, the point (0, 1, 0) lies in the interior
of a face of the cube, while (1,0, 1) lies on the edge of two faces of the cube.

We apply Newton’s method to the three formulations. Step lengths are
chosen so that all iterates z; remain in the interior of the feasible region. The
algorithm is said to have failed if a stopping criterion is not satisfied after 100
iterations or an iterate lands on the boundary. For Coleman-Li, the stopping
criterion is || D(zx)~2g(2k) || < 1078, for KKT and Perturbed KKT it is

VikE)—y+=z
Yg(z) < 1076,
Zh(zx)

The following table shows the number failures, out of the 100 initial points, for
each of the three formulations.

5 |.5].6].7] .9].99999
PKKT [[0] 0] 0] 0 0
KKT 0[0] 0[O0 6

Coleman-Li 1141330 50




As we can see the Coleman-Li formulation does not do well when the initial
points are close to the boundary of the feasible region, while the KKT formula-
tion does quite well except under the extreme case of v = .99999., In all cases,
the Perturbed KKT formulation is quite robust with zero failures.
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A strongly held belief by professors and students participating in the 1997 Spend a Sum-
mer with a Scientist program is that high school mathematics education is not what it should
be. Students are not motivated to pursue high-level mathematical problems or specializations
by continuing their math education, and most cannot answer the typical question “Where
is math used in everyday life?” There is great potential for improvement with an infusion
of applied math and computational science in the high school math curriculum. Such an in-
troduction of this non-traditional math subject matter requires two efforts: teacher training
and the publication of texts on applied math and computational science. CRPC’s Girl TECH
program is making great strides in teacher education by training teachers in computer tech-
nology and informing them of the vast resources available on the web. We spent our summer
working on the much-needed high school textbooks.

The first project of the summer consisted of reviewing and making recommendations on a
proposed linear algebra text for high school seniors. This text was originally a thesis entitled
An Introduction to Linear Algebra: A Curricular Unit for Pre-Calculus Students, and was
written by Tamara Anthony Carter in pursuit of her master’s degree at Rice University. In
preparation for a meeting with Tamara, we composed a chapter by chapter assessment of
strengths and suggestions. A more general list outlining the need for a high school linear
algebra textbook and the “selling points” of Tamara’s particular text was also given to
Tamara and is included in this report.

In addition to presenting Tamara with suggestions for her text, we coordinated a trial
case for the textbook to gather student input. A linear algebra workshop was organized for
students from Milby Science Institute, a magnet school in Houston, who were participating

in the Howard Hughes summer programs. We compiled a mini-text on linear algebra using



certain chapters and sections from Tamara’s text. Only minor alterations to Tamara’s ex-
planations, examples, and problems were made so that student comments would apply to
Tamara’s text as a whole. The workshop lasted four days, and included two hours of formal
instruction each night as well as homework assignments. All of the Spend a Summer with a
Scientist students participated as teachers. A schedule of objectives and homework problems
for each night is included in this report. The students answered evaluation questions on the
last night, and we prepared a summary of these responses. Copies of the mini-text and
summary of evaluations were given to Tamara for her use in preparing the final textbook for
potential publication.

The next project began as a summer project, but will actually be continued by us next
school year in an independent study course. This project also involves a thesis that is actually
a high school textbook. This thesis, Introduction to Computational Science: A High School
Curriculum, was written by Sarah Benkendorf who was also pursuing a master’s degree at
Rice University. Unlike Tamara, Sarah has no plans for editing and publishing her text.
There is currently no textbook on this subject for senior high school students. Furthermore,
computational science is of great importance to young students for understanding real-world
problems and being exposed to problems that are so interesting they may motivate further
study in mathematics. For these reasons, we, along with Dr. Tapia and Dr. El-Bakry,
are editing and making additions to Sarah’s original text in hopes of publishing a textbook
that will serve as an introduction to computational science. This text is being written for
high school seniors, but is appropriate for and could easily be used by college freshmen
or professionals who desire an introduction to computational science. The plans for this

textbook as of July 30, 1997, are included in this report. One unique quality in its design is



that it is being written so that is may be used in modules. In other words, an understanding
of each chapter does not depend on the material presented in the previous chapters. This
approach may attract a wider audience including those who wish to study or teach one
particular topic in computational science that fits well into another course. For example,
the chapters on solving linear systems and linear regression could be used in an algebra
course or a chemistry course with lab work. We have spent the second half of the summer
designing the text and editing and rewriting Chapter Two. We also attended the Conference
for the Advancement of Mathematics Teaching to examine current high school mathematics
textbooks and speak with publishers about the computational science text. We expect to

complete the rewriting and editing of the text by May of 1998.



Erin Kellam
Samitra Seales

June 6, 1997

Review of An Introduction to Linear Algebra: A Curricular Unit for Pre-Calculus
Students written by Tamara Anthony Carter

Selling Points: Why We Support the Unit

o Allows students to recognize that challenging concepts in mathematics exist and are
still in need of research.

e Sets a foundation on which students can build for college linear algebra.

e Since it can be argued that linear algebra is as important as calculus to scientists and
engineers, it is important that students are introduced to linear algebra prior to ad-
vanced studies in science and engineering.

o It has useful cross-disciplinary applications such as curve-fitting, which students will
find beneficial in other areas of study.

e Teaches concepts rather than procedures, so students will be able to expand beyond
examples in the book.

e Flows coherently from chapter to chapter.

o Allows students to develop computer programming skills.

e Satisfies all but one of the essential elements that the state of Texas requires in order
for a pre-college textbook to be adopted.



Schedule for
Milby Science Institute Math Workshop
June 16 - 19, 1997

Monday

e Objectives/Goals:
Cover Chapters One and Two- introduction to matrices, and addition and subtraction
of matrices. More specifically, the introduction to matrices includes determining matrix
dimensions, the transpose of a matrix, and symmetric and square matrices.

¢ Recommended Group Problems:
Chapter One Problems: la,b,c, 2a, 3a.b
Chapter Two Problems: la,d,j, 3a,b,c

e Recommended Take-Home Problems:
Chapter One: 2d, 4, 5
Chapter Two: leh;i, 2, 4

Tuesday

e Objectives/Goals:

Cover Chapter Three on matrix multiplication and Section 4.1 on coding. Topics
include inner/dot product, scalar multiplication of matrices, multiplication of matrices,
and the identity matrix.

¢ Recommended Group Problems:
Chapter Three Questions: 2, 3,4, 5, 7
Chapter Three Problems: 2b.i, 3

¢ Recommended Take-Home Problems:
Chapter Three Problems: 1, 2f k,1,m
Chapter Four Problems: 5a,c



Wednesday

e Objectives/Goals:

Cover Sections One and Two of Chapter Five. For the primary method of determining
the determinant, use expansion by minors and focus on 2 x 2 and 3 x 3 matrices. For
determining the determinant of larger matrices, use Gaussian elimination (teacher may
want to provide more examples).

¢ Recommended Group Problems:

Chapter Five Questions: 1, 2
Chapter Five Problems: la,c.f

¢ Recommended Take-Home Problems:

Chapter Five Problems: the remaining exercises in problem #1

Thursday

e Objectives/Goals:
Cover Chapter Eight (with the exception of Section One) on least squares and ! Chapter
Nine on eigenvalues. Least squares includes interpolation/extrapolation, best least
squares fit, minimization, and normal equations.

¢ Recommended Group Problems:
Chapter Eight Problems: lc, 2, 4
Chapter Nine Problems: 5

¢ Recommended Take-Home Problems:
Chapter Eight Problems: 3, 5
Chapter Nine Problems: 6, 7

Hf time allows.



Plans for
Introduction to Computational Science text
as of July 30, 1997

Authors

Dr. Richard Tapia, Noah Harding Professor of Computational and Applied Mathemat-
ics, Rice University

Dr. Amr El-Bakry, Assistant Professor of Computational and Applied Mathematics, Rice
University

Sarah Benkendorf, M.A. Computational and Applied Mathematics, Rice University

Erin Kellam, B.A. Computational and Applied Mathematics, Rice University

Samitra Seales, B.A. Computational and Applied Mathematics, Rice University

For More Information:

Dr. Richard Tapia Dr. Amr El-Bakry

Dept. of CAAM - MS134 Dept. of CAAM - MS134
Rice University Rice University

6100 Main St. 6100 Main St.

Houston, TX 77005 Houston, TX 77005

(713) 527-4049 (713) 527-8101 ex. 2322
rat@Qcaam.rice.edu elbakry@caam.rice.edu

Vision

We will design the Introduction to Computational Science text so that it may be used
in two ways. It may be used as the text for a high school or college freshman course in
computational science, or individual chapters may be used as supplementary material for the
“standard” math and science courses. For example, the chapters on solving linear systems
and linear regression could be used in an algebra course or a chemistry course with lab work.
The chapter on solving nonlinear equations would fit into a geometry or calculus course, and
the chapter on differential equations could supplement a calculus course. In order for the text
to be used in this way, each chapter will be written so that it is independent from the others.
Writing the text with these alternate uses should attract the largest audience, give as many
students as possible an exposure to computational science, and appeal to teachers. Finally,
our Introduction to Computational Science text is a transition stage between an educational
system with no computational science courses and one with a stand-alone computational
science course.



Proposed List of Chapters (in order)

1. Introduction

— What is computational science?
— Why do we need computational science? (include careers)

— History of relationship between mathematical theory and applications (The-
ory and applications were combined historically, then separated in mid-twentieth
century, now combining again)

— Numerical errors (Can computers make mistakes?)

— Representation of numbers (base 2 to base 10)

2. The Solution of Linear Equations

— Direct computational methods (Gaussian elimination, Gauss-Jordan elimina-
tion, Inverse, Cramer’s Rule)

— Operation counts and a comparison of methods (cost)

— Conjugate gradient method

3. Linear Regression

— The line of best fit

— Least squares regression

4. Solutions of Nonlinear Equations

— The method of bisection

— Newton’s method

— The secant method

— The method of false position

— A comparison of methods

5. Differential Equations
This chapter is not in the original text (thesis copy). We will search for the
“standard” calculus text to use as a tool in writing this chapter so the transition

to differential equations will be as smooth as possible. This chapter will include
no equations with second derivatives.

6. Optimization
This chapter is not in the original text (thesis copy). This chapter will serve

5



to introduce students to a very important, interesting, and hopefully inspira-
tional class of problems. Since the math involved is very advanced, there will be
a focus on the different problems and their purposes with a careful treatment of
the appropriate computations.

7. Linear Programming
— History
— Graphical solutions with contour lines (and the limitations of this method)
— Linear programs in standard form
— The simplex method

— Parallel programming

Additional Comments

e Since high school math students frequently solve problems on graphing calculators, we
will discuss the methods various calculators use to solve problems. For example, does
a calculator use Newton’s Method to find the square root of 27

e We want to include some computer programs, written by us, for the students to vary
the input and run. These programs may be written in Matlab.

o We also will include many real-world examples in the text that are interesting to the
students, easy for them to relate to, and will broaden their experience and exposure
to scientific problems.



SAS Project Description 1997

Cassandra Moore McZeal

1 Introduction

This summer I investigated the use of a primal-dual interior-point method in a branch-and-bound
algorithm to solve a class of 0/1 mixed integer programming problems. These problems originate
from Consolidated Rail Corporation (Conrail). The model attempts to choose the departure times
for 998 trains over 559 yards such that the trains depart at some point during the correct day, and
the number of trains used to power the schedule is minimized. For each schedule that is generated,
we have a different 0/1 mixed integer programming problem. These problems range in size from

17,442 variables and 6118 constraints to 538,800 variables and 144,595 constraints.

1.1 Preliminary Numerical Tests

There are 41 problems in the Conrail test set. The trains run according to a weekly schedule,
and there is an adjustable parameter that controls the number of departure time periods each day.
When this parameter is set to three the trains leave every eight hours, when set to twelve they
leave hourly, and when set to the maximum, 96, trains leave every fifteen minutes. There is a time
period parameter for each of the two types of trains in the model. For regular trains the time
period parameter is called TP. For ENS (exchange) trains the parameter is called EnsTP, and must
divide TP evenly. Due to the size and the computational effort expended, we report preliminary
results for only 14 of the problems.

In our numerical test we used CPLEX 4.0 on four SGI Power Challenge-I. multiprocessors. We
limited the time for finding a solution to each of the 14 problems to 10,000 secs. The initial node

(parent subproblem) was solved with CPLEX’s interior-point code, and the child subproblems were



solved by either the interior-point code or the dual simplex method. We used default settings for
the interior-point code used by CPLEX to solve the subproblems. For the dual simplex method
implemented by CPLEX, we used steepest edge pricing. All other parameters are at default settings.
We also did not change the mixed integer programming strategies used by CPLEX.

As can be seen in the following table, CPLEX’s branch-and-bound algorithm using an interior-
point method does not generate and solve as many nodes as it does using the dual simplex method
for most of the smaller problems. This trend changes, however, when NumTP is 12 and NumEnsTP
is 3. At this point, the interior-point based algorithm generates and solves more nodes than the
simplex based algorithm. Interestingly, the best integer solution generated by the interior-point
based algorithm is strictly less than the best integer solution generated by the simplex based

algorithm in all but one case.

Name Time Periods Interior-Point Dual Simplex

TP Ens TP | Nodes Best Solution | Nodes Best Solution
con33 3 3 237 732.20847689 | 21895 740.21218707
con4?2 4 2 237 741.02028929 | 8704  772.97597399
con44 4 152 739.4346237 | 12684 756.67890073
con62 6 2 166 752.13986307 | 5194  750.77552675
con63 3 191 746.24917505 | 11353  754.55165118
con66 6 84 731.54857074 | 6029  744.62647646
con82 8 2 257 741.81485425 | 10073  754.63084237
con84 4 115 714.78230402 | 3896  737.54665082
con88 8 53 707.4105 879 722.77691535
conl22 |12 2 281 744.81368653 | 2578  769.81717300
conl23 3 148 751.39205827 | 26 n/a
conl24 4 112 740.94480932 | 0 n/a
conl26 6 63 721.97262339 | 0 n/a
conl212 12 21 n/a 0 n/a




2 Our Current Implementation

Heuristic algorithms are designed to find good integer feasible solutions quickly. These solutions are
not necessarily optimal. We designed an heuristic rounding algorithm for the generation of integer
feasible solutions based upon the structure of the constraints in the problem. We also modified

our search tree based upon this algorithm. We summarize our preliminary results in the following

table.

NAME | TP | EnsTP | NODES | INT SOLN | LP SOLN

con33 3 3 221 745.293278 | 659.695861
con4?2 4 2 140 781.143485 | 648.165406
con44 4 62 758.369945 | 634.557275
con62 6 2 92 780.052713 | 630.337850
con63 3 61 779.944154 | 621.350284
con66 6 29 770.240096 | 609.545147
con82 8 2 50 780.419443 | 616.993064
con84 4 23 764.033574 | 605.152821
con88 8 7 760.279625 | 597.927929
conl22 |12 |2 18 783.714431 | 605.431433
conl23 3 12 737.344716 | 599.151543
conl24 4 8 753.505517 | 593.081605
conl26 6 5 755.585682 | 588.265380
con1212 12 2 739.494864 | 583.338884
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1 THE MATHEMATICAL FORMULATION OF THE FIBER MICROMECHANICS

The diaphragm is the major muscle of respiration in mammals. The diaphragm is a composite
structure that consists of muscle fibers and connective tissue. Understanding the micromechanics
of the diaphragmatic muscle is fundamental to any explanation to its physiological or pathologi-
cal behavior. Mathematical modeling of the micromechanincs of the diaphragm will improve our
understanding to the ability of this muscle to perform without local muscle injury. There is an
extensive research on the mechanics of the diaphragm [1]-[8] but there is no significant research on
the micromechanics of this vital muscle.

Anatomically, the diaphragmatic muscle is a relatively thin sheet of muscle bundles that extend
radially from the central tendon (CT) to the chest wall (CW), see Fig. 3 and Fig. 4. Recent work
from Dr. Boriek laboratory demonstrated that fiber architecture in the diaphragmatic muscle of
the dog is discontinuous, and therefore muscle fibers do not necessarily span the entire length of the
muscle from chest wall insertion to the origin on the central tendon. The majority of the fibers are
shorter than the length of the muscle from CT to CW. These fibers do taper along 30% of their
length and taper down to a very fine thread with a taper angle of about 1 degree, see Fig. 5. The
tapered portion of the fiber generates an interface between muscle fibers and connective tissue that
is essentially loaded in shear.

During inspiration and expiration the diaphragm contracts and expands, respectively. During the
contraction process, muscle fibers shorten, while maintaining their volume and surface area. There-
fore, fiber cross-sectional shape changes to minimize the change in volume and surface area of the
muscle fiber, see Fig. 6. Because the muscle are mostly water, muscle fibers are incompressible and
therefore isovolumic. Maintaining the surface area of the fibers is crucial during muscle contraction
because the surface area of the fiber is the interface between the fibers and the connective tissue,
through which contractible forces are transmitted. The deformation of the fibers should satisfy the
nonlinear stress-strain law of single muscle fibers during muscle contraction.

In this project, we mathematically model active shortening of single muscle fiber under physical,
mechanical, and geometric constraints provided above. This mathematical model is described by

2

the formulation
1 ! ’
inf o — | ||E(z) — Eo||d "(ydt ) — a0))? 1.1
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Here, ®(u) represents the elastic energy, u : R? — R? is the continuous deformation, the domain
Q refers to the fiber, E(z) is the strain tensor and FEj is the perscribed strain value that is equivalent
to the magnitude of muscle shortening during the inspiratory effort and W12 is the space of functions
whose derivative is square integrable.

Moreover, fol w'(t)dt represents the measure of the boundary of the fiber which is parametrized
by w, meas(0Q) relates to the measure of the boundary of fiber at funcitonal residual capacity.

2 THE PRELIMINARY MODEL OF A MICROMECHANICS

We studied the one-dimensional counterpart of (1.1) which reads

(2.3)

This example is linked with the general problem (1.1) via the lack of convexity of the total stored
energy. This indicates that there is no continuous deformation yielding the minimum. This can be
demostrated in the above one-dimensional example (??) as follows. First, note that

1
inf(/ (o' (2)? = 1) + u(z)*dz) = 0
0
hence if there would be a minimizer then
(UI(CL‘)2 — 1)2 =0 and u(m)2 =0.

But these two condition cannot be satisfied simultaneously. Therefore, there is no continuous func-
tion u at which the stored energy E would attain its minimum value.

Using the Matlab Optimization Toolbox, we minimize this energy for number of different initial
guesses and number of partitions. The Figs.1-2 indicate what we have seen from the proof. The
minimization procedure is forcing the minimizer to produce more and more oscillations as the values
of the function get smaller and smaller. Tt seems that the we can get O(h) oscillations of the
minimizer which is dictated by imposing the condition on the derivative. We have used P; finite
elements to discretize the deformation u and midpoint qudrature formula to approximate the integral
in the definition of E.
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Figure 1: The result of calculations using piece-wise linear finite element with A = 1/100. The computed
function has derivatives close to 1.
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Figure 2: The result of calculations using piece-wise linear finite element with A = 1/100. Though the
computed function has derivatives close to 1 the function itself is different from the one plotted on Fig 1.
due to the slightly different initial guess.
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Fig. 3 Photographs of dog diaphragm, laid flat on transparency, viewed from abdominal surface.
A: intact diaphragm. B: same diaphragm cut into 13 wedge regions. Note there is minimal gross
wrinkling of intact diaphragm and virtuall y no distortion of escised diaphragm. Most of muscle
bundles are approximately perpendicular to their insertions. From Journal of Applied Physiology,

77(5):206 5-2074 (1994) A.M. Boriek and J.R. Rodarte.



Fig. 4 Light photomicrographs of transverse sections of midcostal diaphragm along course of
muscle near CT (A) and near CW (B). Sections show muscle fibers, connective tissue, diaphrag-
matic ligament from thoraic side, and peritoneum attached to abdominal surface of diaphragm.
Total magnification, X22 .8. From Journal of Applied Physiology, 77(5):2065-2074 (1994), A.M.
Boriek and J.R. Rodarte.



Fig. 5 Scanning electron micrographs of the tapered end of an isolated biceps femoris muscle
fiber. Note the abscence of surface specializations and the grad ual taper toward the end. Bar = 50
pm 1n upper panel and 10 gm in lower pan el. From Journal of Applied Physiology, 207: 211-223
(1991), J.A. Trotter.



Fig. 6 Scanning electron micrographs of collagenous stroma from which muscle fi bers were
removed by treatment with NzOH. a: X200. b: X700. The endomysium (arrows ) is a continuous
network surrounding tubular cavities. The perimysium (arrowhead s), consisting of thick collagen
fibers, is also seen in these micrographs. From Journal of Morphology, 212: 109-122 (1992), J.A.
Trotter and P.T. Purslow.



Phytoremediation of 2,4,6-Trinitrotoluene using Catharanthus
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Abstract

Soils contaminated with 2,4,6-trinitrotoluene (TNT) from former munitions
facilities are present world wide. Using hairy root cultures of the periwidtiearanthus
roseus, TNT is effectively and inexpensively transformed into less harmful substances.
The effects of TNT oK. roseusin its exponential and stationary growth phases will be

examined with this experiment.

Introduction

Hairy root cultures used in this experiment are derivative root structures of
Catharanthus roseus, commonly known as the periwinkle, and contain intrinsic abilities to
phytoremediate TNT at various life stages. The four main life phases of hairy roots are:
lag (inoculation), exponential growth, stationary, and death. The inoculation phase is the
stage right after roots have been subcultured and added to a new flask environment (50 mL
medium) to begin growth. Roots experience a lag phase during inoculation where no
growth or increase in mass is observed. This occurs for a short while until the exponential
growth phase begins. Hairy roots grow exponentially until stationary phase is reached,
that is, the stage where the roots will not grow any longer and eventually die, entering the
death phase in which an exponential decay occurs (Bailey & Ollis). The exponential
growth and stationary phases are the two life stages in which TNT phytoremediation will
be examined.

Phytoremediation is an intracellular (inside the root) process which benefits the
extracellular (outside the root) environment. During phytoremediation, the hairy roots take
up metals and toxic chemicals, and then transform them into less harmful substances. This

method of rejuvenating the toxic soil is preferred to expensive incineration and composting



which produces recalcitrant reduction products (Lauritzen, et. al 1996). Effects of TNT on
C. roseus have been studied using growth kinetics to model its life cycle by adding various
TNT concentrations to all growth phases of the hairy roots and measuring its concentration

at different time intervals.

Methods and Materials

C. roseus hairy root clone LBE-6-1, grown in Gamborg B5/2 salts and 30g/L
sucrose in constant stirrer and bacteria free environment with no light was maintained prior
to experimentation (Bhadra, et. al). For exponential growth phase tests, 20, 30, and
40(mg/L) concentrations of TNT were added to the flasks containing 59 fresh weight (FW)
roots at 19 days per 50mL medium. Stationary phase tests were performed by adding TNT
concentrations of 15.97, 28.00, 42.34, and 55.44 (mg/L) to roots in stationary phase.
Samples of medium were withdrawn at specified intervals and later analyzed by using a

High Performance Liquid Chromatography (HPLC).

Results

Exponential Growth Phase

During exponential growth, the hairy root and TNT concentrations are

simultaneously changing as displayed in Figure 1 and Figure 2.
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These systems can be modeled according to equation 1, the second order reaction rate law
(Hill) :

r=-k*[X]*[TNT] (1)

r = reaction rate (L/g-day)

k = reaction rate constant

[X] = Plant concentration (g FWI/L)

[TNT] = TNT concentration (mg/L)
The second order rate law is implemented in a Matlab routine which loops through matrices
of plant mass and TNT concentrations then uses the ‘fmin’ function to determine the least
squared error values and calculates the kinetic constants for each system. Table 1 displays

the kinetic constants for the three different batches of flasks.

Table 1 TNT Reaction Rate Constants in Exponential Phase, 34 day cycle

TNT Concentration Kinetic Rate Constant
(mg/L) ( L/g-hr)
20 0.0075+ 0.0032
30 0.0126+ 0.0051
40 0.0156+ 0.0030

As the TNT concentration increases, the reaction rate constant also increases.
These rate constants are helpful in modeling the growth of hairy roots by modeling their
growth according to the specific growth rate equation (equation 2) which is only valid for

exponential growth phase (Blanch & Clark):
r=p*[X] (2
r = reaction rate (L/g-day)
u = specific growth rate constant (cy

[X] = plant concentration (DW)



Using [X]=100 g/L and the reaction rates from Tablg ¢an be backed out of equation 2

which will yield the specific growth rate and the doubling time of the hairy roots, shown in

Table 2.

Table 2 TNT effects onC. roseus growth in Exponential Phase, 34 day cycle

[TNT] DW Specific DW FW Specific . FW Doubling
(mg/L) Grovvth_lRate DgrliJrlrall(lang Growth Rate (day) Time (day)
da
(day ) (day)
Control 0.185 3.74 0.0503 13.8
20 0.0125+ 89.4+ 58.0 + +
0.00704 0.145+ 0.0331 | 4.79% 0.685
30 0.0134+ 59.3+ 29.8 + +
0.00523 0.140+ 0.0479 5.16+1.22
40 0.0130=% 55.5+ 14.9 + +
00035 0.126+ 0.0389 576+ 1.77

These values for the specific growth rate show that as the TNT concentration increases, the
rate of growth decreases slightly. It is important to notice that specific growth rates can
only be determined using dry weight (DW) values (Blanch & Clark). These dry weight
values are measured after the hairy roots have been freeze dried and all water has been
removed from their roots and vary from the fresh weight growth rates by one order of

magnitude.

Stationary Phase

The stationary life cycle phase of hairy roots occurs approximately 21-24 days after
inoculation. At this phase, hairy roots have passed their peak growth period and are no
longer growing. However, TNT degradation in this phase is phenomenal. As shown from
Figure 4, a rapid disappearance of TNT occurs within the first 48 hours of addition;

25.6% to 32.2% of the initial TNT concentration was degraded during the first time

interval.
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Plant concentration [X] where will have a constant concentration [X] = 100g/L as
TNT concentrations are changing with time, therefore it is assumed that stationary phase is
modeled according to the pseudo-first order reaction rate law, similar to equation 1. The
kinetic reaction rate constants for stationary phase are listed in Table 3. They have been
determined analytically by graphing the rate of [TNT] change versus [TNT]. These values

are should be relatively similar to the kinetic rate constants of the exponential phase.

Table 3 TNT effects onC. roseus in Stationary Phase, 30 hour cycle

TNT Kinetic Rate Constant
Concentration (L/g-hr)

(mg/L)

15.97 0.0184+ 0.00237

28.00 0.0566+ 0.0255

42.34 0.0892+ 0.0344

55.44 0.139+ 0.0819




Conclusion

TNT disappearance was only observed in the presence &f lieseus hairy roots
in 50mL of medium. As the TNT disappeared in the medium, traces of 2-monoamino-4,6-
dinitrotoluene (ADNT) and 4-monoamino-2,6-dinitrotoluene began to appear. These two
isomers of ADNT are the only byproducts detected of TNT’s transformation so far and
were the byproducts were formed in both phases. Hairy roots in exponential growth
transformed the TNT slower than those in stationary phase. However, both sets of roots
effectively transformed TNT with final concentrations ranging from 0 ppm to 4 ppm
C. roseus has abilities to transform low concentrations of TNT at a rapid and efficient pace.
The reproducibility and upscaling of these results promises a future for biodegradation and

environmental clean-ups using natural catalysts.
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Electromyography is the study of muscle response to nervous stimulation mea-
suring electrical patterns in muscle fiber. When neural impulses, transmitted
from the brain, reach the muscle fiber, a wave of De-polarization spreads over
the muscle fiber resulting in a twitch followed by complete relaxation. Electrical
signals produced by the potential difference of the electrode and neural impulses

Spend a Summer with a Scientist 1997
Final Report

Carlos G. Uribe
August 20, 1997

Abstract

In the past, medical procedures as related to disease diagnosis have
basically involved trial and error methods. Many medical exami-
nations, such as an electromyography (EMG) examination which is
used to diagnose muscle disease, involve direct observation and crude
measurements making it difficult for the untrained eye to arrive at an
accurate diagnosis. Diagnosis is based on historical medical findings
which require much clinical experience and is prone to human error.
The computer, as opposed to special hardwired devices, is extremely
flexible and can be used to assist medical and health care profession-
als at arriving at fast and accurate diagnosis. The advantages are
limitless and could result in saving a life to treating an incurable dis-
ease. Although the involvement of Computer Scientists in medical
and health care science is relatively recent, I believe that medical sci-
ence can benefit from a quantitative analysis of medical data which is
reduced and interpreted on a computer system. My summer project
involved understanding methods used in conducting research of this
nature, specifically an analysis of the electromyographic signal.

EMG Defined

are then recorded and analyzed.

The exam involves inserting a needle electrode through the skin and into the
muscle. The electrical impulse is amplified and transferred to a digital signal
processor where 1t undergoes a process of mathematical transformation into its
wave representation which is then displayed onto a computer screen. It may

also be displayed audibly through external speakers.



During muscle contraction the presence, amplitude and shape of the wave
form is then used to provide information about the muscles ability to respond
to nervous stimulation. It is a standard medical procedure that is used to reveal
nuero-muscular disorders and other medical problems. For example, myopathies
such as muscular dystrophy, which cause muscle degeneration, can be accurately
assessed by a clinician performing an EMG examination.

2 Study Phase

During my initial phase of this study I was guided by Dr. Richard Tapia to de-
velop and explore a set of questions to determine the direction of this research.
He explains that this initial questioning phase i1s a crucial step in conducting
research. These questions are then used as a foundation to precisely quan-
tify a series of well defined manageable sub-problems. The formulation of the
questions used in this research is based on the advice of Dr. James Killian, a
neurologist at Baylor College of Medicine.

The main use of EMG is to detect and differentiate between the various
types of muscle disease. The major concerns at arriving at a diagnosis are:

e Is the wave form present, absent, or modified during voluntary muscle
contraction?

e Are the characteristics of the wave form during voluntary contraction nor-
mal in duration, shape, and amplitude?

e Are there any spontaneous, irregular signals at rest and what are their
characteristics?

Extensive time was spent during this phase of research. There are many
different variables that make a problem such as this very difficult to analyze
therefore most of my time was spent studying the anatomical and physiolog-
ical aspects of the examination. Problems such as electrical noise patterns
distributed through the recording medium are very difficult to filter. Data re-
duction and interpretation of real medical data is the next phase of my study.

3 Conclusion

Although I was not able to test and analyze real data, I did however learn how to
take the initial and necessary steps needed to conduct research. My experience
in SAS is a positive one which will help me in every aspect of my life.
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An important activity in X-ray crystallography is to determine effective globalization strate-
gies for solving the semi-local and global stage of the phase problem. This problem occurs
when trying to determine the molecular structure of proteins. Scientists are interested in
understanding the composition of these molecules and their relevant functions in the human
being.

Scientists perform an X-ray crystallography experiment: a beam of X-rays is passed through
a crystallized protein, diffracted X-rays emerge from the crystal at different angles and at
different intensities. These intensities are recorded on detection film. The phase information
cannot be measured from the experiment and the 3-dimensional structure cannot be deter-
mined without further computation. This is what is know as the phase problem in X-ray
crystallography.

Our project is to formulate the phase problem as a constrained global minimization problem
where the objective function is expressed in a least-squares format, i.e, the error between the
intensity measurements and the calculated amplitudes of the scattering functions must be
driven to zero. This objective function is highly nonlinear implying there exists many local
minima which makes it difficult to locate the desired global minimizer. Specifically, we want
to address the semi-local refinement stage of the phase problem and present some effective
global optimization techniques. We want to compare numerically the advantages of using or
not the proposed strategies and their impact over existing techniques available today. The
globalization techniques that we are using and developing cannot just only be applied to the
phase problem where a zero or small residual is desired, but also to other application areas
like seismic problems that can also be modeled as least-squares problems.

During this summer, we have been trying to solve the phase problem of a real known 39 atoms



(117 unknown variables) molecule after successfully solving known structures of about 22
atoms (66 unknown variables). We realize that solving this structure from a random guesses
of the position of the atoms is quite challenging, so we have decided to focus in the semi-local
stage of the problem, i.e., having a rough idea of how the structure looks like, we want to
refine the given position of the atoms that will match more perfectly the observable data.
The framework of interior-point methods consists of minimizing an objective function subject
to several constraints. These methods have been proven to work reasonably good when the
starting point is feasible with respect to the constraints which can be done for the semi-local
refinement problem. In our particular application of the interior-point code for the phase
problem, we do not want to obtain any local minimizer, but we are looking for a specific
one: the global minimizer. So we have to extend the developed theory on interior-point
methods to obtain a global optimization method, or to use the available local codes and add
the necessary modifications to our model to help us reach our desired solution.

One goal is to smooth the function to make it less nonlinear. We are trying to do this
by controlling the number of intensity measurements involved in the objective function. In
other words, smoothing the function will filter out some local minimizers and increase our
chances of obtaining the desired global minimizer.

Part of this work was presented recently at the STAM’s 1997 annual meeting at Stanford
University and we are in the process in writing a technical report on the work on solving
the zero or small residual least squares problems for small to medium size molecules. It will
also include some other applications besides the area of Biochemistry.

Also I have been working with Dr. Richard Tapia and Miguel Argaez in determining effec-
tive path-following strategies and their implementations using merit function technology for
attacking general nonlinear programming problems. We have written a more robust line-
search primal-dual interior-point Newton algorithm that presents several options of using
different types of merit functions and centrality conditions that can guide the initial point
to a local minimizer when the starting guess is not in the neighborhood of the solution.
This will be very helpful for us, especially for implementing the for attacking the phase
problem. Presently, we are writing a technical report that discusses the numerical experi-

ments obtained by this code entitled: Numerical Comparisons of Path-Following Strategies



for a Basic Interior-Point Method for Nonlinear Programming. Also at the SIAM’s Annual

Meeting at Stanford University a talk was presented on this work.
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Abstract

Newton’s method is a fundamental technique for solving optimization problems. In theory, it
may give different behavior for two equivalent problems. In this paper, we explore the differences
when Newton’s method is applied to the perturbed Karush-Kuhn-Tucker conditions of the linear
programming problem and when it is applied to the Karush-Kuhn-Tucker conditions of the
logarithmic barrier formulation of the linear programming problem. A point we wish to convey
is that the perturbed system is more effective at solving the linear programming problem than
the barrier system. We will support these results through numerical experiments.

1 Introduction

Newton’s method is used to solve a system of nonlinear equations, F'(X) = 0, where F' : R — R".
It is a local method and has good properties, like quadratic convergence, that allow it to be used in
the applied mathematics community to solve optimization problems. The problem of interest lies
in solving the following linear programming problem (LP):

minimize Ty

subject to Az =b
x>0

where ¢,z € R", b € R™, A € R™*" m < n, and A full rank. Two systems of nonlinear equations
associated with the LP problem will be considered. Newton’s method will then be applied to each
system and the differences between the two systems will be discussed.

2 Logarithmic Barrier Formulation

Newton’s method is applied to a system of nonlinear equations, i.e. F(X) = 0, where F': R — R".
Thus, the LP problem must be formulated in such a way to extract a system of nonlinear equations.
The first approach to take is to formulate the LP problem in the logarithmic barrier framework:
for p >0

minimize ¢z — p 37, log
subject to Az =10
(z >0).



Notice that the inequality constraints are part of the objective function, thus reducing the
constraint set to a set of equality constraints. The fact that z > 0 is taking care of implicitly in
the input to the log function. The above problem can be solved sequentially for different values
of p and it is well-known that, under mild assumptions, the sequence of iterates z7, obtained from
solving the log-barrier problem converges to the solution of the LP problem as u converges to zero,
i.e.

}Lli% zy, ="
where 2* is the solution to the linear programming problem [2].

In order to solve the log-barrier problem using Newton’s method, we must derive the optimality
conditions. These conditions are obtained by constructing the Lagrangian function, L(z,y; ), and
taking gradients, V,L(z, y; 1) and VyL(z,y; 1) to obtain:

Vol(z,y;0) = c—pX et ATy =
VyL(z,y;pn) = Az —b =0

jem)

where  L(z,y;pu) = 'z — pXlogz; + yT'(Az — b).
This creates the nonlinear system of equations,

) Az — b
Fz,y)= | ATy+puXle—c
(z >0)

=0

N

where X = diag(z), e=(1,..,1)".

3 Perturbed KKT System

Using V,L(z,y; 1) of Fﬂ(ac, y) and introducing an auxiliary variable, z and defining z = uX ~le we
obtain X Ze = pe. Making this substitution of z into F),(z,y) we obtain the perturbed Karush-
Kuhn-Tucker (PKKT) conditions for the LP problem:

Az —b
ATy—}—z—c =0,
F(z,y,2)= XZe — e
z,2>0
w>0

These conditions can also be viewed as constructing the KKT conditions for the LP problem and
perturbing the complementarity equation, X Ze = 0, by p.
We remark that both systems F,(z,y) and F,(z,y, z) are equivalent, that is, for g > 0

F,(z",y")=0& F,(2",y",2%) =0



4 Newton Interior-Point Algorithm

Now that we obtained two systems of nonlinear equations for the LP problem, we are ready to
apply Newton’s method to each system and compare the differences. A basic Newton interior-point
algorithm was constructed for each nonlinear system. The two algorithms are similar and vary in
the termination procedure and this is due to the number of equations in the PKKT system. Thus,
we present only the algorithm for the perturbed system.

Given tol > 0, ptol >0, 7€ (0,1), and o € (0,1).
For k =1 : maxiter

e Solve Fj(z,y,2)Av = —F,(z,y,2)

e Compute steplength
-1 _ -1
min(Az; [z;,—1)? Oy = Tx* min(Az; [z;,—1)

Oy = T *
e New iterates

Ty =z + oAz

y+ =y + a:Ay

zy =z + a, Az

o Test

lAz—bll | [ATytz—cl] | o7
U + o T <t

break;

e Update
If ||Az — b|| + HATy +z—c||+ || XZe - p| < ptol

p=op

end

5 Numerical Results

The Newton interior-point algorithms were applied to the equivalent systems, F,(z,y,2) and
F#(x,y). The algorithms were written in Matlab code and tested on a set of nine randomly
generated problems. The problems varied in the size of the constraint matrix, A from the smallest
having a size of 13 rows and 15 columns and the largest having 62 rows and 89 columns. Only the

parameter ptol was varied, and tol, T, c were kept constant.



Significant differences were observed when we compared the results obtained from applying
the Newton interior-point algorithm to both nonlinear systems. Specifically, fewer iterations were
required to converge to the solution of the perturbed system compared to the log-barrier system.
This is illustrated in Table 1. Also, note that convergence in the barrier system required that
the iterates closely follow the central path. However, in the case of the perturbed system, the
iterates need not be in a tight neighborhood about the central path to get convergence, especially
for utol = 107!, Further, the Jacobian of F,(z,y,z) is better conditioned than the Jacobian of
F w(z,y). However, having an ill-conditioned Jacobian does not preclude convergence[3]. In all the
above test problems, convergence was easily obtained for the perturbed system. It was difficult
trying to determine the correct values of ptol to use in order to obtain convergence in the barrier
system. Convergence could have been precluded in the barrier system because we are asking the
parameter p to play two roles. That is, g must be a barrier parameter and it must also function
as part of the multiplier, z [1]. This leads us to believe that to solve the LP problem, we must use
the perturbed system instead of the barrier system.

6 Conclusion and Future Work

We received good numerical results from the implementation of a basic Newton interior-point
algorithm to the two nonlinear systems. Having studied these algorithms, we plan to modify the
algorithms to better suit each nonlinear system. For example, we plan to do a linesearch procedure
to obtain the steplength, «a, in the barrier system. This should lead to a decrease in the number of
iterations to converge to the solution. We also will run more numerical tests, primarily those from
the Netlib set, to reinforce our hypothesis that the perturbed system should be used in place of the
barrier system to solve the linear programming problem.



Table 1: Numerical Results

Numerical Results on Random Problems

Problem Size Values of ptol

mxn vs. Iterations
107° [ 107* | 107!
F| F |F|F|F|F
13 x 15 35118 |24 | — |14 | —
14 X 16 37142 |25 | — |17 | —
13 x 22 43114032 | — | 21| —
23 x 27 45144 |34 | — | 32| —
26 x 34 41112230 | — |18 | —
34 x 45 501142 [ 37| — |26 | —
27 x 54 58 | 140 (45| — | 33 | —
62 x 89 52 1140 |41 | — | 28| —

Parameters: tol =108, 7=0.95 o0=0.2

Notation:
— maximum number of iterations exceeded (> 500) and
Jacobian very ill-conditioned
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7 SAS Program Comments

This summer I believe I accomplished a lot in many areas, especially in my graduate studies. I can
definitely say that this summer was productive and I owe it all to my advisors Dr. Richard Tapia
and Dr. Yin Zhang, and also to the SAS program. Dr. Tapia expects much from his students and
it was reflected this summer. I enjoyed the work because it was research and not just something like
“busywork” or an educational experience. I got really excited at writing the algorithms, coding,
and obtaining results. Most importantly, I was motivated to work, learn and experiment. Perhaps
all of this I felt because I had matured academically within the past years. However, I believe much
of the credit also goes to the program and Dr. Tapia.

I advised several first year graduate students in my department to apply to the SAS program.
Basically, I told them it would give them an opportunity to do research and also to begin on research
projects, which could possibly lead to a publication or to a thesis. I did not follow my own advice
at the time that I was beginning graduate school and wish I had, but these things you do not figure
out until after the fact. However, I am quite happy that this summer turned out well.

I gave a talk at the Society of Industrial and Applied Mathematics at Stanford University
this summer over the research I was doing. At first, I thought the research I was doing was just
something of little interest or no value. However, when when my advisors and I looked at the
numerical results I obtained, there seemed to be more information in the results than what we
expected. Thus, I am continuing the research, and my advisors and I will be writing a technical
report on my summer research.

I would like to advice other students to apply to the SAS program also, especially if they
have never done research. This program provides one with support to do research. Dr. Tapia
pairs his applicants with professors who are willing to spend time with students and who are also
motivational.



Application of Interior-Point Optimization
Techniques to NonlinearTraveltime Tomography
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Abstract

Seismic traveltime tomography aims to infer the velocity field from
arrival times picked on prestack seismic data. Typically, algorithms em-
ployed for traveltime tomography involve the minimization of an uncon-
strained cost function, ®, that measures the misfit between the traveltime
data and the computed traveltimes. It is believed that the mathemati-
cal model for traveltime tomography can be greatly improved by adding
rigorous feasibility constraints to the underlying model. In this work, we
present a method which uses a primal-dual interior-point optimization
algorithm for solving the underlying constrained model, and an upwind
finite-difference technique to obtain the computed traveltimes as a solu-
tion of the eikonal equations.
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1 Introduction

Seismic traveltime calculations play a central role in many methods of seismic
data processing. In this paper we discuss a research direction which involves the
application of primal-dual interior-point optimization techniques for accurate
and efficient gradient based traveltime tomography computations. Our main
problem is to reconstructs a slowness (i.e., reciprocal wave speed) model of a
medium, from measured first arrival traveltimes.

Typically, the traveltime tomography problem involves the unconstrained
minimization of a functional which characterizes a misfit between computed
traveltimes and the traveltime data [SS95a]. In our research, we aim to augment
the typical unconstrained traveltime tomography model with rigorous physi-
cal feasibility constraints. It is our contention that the addition of feasibility
constraints will greatly enhance the behavior of the underlying reconstruction
algorithm.

We first discuss the idea of employing rigorous feasibility constraints derived
from Fermat’s principle within a nonlinear traveltime inversion problem. Next,
a canonical unconstrained traveltime model is introduced along with a similar
constrained model containing feasibility constraints. We then discuss the idea
of using interior-point optimization techniques for the constrained traveltime
model followed by some concluding remarks and future goals of this work

2 Fermat’s Principle

Typically Fermat’s principle has been used extensively in forward modeling.
That is, given a slowness model, Fermat’s principle determines the ray paths.
However, recently it has been proposed, by James Berryman [Ber89], that Fer-
mat’s principle be used in an entirely different manner during the reconstruction
of the slowness model using first arrival traveltime data. Using Fermat’s princi-
ple, rigorous feasibility constraints are established for the nonlinear traveltime
inversion problem.

The traveltime of a seismic wave is the integral of slowness along a ray path
connecting the source and receiver. An expression for the traveltime along an
arbitrary path, P, in a continuous slowness distribution, s (), is given by

P (s) = /ps (z) di*

where, dl defines the infinitesimal distance along the path, P. The physical
principle of Fermat postulates that the correct ray path between two points is
the one of least overall traveltime. Mathematically, we express this principle as

where, 7* (s) is the correct traveltime, and P defines the set of all continuous
paths connecting a given source and receiver pair.



Suppose that P; is a be a trial ray path connecting the i** source-receiver
pair. Let ¢y, ..., t,, be the observed first arrival traveltime from m source-receiver
pairs in slowness medium, s (z). Then we obtain the following feasibility con-
straints for the traveltime problem.

/ s(z)dlf >t
Py
It can be shown that Fermat’s principle yields a definite convex set of feasible
slowness models, depending only on the traveltime data, for the fully nonlin-
ear traveltime inversion problem. We take advantage of this fact in developing
our reconstruction algorithm. Furthermore, we note that one can employ Fer-
mat’s principle to rule out infeasible trail wave-speed models which produce ray
paths with traveltime smaller than the measured traveltime (accuracy assumed).
Thus, as noted by Berryman [Ber90], non-feasible models can be classified by
their total number of “feasibility violations”. That is, the number of ray paths
with traveltime less than that measured. This information is also useful in devel-
oping more efficient algorithms. Augmenting a typical unconstrained nonlinear
traveltime inversion model with these ideas yields a constrained model which
suggests the need for an effective constrained optimization technique to address
the new constrained model.

3 Traveltime Tomography

Seismic tomography, or more generally, the inversion for laterally varying struc-
tures using data collected on the boundary surface has become a very important
geophysical tool for reconstructing a slowness model from first arrival trav-
eltimes. For the unconstrained traveltime tomography model, one generally
minimizes a cost functional, ® (s), which is a measure of the misfit between
computed traveltimes and the traveltime data. For example,

rr{?in D (s) = % Z |T(s,r) — ¢4 (r)|2

reER
where
s(z,z) = slowness field, s (z,z) € Q C R?
7(s,r) = computed traveltimes
t4(r) = the traveltime data at receiver r
R = array of receivers

For a given slowness field, the traveltime 7 is determined by solving the eikonal
equation

Vr)? =5 inQ

T=¢ on I'p.



Our current work involves augmenting the above unconstrained traveltime
tomography model with constraints on minimum traveltimes derived from Fer-
mat’s Principle. We can express our initial constrained traveltime tomography
model as

msin<I>(3) = % ;{ |T(s,r) —td(r)|2

s.t
g(s)=r1(s,7)—ti(r) > 0.

where, again, the computed traveltime satisfies the eikonal equation. As a
standard form convex programming problem, we rewrite the problem as

min @ (s) msin ©(s)
3 1
s.t & ° (1)
g(s)+y=0
g(s) >0 y>0

where, ® (s), {—g (s)} are convex continuous functions. To make the discussion
of the optimization ideas more lucid, we use the notation given in (1).

4 Optimization

4.1 Log-Barrier Formulation

One approach to solving (1) is to use a log-barrier approach. Although this
approach effectively reduces the inequality constrained model to an equality!
constrained problem via the introduction of a penalty term defined by the log
function and penalty parameter, p, the log-barrier method is not without prob-
lems. The log-barrier formulation of (1) is given below,

Log Barrier Formulation:

min ® (s) —pu> . log
S i=1
s.t
g(s)+y=0

where ¢ >0, y > 0.
The Lagrangian for the log-barrier formulation is given by,

L(s,y, A p) = (s) + AT [g(s) + 9] —ﬂzlog vi

INote, equality constrained optimization problems are inherently easier to solve than in-
equality constrained problem.



The Karush-Kuhn-Tucker (KKT) conditions for the log-barrier formulation
are

R Vo (s) —}—G(S)T)\
Fu(s,y): g(5)+y =0, (%N)ZO
A—pYle

where

Y = diag(y1,y2, - Ym)
e=(1,1,...,1)7

The KKT conditions are characteristic of a stationary point, given additional
constraint qualification hold. For a convex region, the KKT condtions charac-
terize a local minimum. The constraint qualifications basically tell us whether
or not a linearized model of F), is representative F, for a given point of the
model space.

It should be noted that we do not use the log-barrier approach for our ap-
plication, due to the inherent ill-conditioning of the method as y — boundary
of feasible set. Physically, this is saying that the method is ill-conditioned as
the computed traveltime goes to a measured traveltime. There also, exist con-
ditioning problems as p — 0. The reason the log-barrier method is mentioned
is to discuss its similarities to the primal-dual interior-point method which we
employ for our current application.

4.2 Primal-Dual Interior Point Optimization

The emergence of primal-dual interior point methods, as an effective tool for
solving linear programming problems, motivates us to investigate the applica-
bility of these methods in the arena of nonlinear inversion and tomography
(problems). In the context of our constrained traveltime tomography problem,
characterized by (1), we define KKT conditions, perturbed-KKT conditions,
and a primary Newton step for the algorithm.

The Lagrangian for (1) is given by,

L(s,y, M p) =@ (s) + AT [g(s) + 9] = "y
The corresponding Karush-Kuhn-Tucker (KKT) condition are

Va (s) + G(s)TA
F(s,y,A) = g(s)+y =0, (¥A)>0 (2)
AYe

and the Perturbed KKT conditions are

Vo (s)+ G(S)T/\
Fu(s,y,A) = Ag}(j) +y =0, (y,A) >0 (3)
e — e



There is a rub associated with applying Newton’s method or a modification
thereof to the KKT conditions for a given problem. This rub involves, what is
consider in the optimization community as “sticking to the walls”. That is, if a
variable becomes zero prematurely during the iterations of the algorithm, global
convergence may be precluded. We avoid the problem of “sticking to the walls”
by applying a modified Newton method to the perturbed-KKT conditions given
in (3). The typical primal-dual step is a modified Newton step on the perturbed-
KKT. That is,

VL (s,)) G(s)T 0 As —V® (s) + G(s)TA
G (s) 0 I AX | = —g(s)+y
0 Y A Ay —AYe + pe

where

/\T

0= O'—y, defines a duality measure
m

o € [0,1] defines a centering parameter

It is our contention that the most effective optimization technique for solving
our constrained model, (1), is a primal-dual interior point algorithm. Further-
more, the deficiency of “sticking to the walls” of the feasible region can be
avoided, as opposed to the inherent deficiencies of the log-barrier approach.
The price we pay for eliminating ill-conditioning with the perturbed-KKT is
extra variables and “sticking to the walls” of the feasible region.

It should be noted that under the nonlinear transformation

A=puYle

the perturbed-KKT conditions and the KKT conditions for the log-barrier for-
mulations are “equivalent”. That is, equivalent in the sense that they have the
same solutions for g > 0.

By (5,907 ™¢) = 065 By (s,) = 0

This was shown by El-Bakry, Tapia, Zang, and Tsuchiya in [EBTZT92]. It is
interesting to note that this equivalence is only valid at a solution. Algorithms
based on the two methods actually produce different iterates.

As we continue our research in this area, we will consider the influence of
centrality on the behavior of our algorithm.

5 Remarks and Future Work

We have illustrated in our preliminary research that when an inverse problem
can be formulated so the data are a minima of one of the variational problems
of mathematical physics, feasibility constraints can be found for the nonlinear
inversion problem. These feasibility constraints guarantee that optimal solutions



of the inverse problem lie in the convex feasible region of the model space (cf.
[Ber91]).

Currently, we are developing a Hilbert Class Library (HCL) based implemen-
tation of a convex primal-dual interior-point algorithm for the constrained non-
linear gradient based tomography problem. HCL is a collection of C++ classes
designed for implementing numerical optimization algorithms in the context of
Hilbert spaces [GS96]. Tt is our contention that the use of the object-oriented
programming paradigm provided by HCL will allow for maximum code reuse
with respect to model variations in this and other seismic inversion work. We
will eventually develop a general HCL based primal-dual interior-point algo-
rithm class which should prove useful in examining the effects of different con-
straint models within a given reconstruction algorithm. Furthermore, we will
employ an Automatic Differentiation (AD) tool (ADIFOR) to obtain derivatives
via an adjoint state method.

There are certainly a couple of mathematical points which we will address
with regards to this work. One of the main points being the consistency of
the chosen numerical scheme. As shown by Sei and Symes in [SS95b], the
consistency of a numerical scheme with a continuous equation does not imply
the consistency of the adjoint scheme. This yields the interesting fact, that the
adjoint difference scheme is either of lower order than the forward scheme or
not adjoint to (discrete) the forward scheme. In choosing the former of these
two consequences, it seems clear that the projection onto the smooth velocity
space will bring the accuracy back up, but this is something that we will have
to prove.

This research is in its infancy and additional model constraints will also be
consider in future work. For example, there exist varying degrees of difficulty
with regards to using traveltime tomography to infer wave speed distributions in
a given media [Ber94]. That is, the velocity contrast within the mediais a major
factor in the level of difficulty of the problem. If the velocity contrasts are small,
seismic waves are weakly refracted and straight ray tomographic algorithms
provide suitable results. However, if the velocity contrasts are large, then seismic
waves are strongly refracted, implying that nonlinear tomography algorithms
are required to invert the data. Instead of employing ad hoc regularization
constraints on the range of variation of velocities within a given model for our
nonlinear tomography algorithms, it is our contention that it would be more
advantageous to use information which can be obtained directly from the data
of the given problem. This problem data can be employed to establish rigorous
constraints, as we have presented using Fermat’s principle in our preliminary
work, on the minimum and maximum wave speeds in a propagating medium.
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Finite Termination in Interior-Point Methods for
Linear Programs
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Abstract

We investigate finite termination procedures in interior point meth-
ods for linear programming. The implementation of finite termination
procedures will enable interior point algorithms to generate highly ac-
curate solutions for problems in which the ill-conditioning of the Jaco-
bian in the neighborhood of the solution currently precludes such accu-
racy. The critical issues of finite termination are activating the proce-
dure, predicting the optimal partition, formulating a simple mathemat-
ical model to find a solution and developing computational techniques
to solve the model.

1 Introduction

The simplex method and interior-point methods are two fundamentally
different approaches for solving linear programming problems. The sim-
plex method travels from vertex to vertex in search of an optimal solution.
Interior-point methods generate iteration sequences that travel through the
interior of the feasible region and, under the proper assumptions, converge
to the solution set. In addition, while the simplex method possesses finite
termination, the method has worst case exponential running time complex-
ity. On the other hand, interior-point methods have polynomial complexity
but not finite termination.

Finite termination procedures attempt to compute an exact solution in
a finite number of steps before the worst-case time bound is reached. For
linear programming problems, the duality gap is zero at the exact solution.
Obviously, by definition of interior-point methods the exact solution cannot
be attained without algorithmic modifications.



The basic idea for finite termination procedures is as follows. Once the
iteration sequence gets close enough to the solution set, the interior-point
method can be terminated and the zero-nonzero structure of the solution
set can be used to obtain a solution through some finite procedure. The
arithmetic complexity of the procedure is bounded by a polynomial in the
size of the input data. Assuming infinite precision arithmetic, the solution
would be exact.

Research in finite termination can be categorized into two areas, optimal
facet [12], [13], [18], [19] and optimal basis identification [1], [2], [3], [9],[14],
[15], [16], [17]. Optimal facet identification techniques describe the facet
upon which the objective function attains its optimal value. The facet is
uniquely defined by the set of variables which are zero at the solution. Once
the zero variables have been identified, the solution to the linear program
can be found by simply calculating a feasible point on the facet.

In 1989, Gay [5] proposed stopping tests that computed optimal solutions
for interior-point methods that solved linear programming problems. While
these tests do not constitute a finite termination procedure, they are clearly
forerunners of current optimal facet identification techniques. Gay’s idea
was to use the nonzero-zero partition of the variables to find the solution
of the linear programs. It was his belief that the solutions could be used
as stopping criteria for the algorithm. Furthermore, he thought the early
stopping tests could help circumvent numerical difficulties associated with
singular limiting Jacobians.

Gay solved two linear feasibility problems to find on point on the primal
and dual optimal facets. However, Gay used an iterative, not direct method
to find a feasible point. Hence, his technique cannot be categorized as a
finite termination procedure. The linear feasibility models were defined to
take advantage of the Cholesky factorization which was already implemented
in the interior-point algorithm. Therefore, he solved a scaled linear system
in the least squares sense, to obtain a normal equations coefficient matrix.
His influence can be seen in [13] where the authors solve an linear feasibility
problem with Gaussian elimination.

Implementing finite termination procedures within the interior-point frame-
work would lead to definitive stopping criteria, computational savings, and
highly accurate solutions. For degenerate problems, the Jacobian is nec-
essarily singular at the solution. Therefore, we expect that the Jacobian
will be ill-conditioned close to the solution set. The ill-conditioned Jacobian
may produce step directions which prevents the problem from being solved
to high accuracy. With a finite termination procedure, we can avoid the



effects of ill-conditioning to some degree.

2 Background and Notation

We consider linear programs in the standard form:

minimize P

subject to Ax =b, z >0, (1)

where ¢,z € R", b € R™, A € R™*" (m < n) and A has full rank m.
The optimality conditions for (1) are

Az — b
F(z,y,2)=| ATy+z-c | =0, (2,2) >0, (2)
XZe

where y € R™ are the Lagrange multipliers corresponding to the equality
constraints, z € R” are the Lagrange multipliers corresponding to the in-
equality constraints, X = diag(z), Z = diag(z) and e is the n-vector of all
ones.

The feasibility set of problem (2) is defined as

f:{(m,y,z):Am:b,ATy—}—z:c,(m,z) > 0}.
We denote the solution set of (2) as
S=A{(z,y,2): F(z,y,2) =0, (z,2z) > 0}.
If in addition to X Ze = 0,
z+2z>0

the solution satisfies strict complementarity. For linear programming prob-
lems, Goldman, Tucker [6], proved that among all optimal solutions there
exists at least one solution that satisfies strict complementarity. Thus for
nondegenerate problems, the unique solution satisfies strict complementar-
ity.

If § # 0, then the relative interior of &, ri(S), is nonempty. In this case,
the solution set § has the following structure (see [4] for a proof): (i) all
points in the relative interior satisfy strict complementarity; (ii) the zero-
nonzero pattern of points in the relative interior is invariant. Therefore, for



any (z*,y*, z*) € ri(S), we define the support of a vector in the following
manner:

B=A{i:2;>0,1<i<n} and N={i:27>0,1<7<n}.
see [7], [10]. Moreover,
B JN ={1,..n} and B[N =0.
The primal optimal facet is defined as
O,={z:Az=0b,z>0,2;=0j €N}
Similarly, the optimal dual facet is
Qs ={(y,2): ATy+2=1¢,2>0,2,=0j € B}.

Thus N = {1,....n} \ B is the optimal partition of the linear program.
The matrix B comprises the columns of A corresponding to the indices of
B. The matrix NV is formed in an analogous manner. We denote the vector
corresponding to matrix B as 2 := z;eg. Unless otherwise denoted, || - || is
the Euclidean norm.

The central path is defined as

C=A{(z,2) : (z,2) >0, min(XZe) = max(XZe)}. (3)
We define a neighborhood of the central path as
Nooo(v) ={(z,2)| min(X*Z ) > yp*} (4)

where pf = (acszk)/n, v € (0,1).

3 Algorithm

In this section, we describe a general primal-dual interior point method. The
first primal-dual method was suggested by Kojima, Mizuno, and Yoshise [8].
It is well known that this algorithm can be viewed as perturbed and damped
Newton’s method.

Algorithm 1 (Generic Kojima-Mizuno Yoshise primal-dual algorithm)

Given (2°,2°) > 0, for k=10,1,2,..., do



(1) Choose o* € [0,1) and set p* = PGy

n

(2) Solve for the step (Ax*, Ay*, AZF)

Ak 0
Flah b 25 | af | ==FEF 5P+ 0
AZF phe

(3) Choose 7% € (0,1) and set o* = min(1, Tko;k), where

- ~1
kE —
“ T min((XF)TAZE, (ZF)-1AzF)’

(4) Let (¥, y++1, 441) = (ok, ¥, 2F) + oAz, Ay, Az).
(5) Test for convergence.

Consider a nondegenerate problem (i.e., an unique solution exists). Within
the interior-point framework, assume the variables that are zero at the so-
lution are known. Thus for the standard linear programming problem, n-m
nonbasic variable candidates (zero at the solution) and m basic variable can-
didates (positive at the solution) have been identified. After setting the non-
basic variable candidates to zero, the reduced square system can be solved
for the basic variables. If optimality and feasibility conditions are satisfied
for both the primal and dual problems, the algorithm can be terminated.

However, in practice most problems are degenerate. Consider the prob-
lem scsd! from the netlib test set for linear programming problems. Problem
scsd1 has 77 constraints and 760 variables. At the k-th iteration, indicators
predict 31 variables are nonzero at the solution. The problem can then be
reduced to one which consists of 77 constraints and 31 variables. Note, this
problem is highly degenerate. By removing zero rows, we can further re-
duce the problem to one which consists of 20 constraints and 31 variables.
Since the coefficient matrix is rectangular, there is no straightforward way
to compute a nonnegative solution of the reduced system.

We now describe a generic finite termination procedure.

Algorithm 2 (Finite Termination Procedure)
(1) At some iteration k, guess (B, N).

(2) Setzpy =0 and zg = 0.



(3)
(4)

Solve a mathematical model as a function of (z,y, z7).

If xg > 0 and zyr > 0, stop. We have found an exact solution.
FElse return to interior point algorithm.

From the outline above, four important questions must be addressed in

all finite termination procedures. When do we test for finite termination?
How do we determine the partition of variables into their respective zero-
nonzero sets? In the presence of degeneracy, what mathematical model
should be used to find a solution? Given the model, what is the most
computationally efficient way to solve the model? Our research focuses on
these issues.
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1 Introduction

Motivated by optimization problems arising in Environmental Engineering, this problem and for-
mulation is derived from the desire to design the ’optimal’ water treatment plant using membrane
filtration for a minimum cost. Many water treatment plants today use filtration processes that do
not guarantee that certain bacteria and viruses are removed. Membrane filtration does guarantee
that certain size particles such as these can be removed. Membrane filtration, however, is not
widely used in large scale water treatment plants. This is because it is a relatively new precedure,
and so the cost of building such a plant is not known. The goal of my summer research is to begin
formulating a model for water treatment plants using membrane filtration which would allow the

user to find the minimum cost to build a plant with certain spefications.

2 Problem Formulation

This problem is a nonlinear mixed integer programming problem. An IMSL subroutine imple-
menting of a sequential quadratic programming method is used to solve the nonlinear constrained

optimization problem. The problem formulation is as follows.

Objective Function
minimize operating cost + capital cost

subject to constraints of the plant

The operating cost includes costs for the energy required for pumps, membrane replacement, chem-
ical cost, concentrate disposal, and labor costs. The capital costs include costs of the pumps, pipes,
valves, and framework, housing, and other miscellaneous costs. The constraints of the plant are
redundancy for pumps, banks, and modules, and practical size limitations.

The decision variables which have been incorporated into the model thus far are the number

of feed, backflushing, recycle, and fastflushing pumps, the number of modules, and the number of

banks.



3 Operating Costs

The operating costs models, which are currently constant in the objective function, come from the

Ph.D thesis work of Sandeep Sethi of Rice University and are as follows.

ckw(Ef + Er + Eyp + Eyy)

Cenergy — Q p ’
es

where Cepergy is the total energy costs per unit of treated water for operating the system, cy,, is
the cost for a unit of energy, £ is the energy utilized by the feed pump, £, is the energy consumed
by the recycle pump, Ey; and Fy; are the energies associated with backflushing and fastflushing

respectively, and )4es is the design flow.

Cmodlvmod( %)

Qdes ’

where C,,, is the annualized cost associated with replacement of membranes, ¢,,,q is the cost per

Cmr =

module, N,,,q is the number of modules, and % is the amortization factor.

QiCHCHec
Qdes ’

where Cepemicar is the cost of chemical treatment of the water, () is the feed flow rate, and C'Hy

Cchemical =

is the chemical dosage, C'H. is the chemical cost.

(crw =22) + (CHyC H.Qu)
Qdes ’

where Cyigposar is the disposal costs per unit volume of water treated, Py is the feed pressure, ),

Cdisposal =

is the waste water flow rate, and 7y is the efficiency of the feed pump.

4 Capital Costs

The capital costs models also come from the Ph.D thesis work of Sandeep Sethi and are as follows.
Coump = kp( flowrate X pressure)™,
where Cpymyp is the cost for the pumps.

CPV = kPV(Amem)npvv



where C'py is the cost for pipes and valves and A,,.,, is the membrane area.
Cro = kic(Amem)" ¢,

where C'7¢ is the cost of instruments and controls.
Crr = krr(Amem )" ™7,

where C'rr is the cost of tanks and frames.
Cmr = kmi(Amen)" ™7,

where C'ps7 is the miscellaneous cost.

5 Future Work

A Future work will include solving the problem using other nonlinear constrained optimiation
routines for comparison, including constraints for size limitation, including constraints which in-

corporate redundancy for banks, and introducing discreteness to decision variables.



