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Abstract. We develop and analyze a superlinearly convergent affine-scaling interior-point Newton
method for infinite-dimensional problems with pointwise bounds in L”-space. The problem formula-
tion is motivated by optimal control problems with LP-controls and pointwise control constraints. The
finite-dimensional convergence theory by Coleman and Li (SIAM J. Optim., 6 (1996), pp. 418-445)
makes essential use of the equivalence of norms and the exact identifiability of the active constraints
close to an optimizer with strict complementarity. Since these features are not available in our infinite-
dimensional framework, algorithmic changes are necessary to ensure fast local convergence. The main
building block is a Newton-like iteration for an affine-scaling formulation of the KKT-condition. We
demonstrate in an example that a stepsize rule to obtain an interior iterate may require very small
stepsizes even arbitrarily close to a nondegenerate solution. Using a pointwise projection instead we
prove superlinear convergence under a weak strict complementarity condition and convergence with
Q-rate >1 under a slightly stronger condition if a smoothing step is available. We discuss how the
algorithm can be embedded in the class of globally convergent trust-region interior-point methods re-
cently developed by M. Heinkenschloss and the authors. Numerical results for the control of a heating
process confirm our theoretical findings.
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1. Introduction. We introduce an affine-scaling interior-point Newton method
for the solution of the infinite-dimensional nonlinear optimization problem

minimize  f(u)

(P) et

subject to u € B= {u € L? : a(z) < u(z) < b(z) a.e. on Q}

and study its local convergence behavior in detail. Here 2 C IR™ is a domain with
positive and finite Lebesgue measure 0 < u(f2) < oo, and

L'=1%(Q) , 1<q< oo,

denotes the usual Banach space of (equivalence classes of) real-valued measurable
functions for which the norm

def q 1/q def
lal, < ([ fu@de) g <oe) o full, = ess sup Ju(e)

€
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is bounded. Let 2 < p < oo and assume that the objective function f : D — IR is
continuous on an open neighborhood D C L? of B. Additional requirements on f will
be given below. The lower and upper bound functions a,b € L* are assumed to have
positive distance from each other, i.e.
inf (b(z) — a(z)) > 0.
ess in (b(z) — a(z))

Then B has a nonempty L*-interior

Bo & U {uel? : a(z)+ 8 <u(z)<b(z)—46 fora.a. ze€}.
§>0

Problems of type (P) arise for instance when the black-box approach is applied to
optimal control problems with bound-constrained LP-control. See, e.g., the problems
studied by Burger, Pogu [5], Kelley, Sachs [15], Sachs [22], and Tian, Dunn [23].

The algorithm presented in this paper is based on the application of a Newton-like
iteration to an affine-scaling formulation of the first-order necessary optimality condi-
tions. For finite-dimensional problems this class of algorithms has been introduced and
analyzed by Coleman and Li [6], [7]. Extensions to problems with additional equal-
ity constraints were studied in Dennis, Heinkenschloss, Vicente [8], Heinkenschloss,
Vicente [13], and Vicente [25], [26]. In all of the above papers except for [26] the
affine-scaling Newton iteration is embedded in a trust-region interior-point algorithm
to achieve global convergence. In a recent paper (Ulbrich, Ulbrich, Heinkenschloss
[24]) we extended the finite-dimensional global convergence theory of Coleman and Li
[7] for trust-region interior-point algorithms to the infinite-dimensional problem class
(P). The present paper continues these investigations and focuses on the local superlin-
ear convergence of a closely related affine-scaling interior-point Newton method which
plays the same important role in our setting as the ordinary Newton method does in
the local analysis of trust-region algorithms for unconstrained optimization. Problem
(P) is a special type of cone constrained optimization problems in Banach space. For
this very general class of problems Alt [2] developed a Lagrange-Newton-SQP method
and proved quadratic convergence. A drawback of SQP-type methods consists in the
fact that in each step a linearly cone-constrained quadratic problem or, equivalently,
a linear generalized equation has to be solved. In our setting each SQP-subproblem
would have the form (P) with the objective f replaced by a quadratic approximation.
The solution of these problems is by no means trivial and requires a multiple of the
effort needed to perform a Newton-like step. Therefore, although SQP-methods are
quadratically convergent, their efficiency crucially depends on the availability of fast
solvers for the subproblems.

During the last fifteen years several attempts have been undertaken to develop
algorithms for which each iteration is not much more expensive than an ordinary
Newton step. One of these is the projected Newton method which was introduced by
Bertsekas [3] for finite-dimensional bound-constrained problems. Kelley and Sachs [15]
extended this method to problems of type (P) with special structure and proved local
convergence with Q-rate 1+ 3, 0 < § < 1. The class of problems addressed in [15] is
essentially the same as the one discussed in §8 of this work. Although it is possible in
the finite-dimensional case to prove quadratic convergence, see [3], Kelley and Sachs
could not establish this result in their infinite-dimensional setting. In this paper we
develop local convergence results for infinite-dimensional affine-scaling interior-point
Newton methods which are similar to those by Kelley and Sachs [15] for projected



AFFINE-SCALING INTERIOR-POINT NEWTON METHODS 3

Newton methods. Like Kelley and Sachs, we observe a gap between the achievable
convergence rate in the finite- and infinite-dimensional setting. Our theory covers
a more comprehensive problem class and requires weaker assumptions than that for
projected Newton methods in [15]. The cost for one iteration of our algorithm is
dominated by the solution of a linear equation and is therefore comparable to that of
a projected Newton step.

The development of a local convergence theory for our infinite-dimensional setting
turns out to be much more delicate than in the finite-dimensional case. First of all,
strict complementarity, i.e. g(u)(z) # 0 for a.a. z € Q with u(z) € {a(z),b(z)}, at a
local solution # € B of (P) does not guarantee that the absolute value of the gradient
g(u) is uniformly bounded away from zero on the active set. As a consequence, even
for u € B arbitrarily close to « the active set at « cannot be identified exactly by means
of the information available at u. And, finally, since the L!- and L*-norm, 1 < t < o0,
are not equivalent, an iterate u; may be very close to the solution # in L! but still
deviate substantially from # on a small set of nonzero measure. These are the main
reasons why — in contrast to the finite-dimensional case — it seems not to be possible
to achieve quadratic convergence in our general setting. This has an important effect
on the expressiveness of the finite-dimensional quadratic convergence rate: Let (PD)
be a finite-dimensional bound-constrained problem obtained by discretizing a problem
of type (P). To compute an approximate solution of (P) we apply a finite-dimensional
analogue of our affine-scaling interior-point Newton method to the discretized problem
(PD). Then, under appropriate assumptions, the finite-dimensional convergence theory
promises quadratic convergence, whereas on account of the close relationship to (P)
and the infinite-dimensional convergence results we expect only superlinear instead of
quadratic convergence. In fact, the convergence behavior is dominated by the infinite-
dimensional theory until the iterates enter a neighborhood of the local solution «
where the requirements for quadratic convergence are satisfied. Especially for fine
discretizations this set is typically very small, because it is closely related to the
neighborhood of # where the active set at @ can be identified exactly. Hence, for
increasingly accurate discretizations the domain of quadratic convergence will shrink
whereas the domain of superlinear convergence will be stable. It is important to note
that our convergence results require modifications of the finite-dimensional algorithm
investigated in [6] and [7], especially the enforcement of strict feasibility by a modified
projection instead of a stepsize rule. This argumentation shows that the development
of efficient algorithms for the solution of infinite-dimensional optimization problems
also leads to improved finite-dimensional methods.

In the following we give a rough outline of the theory developed in this paper. As
mentioned above, the heart of our algorithm is a Newton-like step applied to the affine-
scaling formulation d(u)g(u) = 0 of the Karush-Kuhn-Tucker (KKT) conditions. Here
d(u) € L™ denotes a suitably chosen weighting function, the affine-scaling function.
In the Newton equation the in general non-existing derivative of v —— d(u)g(u) is
replaced by an appropriate operator G(u). If uj € B° denotes the current (actually
smoothed, see below) iterate then the affine-scaling Newton step reads

G (ug) (uhgr — ug) = —d(up)g(up).

Under a regularity assumption on G'(u) we establish for suitable ¢ < s the estimate
lugyy — ully = o([|ug, — ul|5) if strict complementarity holds at the local solution u of



4 M. ULBRICH AND S. ULBRICH

(P) and ||uf,, —all; < C||uj — ul|}t#, 0 < B < 1, if a slightly stronger strict comple-
mentarity condition is satisfied. This discrepancy of the norms is, among other things,
caused by the fact that the complementarity can be arbitrarily weak on small sets. To
overcome this difficulty we follow [15] and assume the availability of a smoothing step
Sp:B° C LT — B° C L?, up, — uj, = S (ug) with ||uj — ul|s < Cs|lug — 4||,. More-
over, since u}_ ; may lie outside of B°, we define a back-transport u — Plu}](u) € B°
by an interior-point modification of the pointwise projection onto B. We will see
that a stepsize rule is inappropriate in our framework, although it yields quadratic
convergence in the finite-dimensional case. We prove that the combination

up ~ uf = S9(uF) ~ U ~ ukg1 = Plug](ufyq)

generates sequences (uy) and (uj) that converge superlinearly to # in L? and L?®, re-
spectively. If the stronger strict complementarity condition holds we prove convergence
with Q-rate 14 3. We apply our results to a class of problems with L?-regularization
for which a projected Newton method was analyzed in [15] and show that the assump-
tions therein imply ours. For this problem class a smoothing step can be derived from
a fixed point formulation of the KKT-conditions. Moreover, we show that the second-
order sufficiency condition of Dunn and Tian [9] implies our regularity assumption on
G. Finally, we discuss how our algorithm can be embedded in the globally convergent
class of trust-region interior-point methods recently introduced in [24]. The resulting
method is applied to the boundary control of a heating process which was already
considered in [5], [18].

This paper is organized as follows. In §2 we introduce some notation and put
together several important estimates for LP-spaces. Moreover, we resume the first-
order necessary optimality conditions for problem (P) in standard- and affine-scaling
formulation. Our particular choice of the affine-scaling function and the basic affine-
scaling Newton step are introduced in §3. Here we also discuss why an iteration based
on this step alone is in general neither well-defined nor convergent and sketch the idea
of a smoothing step and a back-transport that take care of these problems. An outline
of our algorithm and its convergence properties in a clearly arranged abstract setting
is given in §4. In §5 we carry out a thorough analysis of the Newton-like step. In §6 the
affine-scaling interior-point Newton algorithm is formulated. Moreover, we introduce
a back-transport based on a pointwise projection onto B, explain why in our infinite-
dimensional setting a stepsize-rule is not suitable for a back-transport, and address
the smoothing step. Our convergence results are presented in §7. In §8 we apply
our results to a class of L2-regularized problems and show that our assumptions are
weaker than those used in [15]. In §9 we discuss the relationship between sufficient
second-order conditions developed in [9] and the regularity assumptions we impose on
the approximate derivative operator G. §10 addresses the question how our algorithm
can be used to accelerate the globally convergent class of trust-region interior-point
algorithms recently proposed in [24]. Finally, we present numerical results for the
boundary control of a heating process in §11.

2. Preliminaries.

2.1. Notation. We write B° = Q \ B for the complement of a measurable set
B C Q and denote the characteristic function of B by xg, i.e. xg(z) =1 for z € B,
and xg(z) = 0, otherwise. If v : @ — IR is measurable then we set vg < YBo.
Moreover, we write || - ||, g for [[xp - [|;; 1 < ¢ < co.
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L(Y,7) is the space of bounded linear operators from the Banach space Y into
the Banach space Z. The operator norm on L(L?, L%) is denoted by [| - , ,,- We
write I for the identity operator y — y. As representation of the dual space of
L', 1 <t < oo, we choose Lt’, 1/t + 1/t = 1, with the corresponding dual pairing
(v,w) = [qu(z)w(z)de,v € L, w e LY.

Our minimum assumptions on the objective function f are

ASSUMPTION.
(A1) f:D C L? — R is twice continuously Fréchet differentiable with derivatives

gEVf:D — L 1 1 )
’ 3 -+—-=1
V2f:D — L(LP, L7 p oV
Moreover, there is C;; > 0 such that ||g(u)||,, < C, for all u € B.

2.2. Some inequalities. For convenience, we recall a couple of well known norm
estimates for LP-spaces.
LEMMA 2.1. Forall1 < ¢ < g2 < o0 and v € L2(Q) we have

1vlly, < Mgy 0llvll,,

11
with my, 4, = p(Q) 2. Here 1/00 has to be interpreted as zero.

Proof. See e.g. [1, Thm. 2.8]. O
LEMMA 2.2 (INTERPOLATION INEQUALITY). Given 1 < ¢1 < ¢z < 00 and 0 <
6 <1, let1<qy< oo satisfy1/qo=06/q1 + (1 —80)/qa. Then for all v € L?:

(4 1-46
(1) ol < ol ol
Proof. See [24, Lem. 5.2]. O
LEMMA 2.3. Let qo € [1,00] and ¢q1,q; € [1,00] with 1/q1 + 1/¢} = 1 be given.
Then for all u € LD and v € L% we have

”uquo S Hu”qoql”quoqi *

Proof. In the nontrivial case gy < oo, apply Hoélder’s inequality:

ullgoq, 10 llgeqr = Nl llg, 1wl = [Hul o]l = lluvlig

LEMMA 2.4, Forve L9, 1< ¢ < oo, and all § > 0 holds
p({z e fo(z)] 2 0}) <677l
Proof.

Iollg = vl = [xguizsylollly = n({lv] = 83)6°.
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2.3. Necessary optimality conditions. The method is based on an affine-
scaling formulation of the first-order necessary optimality conditions. A detailed
derivation of these conditions can be found in [24]. Therein we also prove second-
order necessary conditions which are not needed in our context.

THEOREM 2.5 (FIRST—ORDER NECESSARY OPTIMALITY CONDITIONS,

KaRrRUsH-KUHN-TUCKER (KKT) coNDITIONS).
Let u be a local minimizer of problem (P) and assume that f is differentiable at u. In
the case p = oo assume in addition that the gradient satisfies g(u) € L'. Then

(01) u € B,

=0 forz € Q with a(z) < u(z) < b(z),
(02) g(u)(z)< >0 forz € Q with u(z) = a(z), a.e. on £,
<0 for z € Q with u(z) = b(z)

are satisfied.

Proof. See [24, Thm. 3.1]. O

The inequality (O2) can be converted into an equation by pointwise multiplication
with an affine-scaling function d(u), where d : B — L™ satisfies

=0 if u(z)=a(z) and g(u)(z) > 0,
) d(0E) § =0 i 0(x) = ble)and 9(0)(2) <.
> else

for a.a. z € Q. For details we refer to [24]. The idea was first introduced by Coleman
and Li in [7] for the finite-dimensional case.

LEMMA 2.6. Let f : D C LP — R be differentiable and w € B. In the case
p = 0o assume in addition that the gradient satisfies g(u) € L', uw € B. Then (02) is
equivalent to

(3) d(u)g(u) =0

for all d satisfying (2).
Proof. See [24, Lem. 3.2]. O

3. A Newton-like step. As for all efficient methods, we aim to apply Newton’s
method to a suitable formulation of the optimality system. In our approach we take
equation (3) which, according to Lemma 2.6, is equivalent to the first-order necessary
condition (02). We use the freedom provided by (2) to choose the affine-scaling
function d in such a way that dg is as smooth as possible in a neighborhood of a

KKT-point # of (P). Since the function space analogue of the affine-scaling matrix of
Coleman and Li [7],

=0 and u(z) — a(z) < b(z) — u(z),

=0and b(z) — u(z) < u(z) — a(z)

is not even continuous in u at a KKT-point u, we work with a different choice for
d. The discontinuity of d results from the fact that |di(u) — di(a)| = b — a — |u — 4|
on {z € Q: g(u)(z)g(u)(z) < 0}. Nevertheless, our theory can be extended to this
choice of d. One has to exploit that the above mentioned subset of € is small and
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that d(u)g(u) is small on this set as well. We have included a few remarks on this
issue. We introduce the following affine-scaling function: Choose ¢ € (0,1/2], x > 0,
and define

c:z € Qs min{C(b(z) — a(z)),x}, v=E esseian c(z).

Then our affine-scaling function is given by d : B — L*°,

min{|g(u)(z)]; e(z)} it —g(u)(z) > u(z) - a(z)
and u(z) — a(z) < b(z) — u(z),
d(u)(z) = ¢ min{lg(u)(z)], e(z)} if g(u)(z) > b(z) — u(z)
and b(z) — u(z) < u(z) — a(z),

min{u(z) — a(z),b(z) — u(z),c(z)} else.

As we will see in Lemma 5.1, a suitable approximate derivative G(u) € L(L?, L?') of
d(u)g(u) can be obtained by formally applying the product rule which yields

(5) G(u) = d(u)V?f(u) + d'(u)g(u)]

with d' : B — L° suitably chosen. We recall that the only requirements on d’
needed for the global convergence analysis in [24] are the conditions d'(u)g(u) > 0 and
|d'(u)]|,, < cg forall uw € B. Our choice

lloo
d' (1) = X{a@y<asen (9(u) , u € B,

can be motivated as follows: Let # be a KKT-point and u tend to w in LP. Then
the sets {g(u) > 0Ad(u) =u—aAg(@) >0} tend to {g(#) > 0} in measure. Anal-
ogously, the sets {g(u) < 0Ad(u) =b—uA g(a) <0} tend to {g(z) < 0}. On these
sets, the choice d'(u) = sgn(g(u)) is obtained by formal differentiation w.r.t. u(z).
Furthermore, d'(u)g(u) tends to zero on the set {g(a) = 0} in L? since ||d'(u)]|,, is
bounded. It turns out that the contribution of d’(u)g(u) on this set is small enough
for any uniformly bounded choice of d'(u) to get a sufficiently good approximation
G(u)(u —u) of d(u)g(u) — d(u)g(u) (cf. Lemma 5.1).

If w is an interior point of B w.r.t. the L°-norm, more precisely v € B°, then the
multiplication operator d(u)I is an automorphism of L? for all 1 < ¢ < co. Since our
algorithm will rely on the bijectivity of d(ux)I at each iterate uj we require uy € B°
for all k. Given a current iterate u¢ € B°, we define a Newton-like step for the solution
of the affine-scaling equation (3):

(6) G(u)(u" - u®) = —d(u’)g(u)

Let w € B be a KKT-point, i.e. d(u)g(z) = 0. Then subtracting the trivial identity
G(u®)(u — u) = —d(u)g(u) from (6) yields the equivalent equation

(7) G(u®)(u" —u) = R(u’)
with
(8) R(u) L d(u)g(u) —d(u)g(u) — G(u)(u — u).

For a classical analysis of the Newton-like iteration induced by (6) we would typically
need that for suitable ¢, ¢z and u € B° C L% close to u the operator G(u) admits an
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inverse G'(u)~' € L(L%, L) and that [|G/(«) "' R(u)]|, = o(||u — ull, ). Moreover, for
u® € B° close to @ the solution u™ of (6) is required to lie again in B° to keep the iter-
ation alive. The presence of the multiplication operator d'(u)g(u)! in G(u) implicates
that only the choice ¢ = ¢ = ¢ makes sense. Furthermore, we will show in Lemma
5.6 that it is untenable to assume the uniform boundedness of [|G(u)~"||, , in a neigh-
borhood of #. Hence, we will introduce a multiplication operator W(u) € L(L?, L?)
such that the uniform boundedness of (W (u)G (u))™" in £L(L?, L?) is a relatively weak
requirement which is, e.g., implied by assumptions used for the analysis of a projected
Newton method in [15]. In Lemma 5.11 we will show that under suitable assumptions
IW(w)R(u)[|, = o(|lu — ul|,) for some s > ¢. There seems to be no way to prove
the more favorable estimate [|[W (u)R(u)||, = o(||u — ul|,). Even the weaker estimate
|R(u)|l, = olllu — ul|,) requires at least the continuity of the gradient g(u) from L7
to L. For details see Lemma 5.1 and the proof of Lemma 5.7. Kelley and Sachs
[15] overcame similar difficulties by introducing a smoothing step v € L? — u® € L*
with the property [|u® — 4[|, < const|lu — u[,. We take the same approach. Finally, it
is very likely that the iteration eventually breaks down with an u™ ¢ B°. Therefore,
we must include a back-transport that takes u” back into the interior of B. This
back-transport can be implemented as an interior-point modification of the pointwise
projection P(u) = max {a, min {b, u}} which satisfies |P(u) — u| < |u — 1.

4. Outline of the algorithm in an abstract setting. The fundamental build-
ing blocks and convergence properties of the algorithm can be described most conve-
niently in the following abstract framework. Let Xy, X; and Xy be Banach spaces,
K° C X; be a convex nonempty set, and X; C Xy continuously embedded. Denote

by K the closure of K° in X;. Given the mapping £ : K — X5, we want to solve the
equation

9) E(w)=0 , uek.

To this end, we define a Newton-like iteration based on the linear approximation
E(u+s) — E(u) = G(u)s, G : K° — L(Xo, X3). The iteration is augmented by a
smoothing step uy — uj = Sy (uy) with operator Sp : K° C Xg — K° C Xy, and a
back-transport P[v] : Xog — K°, v € K°, see below:

ALGORITHM 4.1 (ABSTRACT NEWTON ITERATION).

1. Choose ug € K°.

2. For k=0,1,2,...
2.1 If E(uz) = 0, STOP.
2.2 Perform a smoothing step: uj = S¢(uz).
2.3 Compute uy,, € Xo from

G(uy)(upyy —ui) = —FE(u) (Newton-like step)
2.4 Transport u} , back to K°: ugy1 = Plug](u,,).
Let @ € K be a solution to (9). Then we can rewrite the equation in step 2.3 as follows:
G(uf) (U — 1) = B(1) — B(u}) — G(uf) (1 - uf) = R(u})

Algorithm 4.1 is locally superlinear convergent under the following general assump-
tions:
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ABSTRACT ASSUMPTIONS.
There are constants p,Cs, Cp > 0 and monotone increasing functions
op,0r,7 : [0,Csp) — [0, 00)
such that

1. For all k with [Juy — ||, < p holds
15k (ur) = ullx, < Csllur —ullx, -
2. For all uw € Xo, v € K° |lv—1ulx, <Csp,
[1Plo](u) = ullx, < Cpllu—ullx, +dp(lv = allx,)llv - ullx, -

3. There are a Banach space X3 and an operator W : K° — £(X3, X3) such that
a) for all uw € K°, |lu — ully, < Csp, and r € X3 there exists s € X; with

W(w)Gu)s =1, |sllx, <v(lu—alx)lrlx,-
b) for all uw € K°, |lu — ul|x, < Csp,
W () R(u)lx, < dr(llu—ullx)lu—ulx,-

¢) lim v(t)0r(t) =0 and lim ép(¢) =0.

t—0*t t—0*t

THEOREM 4.2. Let u € K be a solution to (9). Assume that the above assump-
tions hold. Then there is 0 < po < p such that for all ug € K°, ||ug — TLHXO < po,
Algorithm 4.1 is well-defined and either terminates with u, € K° solving (9) or gen-
erates sequences (uy) C K° and (uj) C K° that converge superlinearly to u in Xo and
X1, respectively.

Proof. We introduce the abbreviations e = ||ug — il x, and €} = |ug — ully, . Let
uy € K° satisfy €5 < p. Then € < Csp by 1., and thus, using the assumptions,

er1 = [|Plug)(uiy) — ully, < Cpllugyy —ully, +dp(ed)er
(10) < Cpy(eIW (up) B(up)l x, +0p(eR)ei < (Cpy(er)dr(er) + dp(er))ek
< Cs(Cpy(Csek)dr(Cser) + 0p(Cser) ek
Moreover,
(11) i1 < Csergr < Cs(Cpy(eR)Or(eR) +0p(er))er
By Assumption 3c), there is 0 < pg < p such that
Cs(Cpy(Cs2)0r(Csz) + 6p(Csz)) < 1 forall 0 < z < pg.

Therefore, if g < pg < p, we have €, < pg < p for all k. In particular, the algorithm
is well-defined. Now (10) yields superlinear convergence of (ux) to @ in X, and (11)
superlinear convergence of (u}) to @ in X;. O

REMARK 4.3. It is easier to find a smoothing operator Si that satisfies all re-
quirements in 1. except for the condition S;(K°) C K°. If the operator P[v] can be
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defined in such a way that, in addition to 2., for all u € X1, [|u — |y, < Csp, and
veKe [Jv- ﬂHXO <P

(12) I1P](u) — ully, < Cpllu— iy, + Cpllv -l x,,

then obviously Sp : v € K° —— P[u](Sk(u)) defines a smoothing step satisfying 1.
with Cgs replaced by CpCs 4+ C%. For our problem (P) we will be able to define P[v]
in such a way that (12) holds, see Lemma 6.4. O

In our setting we have K° = B° and, consequently, K = B. The mapping F is given
by u — d(u)g(u). The crucial topics of our analysis consist in the proper choice of the
spaces X;, the weighting operator W, and the proof that under appropriate conditions
the above abstract assumptions hold. A few remarks on the 'nonstandard’ building
blocks of Algorithm 4.1 are in order. If there exists a projection P : X — K C Xj
onto K that is Lipschitz at u, e.g. P(u) = min {b, max{a, u}} for Xog = L? and K = B,
then the back-transport operator P[v] can (and will) be implemented by an interior-
point modification of P. More specifically, P[v](u) will consist in the projection P(u)
of u onto K followed by a tiny step towards the point v € K° to achieve P[v](u) € K°.
The idea of a smoothing step was already used by Kelley and Sachs [15]. It is a tool to
compensate the discrepancy of the Xg-norm on the left side and the stronger X;-norm
on the right side of the inequality

[ukr1 = ullx, < v([[uk = allx,)or([lug — allx,)llui — ullx,
which is obtained by combining assumptions 3a) and b).

5. Analysis of the Newton-like iteration. We return to the affine-scaling
Newton iteration (7) and begin to verify the abstract assumptions of §4. The following
Lemma states a pointwise estimate for the remainder term R(u).

LEMMA 5.1. Let (A1) hold. In addition, let (O1) and (O2) be satisfied at u. Then
for all w € B the inequality

(13) |R(uw)| < d(u)lg(a) — g(u) = V*f(u) (@ - u)| + (lg(@)|d(w) + |g(u)||a - ul)
holds on Q and, moreover,
|R(u)| < d(u)|g(m) — g(u) = V2f(u)(@ - u)l
+ min{max{d(u), |g(u)[},]9(u) — g(w)[} max{[u — |, |g(w) — g(u)}
is satisfied on J = {z € Q : |u(z) — a(z)| < c(z)}.
Proof. Let u € B be given and set [ = {2z € Q : d(u)(z) < ¢(z)}. Then we get
d(u)g(u) — d(u)g(u) — G(u)(u - u) =
u)g () — d(u)g(u) = d(u) V2 (u) (@ = u) = x1lg(u)| (@ — u)
(960) = 9(w) = V27 (w) (1 - 0) ) + g(@(dl) = d(w)) = xrlg(w)] i~ w)

Since (O1) and (O2) are satisfied at @ we have d(%)g(z) = 0 by Lemma 2.6 and hence
the first estimate is obvious. We complete the proof by verifying that for a.a. z € J

Ry (u)(z) < min{max{d(u)(2), |g(w)(2)[},|g(w)(z) — g(u)(2)[}
-max{|u(z) — u(z)],|g(u)(2) — g(u)(z)]},

(14)

(15)
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def

R (w)(2) 2 |g(a) () (@) (2) — d(u)(2)) = x1(2)]g(w) (2)] (#(2) — u(a)) |

We use again d(u)g(z) = 0. On the subset of all z € J with g(u)(z) = 0 we get

By (u) = xrlg(u)|[u— ul < |g(u) - g(@)|[u— ul,

and (15) is obvious.

For all z € J with g(4)(z) # 0 we have d(z)(z) = 0. (O2) implies that only the
cases %(z) = a(z) and g(@)(z) > 0 or @(z) = b(z) and g(u)(z) < 0 can occur.

We first look at z € J with @(z) = a(z) and g(u)(z) > 0. Since ¢ < 1/2 and
z € J, we get u(z) — a(z) < b(z) — u(z). Hence, we obtain (mind that @(z) = a(z))

(u)(2) = {min{'g('”)(”f)"c@} it —g(u)(x) > u(a) - u(@) > 0,
min{u(z) - u(2),e(z)} else.

If d(u)(z) = u(z) — u(z) < c¢(z), then = € I and using d(u)(z) = 0, g(u)(z) > 0 we
get for all these z

Ra(w) = |lg(@)| = lg(w)[}a - ul < lg(@) — g(w)]a - ul.
If, in addition, |g(z)(z) — g(u)(z)| < d(u)(z) then (15) holds, for
Ri(u)(z) < min{d(u)(2), |g(u)(z) - g(u)(z)[}u(z) - u(z)]
Otherwise, we have |g(@)(z) — g(u)(z)| > d(u)(z) = u(z) — u(z) = |u(z) — u(z)|, and
therefore
Ri(u)(z) < min{d(u)(2),[g(w)(z) — g(u)(2)[}g(@) () - g(u)(2)]
which implies (15). If d(u)(z) = |g(u)(z)| < e(x) then z € I, g(u)(z) <0 < g(u)(x).
Thus, we have for all such z that max{|g(u)|, |g(w)|} < |g(u) — |
Ri(u) = |-g(@)lg(w)| - lg(u)| (@ - u)
= lg(w)l|la - ul — lg(@)|| < lg(w)| max{|a - ul, g (a)]}
min{|g(u)[,|g(u) — g(u)[} max{[u — ul, [g(u) — g(u)[}.

I° € J and d(u)(z) = c(z). Here u(z) — u(z) >
= d(u)(z). Since z € J, the first case cannot occur.
)( ) <0< g(u)(z) forall z € JNI° and hence

IN

It remains the case

e JnN
c(z) = d(u)(z) or —g ( J(@) > ¢
)(z) < —

Therefore, we have g(u

Ry(u) = |g(u)d(u)| < |g(u)[|g(u)| < min{|g(u)], |lg(w) — g(w)[}g(u) — g(u)].

For u(z) = b(z) and g(u)(z) < 0 the same arguments can be used and the proof is
complete. O

REMARK 5.2. For the Coleman-Li affine-scaling function dy the estimate (13)
holds as well. A simplified version of (14) can be established on J = {g(u)g(u) > 0}.
In contrast to the set J defined in Lemma 5.1, J¢ is not a set of measure zero for
|lu — ul|, sufficiently small. This additional technical difficulty can be overcome by
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using the fact that the measure of J¢ tends to zero under the strict complementarity
condition (C) below. O
Let (O1) and (O2) hold for u. We define the active set A and the inactive set 1,

A={zeQ: u(z) € {a(x),b(2)}} , = A"
Furthermore, the usual strict complementarity condition shall hold at @ (note that
|g(u)| is a Lagrange multiplier):
ASSUMPTION (STRICT COMPLEMENTARITY CONDITION).
(C) g(u)(x) # 0 for a.a. z € A.

In contrast to the finite-dimensional case the active set can in general not be
identified after a finite number of iterations under the strict complementarity condition
(C), since the gradient may be arbitrarily small on the active set, especially near its
boundary. But we shall use (C) to show that the residual set of "uncertainty’ is small.
We need the following continuity property of d.

LEMMA 5.3. Let the assumptions of Lemma 2.6 hold. In addition, let (O1) and
(02) be satisfied at u. Then for all u € B the inequality

|d(u) — d(u)| < max{[u —ul,[g(u) - g(u)[}
holds on J = {z € Q : |u(z) — a(z)| < (b(z) — a(z))/2}.

Proof. Let z € J be arbitrary. Since (O1) and (O2) hold at u, the identity
d(u)g(u) = 0 is valid by Lemma 2.6. In addition, (O2) assures that

d(u)(z) = min {u(z) — a(z),b(z) — u(z), c(z)} .

By definition, we have

(16)  d(u)(z) = min {u(z) - a(2), b(z) - u(z),c(z)} or
(17)  d(u)(z) < min {|g(u)(2)],c(2)} > min{u(z) - a(z),b(z) — u(z), c(z)} .

For all z from case (16) as well as all z with d(u)(z) = min {|g(u)(z)|, c(z)} < d(u)(z)

we get
|d(u) — d(u)| < |min{2 —a,b—u,c} — min{u —a,b—u,c}| <|u—1ul,
where we have used the inequality (cf. [24, Lem. 9.3])
|min{ai,...,a,} —min{by,...,b,} | < max{|ay — bil,...,|an — bul}.
For all  with d(u)(z) = min {|g(u)(z)|, c(z)} > d(u)(z) we have
[d(u) — d(@)] < d(u) < lg(u)] < lg(u) — g()].

The last inequality is obvious if g(u)(z) = 0. For g(u)(z) # 0 it follows from the
observation that g(u)(z) and g(z)(z) have different signs. In fact, by (O2) only the
cases u(z) = a(z), g(u)(z) > 0 or u(z) = b(z), g(u)(z) < 0 can occur. If u(z) = a(z)
and g(a)(z) > 0 then u(z) —a(z) < b(z) —u(z)since z € J. Hence, by the definition of
d(u), d(u)(z) = min {|g(u)(z)|, c(z)} is only possible for g(u)(z) < 0. Finally, if (z) =
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b(z), g(u)(z) < 0 then b(z) — u(z) < u(z) — a(z) and d(u)(z) = min {|g(u)(z)|, c(z)}
requires g(u)(z) > 0. O

REMARK 5.4. An analogue of Lemma 5.3 can be established for di(u) on the set
J ={g(u)g(u) > 0} (cf. Remark 5.2): |dy(u) — di(u)| < |u—u|on J. O

The pointwise estimates in Lemma 5.1 and 5.3 can be converted into norm esti-
mates by making the following assumption:

ASSUMPTION.

(A2) There are2 < g <r < s < oo, s> p,such that g: B C L° — L" is Lipschitz
continuous with constant L, and ¢ : B C L® — L7 is Lipschitz continuously
Fréchet differentiable. We denote the Lipschitz constant of Vg = V2f by L.

As a consequence of Lemma 5.3 we get the Lipschitz continuity of d at u:
LemMmA 5.5. If (O1), (O2) hold at w and the assumptions (Al) and (A2) are
satisfied then for all w € B

- 26my .
() = d(@)], < (e + L, + 200 e

[l = ull; = Lallu - ull,

with m, s defined as in Lemma 2.1.
Proof. On BE {z € Q : |u(z) — u(z)| < v/2} Lemma 5.3 is applicable and yields
with (A2) and Lemma 2.1

ld(u) = d(u)l, g < [ max{|u = ul,[g(u) = g(@)|} |, < (mrs + Lg)llu - ull,.
Since |d(u)(z) — d(a)(z)| < K, we get on B°

2|u — ul

26T 1 —

s*

_ 2K _
Jd(w) = d@l, e < [l 5 < | < P lu ), <

r,B¢ v

The triangle inequality completes the proof. O

In the finite-dimensional case the existence and uniform boundedness of G(u)~! in
a neighborhood of u# can be ensured if « satisfies sufficient second-order conditions with
strict complementarity, see [7]. The following considerations show that the requirement
of uniform boundedness of G(u)~! close to % is unacceptably strong in the infinite-
dimensional setting. Since

(18) g(a)(z) =0 a.e. onl, d(@)(z)=0 a.e. onA,
and by (A2) and Lemma 5.3

[d(u) = d(@)|l, +llg(u) = g(@]l, < (La+ Lg)|u—ull,,
the set
(19) Ne(u)= {z € Q@+ g(u) ()| + d(u)(z) < £}

may have nonzero measure for arbitrarily small € > 0 if ||u — %||, is small enough.
Typically, an open neighborhood of a part of dA is contained in N_(u).

Let 1 < g < ¢1 < 0o and assume that [[V?f(u)]|, . is uniformly bounded on
an L°-neighborhood of u. The following lemma shows that in the above scenario
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1G (u)ll,, ,, is uniformly bounded, but ||G (u)~"[|,, , is not. This is caused by the fact
that the operator

1

S —
|9 (u)] + d(u)

is still uniformly bounded in £(L%, L%) although ||W (u)

to zero. More precisely, we have
LEMMA 5.6. Letu € B°, 1 < q < ¢1 < 00, and V2f(u) € L(L%, L%2). Then

) G(u) € LIL™, L%), (|Gl 4, < Mg llg ()l + £IVEF (@), 4,
i) H(u) € L(L™, L®), [|H(u) < Mgy g + IV (1)

(20) H(u)=W(u)G(u) with W(u) u € B,

ll 4.0 = 0C as [[u — @], tends

HQMD HQ17Q2’

iii) If G'(u) is invertible in L(L™, L%) then
1G @)™ g0 > €7 IH (@)]]5, -

for all e > 0 with p(N.(u)) > 0.
Here my, 4, 1s as in Lemma 2.1.

Proof. Assertion i) follows immediately from the definition of G'(u). The estimate

X< 9 (W] AW Grp,
mmn+dw>‘%+wan+dwf7”)

< mg, vl + IV F @), g, 100,

[[H (u)o]]

92 —

q2

yields ii). To prove iii) let G'(u) € L(L%, L%) be invertible and ¢ > 0 such that

#(Ne(u)) > 0. Then [[we||,, > 0 for w. d:efXNs(u), and, setting v. = G/(u) 'w,,

[[H (u)vell,, < [[H ()]l

92 —

On the other hand, the definition of N.(u) yields

Q17Q2HG(U)_1HQ2@1 ”wEH%'

we [[well
H (u)v. :Hi > 1ol
Heoed, = g+ awll, =
Combining both estimates gives iii). [
The identity
B X{d(u)<c}|g(u)| d(u)

H(u) V2 f(u).

= +

lg(u)| +d(u) ~  lg(u)| + d(u)
shows that the operator H () is ’almost’ a pointwise convex combination of the identity
and the Hessian V2 f(u). If (A2) and the strict complementarity condition (C) hold
then, using (18) and Lemma 5.5, one can show with the same techniques as in the
proof of Lemma 8.3 that

X{d(w)<e}l9(W)] 1o an d(u)
Tl +dw XA T d)

Thus, they converge in all spaces L', 1 < t < oo, by (Al) and the interpolation
inequality of Lemma 2.2.

e Lo
—s x5 ae.as u€B° .
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Hence, we impose the following assumption on G(u) which, as we will see, is
implied by the assumptions in the paper of Kelley and Sachs [15] on the projected
Newton method (cf. Lemma 8.3) and in important cases by a sufficient second-order
condition of Dunn and Tian [9] (see Theorem 9.4).

ASSUMPTION.

(A3) There is 0 < py < 1 such that the operator H(u) defined in (20) satisfies
H(u) € £(L?, L?) and is invertible for all u € B°, ||[u — 4||, < pg, with uniformly
bounded inverse, more precisely, ||H (u)~'[, , < Ch.

We now return to the analysis of (7). Since for u € B° thereis § > 0 with d(u) > 4,
the multiplication operator W(u) defined in (20) is a linear continuous isomorphism
of L', 1 <t < co. Applying W (u®) from the left to (7) yields the equivalent equation

(21) H(u)(u" —u) = W(u®)R(u°).

Since H(u®) € L(L?,L?) is invertible by (A3) if ||u® — 4||, < pm, we derive an
upper bound for the L%-norm of the right hand side:

LEMMA 5.7. Let (O1), (02) hold at u. Moreover, let (A1) and (A2) be satisfied.
Then for all uw € B° holds:

W@ R, < Lgllu = ull; + (mrs + L) [Q(w) []lu — all,

(22) ) !
max {lg (@], I — all .} o~ ¥l — alf

where § = rq—rq (= q if r = o0),

(23) Q) = min {max{d(w), g (w1}, lo(w) ~ g (W}

lg ()] + d(u) ’

and the last term has to be interpreted as zero in the case s = oo for ||[u —ul|, < v.
def

Proof. For J= {z€Q: |u(z)—u(z)] < v} we may apply Lemma 5.1 and get
with (23), (A2) and the mean value theorem

)

W () R(w)], < HMW lg(@) — g(u) — V2 () (@ - w),

- ‘|g<u>|d<u>+|g<u>||u—u|
() [+ d(u)

+1Q() max {lu = alg(w) - 9@, +|

q,J¢
< sup ||V f(utr(a—u) = V2f(u)ll,,llu—al,

T€[0,1]

Q)| e[| max {[u —ul, lg(w) = g (@)},

+max {[lg(@)|o. 16— all,} (%),

where we have applied Lemma 2.3 with ¢ = ¢ and ¢; = r/q in the last step. Now
(A2) immediately yields the first two terms on the right hand side of (22). To finish
the proof, we first observe that p(J¢) = 0 for ||u — ||, < v. Hence, we have (22)
with the mentioned interpretation for s = oco. If finally s < oo, we have

p(I) = I3 ge < N = @) /V[[3 ge < v7°llu— ]

s
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Using this in the last term of the above inequality, we get (22). O
It is important to notice that the term @(u) is crucial for our analysis since

min {max{d(u)(2), |9(u)(@)]},l9(v) (@) — g(@ (@)} | _
lg(w) ()| + d(u)(x)

on {max{d(u),|g(u)|} < const|g(u) — g(u)|}. In contrast to the finite-dimensional
case, these sets may have nonzero measure under any reasonable strict complementar-
ity condition even if ||u — @||_ is arbitrarily small. On the other hand, we get under
assumption (A2) on the complement of the set N, (u) defined in (19) the estimate

Qu)(z)| = (1)

u)(z)—glu)(x c
(@) < B 90E e
REMARK 5.8. Since the estimate (22) is sharp and usually [|Q(u)]|., = O(1) for

uwe B u, an estimate of the form
lu" = all, = ol —all,) (v € B> = )

for the solution u™ of the affine-scaling Newton equation (6) does in general not hold
even if (A2),(A3) are satisfied with ¢ = co. [
The following Lemma estimates the Lebesgue measure of the residual sets N.(u).

LEMMA 5.9. Let (A1), (A2) hold. If u satisfies (O1), (02), and (C), then the

following is true:

i) w:[0,00) — [0,00), w(e) = u(N.(w)) is monotone increasing and satisfies

(24) El_i>rél+w(€) =w(0)=0.

ii) For all w € B holds
p(Ne(u)) < w(2e) +e7"(Lg + La)"||lu — a5

with the obvious interpretation for r = s = co by setting o> =0 for a € [0,1).
Proof. w is nonnegative and increasing, since Nz(u#) C N.(u) for 0 < & < . Hence,

lim w(e) exists and
e—0+4+

E1_i>r(1)r1+w(€) =L (!jo Na(u)) .

By (C) and the definition of d there is a set N of measure zero with
lg(u)(z)| +d(u)(z) >0 YzeN°.

Hence, Nyo(z) C N and thus w(0) = p(No(2)) = 0. Moreover, for all z € N°¢ there is
g0 > 0 with ¢ N.(u) for all 0 < € < gg. This shows

(N N.(w) C N

e>0
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which implies (24). To prove ii), we use the triangle inequality and get

Ne(u) = {lg(u)[ +d(u) < e}
C{lg(w)| +d(u) <e+lg(u) - g(w)] + |d(v) - d(u)[}
C Nae(u) Utlg(w) — g(u)| + [d(u) — d(u)] > £} .
In the case r = 0o, we have by (A2) and Lemma 5.5
1) = g (@) + ld(w) - d@)| < (Ly+ La)llu - @l
Hence, N (u) C No-(u) for (Lg+Lq)|lu — 4|, < €, which is the obvious interpretation
of ii) for r = s = co. For r < oo we have by (A2), Lemma 2.4, and Lemma 5.5
i ({lg(w) = g @]+ |d(w) - d(@)] > £}) < e [lg(w) = g(@)| + |d(w) - d(@)]|
< e (Ly+ La)flu - UHS-

This proves ii). O
The following stronger strict complementarity condition will enable us to prove
convergence with Q-rate > 1, since we get additional control on the growth of w(e):

ASSUMPTION (STRONG STRICT COMPLEMENTARITY CONDITION).

(CS) There are ¢ > 0, Cc > 0, and g9 > 0 such that

w(e) = p({lg(a)| + d(u) < e}) < Cee? forall 0< e < gg.

REMARK 5.10. It is easy to see that condition (CS) is satisfied if the follow-
ing regularity assumptions on % and the active set A hold. They are relaxations of
Assumption 2.4 in [15]:

There is ¢g > 0 such that for all sufficiently small § > 0

p({z e Q: dist(z,04) < &}) < cod
and for suitable ¢; > 0 the following growth estimates hold true:

lg() ()] > 1 (dist(z,0A4))/7 VzeA
min {u(z) — a(z),b(z) — u(z)} > c1(dist(z, aA))l/fi Vzel=A°.

The previous lemma enables us to estimate the norm of ((u). Together with
Lemma 5.7 we get

LEmMA 5.11. Let (O1), (02), and (C) hold at u. Assume that (A1) and (A2)
are satisfied. Let p € (0,1) and p € (0,1] be arbitrary such that (L, + Lq)p'™? < 1.

Then there is C'wr > 0 only depending on u(2),||b—a||,|lg(% )HOO, g, and Ly, but
not on q,r,s such that for all uw € B°, ||Ju — ul|, < p,
(25) W (w) B(u)ll, < Cwr®s(|lu = ull,)[[u -l ,

$=¢

q

(26) ®,(2) = w(2:7) 1/ 4 =P min{Lr/T} | (S)
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where § = qr/(r — q) and w is as in Lemma 5.9.

Proof. Let u € B° be arbitrary with ||u — @||, < p. According to Lemma 5.7 we
have to estimate ||Q(u)||; with ¢ = ¢r/(r — ¢) and @ given by (23). Let p € (0,1) be
arbitrary. We decompose €2 into the set

N () & Ny g (w) = {2 € Q ¢ |g(w)(2)] + d(u) (2) < [|u—ul|?}
and its complement N(u)c. Assumption (A2) yields with the definition of N (u)®

< Hg(u) - ?(Z)Hr < LgHu _ ﬂHi—ﬁ < 1.
N(u)e l|w— all;

e e e

If G <r, i.e. r>2q,one has
1Rz nwye < Mir QW v (wyes

and for ¢ > r,i.e. ¢ < r < 2q, application of Lemma 2.2 with ¢ = ¢, ¢1 = 1, g2 =
yields by using ()], < 1

1Q) ;e < R e
Combining this and (27) gives

(28) HQ( )HqN < CIHU uH (1—p) min{1,r/q}

with C; = L;nin{l”"/’j} max {m;,,1}. Since ||Q(u)||

from Lemma 5.9 and Minkowski’s inequality

NN
Qv < HV(@)17 < (ot + (ot Ll 20k )

w(2||u— ﬂHf)l/‘i + (L, + Ld)r/‘jHu _ ﬂHgl—ﬁ)T/q

Combining (22), (28), (29), and |Q(u)ll; < 1Ry + Q) xay €ives (25)
Since my, 4, < max {1, ()}, it is easy to see that C'wp only depends on the quantities
listed above. O

Our first main result is the following;:

THEOREM 5.12. Let (O1), (02) and (C) hold at w. If the assumptions (A1), (A2)
and (A3) are satisfied then for all u® € B® with ||u® — ul|, < pg the equation (6) has
a unique solution u"™ € L. In addition, for every p € (0,1) and 0 < p < pp satisfying
(Ly+ Lg)p'~? < 1 there is C > 0 only depending on p(2), ||b — a||__, [lg(@)|| ., Ly, Ly,
and Cy, but not on q,r, s such that for all u® € B° with ||u® — u||, < p

< 1, we get on the other hand

o0

/\

(29)

IN

(30) [u" = all, < C@p([|u —all)|lu® = ull,

with ®; given by (26).

Proof. For u® € B, ||u® — u||, < pg, the unique solvability of (6) is obvious by the
assumptions. Now let in addition ||u® — u||,, < p hold. Since u satisfies (O1), (02),
the equations (6) and (21) are equivalent. By the choice of p > 0 we may apply (A3)
to obtain

llu™ = aull, < [[H (u) 7, W @) R(u)|, < CallW (u) R(u)],.
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Lemma 5.11 completes the proof with C' = CgCwg. O

For the important case r = s = oo the proof of Theorem 5.12 can be obtained
without the careful analysis of residual sets in Lemmata 5.5, 5.9 and 5.7 since these
sets have measure zero for ||u — ||, small. We have the

COROLLARY 5.13. Under the additional assumptions r = s = oo and p < v,
Theorem 5.12 holds with (30) replaced by

(31) lu” = all, < € (w(@lfu = @27+ [[ue = al|S7) [Ju” = all.,-

In the very likely case that in addition the strong strict complementarity condition
(CS) holds we get even more:

COROLLARY 5.14. Let in addition to the assumptions of Theorem 5.12 condition
(CS) hold. Then with the choice p = min{r/(r+¢),q/(¢+ q)} the estimate (30)
implies that for all u® € B° with ||[u® — ||, < p

_ s—q
_ 7 wt — || \T
Jur —all, < C (uuc sty 4 (L2t ) Ju ~ all,

where ¢ = qr/(r — q) and C depends on (), ||b - all, l9(@) ||, Ls Ly, Cr, Cos G,
and gy, but not on q,r,s. For p < (€0/2)'/? the constant C' can be chosen independently
of Cc, g0, and q.

Proof. From (CS) we have w(e) < Cge? for a fixed ¢ > 0 and all ¢ €]0,¢¢].
Obviously, if we choose Cc > u(Q)ey? and remember w(0) = 0, the bound for w(e)
holds for all £ > 0. We determine the optimal choice of p in (30) from

pq I ~
gz(l—p)mm{lw/q}-
. _ r q pq q
If r < ¢ this gives p = - < —— and the common exponent — = —————.
r+q - G+q ) ¢ G+aq(q/r)
Ifr>(jweget]’):#< rﬁandp—?:#.lj
q+q r+q q qg+4q

REMARK 5.15. It is possible to prove an even higher convergence speed by split-
ting €2 in the proof of Lemma 5.11 not only in N||u—ﬂ||f(u) and its complement, but in
NO(u), NY(u) \ N°(u), ..., N'(u) \ N (u), N'(u)°, where N*(u)= N||u—ﬂ||pk (u) and
1>pg>p1 >--->p > 0. Now the p can be chosen in such a way that the smallest
exponent is maximized. In favor of the clarity of the presentation we have not applied
this more sophisticated technique. 0O

For r = s = 0o we state the more handy result

COROLLARY 5.16. Ifin Corollary 5.13 the condition (C) is replaced by the strong
strict complementarity condition (CS), then for all u® € B® with ||u® — u||, < p

o = all, < Cllu = al F70.
Assume for a moment that the iteration ug € B°, G'(ug)(upt1 —ur) = —d(ur)g(ug), is

well-defined, i.e. in particular (ux) C B°. We have already observed that the sequence
(ur) may fail to converge superlinearly in L™ even if (A2), (A3) hold with ¢ = oo.
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As pointed out in [15] and [16] the same is true for directly applied projected New-
ton methods because the active set cannot be identified on a residual set of nonzero
measure. In these papers a smoothing step is used to achieve fast L°-convergence.
Theorem 5.12 will enable us to add such a modification if an appropriate smoothing
operator is available. The same problems arise also in the case s < oo, since a result
of the form (30) requires s > q.

Moreover, as we will see in Example 6.3, the case ury; ¢ B° occurs very likely
for some k. Hence, a back-transport into B° is necessary. Therefore, we will use the

following ingredients to design a superlinearly convergent algorithm (cf. the outline
in §4):

SMOOTHING STEP :  uy, € B® — uj = Sp(ux) € B® with [Jug — al|, < Csllux — ufl,.
NEWTON STEP @ wup , € L% solves G (u})(up,, — u}) = —d(ui)g(u}).

BACK-TRANSPORT:  u},, € LY+ ugpy1 = Plug](u}, ) € B°

2
5"

with [[ugyr — all, < Cpllug, —all, + Cpllug — |
Here C's, Cp, and C% are positive constants.

5.1. An affine-scaling Newton algorithm. Provided that smoothing step and
back-transport with the above properties are available, the previous considerations and
the abstract convergence theory in §4 suggest the following algorithm:

ALGORITHM 5.17 (AFFINE-SCALING INTERIOR-POINT NEWTON ALGORITHM).

1. Choose ug € B°.

2. For k=0,1,2,...
2.1 If d(ug)g(ur) = 0, STOP.
2.2 Perform a smoothing step: uj = S} (ug).
2.3 Compute uy,, € L? from

Gup)(upy, —ug) = —d(ug)g(uy) (Affine-scaling Newton step)

2.4 Transport u,, back to B°: upyy = Plug](uf,,)-

6. Back-transport and smoothing-step.

6.1. The back-transport. Since the solution uy, , of the affine-scaling Newton
equation in step 2.3 is not necessarily an interior point of B, a back-transport into
B° is needed. In [7] a stepsize rule is used for this purpose. A reflection technique
was proposed in [4] and [6]. We will see that in our function space setting very small
stepsizes o}, may be necessary to achieve u} +oy(uf,, —u}) € B°. Thus, a stepsize rule
fails to provide superlinear convergence, cf. Example 6.3. Therefore, we will propose
and analyze a projection technique which is also an attractive alternative to reflection
techniques in the finite-dimensional case.

6.1.1. Back-transport by projection. Since u € B, the pointwise projection
P(u) of uw onto B with P: L' — B defined by

(32) P(u) = max {a, min {b, u}}
obviously satisfies |P(u) — v| < |u — v| on Q for all v € B. Hence,

(33) 1P (u) = vl < [lu— v,
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forall t € [1,00], v € B, and u € L.
As mentioned earlier, an interior-point modification P[v], v € B°, of P can be
used to obtain a back-transport satisfying the required property

(34) [1P[o](w) = all, < Cpllu—al|, + Cpllv — alf;.
In fact, for £ € (0, 1), typically £ > 0.9, and v € B° choose
(35)  Plo]: LT — B°, Plo](u) = v+ max{&,1—[|P(u) = vf|, } (P(u) - v).
Then obviously
Plo](u) = P(u) = min {1 = & [|P(u) - 0], } (v = P(u)),
and hence

1P} (w) = Pu)ll, < [1P(u) = o],
[1P[o](u) = P(u)ll; < b= all,[|P(w) = o]

(36)
g 1<t<o0.
Using this, we can derive (34):

LEMMA 6.1. Let P and P[v], v € B°, be defined according to (32) and (35). Then
condition (34) holds with Cp = (2||b— al|, + 1), Cp = 2m? .

Proof. Let v € B® and u € L?. Using the properties of P[v] yields

1P[)(w) = all, < [1P[v)(w) = P)ll, + [1P() = all, < [[P(u) = v]]2 + |u— 4,
<2 (I1P(u) = all? + [lo - al2) +[|u - al,
< (@l = all, + V)lju = all, +2[|v — ]}
< (@l = all, + 1)l|u— al, +2m? [|v - ],

6.1.2. Projection vs. stepsize rule for back-transport. The following ar-
guments and Example 6.3 below show that even if (A2), (A3) hold for ¢ = co and
|luj — a||_ is arbitrarily small, stepsizes 0, < ¢ < 1 may be necessary to ensure
ug + op(up,, — up) € B°: Let uj € B° be arbitrary. From step 2.3 we deduce for z
with d(u})(z) < c¢(z) and g(uj)(z) #0

(37) wi(2) — uly (2) = (Sgn (g (a)) + T D ks = u;))@)) d(u)(x)

|9 (uf) ()]

If we look at those z € Q where in addition #(z) = a(z) and [g(u})(z)| is small, say
lg(u})(z)] < ui(z) — a(z), then

and we need stepsize o < ¢ if

(V2F(up) (upyy — u})) ()
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But even for ||uf — u||_ arbitrarily small the set

{re0: @ =a@, (V@)@ - ) @ 2 (1+7) o) @)}

may have nonzero measure, because |g(u3)| is very small on a neighborhood of A.

Since superlinear convergence can only be guaranteed if the sequence of stepsizes
converges to one, a stepsize rule for the Newton-like step is unsuitable for the infinite-
dimensional case although it was proven to give quadratic convergence in the finite-
dimensional case (see [7]).

REMARK 6.2. In the finite-dimensional case one can easily show by using a
componentwise version of (37) that o, = 1—O(||ug41 — ul) if second-order sufficiency
conditions with strict complementarity hold at u. See [6], [7]. O

The following example illustrates that the above scenario can really occur. More-
over, we will see that the use of a stepsize rule may lead to almost a stagnation of the
iteration whereas the proposed projection technique yields fast convergence.

ExAMPLE 6.3. We consider problem (P) with quadratic objective function

foue L2([0,1]) —s %IMI% - i </01 we) dx)Q

and feasible set B {u € L2([0,1]) : a(z) =2z — 1 < u(z) < 10=b(z) ae}. fis
smooth with

and strictly convex, since by Jensen’s inequality (v, V2 f(u)v), > %Hng for all v € L2
The unique global minimum of f on B is given by u(z) = max{y,a(z)} with y =
3/2 — /2, because f is strictly convex, g(@) = % — y = 0 on the inactive set I = [0, #),
§ =y+1/2, and g(u) = 4w —y > 0 on the active set A = [3,1] = {a =a}. It is
easy to check that (A1)—(A3), (C), and (CS) hold for p = ¢ = 2, r = s = c0. For
0 < & < 1 the function u, € B°, u.(z) = u(z) + elz — &| 4 €2/10, is strictly feasible
with |lue — ||, = de + £2/10 < . Moreover, the gradient g(u.) is negative in a
neighborhood of the boundary point # of A which leads to the above scenario of small
stepsizes:

g(u.)(3) = 20( 45—|—30\/_+5)<—% L 0<e<l.

Now we analyze what happens if we take u. as starting point for an affine-scaling
Newton step s., i.e.

G(UE)SE = _d(ua)g(ue)7
or, in detail,

(38) S. — 1 d(uc)g(ue)

2d’(u5) u.) —}—dua / L se(a __d(us)g(ua)—}—d(us)

Since the operator (d'(us)g(ue) + d(ue)) " 'G(u.) on the left (which coincides with
H(u.) for € small enough) is a 'rank-one modification’ of the identity, its inverse
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can be explicitly determined by applying the Sherman-Morrison-Woodbury-Lemma
in L?([0,1]). It is possible to derive a closed formula for s.. Table 1 shows the
maximum stepsize omayx = max{o € [0,1] : u.+ os. € B} for c¢= 2, and the relative
L?-norm of the part of s. that would be cut off by a pointwise projection. Fig. 1
depicts for e = 1/100 a plot of —s. and u. — a (dashed) close to the sign change of the
gradient g(u.) at 2o = 0.58706.

3

x 10~
- o [ (e +36) = P(us+se )l L
Is<Tl,
1.0E—2 | 1.77TE—2 4.83E—3 .
1.0E—3 | 1.78E-3 1.41E-3 0.6
1.0E—4 | 1.78E—4 4.43E—4 0.4
1.0E-5 | 1.78B-5 1.40E—4 2l u.—a ]
095%67 0.5865 0.587 0.5875 0.588
TaB. 1 Fiag. 1

Apparently, a stepsize rule yields very small stepsizes whereas the pointwise projection
leads only to a tiny change of the step with respect to the L?-norm.

Now we compare the performance of two variants of the affine-scaling interior-
point Newton method:

(I) Algorithm 5.17.
(II) Algorithm 5.17 with 2.4 replaced by a stepsize rule:

2.4" Transport uf, back to B° by the following stepsize rule:

Sp = Ul — U} , Okmax=max{o €[0,1] : uj +os; € B} ,
upyr = uj + max {£,1 - [|s7]l,} Ok maxsp , & asin (35).

In both variants we apply smoothing to uj only if the L?- and L*-norm of u; — uj_,
differ too much:

. {me —g(w) Hh> 1, u =y, and fug - ufy > 3lu - u
u else.
The interior-point modification of the projected gradient step is in deed a smooth-
ing step. This follows from Remark 4.3 and the discussion in §8. For the numeri-
cal realization of both methods we have discretized the problem by approximating
L?([0,1]) with piecewise linear functions on a uniform grid with 200 points. To
check the decrease properties of the new iterates, we use the fact that uj, , solves
the affine-scaling Newton equation in step 2.3 if and only if uy, , is a stationary point
of the quadratic function 9[u}](u) defined by (57), cf. §10. This function is used as
quadratic model in the interior-point trust-region methods recently analyzed in [24].
Since [u}] is strictly convex in our context, it attains its global minimum at Up, -
We start both iterations with uwg = u., € = 0.5, and & = 0.999995. The distances
g1 — wlly, [Jugy, —ull  from the solution u of the discrete problem and the de-
crease ratio ¥[uf](ug41)/¥[uz](uf,,) are shown in Table 2. For method (II) we have
also added o max. Fig. 2.1 depicts —sj and the distance to the lower bound uy — a
(dashed). Fig. 2.2 and 2.3 show the same quantities, i.e. —s} and uy — a, after one step
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of algorithm (1) and (II), respectively. We see that the stepsize rule in (II) leads to an
iterate uq and a new search direction s} that requires a very small stepsize of 0.0128
yielding almost no progress. The reason is depicted in Fig. 2.3: s} has a small peak on
the set where the distance to the lower bound is small. On the other hand, the part
of s = up,, — uj that is cut off by a projection is very small. Hence, the projection
leads to a nearly optimal decrease of ¥[u}] in every step. Fig. 3.1 and 3.2 show the
first iterates for both iterations. While our algorithm (I) converges in 5 steps to high
accuracy, method (II) needs 28 iterations to enter the region of quadratic convergence
which exists according to the finite-dimensional theory. Then it converges in two more
steps to high accuracy.

Alg. (T) (Projection) Alg. (IT) (Stepsize rule)
BoA| s = ally |l —all [t | Twees —ally | g —all ] vt | oman
0 4.2275E-2 8.1290E—2 | 0.9999 || 7.6898E—2 1.4443E—1 | 0.9288 | 0.7332
1 || 4.2356E—3 | 8.5289E—3 | 0.9998 || 7.6053E—2 | 1.4287TE—1 | 0.0255 | 0.0128
2 1.8431E—4 1.5081E—3 | 1.0000 || 7.4395E—2 1.3981E—1 | 0.0502 | 0.0254
3 4.3224E-5 3.1222E—6* | 1.0000 || 7.1203E-2 1.3391E—1 | 0.0973 | 0.0499
4 || 6.3244E—10| 8.7489E—9 | 1.0000 || 6.5276E—2 | 1.2295E—1 | 0.1833 | 0.0963
L— 1/;[u2](uk+1)/1/)[u2](u2+1) * Smoothing occurred, i.e. uj ; # ug41
TaB. 2
0.25 0.08 0.08
0.2
0.06 0.06
0.15
0.04 0.04
0.1
0.02 0.02
0.05
0 0 0
. 0
Fic. 2.2
0.8

0.6
0.4

0.2

_02 L
_04 L
-0.6 : : : : -0.6 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fic. 3.1 Fic. 3.2
a

These considerations make it evident that the projection technique should be used
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instead of a stepsize rule to obtain an interior point ug4; € B° from ug, ;.

6.2. The smoothing step. We have already observed that a smoothing step
is necessary because the strongest available estimate after one iteration of (6) is (30)
with ¢ < s. In the further analysis we assume that a smoothing operator

(39) Sp:BCLI—L° , k>0

is available. Let u € B satisfy (O1) and (O2). In order to require smoothing only if it
is really necessary we make the following

ASSUMPTION (SMOOTHING PROPERTY ).

(S) There are ps > 0 and Lg > 0 such that the operators S defined in (39) possess
the following smoothing property:

|Sk(ur) — 4|, < Lg||lur — ﬂHq for all & with ||ux — ﬂHq < ps-

This assumption allows to choose Sg(u) = u on the set {u : [|u—u||, < Ls|lu — ul|,}
where smoothing is not necessary. As already outlined in Remark 4.3, the operator
Syt u— Plu](Sk(u)) is an interior-point modification of Sk:

LEMMA 6.4. Let u satisfy (O1), (0O2) and let (S) hold. If P[v] is defined by (35)
then S} : u € B° — Plu](S(u)) satisfies Sp(B°) C B° and

1Sk (ur) = ull, < Cslluy, — ul|,

Jor all k with ||uy — ul|, < ps, where C's = (mygs|b —al|,+ 1) Ls +[|b — al|,.

Proof. Plu](Sk(u)) € B° does obviously hold for all « € B® and k£ > 0. Now let
k > 0 be arbitrary with [|uy — ul|, < ps. Using the properties (33), (36) of P and
Plug], we get

1PLud (Se(us)) — all, < [1PLus](S(ue)) = P(Sk(i)ll, + P(Se(us)) — ],
< b = all 1P(Sk(ue)) = well, + 1Sk (we) - @],
< o= all, (I1P(Sk(u)) = all, + lux = all,) + [k (we) - all,
< (masllb = all, + D[ Sk(ue) = all, + (16— el |Jue - all,

o
®
i

CplSk(ur) — ull, + Cpllux — ull, < (CpLs + Cp)llux — ull,,
where we have used (S) in the last step. O

We will show in §8 how a smoothing operator can be constructed for a class
of regularized problems by using a fixed point formulation of the KKT-conditions

(01),(02).

7. The convergence result. In the following we will always work with the
smoothing operator

S e B°—s Sp(u) = Plu](Sk(u)) € B>, Si asin (39).

We will now prove that Algorithm 5.17 converges superlinearly (resp. with Q-order
14¢/(G+max{1,G/r}q)) in L*® to u if u satisfies the first-order necessary conditions
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with strict complementarity (C) (resp. (CS)) as well as (A3), a smoothing step exists,
and [|ug — 1|, is small enough. More precisely, we have the

THEOREM 7.1. Let u satisfy (O1), (02) and (C). If (A1)-(A3) and (S) hold then
for p € (0,1) there is p > 0 such that for all ug € B® with ||uo — ul|, < p Algorithm
5.17 is well-defined and produces iterates with

(40) [untr = ull, < C1®5(Crsluntr — ull) lupr — ul],

(41) [ukgr = all, < Co®p(|Jugg — all Mluiyr —all,
where Cy,Cy > 0 depend on p(Q), ||b—al|__, lg(@)||., Ly, Ly, Crr, Ls, but not on g, r,s
and @5 is given by (26), i.e.

5—9q

5(2) = w(2:P)Y7 4 _(1=p)min{1.2} 4 (i) N

v

)

In the case r = s = co the function ®, simplifies to ®5(z) = w(2:7)Y/7 4 2177,
Proof. Choose 0 < p < ps. We will reduce p as the proof proceeds. From Lemma
6.4 we deduce

(42) [ui, — ully < Cslluy, - ull,

By choosing p > 0 appropriately we can apply Theorem 5.12 with p replaced by C'sp
and u® = uj. We obtain that for all u; € B°, [|u — ul|, < p,

(43) ugsr — ull, < C@p([luf — ull)[uf — ull, < CCs@(Csllur — ull,)llur — ull,

where @5 is given by (26). Lemma 6.1 yields

lunsr = all, = | Plug](uiy,) = all, < Cplluiy, —all, + Chllui — ull;

(44) ] / i} )
< Cs (CCp@y(Csl|ux — all,) + CsChllu — all, ) [lux — ll,-

This proves (40), since the ®;-term is of lowest order. By the properties of w, see
Lemma 5.9, ®;(z) tends to zero as z — 0. Hence, possibly after a further reduction
of p, the algorithm is well-defined, since ug € B°, ||ug — ul|, < p implies ux € B°,
lur — ul|, < p for all k. Now (41) is obtained by combining (42) with k replaced by
k4 1, and the first inequalities in (43) and (44):

a4y = all, < Csllungs — ull,
< Cs (Cpllufsy — all, + Cpllug — al?)
< Cs (CCp®y(|[u — all,) + Cpllug — all,) lui - al

’5'

If in addition (CS) holds we get convergence with Q-order > 1:

COROLLARY 7.2. Let in addition to the assumptions of Theorem 7.1 condition
(CS) hold at w. Then with the choice p = min{r/(r+q),q/(G+ q)} Theorem 7.1
yields

ugs1 — all, < C1®@os(Csllug — all,)[lur — ull,

ufy — all, < Ca®os(||ug — all,)||ug — ull
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with Cy,Cy > 0 as in Theorem 7.1, § = , and

r—q
5—g

_q
Bos(z) = > TP <i) 7

v

_q_
In the case r = s = oo the function ®cs assumes the simple form ®cg(z) = z1+7.
Proof. This follows immediately from Theorem 7.1 and Corollary 5.14. O

8. Application to a class of regularized problems. In this section we apply
our convergence theory to the following class of regularized problems which contains
the one considered in the analysis of projected Newton methods by Kelley and Sachs
[15]: We investigate problem (P) with the L2-regularized objective function

1
fiueDCLP— k(u)+ 5”@(“ - UO)H;

where a,u® € L> and k : D — IR such that (A1) holds. The gradient is given by

def

g(v) = au — au® + Vk(u) = au + K(u).

We make the following
ASSUMPTION.

(A2) g(u) = au+ K(u) with o € L*, a(z) > ag > 0 for a.a. z € Q. Furthermore,
there are 2 < ¢ < s < 0o such that g : B C L* — L? is Lipschitz continuously
Fréchet differentiable and K has the following smoothing property:

K:BCcL! —L*

is Lipschitz continuous with Lipschitz constant Lg.

Obviously, (A2') implies the Lipschitz continuity of ¢ : B C L® — L*® with Lipschitz
constant L, = ||a||, + my sLx. Hence, (A2’) implies (A2) with r = s.

To perform a smoothing step we use a technique proposed in [15]. The following
fixed point formulation of the optimality conditions (O1),(02) is essential:

LEmMA 8.1. Let (A1) hold. Then (01),(02) are satisfied at u if and only if

(45) u=P(u—og(u))

where 0 € L*°, 0 > 0 a.e., is arbitrary.

If in addition (A2') holds then u satisfies (01),(02) if and only if
i = P(—a™ K (@) (= P(i - a”lg(a))).

Furthermore, for all u,v € B the following holds true:

(46) | P(-a K (w) - P(-a K (v)

< o7t (K (w) - K (v))

Lk
< B, =
S sl

i.e. Sg:u€ B P(—a 'K (u)) has the smoothing property (S).
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Proof. Let w € D be arbitrary. Then (45) is satisfied if and only if (O1) holds
(since the right hand side of (45) is in B) and

>0, ifu(z)=a(z),
o(z)g(u)(z) < <0, if1 u(z) = b(z), a.e. on .
=0, else

Since o(z) > 0 for a.a. 2 € Q, this is nothing else but (02). If in addition (A2')
holds then @ — og(u) = (1 — oa)u — oK (u) and the choice o = a~! establishes the
second assertion. (46) is easily obtained by using the smoothing property in (A2')
and the fact that ||P(v) — P(w)]|, < |[v — w]|, for all v,w € L?, since P is a pointwise
projection. O

REMARK 8.2. The smoothing step is a scaled projected gradient step obtained
by making a scaled gradient step —a~lg(u) and projecting the result pointwise onto
B. Moreover, P(—a 'K (u)) — u is a descent direction for f at u € B (cf. [11]): since
P is also the projection onto B in the scaled Hilbert space (L?, (a- ., .),) we get by
using well known properties of projections on closed convex sets in Hilbert space

0> (a(u—Plu—ag(u),u-a"g(u) - Plu—a""g(u))),

and hence (note that we use the L? inner product as dual pairing)

2

(P(u—ag(w) = u,g(w) < - |[Va(P(u-a'g(w) - u)| .

2

g

The preceding Lemma shows that the convergence results of the previous section
hold for the considered class of regularized problems if Sy (u) = P(—a~'K(u)) is used
as smoothing operator.

We have already mentioned that (CS) is weaker than the corresponding assump-
tion in [15] for the analysis of the projected Newton method. To allow a further
comparison with the results in [15] we will show that assumption (A3) is implied by
Assumptions 2.1 and 2.3 in [15] which are stronger than (A2’) and the requirement
that

(47) H(u) 2 1+ 0™ 7K' (w)xy, [=Q\ 4,

has an inverse for all v € B, ||u — ||, < p with HIN{(u)_lHM < (g (in [15] only s = o0
is considered).

We use the following analogue of Assumption 2.2 in [15] which implies the local
Lipschitz continuity of K : B C LY — L* in u:

ASSUMPTION.

(A4) There is px > 0 such that for all v € B with ||u — u||, < px

IK' @), < Cx.

q,5
Here K'(u) € L(LP, L") denotes the Fréchet derivative of K at u.

The following Lemma shows that (A3) is satisfied if (A3) holds for H(u) defined in

(47) instead of H (u). Hence, (A3) is implied by Assumptions 2.2 and 2.3. in [15] for

the choice s = oc.
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LEMMA 8.3. Let (O1), (02) and (C) hold at u, A denote the active set, and
I = A°. If the assumptions (A1), (A2') and (A4) are satisfied, then the following is
true: If there is p > 0 such that for all w € B, ||u — ul|, < p,

Hw) =T+ a7 K (u) : LY — L1

is invertible with HH(U)_IHM < Cg then (A3) holds for pr > 0 sufficiently small.

The Lemma remains true if H(u) is replaced by H(u) defined in (47) since the
uniformly bounded invertibility of H(u) implies the one of H(u) :

(48) H(u)™ = A ()™ (1 = a7 x 7K (w)x41)

Proof. We note that H(u) in assumption (A3) can be equivalently replaced by

o) Xd<c 9 ()] d(u)
= X{d(u)<eyl9 (v )|-|—04d(u)1 X{d(u)<c} g (u)| + ad(u)

if (A1) and (A2') are satisfied. This follows from the identity

o g+ d(w)
H ) = e < g + ad(w)

and the fact that the first factor is continuously invertible, since

lg(u)| + d(u) . [min {||04H(:017 1} ,max{oéal7 1” on {d(u) < c},
Xa<eylg (Wl +ad(w) =) [jaf 2} ag' (14 v7Cy)] on {d(u) > c}.

V2 f(u)

In particular, there exists a constant Cp;; with

1 ()™M, < Crgll H ()7

9,9°

According to a standard result of operator theory we can establish (A3) with Cy =
2C gy Cy by finding py > 0 such that [[H(u) — H(u)||,, < 1/(2Cg) for all u € B°,
lu —ul|, < pa. To this end, let p < min{l,p, px} and w € B°, ||u —u||, < p, be
arbitrary. We will adjust p as the proof proceeds. We observe that

I T X1 d(u) -1
49 H(u)—H(u)= |~ — K'(u),
(49) (w) = H(u) (04 X{d(u) b}lg(u)l—kad(u)) )
apply Lemma 2.3 with g0 = ¢, ¢1 = s/q, ¢} = s/(s — q), use (A4), and obtain
7 2 XTI d(u) -1
H(u) — H(u K'(u
1) =l < |3 - s IR,
5—q
X1 d(u)
< Crer
S e xu<als@l+ od(w) | "
5—q

We notice that ¢ < ¢ & qs/(s— q) < oo (G = q if s = 00) and split 2 to estimate the
first factor in the last expression. For

B {2 € Q1 Xpuues(@)l9(w) (@) + alz)d(u)(z) < /7 )
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and p < v?a? we have B(u) C {d(u) < c}, and thus with oy = min {ao, 1}

B(u) C{z € Q : ai|g(u)(z)|+ ard(u)(z) < \/p} = N\/ﬁ/al(u).

Denote the complement of B(u) by B°(u). The key observation is that the parenthesis
n (49) is small on B°(u) and the measure of the residual set B(u) is small as well.
We get by Lemma 5.9 and Minkowski’s inequality

X7 d(u) 1 1/4 1 1/4
oL < —p(Bw)'74 < —pu(N_ 570, (u) 74
a  Xaw<elg(@)|+ad(u) |, 5oy~ aou( (W) < ozou( Voo (1))
1/4
1 s
< (w (222) + (L4 + L)y )
g a1
1 1/4 A
< —(w (222) "+ ((Lg+Ld)a1\/ﬁ)s/q)-
(8] (03]
Moreover, we obtain as in the proof of Theorem 5.12
min{1l,s/q
o dw u_ i .
<Cr|=—

by applying Lemma 2.2 in the case s < ¢ (note that the function under the norm is
nonnegative and pointwise bounded by 1/ag). We can choose Cy = my , if § < s and

Cy = ozal“/(j if s < g. Since g(#) = 0 a.e. on I by (O2) we get with (A2)

XT d(u) | X< |9 (v) — g(u)]
o« X<l ad@ ], epnr o (xpa<ala@]+adw) | o
glu) — glu L
-] Ly
/P s o
The fact that d(#) = 0 a.e. on A yields together with Lemma 5.5
XT _ d(u) _ d(u) — d(u)
@ X{d(u <u}|g(u)| + ad(u) s,BC(u)\f X{d(u) u}|g( )| + ad(u) s,Be(u)\T
d(u) — d(u)
< ||——=| £L .
< NG = P

Hence, there are constants C7,Cy > 0 such that

i o
1A (w) - A@)],, < (C’lw (2%’) +02\/,5mm{1,3}> Cror.

Due to Lemma 5.9, after a possible reduction of p > 0 the right hand side is < 1/(2Cg)
and the choice py = p completes the first part of the proof.

Now assume that the assumptions hold for H(u) instead of H(u). We only have
to verify the explicit formula (48) for H(u)~!. For v € L? we look at the equation

(50) v=H(u)h = H(u)h+ a7 K'(u)x 1h.
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Premultiplication by x ;7 shows h; = vz, and hence
h=H(u)™! (v - oz_lij’(u)vA) .

Therefore, the operator given in (48) is a left inverse of H (u). It is also a right inverse;
to see this we note that x ;1 H (u) = x 41, hence x sH(u)™' = x 41, and, consequently,

(H(u) + o~ X7 K" (w)x g 1) H(u) ™ (I — o' XK' (w)x 51) = 1,

where we have used that x ja=!x; = 0. O
REMARK 8.4. The results of Lemma 8.3 remain true if a also depends on w. O

9. Second-order sufficient conditions. We will now study how Algorithm
5.17 behaves in the neighborhood of a point u satisfying the second-order sufficient
condition given by Dunn and Tian in [9]. We will show that it implies (A3) in the
case ¢ = 2 under the additional assumptions of the previous section and also for ¢ > 2
if the range of H(u) is dense in L7. Tn §10 we will use this sufficiency condition to
show that the developed affine-scaling Newton method produces acceptable steps for
the trust-region globalization considered in [24] if the iterates uj are close enough to
@. In our notation, the formal second-order sufficiency conditions by Dunn and Tian

[9] read
ASSUMPTION (SECOND-ORDER SUFFICIENT CONDITIONS BY DUNN AND TIAN).

(OS) Condition (A1) holds and there are ¢ € [1,00], ¢, > 0 such that

(51) (v, VEf(w)w)| < erl[ollyllwlly ¥ ue B v,we L™
(52) lierg sup (w, (Vif(u) — V2 f(a))w) = 0.

€ weL
[lu—2l|,—0 [|w|],=1

Moreover, (O1),(02) are satisfied at % and there are sets A C A, I = A°, and
constants ¢y, cg > 0 with

(53) g(u) >c; on A, <X1w,V2f(ﬂ)X[w> > CQHXIng Ywe L™,

REMARK 9.1. Condition (OS) is weaker (stronger) than the sufficient second-
order condition of Maurer in [21] if || - ||, (resp. || -]|;) is chosen as the weak norm.
Since we prefer a result of the form f(u) — f(@) > C|lu — @||] for [ = 2 rather than
for [ = 1, condition (OS) meets our requirements better. Moreover it is obvious that
in view of Lemma 2.2 the requirement ¢ € [1,00) could be equivalently replaced by
t € {2,00} since the relative topology of L? on B is the same for all ¢ € [1,00). O

9.1. L*-optimality. The following Theorem shows that (OS) implies the L-
optimality of @ for (P) (cf. [9]).

THEOREM 9.2. Let the formal second-order sufficiency condition (OS) hold. Then
u is a strict L™ -optimizer for (P), more precisely: there are p > 0 and C' > 0 such that

we B, |lu—il, <p= fu) = f(a) 2 Cllu—alj
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Proof. The proof is a variant of the one given for Lemma 1 in [9]. Let u € B.

With v = u — @ we get from (OS)

Fu) = () = (.9} + 5 ((or, V2 hor) + (w4, V2F(u) (04 + 201))) + o [o]3)

€2 2 Cr 2 9
> cr||vall; + —HUIHQ - = (HUAHQ + QHUA”QHUIHQ) + o(|Jv]|?)
lvall; ( QCT) 5 €3 ) )
> c —I— 1+ vall? = Zvrl|2 + of||v
ol H 1llz - o, ) Ivalla = llvrlls + e(livlly)
‘1 T(QCT‘I’CZ)

2, & 2 2
- vally + —llvrlla + oll|v]l2),
T T ) Ioall3 + ol + o0l
where we have used 208 < ca? + #2/c with ¢ = ¢3/(2¢,). Note that o(||v||3) is meant
for [|v||,, — 0. We see that the assertion follows for all u € B with ||u — 4|, < p if
p > 0 is small enough. O

9.2. L2-optimality. We make now additional assumptions on the structure of
the second derivative which are met by the class of regularized problems considered
in the previous section and are similar to those in [23]:

ASSUMPTION.

(A5) V2f(u) = B(u)l+K'(u) where 8 : B C L?* — L is continuous and K’ satisfies
(A4) for suitable 2 < ¢ < 5 < o0.

We have the following variant of Theorem 4 in [9]:

THEOREM 9.3. Let the formal second-order sufficiency condition (OS) with t < oo
(i.e. also for t = 2) and (Ab) hold. If in addition B(u)(z) > By > 0 a.e. on Q then u
is a strict L*-optimizer (and hence L'-optimizer, t € [1,00]) for (P) in the following
sense: there are p > 0 and C' > 0 such that

we B, ||u—ally <p= fu) = f(a) > Cllu—alj;.

Proof. We compute as in the proof of Theorem 9.2

+ 1<UA7 ]{’(u)(?}A + 2v7)) + O(HUHg)

7w - f(@) ;

v

C2 2 ﬁo 2
erllvally + 5 llorll; + 5 lloall3

v

C2 2 ﬁo 2 - 2
allvally + S llorllz + llvally = 1K @)l slvallsllvll, + o(lvllz)

7 def

where v =u—wuand 1/s+1/s'=1. Then1 < s <2< g<sand1/¢g+1/s =
because of s > ¢. Now by Lemma 2.2

1+6>1
1 1—-1/s’ 1-2
loally < lloall/ a2, loll, < llolly vl

Since ||v4ll,, < vl < 1|6 —all,, we find Cy > 0 with
1 2 /s’ 2
loall ol < Colleall/ ol < €5 (S al ¥ + o137

for all py,p] € (1,00), 1/p1 + 1/p} = 1, according to Young’s inequality. We choose
p1 = q(1+¢) and get
1 1 1 1 1 1

B [ e —
Py q(1+e) s q q(l+¢) s'(1+¢€)
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for e,¢’ > 0 small enough. Hence, for ||v]|, small

- 14’ 242
1K @)l s loallollolly € CrCrllloally™ + lloall,™),

q7s

which completes the proof. O
We shall now study in which cases condition (A3) is implied by the formal second-
order sufficiency condition (OS). We will thereby restrict ourselves to problems which
satisfy the structural assumptions of §8.
THEOREM 9.4. Let (0S), (A2') with t < co, and (A4) hold. Then the following
s true:
1) If ¢ = 2 then (A3) is satisfied.
2) For q > 2 there are p > 0 and C'z; > 0 such that for all w € B°, ||u — ul|, < p, the
operator H(u) in (47) has the properties:
i) H(u) € L(LY, L9 and Hﬁ(u)qu > Cgllvll, for all v e L1,
i) The range of H(u) : L — L is closed in L.
Hence, if K' : B C L® — L(L?,L%) is continuous at u and if the range of H(u)
is dense in L? then (A3) is satisfied.

Proof. Let 0 < p < pg and u € B, [lu— ul|, < p. We will adjust p in the sequel.
By (A4) and the definition of H(u) we have H(u) € L(L?, L?) and

(54)  av, Hw)w) < (m3 llall, +my Cro)lloll,lwll, ¥ v,we L.

From ¢ < oo, Lemma 2.1, and Lemma 2.2 we deduce that u € B, ||u — u[|; — 0 implies
|lu — ||, = 0. Using a(H (u) — H (%)) = x7(V*f(u) — V2 f(u))x; we obtain from (A2')
and (52) by a density argument in L?

(55) lim sup (w, (H(u) — H(u))w) = 0.
ueB welq
lu=all ;=0 ||w[],=1

For arbitrary w € L? we have with (OS)

(aw, H(@)w) = (aw,w) + (cws, o 'K’ (7)wy)
= (aw,wz) + (awr, wy) + (wr, K'(w)wr)

= (awz,wg) + (wg, V2 f(a)wy)

v

aollw 415 + eallwrlly > min {ao, e} wlly; = Cufuwll;.
Together with (55) this shows that for sufficiently small p > 0 we have

= Cl 2 q
(56) (ow, H(u)w) > 7”@0\]2 Vwe Ll

Hence, in the case ¢ = 2 the symmetric operator aH (u) € £(L?, L?) is bounded by (54)
and positive by (56). We therefore may apply the Lax-Milgram theorem (which in our
symmetric case is an immediate consequence of Riesz’s repesentation theorem), yield-
ing that H(u) is continuously invertible in £(L?, L?) with ||H (v)~"(,, < 2|l /Ci-
By Lemma 8.3 this implies (A3) for sufficiently small pg > 0. 7
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Next we assume ¢ > 2 and establish the second part of 2i). Let w € L? be

arbitrary. For ¢ > 0 which will be adjusted later we consider two cases: If ||w|, >
cl|wl], then by (56)

CCI Cl 2 ~ ~
— llwllzllwll, < —llwlly < (aw, Hw)w) < lofjomy ol wlly|| H (w)w]l,.

Whence,
|| (u)wl|
In the case ||w||, < c[|wl|, we compute
_ 1 B 1.
1 (w)wll, 2 flwll, = =l K (wwilly 2 lwll, = = 1K (wwill,.
Applying Lemma 2.2 we obtain with (A4) and suitable 8 € (0, 1)
- - 0 .- 1-6 - 0 —

1" (], < " (gl 1K (w)wrl] ™ < (1K (w) w5 (CrelJw]],) =
Obviously, (54) also holds with the left side replaced by [(v, V2f(u)w)|. Therefore,
(51) implies by a density argument together with (A2') and (A4) that

1" (w)vlly = V2 (w)v = avlly < (e + llall)lvll, = Colloll, Vv e L.
This gives
1" (wwrll, < (Crllwlly)* (Crollwll,)' =" < (Cre)'Crclwll,,

and choosing ¢ > 0 small enough we achieve
~ 1
[H (w)wll, > Slwll,

as long as [|wl|, < c[|w]|,. Since ¢ > 0 can be adjusted independently of w, i) is shown.
To prove ii), let (wg) C L? be arbitrary. Then

H (u)wy, Bvers (k — o0)
D wy — will, < O H(w)wy — Huwill, =0 (k,1 = o0)
= w B welt (k- oo) 2% Huw)wy D Au)w (k- o).

If the range of H (@) : L¢ — L7 is dense then H(a) is injective by i) and surjective
by ii). Thus, it has a continuous inverse by the open mapping theorem and i) shows
Hf{(ﬂ)_lﬂm < C'PTII. If in addition K’ : B C L®* — L(L%, L?) is continuous at u
then for ||u — ||, small enough H(u)~" € L£(L?, L) exists and (A3) is satisfied for
sufficiently small pgr > 0. O

The previous result shows that — at least in the case ¢ = 2 — the application of
Algorithm 5.17 to the class of problems considered in §8 leads to superlinear con-
vergence in a neighborhood of a point @ satisfying (OS). This is especially important
since formal sufficiency conditions of type (OS) are the usual starting point for proving
that a rapidly convergent local method meets the trial step requirements of a globally
convergent algorithm in a neighborhood of a local optimizer. Hence, it is important
that the local convergence theory can be established under a sufficiency condition that
is as weak as possible.
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10. Trust region globalization. The aim of this section is to show that near
a local optimizer satisfying (OS) Algorithm 5.17 produces admissible trial steps for
the globally convergent affine-scaling interior-point trust-region algorithm that we
proposed and analyzed in [24]. The trust-region globalization extends ideas of Coleman
and Li in [7] and uses the fact that u™ € L7 solves (6) for given u® € B° if and only if
u™ is a stationary point of the quadratic function ¥[u‘]: L? — IR,

(57) P10 ) 2 (=, g () + =, M () (= ),

where M (u) ™ d(u) ™ G () = X aguy<ep g () ()1 + V2 £(u).

Here and in the following we use the standard notation s for the trial steps al-
though it collides with the norm index occurring in (A2). There is no danger of am-
biguity. As shown in [24], a globally convergent algorithm can be obtained as follows:
Denote by uy € B° the current iterate. We compute a trial step s; as approximate
solution to the trust-region subproblem

(58) minimize ¥[ug](ug + s) subject to ug +s € B, ||s]|, < Ag.

This trial step is required to satisfy the

FrAcTION OF CAUCHY DECREASE CONDITION:

(D) e+ sk € B°, |lsll, < BoAx, and  fuel(ug + 5i) < Blul” , where

Ylup]® = B min {zb[uk](uk +5): s=—Tdigy, T>0, up+s € B, llsl, < Ak}

with fixed constants 89 > 0, 0 < 8 < 1, ¥ > 1. The step si is accepted, i.e. ugyq =
uk + S, if rg > 1, where 0 < 71 < 1 is fixed and the decrease ratio rp = r(ug, si) is
given by

r(ug, sp) & J(ug + sg) — flug) '
’ (5, 9(1e)) + (55, V2 (ug)55) /2

Otherwise, i.e. if r; < ny, the step is rejected: ugy; = ug. For our presentation it is
convenient to use an update rule for the trust-region radius Ay that is slightly different
from the one given in [24]. However, it is not hard to verify that all the convergence
results stated therein remain valid. In our update rule we fix 0 < 7y < 72 < 13 < 1,
0< Bovo <y <1< <73, Amin > 0, and choose

[vollskll,, vAk] if ri <y

AF ¢ [Y1A%, Ag] if g < rp <, Aoy = At if rr < my,
[AL, 72AL] if gy <rp<ms ' + max{Amin, AT} else.
[vo A, v3AL] else.

For a detailed formulation of the algorithm and its convergence properties we refer
o [24]. The theory developed therein (adapted to our update rule) states that under
assumption (A1) each accumulation point of the sequence (uy) satisfies the first-order
necessary optimality conditions (O1),(02), and, moreover, the second-order necessary
condition [24, Thm. 3.3, (03)] if (D) is replaced by a fraction of optimal decrease
condition.

Having in mind that trust-region methods for unconstrained problems inherit their
local convergence behavior from Newton’s method, it is natural to try to accelerate the
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above trust-region method by means of Algorithm 5.17. We combine both methods
as follows:

ALGORITHM 10.1 (TRUST-REGION INTERIOR-POINT NEWTON METHOD).

1. Choose Ag > Amnin, ug € B°.
2. For k=0,1,2,...
2.1 If d(ug)g(ur) = 0, STOP.
2.2 Perform a smoothing step (if necessary): uj = Sp (ug).
2.3 Compute a trial step by Algorithm 5.17: s = min{l,Ak/Hsfchq}siV,
where

Si\f = ui\;l_“z ) ui\;l = P[“i](“?ﬂ) ) u2+1 = UISC_G(UZ)_ld(“z)g(UISC)-
If s, satisfies (D) for ¥[u}] then goto step 2.5.

2.4 Compute a trial step that satisfies (D) for 1[u}], e.g. by a descent method
that starts with a line search along —d(u3)?g(uf).

2.5 Compute the decrease ratio ry = r(u},s;) and the new trust-region
radius Agyqr. If rp > n then set upyq = uj+s,. Otherwise set upqq = uj
and go to step 2.2.

Now suppose that one of the accumulation points @ € B of (uy) satisfies the second-
order sufficiency condition (OS). The question is: Does this globally convergent method
eventually turn into Algorithm 5.17 and thus inherit its superlinear convergence?

It is beyond the scope of this paper to answer this question in full generality, since
this would require to analyze the effect of the smoothing step on the global convergence
behavior of the trust-region algorithm. We try to find a reasonable compromise by
developing results that are rigorously applicable whenever the smoothing steps do not
affect the global convergence. This is certainly the case if the smoothing steps decrease
the objective function f; see Remark 8.2 in this context. Moreover, we require

ASSUMPTION.

(A6) u € Bis an accumulation point of (ux) at which (OS) holds. Moreover, condition
(A2) is satisfied with r = s = co.

As a first result we show that the quadratic model ?¥[u}] has a unique minimizer if
||uj — a||__ is sufficiently small. To show this, we first prove
LEMMA 10.2. Let (A6) hold. Then there are p > 0, Cpy > 0 such that

(v, M(u)v) > Carl|v||5 ¥V v € L?

for allw e B°, ||lu—ul,, <p.

Proof. We know that (01),(02) hold at @. Let I and A be defined as in (OS).
Since |g(4)| > ¢; a.e. on A, we get by (0O2) that d(z) = 0 a.e. on A and hence for
sufficiently small p > 0 and all v € B, ||u — 4|, < p

lg(u)| > ¢1/2 and c¢>d(u) < Lgp a.e. on A

by (A2) and Lemma 5.5, respectively. (A2) yields with a density argument in L? that
(51)—(53) also hold for L* replaced by L? and thus, possibly after reducing p, we have

(or, V2 f (wpvr) 2 Zllvil} Vv e L
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as long as u € B, ||u — ||, < p. Hence, for all v € L9
(v, M(u)v) = <UA, a(u) va )+ ( vr, a(u) vr
+(vr, V2 f(u)vr) + (va, V2 f (u) (201 4 va))

C1
>
~ 2Lap

2 C2 2 2
lvallz + 5 llozllz = erllvallz = 2¢rlvallzflorll,-

With the standard estimate

4e

; 2
r
ol

C2 2
2¢r||vallzllvrlly < - llorllz +

we arrive at

cq 402 9 €3 9
T CZ)HUA|!2+4HWHQ-

(v, M (u)v) > (

Now for p > 0 sufficiently small the assertion follows. O

THEOREM 10.3. Let (A3) and (A6) hold and (uy), (u3), (u}), (uy) be generated
by Algorithm 10.1. If p is sufficiently small and ||uf — || < p then uf , € L? is a
global minimizer of [u}] and

s n 1 n s s n s C e in2
(59)  wluil(uiyn) = —5(uiys — b, M(ul) (uiys = ud)) < == (I3 + [15']1)
s n s n C e — e 2
(60)  [uR)(P(ufy)) < Blufl(uf ) = =5 ls°lI3 + (er 07" Lyp) 571157l

with s* = uf, — P(u},,), s* = P(u},;) — uj. Moreover,

(61) Blul(ud) < maxte, 1— s, Yolug] (P(ufs)),
and hence

¢[uz](ufcv+1) max gt (_ (HSBHQ))
(€2) Sl - ST IO gy, ) )

Proof. Setting s = UZ-H — uj we have s = s + st and s°s' > 0 a.e. on 2. We
use the abbreviations dy, = d(u}), gr = g(u}), My = M(u}). According to step 3) in
Algorithm 5.17, we have Ms = —gi. Hence, u},, is a stationary point of ¥[u}] and,
therefore, its global minimum by Lemma 10.2. Moreover,

s n 1 C1]\4 e in2 C(M e in2
Pluf)(ufer) = — 55, Mas) < ~ L)1t 13 < = 573 + 1512,
To prove the second inequality we observe that for all z € Q with s(z)gr(z) < 0 and
di(z) < ¢(z) we have

s(z) =0 or |s'(z)] > dy(=).

In fact, if s°(z) # 0 then either s'(z) = b(z) — ui(z) > 0 or s'(z) = a(z) — ui(z) <
0. In the first case we have gx(z) < 0 and thus di(z) = b(z) — uj(z ' y
di(z) < e(z) < b(z) — ui(z) = s'(z). The second case enforces gi(z
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implies di.(z) = uf(z) — a(z) = |s'(z)] or di(z) < e(z) < ui(z) — a(z) = | .
Hence, we get with N = {z € Q : s(z)gr(z) <0} and J ={z € Q : dy(z) < ¢(z)}

9k|J 4
(3 22 > (550,00

Using this, we obtain

Plug) (upyy) = (s + ', gs) + = <s + 5, My(s" +5))
= [ (P(aks) +<stgk>+<sN\J7gk>+<s§w,gk>+<sfv, 12.47)
+(sive L2027 42 M)+ 600
> Il (uk+l>>+<sN\J7gk>+ 36 M) + (57, V2 (u)s)

We still need an estimate for <S§V\J7 gx). To this end, we use the inclusion N\ J C J°.
Since |dg(z) —d(u)(z)| < Lap and di(z) > ¢(z) > v on J© we have d(u)(z) > 0 a.e. on
J¢ for p > 0 small enough. (02) yields g(u)(z) =0 on J° and thus

[(sivnar 90| < llselly gellgr = 9(@)ll, < Lopp(I9) 2 lsc -

Furthermore, |gx(z)| < Lyp < v on J, for small p, which, since di(z) > v, requires
v < dy(2) < min {b(z) — ui(2), ui(z) — a(2)} < |s'(2)]-
Hence, by Lemma 2.4
p(J) < pfr € Q 1 |5 (@)] > v} < v,

We conclude [(s} 7, 9x)| < v L,pllsc||5 |5 ],- Therefore, (60) holds. Now

upyy = up = Plug)(uyy) — uf = max{§, 1= [|s'(| }(P(ufyy) = uf) = r(P(uy,) - up).
This implies (61), for
2

Hlud) (Plug] (ufy)) = (s 90) + 5

< 7 ((,00) + 6, Mus) ) = LU (Pluki)

<5i, Mksi>

where the inequality follows from 0 < 7 < 1 and <si, Mksi> > 0, see Lemma 10.2. Now
(59)-(61) and a straightforward calculation give (62). O
Let the assumptions of Theorem 5.12 hold. Using (30) we have for ||uj — 4|
small enough
lugsr = will, < Mgy = all, + [lug = ull, < (Cp([lug = ulleg) + Mg 00) Ui — ull

< Calluf -l
with C'a appropriately chosen. Now

(63) [lurys — uill, = I Plup](uiyr) = uill, < 1P(ufr) = uill, < Callui -l .
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Hence, for ||uj — u||_, small enough we have (cf. (D))
Ui\;_l € Bo? Hu{c\;-l - ulSch < ﬁOAmin-

Using this in Theorem 10.3 we can show that if ||s°||,/||s||, eventually remains small
enough then Algorithm 10.1 turns into the superlinearly convergent Algorithm 5.17.
In particular, this happens if no smoothing steps are required:

THEOREM 10.4. Let the assumptions of Theorem 10.3 as well as (C) and (S) hold.
Then there are p > 0, € > 0 such that if step k — 1 was accepted and |lu — ul|, < p,

then s, = sfcv and step k is accepted whenever

[wk1 — Puiid)lly

HP(UZH) - “2”2

holds. If there is Cy > 0 with [[uf — ul|, < Ci|lug — ull, then (64) is automatically
satisfied for ||uj — ul|, small enough.

Proof. Assume that step & — 1 was accepted and [luy —ul|, < p with p > 0

(64)

sufficiently small. We use s and s' as defined in Theorem 10.3. Since |ug — al| <
Csllug — ul|, by (S), we get with (63)

iy = uill, < lIs'll, < CaCsllux — ull, < CaCsp.

Hence, ufcv_H = uj + sfcv_l_l € B° with Hsff“q < Ampmin < Ay for p small enough. Choose
0 < € < 1 such that (1 —£)? > 3 with 8 given in (D). Possibly after reducing p we
achieve [|s'||, < €. For 0 < ¢ < 1 sufficiently small we have by (62) and (64)

Plui](ursr)
Ylug] (”Z-H)
Since wuj_, is the global minimizer of ¥[u;] by Theorem 10.3, s = Siv obviously
satisfies (D) for 9[uj].
Now assume [|luj, — uf|, < Cif|luj, — ul[,. Then Lemma 2.2 yields with § =2/¢

> (1-8)?%> 8.

_ —8 —n1-8 —0 —0 —1-6
Juf, — all, < [Jug — allylluf —all.” < C10Nug — allylluf — all,
and thus
_ 1-1 _ _
lluf, = ally, > Cy " °lluf — all, < Cslluf — ull,-

To show (64) for p small enough we use [|up,; — P(up, ), < |lupy; — ul|, and get

1P (ujyr) = willy 2 [Jug — ally = (1P (whi1) = whpally = llukgs — ull,
_ _ 3 _ _
2 Nl =ty = 2lwier = wlly 2 Follwk = wllog = 2w — ully-
Moreover, Theorem 5.12 yields
[uisr = ully < magllugyy —ull, < me COp(|lug — ull ) llug — ull -
Hence, for [[uj — u||__ sufficiently small we get
_ -1 -1
”'UZH - P(“Zﬂ)”g < ( Csllug, — “”oo B 2) < ( Cs _ 2)
1P (ugyr) —will, — \Cillugy, —ull, = \Cima  COp([lug — ull,)

and the last term is < ¢ for small p, since ®5(||uf — u||_ ) < ®5(C,p) tends to zero as
p— 0.0
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11. Application to a control problem. In this section we present numerical
results for the application of Algorithm 5.17 to a boundary control problem governed
by a nonlinear heat equation which is a simplified model for the heating of a probe
in a kiln. Let Q< (0,1) denote the spatial domain with z = 0 at the boundary and
z =1 at the inside of the probe. The temperature y(z,t), (z,t) € Q x (0,7T) L Qr of

the probe satisfies the nonlinear heat equation

T(W)yr — (K(Y)Ys)e = h on Qr,
(65) “(9(07t))yx(07t) = C(y(07t) - u(t)) 4 € (07T)7
k(y(1,1))y=(1,t) = 0 te (0,7),

y(2,0) = yo(z) zeQ.

where yg : Q — R is the initial temperature, 7, s : IR — IR denote the specific heat
capacity and the heat conduction, respectively, h : Q7 — IR is a source term, { € R
a given scalar and » : (0,7") — IR the control. For consistency with our notations let
Q=(0,7).

The control u shall be determined in such a way that the temperature y(1,¢) inside
the probe follows a given temperature profile y;(¢). Since it is well known that this
nonlinear inverse heat conduction problem is ill posed, we add a regularization in the
control space and choose as objective function

T = 5 [ (60,0 - va))? + au(?) a

with yg € L>((0,T)). The problem was considered in [5]. Let V = HYQ), V' its
dual, H = L*(Q) and W (0, 7)< {y € L?(0,T;V) : y; € L*(0,T;V")}, equipped with
the norm [|y|ly (o 1) = il 220,75y + Vel z2(0,750)- 1t is well known that W(0,7) is
a Hilbert space and that the embedding VVEO7 T)— C(0,T; H) is continuous. Under

the assumption that x, 7 € C(IR) with
0<k <K(s)<kKg, 0<m<7(s)<m VseR

it is shown in [5] that for all h € L%(0,T; H),yo € H, and u € L2((0,7T)) there exists
a solution y € W(0,7') of the state equation (65) which satisfies the stability estimate

(66) lollwiory <€ (IAllzaosan + lully + lvoll)

Uniqueness is proven under the additional assumption y, € L*=(0,7;L"(Q)), r > 2,
and k,7 € C1(IR). Furthermore, it was shown that for o > 0 there exists an optimal
solution u € L%(Q) of the control problem

(67) minimize J(y,u) subject to y € W(0,T), u € L*() satisfy (65).

With the lower and upper bounds a,b € L>(), b —a > v > 0, we introduce the
additional box constraints

(68) ueBE {a<u<bl).

Since B is a closed bounded convex subset of L?(f2), exactly the same arguments as in
[5] can be used to prove the existence of an optimal control # € B for @ > 0. Assuming
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that for v € B the solution y = y(u) to (65) is unique, we can define the objective
function f(u) = J(y(u),u) for which (67), (68) is equivalent to (P).

For the rest of this paragraph assume that & and 7 are constant. Then the
above existence and stability result is well known and it implies that the operator
u € L?(Q) — y(1,.) € L) is completely continuous for 2 < ¢ < 4: We use
the symbol '’ for continuous and <<’ for compact embeddings. (66) shows the
continuity of u € L*(Q) — y € W(0,T). To complete the argument we show that
y e W(0,T) — y(1,.) € L1() is compact for 1 < ¢ < 4. Let 1/2 < 8 < © < 1. Since
Ve HO(Q)—V', we have by a Lions lemma that W (0, 7)< L?(0,7; H®(Q)) (see
[19, Thm. 5.1]). Moreover, from the interpolation result H?(Q) = [H, HG(Q)]€/® it
can be deduced that

1-6/0 6/0
1+ e roo,rsmoay < C Il o ranl - U5aco oo o)

Hence, W(0,T)—L>(0,T;H) and W (0,T)—=L2(0,T; H®(Q)) yield the compact
embedding W (0, T)—=—L2®/%(0, T; H%(Q)). Finally, since H%(Q)—C([0,1]), we con-
clude that y € W(0,T) — y(1,.) € L?®/9(Q) is compact. Now (66) shows the
complete continuity of u € L*(Q) — y(1,.) € LY Q) for 1 < ¢ < 4. Hence,
u € L?(Q) — J(y(u), u) is Fréchet differentiable and (67) is ill posed for @ = 0.

By standard results (see [20]) the gradient representation ¢ of u — J(y(u), u)
w.r.t. the inner product on L%(Q) is given by g(u) = au+ K (u), where K (u) = p(1,.)
and the adjoint state p satisfies

Pt + Pex =0 on Qr,
(69) p(0,) =0 te(0,7),
px(l,t) = a(y(lvt) - yd(t) —p(l,t)) te (O7T)7
p(z,T) =0 TEQR

in the weak sense. Using Green’s function, p is given by an integral equation of
Volterra type with weakly singular kernel from which one can deduce that (69) defines
a completely continuous affine linear mapping y(1,.) € L?(Q) — C(Qr) for all
q > 2 (see e.g. [22]). Combining this with the previous considerations we obtain the
complete continuity of the affine linear mapping v € L?(Q) — K (u) = p(1,.) € C(Q).
Obviously, the Fréchet-derivative K’ of K : L?(Q) — C(fQ) exists and is given by the
compact linear operator K'(u) : v € L*(Q) — K(v) — K(0) € C(Q2). We conclude
that the assumptions (A1), (A2') and (A4) are satisfied for ¢ = 2, s = r = co and the
results of §8 can be applied.

Since the same regularity properties can also be shown for the state equation in
the case h =0, yo € C(Q), we get as a byproduct that under these assumptions on h
and yo the mapping u € L1(Q) — y € C(Qr) is completely continuous for ¢ > 2.

While similar results can be shown for nonlinear boundary conditions (cf. [22],
[15], [17]), a differentiability result for the nonlinear problem (67) seems not to be
available. Since (67) is of importance in applications, e.g. the sterilization of canned
food, we nevertheless present numerical results for the nonlinear problems and content
ourselves with the complete justification of our assumptions for the case of constant
k and T.

11.1. Discretization. As in [12], [18] we use the discretization of (67) proposed
in [5]. For the space discretization we approximate V in the variational formulation
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of (65) by the space Va, of continuous functions that are piecewise linear on the
intervals [tAz, (i + 1)Az], Az “1/N,, i =0,...,Ny, — 1. Since the time differenti-
ation in the variational form of (65) is linear with respect to the transformed state
o(y) S fJ 7(&) d¢, a discontinuous Galerkin method w.r.t. ¢ is used where L2(0,7;V)
is approximated by the space Ya of Va,-valued functions that are piecewise constant
on (kAt, (k+1)At], At /Ny k=0,...,N;—1 (the same discretization is obtained
by applying backward Euler). This leads in a natural way to the approximation of
h and yy by their L2-projection onto Yo and Va,, respectively. The discrete control
space Un; consists of piecewise constant functions on the same partition of (0,77 and
yg is approximated by its L? projection onto the same space. For details we refer to
(5], [12], [15].

It was shown in [5] that the resulting implicit scheme admits a unique solution
for At/Az? < X\ < (r9/K1 — 71 /K2) "1 /6 that converges to a solution of (65) as At, Az
tend to zero.

11.2. Numerical Tests. For the application of Algorithm 5.17 we use Example
1 of [18], see also [12] : T'=10.5, ( =1 and

T(y) =44y, ky) =4—vy, yalt) =2 — e, yo(z) =2+ cosmz

h(z,t) = (=6 +27%) e " cosmz + 72 e — (14 27%) e cos’ 7z

Then the optimal control for & = 0 without bound constraints is u*(f) = 2+ e~" with
associated state y*(z,t) = 2+ e 'coswz. The regularization parameter was set to
o = 107%. The L? gradient representation of f(u) = J(y(u),u) in Ux was computed
via the discrete adjoint equation, cf. [5]. Since — at least in the case of constant s
and 7 — V2f(u) is a compact perturbation of al, a quasi-Newton approximation of
V2f(u) like BFGS or PSB is efficient also in the L%-Hilbert space setting, see [10],
[14]. Thus, we may expect that a BFGS- or PSB-approximation of the Hessian in
the discrete model performs nearly independent of the discretization, cf. [14] for the
mesh-independence of BFGS. For the numerical tests Algorithm 5.17 was embedded
in the trust-region framework of [24] as described in Algorithm 10.1. We took a L%
trust-region and used an extension of the Steihaug CG-iteration in the scaled variables
3 d;ls to compute an approximate solution to (58) satisfying the decrease condition
(D): Let u{ be the current iterate and By the approximation of VZf(us). A CG-
iteration in the scaled variables § is started. If the process leaves the trust-region or B
or if negative curvature! is detected, Steihaug’s method yields s§¥ and s} = os7" is a
candidate for step 2.4 in Algorithm 10.1. Here ¢ € (0, 1] is chosen maximal such that
ui 4+ 1.0005 s} € B. In contrast to Steihaug’s algorithm we continue the CG-iteration
as long as no negative curvature is detected even if it leaves the trust-region or B until
an inexact unconstrained minimizer uj + s} of [u}] with ||dVep[ug](uf + s7)|l, <
107%|dggrl|, is found. Then uf + s} is an approximation for w7, in Algorithm 10.1
with V2 f(u3) replaced by By. If the CG-iteration left the trust-region or B we take
52 = min (Ak/HstVHQ, 1) s with the projected step si¥ = P[u$](uf+s?)—uj according
to Algorithm 10.1 and s} = min(Ag/[|s7]],,1)s; with s obtained from s? by the
stepsize rule 2.4" as further candidates. In (35) and 2.4’ we took £ = 0.99995. Now we

! This does not apply to BFGS-approximations
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set up41 = uj + sp where s, = s};, i € {1,2,3} is the trial step that provides the best
reduction of ¥[u}]. As smoothing step in 2.2 of Algorithm 10.1 we use (cf. §8)

Go(y et ) Plul(u = a~lg(u)) ifk>1,u=uy, and |lug —uf || > 3llup — ui_,ll,,
k() = u else.

For our numerical results we used a BFGS-approximation of the Hessian with By = al.
In Algorithm 10.1 we set 9 =2, Ag =1, 751 = 0.1, 52 = 0.75, 53 = 0.9 and ~; = 0.5,
v2 = 73 = 2. The stopping criterion was ||d(uf)g(u3)||, < 107'°. The upper and lower
bounds for the control were a = —1000, b = 0.8 and we used ¢ = 0.075 min{b— a, 0.8}

in the definiton of the discrete scaling function d. The optimization was started with
Uy = 0.05.

Proj. & Smooth.
B lstlll

Stepsize rule

Projection
F

Istlll, | i pig8ll}
Ny =100 N =20

[ Idisi9i ] EIR

grad-evals: 8

grad-evals: 8

grad-evals: 13

0 || 2.041E-01 | 3.128E—-06 | 2.041E-01 | 3.128E—06 || 2.041E-01 | 3.128E—-06
1 || 4.093E-01 | 1.752E—06 || 4.093E—01 | 1.752E—06 | 4.093E—01 | 1.752E—-06
2 || 3.381E-01 | 1.304E—07 || 3.381E—-01 | 1.304E-07 1.366E—01 | 1.146E—-06
3 || 7.382E—-02 | 4.110E—10* || 7.381E—02 | 9.494E—09 || 6.285E—02 | 8.221E—07
4 || 2.821E-04 | 1.984E—12* || 1.590E—02 | 1.931E—09 || 7.082E—-02 | 5.951E—-07
5 6.501E-03 | 3.038E—10 | 7.028E—02 | 4.029E—-07
6 1.634E—-03 | 1.908E—11 6.683E—-02 | 2.379E-07
7 7.704E-02 | 6.209E-08
8 1.849E-02 | 1.211E—-08
9 9.845E—03 | 1.640E-09
10 3.251E-03 | 2.489E-10
11 1.790E-03 | 4.387E—-11

N, =400 N, =80
grad-evals: 9

grad-evals: 8 grad-evals: 14

Vsi =ujyy —ul, di =d(u}), gi =g(u) * Smoothing occurred, ie. uj,, # up41

TaB. 3: Results for N; = 100, N, = 20

Table 3 shows [|uf,, — ui[|_ and the norm [|d(uf,)g(ugy,)[|, of the scaled gradient
(uj = wy if no smoothing step occurs) for three different algorithms. The first al-
gorithm is as described above. It uses also the projection step si as candidate for
the trial step and performs a smoothing step if necessary (see above). The second
algorithm is the same but without smoothing. The third algorithm is the same as
the second but uses only the trial steps s}, s} and not the projected step s? that is
suggested by our investigations. There were no rejected trial steps in all three algo-
rithms. Except for the first two iterations the projected step si was chosen by the
first two algorithms. Obviously the first algorithm provides the fastest convergence.
But also if the smoothing steps are omitted the usage of the projected step s? leads
to a significant acceleration of the local convergence in comparison to a stepsize-based
algorithm. To demonstrate that the iteration numbers are nearly independent of the
mesh-size, we list also the number of gradient evaluations for N; = 400, N, = 80.
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Conclusions. We have developed an affine-scaling interior-point Newton algo-
rithm for bound-constrained minimization subject to pointwise bounds in LP-space.
The method is an extension of the algorithms by Coleman and Li [6], [7] for finite-
dimensional problems. Our infinite-dimensional framework raised a couple of difficul-
ties which are not present in the finite-dimensional case. A careful analysis led to
several modifications of the original algorithm which enabled us to prove superlinear
convergence for the resulting method. Under a slightly stronger strict complemen-
tarity condition we proved convergence with Q-rate >1. Our main modifications are
the introduction of a smoothing step and the implementation of the back-transport
by a projection instead of the usual stepsize rule. The smoothing step takes care of
the fact that, in general, we only can show that for suitable ¢ < s the affine-scaling
Newton step produces a point which is much closer to the solution in L? (but not
necessarily in L®) than the current iterate was in L®. The necessity of a smoothing
step was also observed by Kelley and Sachs [15] in their study on projected Newton
methods. The back-transport is required because the solution of the affine-scaling
Newton equation may lie outside of the feasible set B. In the finite-dimensional case
one can prove that a stepsize rule to enforce strict feasibility generates stepsizes that
converge to one. In our infinite-dimensional setting, however, this is no longer true as
we have demonstrated in Example 6.3. Therefore, we have defined a back-transport
on the basis of the pointwise projection onto B. We have discussed how smoothing
steps can be obtained for a class of regularized problems. Moreover, we have shown
that our theory is applicable under the assumptions used by Kelley and Sachs [15] as
well as those by Dunn and Tian [9]. We have demonstrated that our algorithm can
be used as accelerator for the class of globally convergent trust-region interior-point
methods introduced in [24]. The good performance of this algorithm is documented
by our numerical results for the boundary control of a heating process.
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