Runtime Oriented HPF
Compilation

Xitaoming L1

CRPC-TR97694
February 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

submitted May 1997

Runtime Oriented HPF Compilation
— Lecture notes for CIS/CPS 600, Fall 1996

Xiaoming Li !

Northeast Parallel Architectures Center
at Syracuse University
111 College Place
Syracuse, NY 1524/

lxm@npac.syr.edu

February 13, 1997

1Visiting scholar from Harbin Institute of Technology, China

Contents

1.1 “Design and implementation”
1.2 “Data parallel”
1.2.1 Data parallel applications
1.2.2 Data parallel programming languages
1.2.3 Data parallel computation models .
1.3 “Compilation systems”
1.4 Specific topics to be covered
1.4.1 Runtime system design
1.4.2 Program transformations

Course title explained: an overview of the course

1.4.3 Introduction to some compiler construction tools

2 An introduction to HPF language
2.1 A brief history
2.2 Language overview
2.2.1 Free source form
2.2.2 Array operations
2.2.3 FORALL statement and construct .
2.2.4 More intrinsics
2.2.5 Pointers, allocatables
2.2.6 User-defined types, operators

3 An introduction to MPI
3.1 A brief history
3.2 Atasteof MPI
3.2.1 Basic MPI functions
3.2.2 A “real” program

4 A first glance of SPMD node programs
4.1 Some understanding of parallel languages .
4.2 The impact of parallel language on compilers
4.2.1 A glance of communication detection

O =1 OO CTLW NN = = =

10
10
11
11
12
14
14
15
16

19
19
19
20
24

10

4.2.2 Some high level issues in node program generation
4.3 How a node program may look like 7

Data distribution model

5.1 The impact of data distribution directives on compilers .
5.2 An alignment-distribution arithmetic
5.3 How do we determine local rank and shape of an array 7 .

Distributed array descriptor (DAD)

6.1 How do we pass an array to a subroutine in FORTRAN 77 7

6.2 DesignofaDAD
6.2.1 What should bein DAD?
6.2.2 DAD constructor algorithms
6.2.3 Extended Euclidean Algorithm

6.3 DAD implementation,

Runtime functions

7.1 Interface functionsto DAD
7.2 Index conversion functions
7.3 Data movement functions
7.4 Other functions
7.5 Examples of node programs with the runtime functions .
7.6 Projectsetting oL,

Communication detection and insertion
8.1 Motivating examples
8.2 A theory of communication detection

Writing a compiler for minihpf

9.1 The minihpf language
9.2 OQutline of minihpf compiler code
9.3 Developing a translation scheme
9.4 What else to be worried about 7
9.5 The interface — information in the record
9.6 Specification part oL
9.7 Initialization and finishing
9.8 Calling detect_comm() in analyze()
9.9 Minihpf specification oL oL

Compiler construction tools

10.1 An overview of HPFfe
10.1.1 The intended users
10.1.2 Macro operations of HPFfe

ii

9

36

45
45
46
48

56
56
58
59
64
66
67

78
78
82

920
90
91
92
96
96
98
100
101
101

10.2 Installation e e 106

10.3 A skeleton of applications utilizing HPFfe 108
10.4 External interface oo 109
10.4.1 How to read the output of dumpdep. 109

10.4.2 The interface functions Lo 112

10.5 Internal interface L 118
10.6 A sample session oL oL 123
10.6.1 A sample of using xsageop 123

10.6.2 A sample of using basicop 126

11 Issues in dealing with multidimensional arrays 128
11.1 Dimension match requirement Lo Lo 128
11.2 Rank-reduced sectioning 131
11.3 Subgrid of a processor grid Lo 133
11.4 Broadcasting/replication oL 137
12 Compiling irregular problems 140
12.1 What are irregular problems 7. Lo oL 140
12.2 Recognizing compilation issues by examples 143
12.2.1 Brute-force approach 0. 144

12.2.2 Try todo better 145

12.2.3 One step further, “real stuff” 000000, 149

13 Concluding remarks 152

iii

List of Figures

1.1
1.2
1.3
1.4

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2

6.1

10.1
10.2
10.3
10.4

11.1

12.1
12.2

Data parallel computation models 4
Architecture of a data parallel compilation system 5
A possible transformation map for explicit parallelism 8
Modules and operations of HPFfe L. 9
HPF D Fortran 95D FORTRANTT i 11
A view of message passing oo e 22
Partition of MPI message space 0. 23
Useof ghost area 25
Explicit parallelism in FORTRAN 77! 31
Parallel assignment in Fortran 95 31
Aviewofan ADscheme 50
Locate global element in local array 53
A practical distributed array descriptor 64
Basic control structure in AST of HPFfe 119
Low level node structure in AST of HPFfe 120
Symbol node structure in HPFfe 121
Hash table in HPFfe 122
Effect of rank reduced sectioning L. 133
An irregular computation grapho 141
An unstructured mesh L 142

iv

List of Tables

4.1 Assignment of global elements for CYCLIC distribution 41
5.1 TIlustration of alignment L. 48
5.2 Mlustration of distribution L 0o oL 49
5.3 Determine local shape from AD scheme 50
10.1 Columns in the BIF NODES section 113

Preface

As title of this manuscript suggested, materials presented here are from my lecture notes for
an experimental graduate course, “Data Parallel Compilation Systems”, offered in Syracuse
University in Fall, 1996.

Teaching a parallel compiler course might be a challenge, especially when the instructor
tries to deliver something that is being developed in an ongoing R&D project. Indeed,
much of the materials covered in this course reflect how we have being doing for the PCRC
(Parallel Compiler Runtime Consortium) project supported by an ARPA contract. Turning
engineering practice into teachable materials is non trivial.

HPF has been around for a while. One of good things about HPF is it has an elegant data
distribution model, which is ideal for teaching data parallel compiler courses.

Depending on where to draw the line between compiler and runtime, there are different
approaches to building a data parallel compilation system. We emphasize runtime oriented
approach, which makes this course different from typical parallel compiler courses.

Twelve 2.5 hour lectures had been delivered into this course. This document is then
organized in twelve chapters accordingly.

Chapter 1 gives an overview of this course. Since this is considered as an experimental
course, a thorough explanation on topics to be covered is given in the first lecture, together
with what are expected from students.

Chapter 2 is an introduction to HPF language, since it will be our primary reference of
language when talking about data parallel compilation systems. No effort is made to give
an extensive discussion on this language.

Chapter 3 is an introduction to MPI, since it will be our underline communication system
for building runtime system, an indispensable component of a data parallel compilation
system.

Chapter 4 provides a quick tour on what we mean by SPMD node programs. Purpose of
this lecture is to allow students to have an early understanding on what a compiler should
produce, and how the compiler interplays with runtime.

Chapter 5 discusses an HPF-like data distribution model in detail. In particular, local
storage allocation schemes and global/local index mappings are studied under a notion of
alignment-distribution arithmetic.

Chapter 6 is a thorough discussion on design of a distributed array descriptor, DAD for
short.

vi

Chapter 7 introduces basic runtime functions for a data parallel compilation system
supporting regular data distributions and data access patterns. Chapters 6 and 7 are
sisters, together they describe an interface between compiler and runtime.

Chapter 8 develops a technique for determining communication requirement between
two distributed regular array (section) references. In particular, we classify the communi-
cation requirement into three kinds: no communication, shift communication, and remap
communication. Conditions for each of the kinds are derived. These conditions are tested
in compile time in order to generate efficient node program.

Chapter 9 is a discussion on compilation process. Since students are expected to com-
plete a small operational compilation system as a term project, this discussion is focused
on a particular scheme associated with a particular subset of HPF, minihpf, the target of
the project.

Chapter 10 includes an overview for some compiler construction tools, HPFfe, Sage++,
and SUIF. This lecture is intended to help students to do the project, as well as giving them
some idea on what kind of tools are available for compiler constructions. Since they have
better working knowledge with some of the tools, Erol Akarsu and Guansong Zhang gave
an introduction on SUIF and Sage++, respectively. I thank them for the help.

Chapter 11 addresses compilation issues related to multidimensional arrays, in partic-
ular, the problems we encounter when dealing with permuted dimensions, rank-reduced
sectioning, etc.

Chapter 12 is a primitive discussion on some of the issues related to compiling irregular
problems.

Beyond the lecture notes, I conclude with some remarks on this kind of course, and give
some thoughts for further improvement.

About fonts used in this document, although it’s hard to keep consistency, the following
is more or less practiced. Typewriter font is used for things having meaning related to
“constant”, such as MPI constants, a piece of program code, etc.; emphasized font is for
emphasis of some idea or the first occurrence of some terms. Nevertheless, another way
to see the use of emphasized font and typewriter font is that they are used for any non
English words first (or whenever) appearing in ordinary paragraphs. Bold font is for
introduction of important notion or concept.

I thank Don Leskiw for proposing the idea of my teaching this course, thank professor
Geoffrey Fox, director of NPAC, and professor Carlos Hartmann, director of CIS Depart-
ment for supporting and approving this experimentation. I also thank the three students
who had survived through this course, Grant Ingersoll, Xinying Li, and Erol Akarsu. At
last but not least, discussions with my research fellows in Parallel Software Systems Group
of NPAC, Bryan Carpenter, James Cowie, Guansong Zhang, and Yuhong Wen are always
invaluable.

Xiaoming Li

Syracuse, New York
January 31, 1997.

vii

Chapter 1

Course title explained: an
overview of the course

The course is designated as “Data Parallel Compilation Systems — Design and
Implementation”, offered in Syracuse University in Fall, 1996, with code CIS/CPS 600.

Since this is the first time such a course is offered in Syracuse (and I'm doing it the first
time), I consider it experimental. Thus, the first lecture is devoted to an explanation of the
course. The explanation is around the three phrases in the title: design and implementation,
data parallel, and compilation systems.

1.1 “Design and implementation”

The course is conceived to bias to construction of data parallel compilation systems, instead
of some broad coverage of various analysis and program transformation theories/techniques
in parallel compiler construction.

As a designed outcome, a student finished with this course is expected to have some
working knowledge of a data parallel compilation system, from system organization and
implementation point of view. He/she should be confident to be an active person in a team
to develop a data parallel compilation system. He is not expected, out of this course, to
have broad/deep knowledge on contemporary parallel compiler research results.

As a measure in this spirit, students are expected to do a project to build some primitive
data parallel compilation system in this course. This project will count 70% towards final
grade.

This sets basic tone of the materials to be delivered.

1.2 “Data parallel”

The term data parallel or data parallelism has been used in various contexts. Roughly, we
often see them as in

e data parallel applications
e data parallel programming languages

e data parallel computation models

I don’t know any more formal and well accepted definition for data parallelism than the
following from HPF handbook [6], which should more or less convey the message.

The same operation may be applied to many elements of a data object at the
same time.

1.2.1 Data parallel applications

Classical references to data parallel applications include
e Partial differential equation (PDE) solvers
e Image processing

e Linear algebra operations
Typical “non” data parallel applications may be
e Text processing, such as many web applications.

e Many Al applications, such as games.

Data parallel applications usually exist as core components of higher level applications,
such as

e Pattern recognition usually needs to apply image processing techniques as low level
process.

e Manufacturing process simulation, such as chemical plants, usually consists of a set
of coordinated data parallel components.

1.2.2 Data parallel programming languages
The following is a reasonable characterization for data parallel languages.

Computer languages that provide facilities for programmer to express data par-
allelism in an application.

For instance, they should provide some kind of data parallel operation constructs, such
as in Fortran 95,

REAL A(100), B(100)
A=B+ 2

which usually means all elements of A are updated in parallel by corresponding elements of
B plus 2. Another example in Fortran 95 is,

FORALL (i = 1:100) A(i) = B(i) + i

Once again, the 100 elements of A are supposed to get updated in parallel.
HPF (High Performance Fortran) provides more ways for expressing data parallelism,
such as,

'HPF$ INDEPENDENT
DO i =1, 100
A(i) = B(i) + 1
END DO

which claims that the 100 iterations can be executed in any order — a stronger assertion
than in parallel.

We note that ordinary DO loops in FORTRAN 77 is not a parallel operation construct,
though people may exploit data parallelism out of it.

One more example in C* (TMC, connection machines),

shape [4][8]Aname; /* specify a shape of rank 2 */
int:Aname a, b; /* define two parallel variables of certain shape */
a="b+ 2; /* parallel assignment statement */

A data parallel programming language may also provide some data mechanism for pro-
grammer to tell compiler how data objects are best distributed from application point of
view. For example in HPF,

PROCESSORS P(4)
DISTRIBUTE A(BLOCK) ONTO P

means to distribute elements of array A onto 4 processors in a blocky fashion.

1.2.3 Data parallel computation models

There are two basic models for data parallel computation. Architectural concept is depicted
as in Figure 1.1.

e Host-node (master/slave) — host controls/coordinates program execution, invokes/suspends
node processors’ activities. Host and nodes usually run different programs.

e SPMD — Single Program Multiple Data — the same program runs in every processor.
Processors coordinate themselves via the program.

CONNECTIONS CONNECTIONS

Figure 1.1: Data parallel computation models

HOST

The following skeletons represent a general framework of host-node model in some ex-
isting systems. As we can see, they are ‘isomorphic’, though from two totally different
systems.

Host-node model in Express

Host program Node program
invoke node program receive data

(KXLOAD) from host (KXREAD)
send data to node perform computation
program (KXWRIT) together with other

e nodes (KXCOMB,etc)
collect result from N
node program (KXREAD) send result to host
(KXWRIT)

Master/slave model in PVM

Master program Slave program
invoke slave program receive data

(pvm_spawn) from host (pvm_recv)
send data to node do some work on the data
program (pvm_send) together with other

e nodes (pvm_reduce, etc)
collect result from N
node program (pvm_recv) send result to host
(pvm_send)

We will restrict our discussions to SPMD for rest of the course.

\‘ : 2
‘. 2
HPF ' . Lﬁ Fr7 0 , =
programs | Compiler ?ompller Linker 2
r/' o ~o__) ¢ ¢ r%

runtime MRl other

/' O L N Y T

S T

Figure 1.2: Architecture of a data parallel compilation system

1.3 “Compilation systems”

We want to distinguish something from compiler. For lack of a better term, compilation
system is picked. The message is: a compilation system includes two equally important
components , compiler and supporting library, in particular, the runtime.

In principle, code in runtime may be part of compiler’s output, presumably implying
higher performance. This view despises importance of runtime, which is not what we want
to take. We want to emphasize the importance of runtime in a compilation system. The
biggest advantage of placing runtime (in general, library support) in a distinct position
perhaps is it offers a divide-conquer strategy for effective implementation of programming
language systems. This strategy allows a system to be constructed in a less painful (even
joyful) process, which is especially needed for academic research projects. Technically,
strong library support turns many tedious expression manipulations during compile time
into value calculation at runtime. We also see this is an appropriate approach to teaching
an introductory course like this one.

With this approach on mind, we may view the construction of a data parallel compilation
system as a process of understanding and implementing the following three interfaces, shown
as in Figure 1.2.

1. The language.

This is the interface between compiler writer and application programs. We assume
some kind of HPF language as our target in this course. (Thus, we’ll spend one lecture
introducing HPF'.)

2. The underline communication system that runtime is based on.

This is an interface used by runtime writer to implement various data movement
functions. We assume a subset of MPI (Message Passing Interface) for this course.
(Thus, we’ll spend another lecture for MPI.)

3. The architecture of node programs.

Among things a compiler has to take care to produce operational node programs,
there is an interface both compiler and runtime writers must observe.

This interface will be the focus point of the course. It generally contains two different
aspects, namely data interface and functional interface. Data interface specifies how
compiler tells runtime functions about distributed data objects; functional interface
is a specification of calling sequences to runtime that compiler must produce in the
node program in order to accomplish certain functions. Once compiler conforms to
the interface, runtime should produce expected result in return.

1.4 Specific topics to be covered

We assume compiler translates HPF program into SPMD (Single Program Multiple Data)
type node program in FORTRAN 77. This kind of source-to-source translation scheme is
not only popular in academic environment, but also found in some commercial systems,
such as PGI HPF compiler, NAG Fortran 90 compiler.

Besides introductions to HPF and MPI, the course will be stretched over the following
three dimensions.

1.4.1 Runtime system design

What’s runtime 7 Yes, we’ve been heard it a lot in different context, such as runtime envi-
ronment, Tuntime system, runtime functions, or simply runtime, for both parallel sequential
language systems. Once again, there seems no precise definition. For us, we view runtime
as a set of procedures and some environment data, existing in a form of a library, callable
from SPMD node programs.

So, what are in a runtime ? In general, this is design/implementation dependent. Nev-
ertheless, we’ll see the following in most implementations.

e Distributed data management functions.

An array is distributed onto processor grid in an HPF program. Each processor
gets part of that array. Since data elements in an array are usually related in the
computation defined in HPF program, a processor running a node program should
know how the array is distributed, in particular, what part of the array it owns. We’ll
define something called distributed array descriptor, or DAD for short, to carry the
information. Runtime will have some functions to create and modify the DAD.

e Global/local index mapping functions.

HPF arrays are declared in a global index space, and distributed to processors, in
terms of local arrays in node program. The mappings from global index to local index
and from local index to global index are basic operations a compiler must perform in

generating node programs. Some functions are provided in runtime to facilitate these
operations.

e Data movement functions.

We’ll discuss collective communication routines only. By collective communication,
we mean all processor participate in the operation, though may play different roles. A
typical collective communication is broadcasting, where one sends and others receive.

e Miscellaneous, including initialization, etc.

1.4.2 Program transformations

Compiler’s job is to perform program transformation. In our case, it turns an HPF program
to an SPMD node program, such that a collective execution of multiple copies of the node
program achieves the same effect as specified in the HPF program.

One major aspect of the transformation is to deal with parallelism. There are two
types of parallelism. One is ezplicit parallelism, which is expressed by programmer in
parallel programming language such as array assignment statements in Fortran 95; the other
is @mplicit parallelism, which is not expressed in program but discovered by parallelizing
compiler. We shall mainly address explicit parallelism in this course. In particular, we
identify the following 9 language constructs in HPF that give rise to explicit parallelism.

- Array (section) assignment statement;

- WHERE statement (conditional array assignment);
- WHERE construct;

- FORALL statement;

- FORALL construct;

- INDEPENDENT FORALL;

- INDEPENDENT DO loop;

- Elemental intrinsics;

- Transformational intrinsics.

Among them, FORALL statement is of key importance, since others may be equivalently
(or with some possible loss in performance) transformed to it. Figure 1.3 shows a suggested
transformation map among the 9 language elements.

Also, array assignment is the most popular language features used in typical HPF pro-
grams. Thus, our emphasis will be placed on these two items.

Another aspect of the transformation is to deal with different types of data access pat-
terns, classified as regular and irreqular ones. By regular problem, we mean array elements
are designated by direct index variables, such as A(i) and A(2*i+1). By irregular problem,
we mean array elements are indexed by another array (must be of rank 1, though), indirec-
tion array, such as A(V) and A(V(i)+j), where V is some integer array. We’'ll discuss both
of them, but with emphasis on regular one.

Where array
construct expression
X
Forall
indep. |
. :

Transform. i Runtime
intrinsics

Do indep
loop
Elemental R
intrinsics DO loop

Figure 1.3: A possible transformation map for explicit parallelism

IR
rendering

| Syntax Semantics
parsing checking

Unparsing|—~

,,

Figure 1.4: Modules and operations of HPFfe

As identified previously, the third interface, namely node program structure, will be our
focus point. This implies our discussion will be ‘node program oriented’, i.e., we will often
show how a node program segment looks like, corresponding to some HPF statement. This
approach is made feasible largely due to our emphasis on runtime support; otherwise the
node program would be too messy to be discussed in class. This approach should enable
students to readily write down an operational node program manually for a given HPF
program, once he understands the interface.

1.4.3 Introduction to some compiler construction tools

As mentioned in section 1.1, students are expected to do a project in this course. This
project will contain implementation of a set of runtime functions as well as compiler trans-
formations needed for a tiny subset of HPF language, called minihpf.

Students will be exposed to some contemporary compiler construction tools and infras-
tructures. This will be directly helpful for them to do the project, as well as to gain some
knowledge on what kinds of tools available out there. More specifically, we’ll spend some
time to discuss

e HPFfe, a full featured HPF 1.0 front-end constructed by a joint effort among NPAC
at Syracuse University, PACT Lab at Harbin Institute of Technology of China, and
PACT Group at Peking University of China.

There are four modules in HPFfe as shown in Figure 1.4, plus a class library for
writing compiler transformations.

e Sage++, a C++ class library for facilitating program transformation, built by Indiana
University, which now can work in concert with HPFfe.

e SUIF, a general compiler construction infrastructure built by Stanford University.

Chapter 2

An introduction to HPF language

As mentioned in the first lecture, High Performance Fortran (HPF) type of language will
be the object of our data parallel compilation system. We discuss HPF 1.0 in this lecture,
assuming moderate knowledge of FORTRAN 77. The purpose of this lecture is not to train
students to become good HPF programmers, though they are supposed to do a homework
writing an HPF program. Instead, we highlight some of important language features that
are most often encountered in compilation of a data parallel language.

Some slides presented in this lecture are directly taken from A.C. Marshall’s “HPF for
Fortran 90 Programmers — 3 day Lectures Guide” and Charles Koelbel’s tutorial “High
Performance Fortran in Practice”.

2.1 A brief history

HPF is an extension to Fortran language, designed to deliver higher performance in scientific
and engineering computing than what ordinary Fortran can do with automatic parallelizing
compilers.

The idea was initiated around 1990 with a project, Fortran D, carried out in Rice
University and Syracuse University, USA.

A forum, HPFF, was established to discuss technical issues in defining this language,
which gathers representatives and inputs from industry, national laboratories, and univer-
sities.

HPF 1.0 specification was released May, 1993, which is mainly based on ISO Fortran
language standard (Fortran 90) issued in 1991. It should be noted that both Fortran
standard and HPF are evolving — after HPF 1.0, ISO is releasing Fortran 95 standard,
which incorporates some of the HPF features; HPF 2.0§ was released in October, 1996. For
more information, visit http://www.crpc.rice.edu/HPFF/home.html. In what follows,
our discussion will be targeted on Fortran 95 and HPF 1.0.

Currently, there are several vendor implementations of HPF 1.0, including IBM, DEC,
and PGI, etc.. Experiments show there is a lot of room left for improving performance.

10

FORTRAN 77 Fortran 95 HPF

Figure 2.1: HPF D Fortran 95 > FORTRANT7

2.2 Language overview

The inclusion relation expressed in Figure 2.1 is generally true, including relative size of
each set.

The following are main features in Fortran 95 minus FORTRAN 77. Once again, there
are probably more than one way to capture this difference. I'll just take whatever I consider
interesting for the purpose of this course. A list is given first, followed by subsections
illustrating each item in the list, respectively.

e Free source form. Fortran 95 promotes so-called “free source form”, while still supports
the traditional “fixed source form”.

e Array operations, masked array operations

FORALL statement and construct

More intrinsics, elemental and transformational

Pointers, allocatables

e User-defined types, operators

see ftp://ftp.ncsa.uiuc.edu/x3j3/96-007r1/ps for complete information. For people
who know FORTRAN 77, James F. Kerrigan’s book [10] seems the best book for “migrating
to Fortran 90(95)”.

2.2.1 Free source form

The following points may be noted for free source form.
® 1o 7-72 column restriction any more, now any where from 1-132
e more than one statement allowed in one line, separated by *;’

e up tp 31 alphanumeric characters for a name

11

e new way for line continuation — ‘&’ at end.

e comments by ‘V

Here is an example,

0123456789012345678901234567890123456789012345678901234567890123456789. ..

! This is a complete F95 program, demonstrating various source
! form features
PROGRAM FOO
INTEGER A,B,This_is_a_long_name
A=1; B=1 ! two statements in one line
This_is_a_long_name = A + B ! initialize long name
This_is_a_long_name = A + B + &
This_is_a_long_name ! continuation
! look at the second ampersand in next continuation
This_is_a_long_name = A + B + This_i&
&s_a_long_name
print *, This_is_a_long_name
end

2.2.2 Array operations

From data parallel compilation point of view, this is the major feature of Fortran 95.
Examine the following program,

PARAMETER (N=100)
REAL, DIMENSION (100,100) :: A,B ! the "attribute" way of declaring vars
In F95, possible attributes associated with a name include

! data type, DIMENSION, POINTER, PARAMETER, INTENT, ALLOCATABLE,
REAL C(100)

A =B ! equivalent to A(1:N,1:N) = B(1:N,1:N)
A(1:N-1:2,1) = B(1:N-1:2,N) + B(2:N:2,N)
C(2:N) = C(1:N-1)
! note this is different from
DO i =2,N
c(i) = c(i-1)
END DO

Key semantics of array operations:

every element at right hand side is evaluated before assignment can happen; and
shape conformance must be observed.

C(1:50) = C(51:100) ! shape conformed
C(1:50) = scalar ! also considered conformed
C(1:50) = C(1:51) ! this is not conformed, semantically invalid

12

Also note,
C(1:N-1) = C(2:N)
and

DO i = 1,N-1
C(i) = C(i+1)
END DO

happen to achieve the same effect, but this does not mean array operation syntax is just a
convenient notation for DO loop.

Since array and array section operations are main focus of data parallel compilation, we
excerpt the following syntax rules from Fortran 95 specification.

array-section is name [(section-subscript-list)]
section-subscript is subscript

or subscript-triplet

or vector-subscript

subscript is scalar-int-expr
subscript-triplet is [subscript] : [subscript] [: stride]
stride is scalar-int-expr

vector-subscript 1is integer-array-of-rank-one

where for missing subscripts, declared values are assumed; 1 is assumed for missing stride.
Let’s see some examples. For the declaration,

REAL, DIMENSION(100) :: A
REAL, DIMENSION(0:99,100) :: B

We conclude,

A(5:20) --- a section of shape (/16/), or length 16.

A(:) -—- the same as A

A(2:) --- the same as A(2:100)

A(:98) --- the same as A(1:98)

A(1:99:2) --- a strided section of shape (/50/)

A(::2) ——— the same as A(1:100:2), which in turn is the same as A(1:99:2)
A(5::5) -—- the same as A(5:100:5), a strided section of shape 20.
A(99:1:-2) ——— a section of 50 elements; different from A(1:99:2).

A(2:1) --- an empty section, or length O section.

A(5:5) --- a section of length 1.

All of above are considered as “rank one” array sections, while A(5) is considered as a
scalar, or rank zero. Shape of an array or array section is always denoted by an integer
array of rank one (also called an integer vector).

B(:10,100) --- the same as B(0:10,100), a rank one section of shape (/11/).
B(1:51:2,:) —--- a rank two section of shape (/26,100/), size 2600.
B(3:2, 1:100) --- a rank two section of shape (/0,100/), size O.

13

Ifv = (/2,1,1,3/), then A(V) refers to a section of shape (4), namely A(2),A(1),A(1),A(3).
Thus, it’s valid to have B(1:4,1) = A(V), but not other way around.
Masked array operations.

where-statement is WHERE (mask-expr) assignment-stmt
where-construct is WHERE (mask-expr)
[where-body-construct J...
[ELSEWHERE
[where-body-construct] ...]
END WHERE
where-body-construct is assignment-stmt
or where-stmt
or where—construct

mask-expr is logical-expr

We note the “body-construct” is very much restricted.

2.2.3 FORALL statement and construct

In general, FORALL statement is a special case of FORALL construct.

forall-construct is FORALL forall-header
[forall-body-construct]
END FORALL
forall-body-construct is assignment-statement

or where-stmt

or where-construct
or forall-stmt

or forall-construct

forall-header is (forall-triplet-spec-list [,scalar-mask-expr])
forall-triplet-spec is index-name = subscript:subscript [:stride]
forall-stmt is FORALL forall-header assignment-statement

Semantically, FORALL statement is a proper superset of array assignment statement, though
we note its body-construct is quite restricted.

2.2.4 More intrinsics

From data parallel processing point of view, there are elemental intrinsic functions and
transformational intrinsic functions.

14

Elemental intrinsics are those which may take whole array or array section as argument
and perform the function on each element of the argument independently. For instance,
SIN(A(1:20:2)) will return an array of 10 elements that are sin() of the 10 elements of
A(1:20:2), respectively. From compiler point of view, no communication will be required to
perform elemental intrinsics, though argument array may be distributed among processors.

Transformational intrinsics also take whole array or array section as argument, but
each returned value normally depends on a collection of input elements, such as matrix
multiplication MATMUL (). Communication is usually required for transformational intrinsics
on distributed array argument.

2.2.5 Pointers, allocatables

Pointers and ALLOCATE statement are something making Fortran closer to C, though with
some subtle differences.

e POINTER is a possible attribute of some data objects

e A POINTER is associated with its TARGET, which is also an attribute of some data
objects, in two ways:

via pointer assignment statement, or via ALLOCATE statement.
e Referencing a pointer is to referencing its target.
e “The pointer itself” is referenced by pointer assignment statement.
Examples,

REAL, POINTER :: P,Q
REAL, TARGET :: A,B

REAL C
A=1; B=2
P =>4 ! P is associated with A via a point assignment-stmt
! Q=>2¢C ! This is _invalid_, since C has no TARGET attribute
! Q=P ! This is not making Q point to the same target as
! P does. In fact, it is semantically invalid, since
! Q is not associated with any thing yet. We have to do
Q=>P ! to make two pointers associated with the same TARGET
! however,
P =B ! will have the same effect as A = B
B=P-1 ! will set B to 0, leave A being 1 intact.
Q =>B ! Q is now associated with B
Q=P ! OK now, the same as B = A
ALLOCATE(P) ! will associate P with a _new_ target of REAL type.
! this newly allocated target will be referenced via P
P=3 ! Note, this has nothing to do with A, or B.
C=A+B+P ! will make C = 6

15

2.2.6 User-defined types, operators

Like many modern languages, Fortran 95 allows user-defined types. The following defines
a type RECORD with three fields.

TYPE RECORD
CHARACTER (LEN=20) NAME
INTEGER :: AGE,ID

END TYPE RECORD

Then one can declare some variable of type RECORD and operate on the variable as

TYPE (RECORD) :: HEAD
HEADY,NAME = ’JOHN SMITH’
HEAD%AGE = 42

HEAD%ID = 234

The next example shows how to build up a linked list via user-defined type.

TYPE NODE

INTEGER :: VALUE

TYPE (NODE),POINTER :: NEXT
END TYPE NODE

TYPE (NODE) FIRST_NODE, SECOND_NODE
FIRST_NODE),VALUE = 1
FIRST_NODEY,NEXT => SECOND_NODE
SECOND_NODEYVALUE = 2
SECOND_NODEYNEXT => NULL ()

HPF has more stuff than Fortran 95 mainly in terms of directives. Five major directives
are

e PROCESSORS — declares a processor grid that some data object will be distributed
onto;

e TEMPLATE — declares a logical template for alignment between data objects;

e ALIGN — aligns an array to a template explicitly;

e DISTRIBUTE — distributes a template onto a processor grid;

e INDEPENDENT — indicates iterations of a DO loop have no ‘dependence’ relation. It
can also be applied to some FORALL statements.

While much of the course will be studies around the first four directives, we address
some points about INDEPENDENT in the following.

For instance, if the programmer knows foo() will not modify other_arg, he may
write,

16

'HPF$ INDEPENDENT
DOi=1,N
CALL foo(A(:,1i),other_arg)
END DO

Note, without the INDEPENDENT directive,, a parallelizing compiler has to assume the
DO loop be executed sequentially (if it does not know whether other_arg will be
modified by foo().) Also note, this parallelism can not be expressed by FORALL !
(due to the restrictions for its body statements)

Of course, not every DO loop can be prefixed by an INDEPENDENT, such as,

Although FORALL is a data parallel construct, not every FORALL can be prefixed by an
INDEPENDENT, either, such as,

FORALL (i = 2:N) A(i) = A(i-1)
INDEPENDENT says: “it can be done in any order’, which is different from “it is to
be done in parallel’”. To understand this, let’s assume N=4, A(1:N) = (/a,b,c,d/).
Then the result of the FORALL is A(1:N) = (/a,a,b,c/), while

'HPF$ INDEPENDENT
FORALL (i = 2:N) A(i) = A(i-1)

may potentially result in any one of:

A(L:N)
A(L:N)

(/a,a,a,a/); A(1:N)
(/a,a,b,b/); A(1:N)

(/a,a,a,c/)
(/a,a,b,c/)

which is not well defined.
Finally in this lecture, we present a complete sample HPF program.
PROGRAM LAPLACE
INTEGER N,Nsteps
PARAMETER (N=16)

PARAMETER(Nsteps = 100)

INTEGER 1,3,k
REAL A(N,N)

'HPF$ PROCESSORS PROC(2,2)

17

'HPF$ TEMPLATE TEMP(N,N)
'HPF$ DISTRIBUTE TEMP(BLOCK,BLOCK) ONTO PROC
I'HPF$ ALIGN A(i,j) with TEMP(i,j)

A(1:N:N-1,1:N)

= 8.
A(2:N-1,1:N:N-1) =

0
8.0
DO k = 1, Nsteps
FORALL (i=2:N-1,j=2:N-1) &
& A(i,j) = (A(i,j-1) + A(i,j+1) + A(i-1,j) + A(i+1,3j))*0.25
END DO

print *, ’Final grid looks like’
DO I= 1, N

PRINT 101, (A(I,J),J=1,N)
END DO

101 FORMAT(16F5.2)
END

Homework: Write an HPF program solving system of linear equations using Gaussian
elimination method. Run your program at least on 4 processors.

18

Chapter 3

An introduction to MPI

As planned in the first lecture, MPI will be our underline communication system for building
runtime libraries. This lecture discusses basics of MPI. Some of the slides presented in this
lecture are directly taken from William Gropp’s “Tutorial on MPI: The Message-Passing
Interface”.

3.1 A brief history

MPI stands for Message-Passing Interface, which is an interface specification for message-
passing libraries, produced by MPI Forum (MPIF).

Activities of MPI Forum was initiated in a workshop in April, 1992. As the case for
HPF, representatives from academia, industry, and national labs have been participating in
the forum.

MPI specification 1.0 was released in May, 1994.

MPI specification 1.1 was released in June, 1995.

An effort towards MPI-2 specification is ongoing.

There are many commercial and public-domain implementations of MPI available, and
many parallel libraries have been reported being based on MPI. Please visit
http://www.erc.msstate.edu/mpi/implementations.html for more information.

Contrasting the two important standardization effort, HPF and MPI, in high perfor-
mance computing community in last years, it looks like MPI, though started late, is more
successful than HPF at the moment.

3.2 A taste of MPI

MPI consists of 125 functions and many symbolic constants, extracted and inherited from
various preceding message passing systems. [don’t intend to give a systematic introduction
to MPI (there are many good ones out there.) Rather, I'll present some features of MPI
via examples, just to get students started writing and running MPI programs. MPICH, one
of public domain implementations of MPI, is used for practice.

19

3.2.1 Basic MPI functions

Although there are 125 functions in total (more will be added in MPI-2), 6 of them are
fundamental. It’s like the instruction set of a modern computer — although there are
perhaps 100 instructions, only a few are sufficient to do whatever the 100 can do, of course
with inconvenience. We discuss this 6 functions in this section.

MPI_Init(int *argc, char *x*argc)

starts MPI. Arguments of this function are designed for possible pass of command line
arguments to MPI environment. In many cases, programmers do not have to worry about
them.

MPI_Finalize(void)

exits MPI. Any message passing library must have these two functions, or something alike.
Then we can write our first MPI program.

#include "mpi.h"

int main(int argc, char *argv[]) {
MPI_Init(&argc,&argv);
printf ("Hello, world ! This is from an MPI program\n");
MPI_Finalize();

}

Note: inclusion of “mpi.h” is always required, which provides basic MPI definitions and
types. One important distinction of this program from the well known “Hello, world !”
program presented in almost every programming book is that you may see multiple copies
of this messages printed out.

Two of the first questions asked in a message parallel program are: how many processors
are participating 7 and who am I 7 MPI provides two functions for them.

MPI_Comm_size(MPI_Comm comm, int *size)

returns, in size, the number of processors within communicator comm.

MPI_Comm_rank (MPI_Comm comm, int *rank)

returns, in rank, the abstract name (an integer) of the calling processor within the commu-
nicator comm. In a communicator, ranks will be 0, 1, ..., size-1. (Note different meanings
of rank in MPI and HPF'.)

Communicator is a key concept in MPI. It may be considered as a structured set of
processors that can communicate with each other.

I emphasize the word “structured” here, since the same set of processors may be struc-
tured in different ways, so belong to different communicators. There is always a default
communicator, MPI_COMM WORLD, that encompasses all processors upon starting an MPI
program. One MPI program may involve several communicators.

Then we can have our second program.

20

#include "mpi.h"

int main(int argc, char *argv[]) {
int size,rank;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("My name is %d in a size %d communicator.\n",rank,size);
MPI_Finalize();

If you run it on four processors, you would get something like

My name is O in a size 4 communicator.
My name is 2 in a size 4 communicator.
My name is 3 in a size 4 communicator.
My name is 1 in a size 4 communicator.

Note the order of the messages is “random”. So far, our two “message passing” programs
have no messages passed among processors at all. In general, imagine a multicomputer
system in which processors are participating in a computational task, we might have the
perspective as in Figure 3.1.

MPI provides many communication functions for message passing. Among them, the
following two are basic.

MPI_Send(void* out_buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)
MPI_Recv(void* in_buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

where
o out_buf, in_buf — are base addresses of sending and receiving buffers, respectively.

e count — not number of bytes, but number of elements of datatype.
For MPI_Send(), it’s the actual number of elements sent.

For MPI_Recv(), the actual count may not be known when called. A supplemental
function MPI _Get_count(MPI Status*, MPI Datatype, int*) may be used to get
actual received count, using the status and datatype returned from MPI Recv.

e datatype — besides basic data types that are corresponding to C data types, one can
define “derived data type” to facilitate communication (note MPI derived data type
is more than C user-defined data type, as we’ll see later.)

e dest, source — rank in a communicator. For convenience, MPI_ANY_SOURCE may be
used at receiver side.

21

Processors
— NN Messages
Figure 3.1: A view of message passing

communicator

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

/" destination

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

MPI MESSAGE SPACE

Figure 3.2: Partition of MPI message space

e tag — a method for partitioning message space. For convenience, MPT_ANY TAG may
be used at receiver side.

status.MPI_SOURCE — gives sender’s rank in case of MPT_ANY_SOURCE being used
status.MPI_TAG — gives “sending tag” in case of MPT_ANY TAG being used.

We see MPI provides three mechanisms to partition message space. Figure 3.2 provides
some view.

e communicator: attributes a set of processors
e destination: partitions message space within a communicator
e tag: distinguishes messages arrived in one destination

They are very important and useful in developing parallel libraries. Note: these three
things are not part of message that are received by a receiver. They are information to MPI
system. In this sense, MPI system is like some agent between a set of senders and a set of
receivers, gets messages from senders, using the three mechanisms to sort them, and deliver
them to appropriate receivers.

MPI provides quite a few variants of the basic send and receive functions. In general,
semantics of send() may be subtle. In particular, the order of arrivals of two messages sent
from one processor to another can not be predetermined.

23

3.2.2 A “real” program

Now, we can write some “real” program: Jacobi iteration solving Laplace equations. We
begin with the 6 functions discussed above, and then see how some of advanced MPI func-
tionalities can help to make programming easier.

Problem specification: consider a domain of SIZE x SIZE elements. For comparison, we
first recall how an HPF program looks like (the sample program in the last chapter.) We
see a process pattern:

data input (we merely initialize them) — compute — output

Now we want to have an MPI program, such that a simultaneous execution of 4 copies
of this program achieves the same effect as the HPF program.
The thought:

e we would like to keep the partition of problem domain the same as the HPF program,
namely (BLOCK,BLOCK). (we don’t have to, though.) For convenience, we may desig-
nate the 4 portions of the domain as (0,0), (0,1), (1,0), and (1,1), respectively. Each
portion is of SIZE2 x SIZE2, where SIZE2 = SIZE/2.

e Note the MPI_COMM_WORLD is presented as a linear list of processors: 0, 1, 2, 3. So we
make some assignment:
processor 0 handles portion
processor 1 handles portion

0
0,
processor 2 handles portion (1
1

(
(
(
processor 3 handles portion (

e Since the “global” array has some boundary condition, each processor is actually
responsible for updating (SIZE2-1) x (SIZE2-1) elements of its local array.

e There are communications between adjacent portions (processors), for instance, pro-
cessor 0 needs to send a column to processors 1 for each sweep.

Where should processor 1 keep the received column ? We extend the local array to
include some “ghost area” to hold the incoming elements as depicted in Figure 3.3,
thus we allocate:

float alsize2+1][size2+1];

Then the computation part can be nicely written as
for (i=1;i<size2;i++)

for (j=1;j<size2;j++)
blil[j1=(ali-11[j1+ali+1]1[j1+alil [j-1]+ali] [j+11)*0.25

24

updating area

ghost area

SIZE+2

Figure 3.3: Use of ghost area

e Communications. Boundary rows and columns will be sent to adjacent processors, we
would like to maintain a send_buf [size2] and a recv_buf[size2], so that we can
write something like

MPI_Send(send_buf,size2,MPI_FLOAT,col_neighbor,col_tag,MPI_COMM_WORLD);
MPI_Recv(recv_buf,size2,MPI_FLOAT,col_neighbor,col_tag,MPI_COMM_WORLD,&status);

MPI_Send(send_buf,size2,MPI_FLOAT,row_neighbor,row_tag,MPI_COMM_WORLD);
MPI_Recv(recv_buf,size2,MPI_FLOAT,row_neighbor,row_tag,MPI_COMM_WORLD,&status);

in the program. To be valid to do this, we need

— decide col_neighbor and row_neighbor based on the following observations.
“my column neighbor has different right most bit from me”; and “my
row neighbor has different the second right most bit from me”

Thus,

(myid & “1) | ("myid & 1);
(myid & "2) | ("myid & 2);

col_neighbor
row_neighbor

or simply,

col_neighbor = myid = 1; /* the exclusive OR. */
row_neighbor = myid = 2;

— get the proper elements into the send buffer before send,

for (i=0;i<size2;i++)
send_buf[i] = al[il[send_col]l;

25

and store the contents of receive buffer into proper positions of the array after
receive and before computation begins;
for (i=0;i<size2;i++)

al[i] [recv_col] = recv_buf[il;

(something similar for rows.) Thus, we need to compute send_col, send_row,
recv_col, recv_row. The following observations give some hint.

(00) ———> (01) (01) ———> (00)

col size2-1 to col O col 1 to col size2
(00) ———> (10) (10) ———> (00)

row size2-1 to row O row 1 to row size?2
(11) ———> (01) (01) ———> (11)

row 1 to row size2 row size2-1 to row O
(11) ———> (10) (10) ———> (11)

col 1 to col size2 col size2-1 to col O

Then,

send_col = (myid & 1)71:size2-1;

send_row = (myid & 2)71:size2-1;
recv_col = (myid & 1)70:size2;
recv_row = (myid & 2)70:size2;

A complete program based on the above analysis is

#include "mpi.h"
#define size 16
#define size2 size/2

int main(int argc, char *argv[]) {
int n, myid, numprocs, i, j, nsteps=100;
float alsize2+1] [size2+1],b[size2+1] [size2+1];
float send_buf[size2],recv_bufl[size2] ;
int col_tag,row_tag,send_col,send_row,recv_col,recv_row;
int col_neighbor,row_neig hbor;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_rank (MPI_COMM_WORLD,&myid);

(myid & 1)71:size2-1; send_row = (myid & 2)71:size2-1;
(myid & 1)70:size2; recv_row = (myid & 2)70:size?2;

send_col
recv_col

for (i=0;i<size2+1;i++) for (j=0;j<size2+1;j++) alil[j]l = 0;
for (i=0;i<size2+1;i++) {alsize2-recv_row] [i]1=8; alil [size2-recv_coll=8;}

col_neighbor = myid ~ 1; row_neighbor = myid ~ 2;

26

col_tag = 5; row_tag = 6;

for (n=0; n<nsteps; n++) {
for (i=0;i<size2;i++) send_buf[i] = al[il [send_col];
MPI_Send(send_buf,size2,MPI_FLOAT,
col_neighbor,col_tag,MPI_COMM_WORLD);
MPI_Recv(recv_buf,size2,MPI_FLOAT,
col_neighbor,col_tag,MPI_COMM_WORLD,&status);

for (i=0;i<size2;i++) alil [recv_col] = recv_bufl[i];
for (i=0;i<size2;i++) send_buf[i] = alsend_row][i];
MPI_Send(send_buf,size2,MPI_FLOAT,
row_neighbor,row_tag,MPI_COMM_WORLD);
MPI_Recv(recv_buf,size2,MPI_FLOAT,
row_neighbor,row_tag,MPI_COMM_WORLD,&status);

for (i=0;i<size2;i++) al[recv_row][i] = recv_buf[il;
for (i=1;i<size2;i++) for (j=1;j<size2;j++)
b[i][j] = (ali+1][jl+ali-1][jl+alil[j+1]1+al[il[j-1]1)%0.25;
for (i=1;i<size2;i++) for (j=1;j<size2;j++) alil[j]l = bl[il[j]1;
};

printf("Myid %d \n",myid);

for (i=myid>>1;i<size2+(myid>>1);i++) { /* bit op has lower prec. */
for (j=myid%2;j<size2+myid%2;j++) printf("%4.1£",ali]l[j1);
printf("\n");

}

MPI_Finalize();

Although the analysis we’ve conducted may not be the most elegant one, it’s typical
and reveals some of issues in message passing programming. We observe from the program,

e Similar in process pattern to HPF program, i.e., the process is roughly composed of
data initialization — computation — data output

e There are some mapping between problem domain and processor domain to be done
in “data initialization” part, which is sometimes tricky and in general non trivial.
HPF program usually can avoid this.

e Explicit communication is interleaved with computation in “computation” part. We
don’t see this in HPF program.

e We obtain a global output from HPF program. But with MPI program, we have to
“assemble” the outputs from each processors, unless some other special measure is
taken.

27

A slight improvement: MPI provides a function MPI Sendrecv(), such that the two
consecutive MPI_Send and MPI_Recv can be literally replaced by one call to MPI_Sendrecv().

Some major improvement: elimination of data packing and unpacking by MPI
derived data type, and use of processor topology.

If we examine the analysis above closely, we would see it’s not general for this problem,
in addition to the trickness of computing row_neighbor, col_neighbor, etc. A question may
be asked: what if more processors (say 3 x 3) are involved in the solving process 7 We see

e A processor generally should communicate with 4 neighbors,

e But boundary processors only have 2 neighbors.

Thus, a more general treatment must be provided, if the program is of any use. For
this, we present,

int main(argc,argv)
int argc; char *argv[];
{

(define ordinary variables)
MPI_Datatype c_column;
MPI_Status status;

MPI_Comm mesh2;

MPI_Init(&argc,&argv);
MPI_Comm_rank (MPI_COMM_WORLD,&myid);

dims[0]=2; dims[1]=2;
periods[0]=0; periods[1]=0;
reorder = 0;
MPI_Cart_create(MPI_COMM_WORLD,2,dims,periods,reorder,&mesh2);
MPI_Cart_coords(mesh2,myid,2, coords) ;

(initialize A)
MPI_Type_vector(size2,1,size2+1,MPI_FLOAT,&c_column);
MPI_Type_commit(&c_column);

MPI_Cart_shift(mesh2,0,1,&up,&down);
MPI_Cart_shift(mesh2,1,1,&left,&right);

for (n=0; n<nsteps; n++) {

MPI_Sendrecv(&al[0][1],1,c_column,left,col_tag,

&a[0] [size2],1,c_column,right,col_tag,
mesh2,&status);

MPI_Sendrecv(&a[0] [size2-1],1,c_column,right,col_tag,
&a[0][0],1,c_column,left,col_tag,
mesh2,&status);

MPI_Sendrecv(&al[1] [0],size2,MPI_FLOAT,up,row_tag,
&a[size2] [0],size2,MPI_FLOAT,down,row_tag,

28

mesh2,&status);
MPI_Sendrecv(&al[size2-1][0],size2,MPI_FLOAT,down,row_tag,
&a[0] [0],size2,MPI_FLOAT,up,row_tag,
mesh2,&status);
for (i=1;i<size2;i++)
for (j=1;j<size2;j++)
b[i][j] = (ali+1][jl+ali-1]1[jl+ali]l[j+1]+alil[j-1]1)*0.25;
for (i=1;i<size?2;i++)
for (j=1;j<size2;j++)
alil[j] = vl[i][j];
};
(output)
}

The following points are observed from this program.

e MPI_Cart_create(MPI_COMM_WORLD,2,dims,periods,reorder,&mesh2);

create another communicator out of MPI_COMM_WORLD. The new communicator has name mesh2
with a 2 x 2 mesh structure. In general, this could be m x n.

MPI_Cart_coords(mesh2,myid, 2, coords);

returns processor’s coordinate in the mesh.

e MPI_Type_vector(size2,1,size2+1,MPI_FLOAT,&c_column);

define a new datatype c_column, which is essentially a sequence of strided memory
locations.

MPI_Type_commit(&c_column);

is needed after type definition.

e MPI_Cart_shift(mesh2,0,1,&up,&down);
MPI_Cart_shift(mesh2,1,1,&left,&right);

returns ranks of neighbors in a Cartesian structure. These ranks, up, down, left, and
right will then be used in MPI_Sendrecv function. What happens to the boundary
processors 7 MPI_PROC_NULL is returned, if the shift is out of range.

e MPTI Sendrecv is called 4 times. It’s general, and also safe for boundary processors
since MPI_PROC_NULL was properly returned by MPI_Cart_shift in some of the ranks.

29

Chapter 4

A first glance of SPMD node

prograris

This lecture is intended to provide a quick idea on what we mean by an SPMD node program.
Two notions are stressed.

e Semantical correspondence between an HPF program and multiple copies of a FOR-
TRAN 77 program;

e Runtime support, in particular, global/local index mapping.

4.1 Some understanding of parallel languages

“Serial language”, such as FORTRAN 77 or C, is not purely “serial” — some parallelism
is explicitly expressed by programmer, namely, the evaluation of an expression (either at
right hand side of an assignment statement or as some condition in an IF statement, etc.)
is semantically “parallel”. As seen in Figure 4.1, the parallelism in evaluation of the right
hand side expression is only limited by the precedence of arithmetic operators. This kind
of explicit parallelism is primary target of VLIW and Superscalar architecture.

The primary target of traditional parallelizing compilers is to exploit parallelism among
statements, which may be implicitly expressed by the program. DO loops, not only consume
most of program execution time, but also exhibit good structure for such exploitation.

“Serial” here really means ONE element at left hand side of an assignment statement.

“Parallel language” like Fortran 95 generalizes the above picture by two steps

1. Array operations allow assignment to have multi destinations in memory, as depicted
in Figure 4.2.

As a result, the notion of shape conformance naturally gets into the scene:

A(1:10)
A(1:10)

B(5:10) ! not allowed, while
B(5:50:5) ! is fine

30

WHAT'S DESCRIBED BY A FORTRAN 77 PROGRAM ?

--- a data set, and a sequence of operations on elements of the data set

o
.'/ /

Data Set

PROGRAM F77
REAL a b, c,d, e
a=b+c-d*e

END

Data Set

=+

.\

[- |

-« —1

Data Set

Figure 4.1: Explicit parallelism in FORTRAN 77 !

S

WHAT’'S DESCRIBED BY A FORTRAN 95 PROGRAM ?
--- a data set, and a sequence of operations on subsets of the data set

Ty

(o0
(9%

Data Set

\+_ *
+H- | *
= |

*

o

PROGRAM F95
REAL a(100), b(100), c(100), d(100), &(100)
a=b+c-d*e

END

Data Set

i

Data Set

Figure 4.2: Parallel assignment in Fortran 95

31

and special treatment for scalar is devised:

A(1:10) = s ! is 0K, s goes to every element of A(1:10), while
s = A(1:10) ! does not make sense.

s = A(1:1) ! also not allowed, while

s = A(1) ! OK.

2. FORALL statements can be used to express parallel assignment to “non regular” array
sections, (we save the word “irregular” for other purpose) and provide possibility for
more versatile right hand side.

We define reqular array section as a subset of array elements that can be expressed by
array-section as specified by Fortran 95 specification minus the vector-subscript part.
(we covered its syntax in the second lecture.)

Thus, elements of A referenced in

FORALL (i=1:N) A(i,i) =0

is not a regular array section. (we shall use term “array section” for “regular array
section” from now on.)

4.2 The impact of parallel language on compilers

Now that the program can express parallel assignment, what are the issues to take some
advantage of it ?

e Shared memory, physically global address space.

— Who is responsible for this part of data ?
— Data contention, producer/consumer paradigm for data sharing.
e Distributed memory, distributed address space, local data: fine; remote data: prob-
lem.
— where are the data I need 7
— how to get them ? (how can I store them once they arrive 7)
— do I have some data needed by others 7

It’s the job of a compiler to figure out all of these and generate code (node program)
to perform proper functions at proper time.

In this course, we address issues in distributed memory machines only. If we wanted to
write a compiler for Fortran 95 programs to be executed in parallel, the compiler in general
would have to perform 4 tasks :

32

e Data partitioning — distribute elements of data objects for high performance. For
instance, decide who gets X(5) for

REAL X(100), Y(2:101), Z(0:99)
DO i =

X(i)
END DO

1, 100
= Y(i+1) + Z(i-1)

e Computation partitioning — assign operations to processors. For instance, decide
who performs the second iteration of the above DO loop.

e Communication detection and insertion — get data from other processors when nec-
essary.

e Node program generation — what program will be ezecuted by a processor ?

As an example, for the following program,

PROGRAM F95
REAL A(100), B(100)

A(2:99) = B(1:98) + B(3:100)

END
a compiler should realize the data A and B is best block-distributed on a one dimensional
processor grid. Another example,

DO i =1, N-1
FORALL (j = i+1:N) s(j) = -A(j,i)/A(4i,1)
FORALL (j = i+1:N) A(j,i+1:N+1) = A(j,i+1:n+1) + A(i,i+1:N+1)*s(j)
END DO

A smart compiler may be able to figure out that A should be distributed (CYCLIC,#*),
(the first FORALL is along the row, the second FORALL together with the array assignment
describes a triangle).

But things are not always so easy. In many cases, compilers just can not figure out an
“optimal” way to partition data.

HPF says: let programmer tell you how data should be partitioned. If a compiler follows
what the programmer instructs, it’s job list becomes

e Computation partitioning
e Communication detection and insertion

e Node program generation

33

And if we follow owner computes rule (or some other simple heuristics), the compiler’s job
is further reduced to:

e Communication detection and insertion

e Node program generation

”

Nevertheless, “who is the owner 7” sometimes is not easy to answer by a compiler. See,

READ *, i
A(i) = B(i) + &

The compiler just has no way to know who should do B(i) + 5, and runtime checking
is required. Any way, “owner computes rule” really simplifies a lot of things for most
situations. Thus, we’ll follow it.

4.2.1 A glance of communication detection

Among the remaining two items, communication detection and insertion is something easy
to get hands on, though it may not be easy to do it well. See the following example,

REAL A(100),B(100),C(50)
PROCESSORS P(4)

ALIGN C(i) WITH A(2%i-1)
DISTRIBUTE (BLOCK) ONTO P :: A,B

A=B+1 ! no communication

A(1:99) = B(2:100) + 1 ! shift communication

A(1:99:2) = B(1:50) + 1 ! some kind of "non regular' communication
A(1:50) =C + 1 ! some kind of "non regular" Communication
A(1:99:2) =C + 1 ! no communication

END

By analyzing data distribution status and array reference patterns, a compiler should be
able to determine the assertions in the above comments.

4.2.2 Some high level issues in node program generation
In terms of compiling HPF programs, the following may be elaborated before getting started.

e Target language 7 FORTRAN 77, Fortran 90(95), C, assembly language 7 This is
a strategical choice — a trade-off between technical issues and management (time
constraint to get something done, though may not be elegant.)

34

— Fortran 90(95) is the “easiest” choice, since it’s the closest to HPF, but not many
Fortran 90(95) compiler available at the moment.

— C would be a good choice if we are aiming at a full featured compiler, and if we

have more resources. The problem with C is it’s a little far from HPF, many
detailed language mapping work has to be done.

By the way, NAG has implemented their Fortran 90 compiler with C as target.
— We choose FORTRAN 77 based on the following thought:

* it’s a subset of HPF, implying if we have developed an HPF front-end (with
parse/unparse capability), compiler work only involves transformations on
IR. (if C, we would need to turn the Fortran IR to C IR and do a C unparse)
By the way, using FORTRAN 77 as target language is also an established
practice by vendors, such as PGI.

* The disadvantage is: it’s hard, if not impossible, to have a full featured HPF
(including full Fortran 95) compiler.

All in all, as a research compiler or course project, this may be the most feasible
approach.

e Some heuristic rules

— Single Program Multiple Data (SPMD). Note, technically, SPMD is not an ab-

solutely necessary choice of model, if we just talk about parallel execution of
an HPF program. Other alternatives include host-node, even arbitrary MPMD
(MIMD).
Consequence of SPMD: compiler is responsible to generate proper conditional
statements that are used to distinguish different behavior of different processors.
These conditions are usually (naturally) based on processors’ ranks or coordi-
nates.

— owner computes rule (as I mentioned, this is not necessary, but a rule to make
life easier and deliver good performance in most common cases.)
Consequence: compiler has (or generates proper calls to runtime) to figure out
who is the owner.

— replicate all variables that are not explicitly distributed. Once again, this is not
a must.

Consequence: compiler has the responsibility to maintain data consistency —
once a non distributed datum is updated by one processor, this update must be
broadcast to other processors in time (may not be immediately, though.)

— use collective communication to eliminate explicit barrier synchronizations.
— static vs dynamic storage management

— linearization of all arrays in node program ?

35

4.3 How a node program may look like ?

For the remaining part of this chapter, we present a sequence of possible node programs for
corresponding HPF programs. Purpose of this section is to have students obtain an early
idea on how the “mysterious” node program may look like. Emphasis is on understand-
ing the equivalence between the node program and HPF program, instead of efficiency or

optimization issues, etc. We will use Fortran interface for MPI in the examples.
We start from the “empty” HPF program.

PROGRAM ONE
END

The node program should, in general, not be “empty”. We have,

PROGRAM NODE_1

include ’mpif.h’

INTEGER ierror

CALL MPI_INIT(ierror)
CALL MPI_FINALIZE(ierror)
END

The second program involves simple I/O and a scalar (not distributed).

PROGRAM TWO
REAL x

Then a reasonable node program,

PROGRAM NODE_2
include ’mpif.h’
INTEGER ierror,myid
REAL x

CALL MPI_INIT(ierror)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierror)

IF (myid.eq.0) READ *, x
CALL MPI_BCAST(x,1,MPI_INTEGER,O,MPI_COMM_WORLD,ierror)

x=x+1
if (myid.eq.0) print *,x

CALL MPI_FINALIZE(ierror)
END

36

We should get some feeling, from this example, that I/O introduces some complication.
Although the above is working, one may prefer the following more general treatment.
Note the use of COMMON block.

PROGRAM NODE_2
include ’mpif.h’
COMMON myid

INTEGER ierror,myid
REAL x

CALL MPI_INIT(ierror)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierror)

CALL DATA_IN(x)
x=x+1
CALL DATA_QUT(x)

CALL MPI_FINALIZE(ierror)
END

SUBROUTINE DATA_IN(x)

include ’mpif.h’

COMMON myid

REAL x

INTEGER ierror

IF (myid.eq.0) READ *, x

CALL MPI_BCAST(x,1,MPI_INTEGER,O0,MPI_COMM_WORLD, ierror)
RETURN

END

SUBROUTINE DATA_OUT(x)
include ’mpif.h’

COMMON myid

INTEGER ierror

if (myid.eq.0) print *,x
RETURN

END

The above two HPF programs are not really HPF programs — no HPF directives are
used; the corresponding node programs are not really message passing node programs —
no message passed among processors.

The first ‘real’ HPF program below (distributed one dimensional arrays) introduces the
concept of index mapping.

PROGRAM THREE

REAL A(100),B(100)
'HPF$ PROCESSORS P(4)

37

'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A,B
A=1
B(1:99) = A(2:100) + A(1:99)
END

Two arrays are distributed, and obviously communication is needed for the second assign-
ment. The node program may look something like,

PROGRAM NODE_3

include ’mpif.h’

COMMON myid

INTEGER ierror,myid,l,u,s

REAL A(25),B(25),T(25)

CALL MPI_INIT(ierror)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierror)

CALL loop_bounds(1,100,4,block,...,1,u,s) ! for this particular
DOi=1, u, s ! instance, a smart compiler may figure

A(iL) = 1 ! out i=1,25. But we need loop_bounds()
END DO ! in general, as we’ll see below.

CALL loop_bounds(1,100,1,99,4,block,...1,u,s)

CALL some_comm_function(A,T,1,...) ! move A to some temporary T
DO i=1,u,s ! We need to keep A intact. Once again, a

B(i) = T(i) + A(1) ! smart compiler may do better than this, such
END ! as introducing a ghost cell in node program.

CALL MPI_FINALIZE(ierror)
END

A runtime function loop_bounds() converts global index range of A and B to local one
for each processor. The parameters to this function are not completely specified in the
program. Question: what should be included as parameters of loop_bounds() for it to be

a general runtime function ?

The second ‘real’ HPF program introduces the issue of local array allocation.

PROGRAM FOUR
REAL A(100),B(100)
'HPF$ PROCESSORS P(4)
'HPF$ TEMPLATE T(101)
'HPF$ DISTRIBUTE (BLOCK) ONTO P :: T
'HPF$ ALIGN A(i) WITH T(i)
'HPF$ ALIGN B(i) WITH T(i+1)
A=1
B(1:99) = A(2:100) + B(1:99)
END

38

It is the template T that gets distributed. While the size of a template is not a multiple
of number of processors, we have to ‘ceil’ it to the closet multiple — the spirit of SPMD
model — only a single node program is to be generated. Thus,

PROGRAM NODE_4

include ’mpif.h’

COMMON myid

INTEGER ierror,myid,l,u,s

REAL A(26),B(26)

CALL MPI_INIT(ierror)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierror)

CALL loop_bounds(...,1l,u,s)
DOi=1, u, s

A(i) = 1
END DO

CALL loop_bounds(...1l,u,s)

DO i=1,u,s ! no communication this time
B(i) = A(i) + B(i)

END

CALL MPI_FINALIZE(ierror)
END

We see in general local array allocation is based on template size, instead of global
array size. And we observe that unlike program THREE, this HPF program does not require
communication once data is distributed as programmer suggested. Question: how can a

compiler know if communication is needed 7
Another example on local array allocation. For the following program, elements of array

B are

|HPF$
|HPF$
|HPF$
|HPF$
|HPF$

aligned with template elements with stride 2.

PROGRAM FIVE
REAL A(20),B(20)

PROCESSORS P(4)

TEMPLATE T(40)

DISTRIBUTE (BLOCK) ONTO P :: T
ALIGN A(i) WITH T(i)

ALIGN B(i) WITH T(2*i-1)

This situation may be depicted as

pi p2 p3 p4

T: aaaaaaaaaalaaaaaaaaaal-————-——- | —————————
T: b-b-b-b-b-|b-b-b-b-b-|b-b-b-b-b-|b-b-b-b-b-

39

We need to allocate 10 locations for both A and B locally, though p3 and p4 does not
contain any A, and a half of local B has no corresponding global B elements.

PROGRAM NODE_5
include ’mpif.h’

REAL A(10),B(10)

END
Thus, we say some of elements of A, or B are “effective elements”. Different processors
may have different number of effective elements, though they have the same local array
declaration. For the above example, processor 2 and 3 will have no effective elements in A;
every other element of B is effective element in every processor.

Question: why not saving some storage space by defining B as B(25) ?
The next example shows what happens for cyclic distribution.

PROGRAM SIX
REAL A(16)
'HPF$ PROCESSORS P(4)
'HPF$ TEMPLATE T(16)
'HPF$ DISTRIBUTE (CYCLIC) ONTO P :: T
'HPF$ ALIGN A(i) WITH T(i)
FORALL (i=1:16) A(i) = 1

END
pl p2 p3 pi

T: aaaaaaaaaaaaaaaa
1234123412341234

Each processor has 4 elements, and would have node program like,

PROGRAM NODE_6
include ’mpif.h’

REAL A(4)
END
More specifically, table 4.3 shows a reasonable assignment of global elements to processor

and local elements.

The next example introduces the notion of local to global index conversion.
PROGRAM SEVEN

REAL A(200)
'HPF$ PROCESSORS P(4)

40

Table 4.1: Assignment of global elements for CYCLIC distribution

a(l) | A1) A(2) A(3) A(4)
a(2) | A(5) A(6) A(T) A(8)
a(3) | A(9) A(10) A(11) A(12)
a(4) | A(13) A(14) A(15) A(16)

'HPF$ TEMPLATE T(200)
'HPF$ DISTRIBUTE (CYCLIC) ONTO P :: T
'HPF$ ALIGN A(i) WITH T(i)

FORALL (i=1:200) A(i) = i

PROGRAM NODE_7

include ’mpif.h’

REAL A(50)

CALL loop_bounds(...,1l,u,s)
DO i=1,u,s

A(i) = local2global(i,1,200,cyclic,4,...)
END

We see loop_bounds() is used again, which can be considered as a form of global to local
index conversion function. The necessity of local2global() is clear in order to preserve
the semantics of the HPF program.

Once again, what should be complete parameter structure of local2global() 7

We see some “well behaved” two dimensional arrays in next example.

PROGRAM EIGHT
REAL A(80,100)

'HPF$ PROCESSORS P(2,2)

'HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO P :: A
FORALL (i=1:80,3j=1:100) A(i,j) = i+80%j

Two loop_bounds () should be called naturally, as in

PROGRAM NODE_8
include ’mpif.h’

REAL A(20,25)

CALL loop_bounds(...1,80,block,li,ui,si)
CALL loop_bounds(...1,100,cyclic,1lj,uj,sj)

41

DO i = 1li,ui,si
DO j = 1j,uj,sj
A(i,j) = local2global(i,...) + 80*local2global(j,...)
END DO
END DO

However, an optimizing compiler may generate,

DO i = 1li,ui,si
n = local2global(i,...)
DO j = 1j,uj,s]
A(i,j) = n + 80*local2global(j,...)
END DO
END DO

which moves a call to runtime out of innner loop. Another “well behaved” array example,

PROGRAM NINE
REAL A(80,100)

'HPF$ PROCESSORS P(4)

'HPF$ DISTRIBUTE (BLOCK,*) ONTO P :: A
FORALL (i=1:80,3j=1:100) A(i,j) = i+80%j

An ad hoc node program might be,

PROGRAM NODE_9
include ’mpif.h’

REAL A(20,100)
CALL loop_bounds(...1,80,block,li,ui,si)
CALL loop_bounds(...1,100,*,1j,uj,sj)
DO i = 1li,ui,si
DO j = 1j,uj,sj
A(i,j) = local2global(i,...) + 80*local2global(j,...)
END DO
END DO

Once again, an optimizing compiler should generate,

DO i = 1li,ui,si
n = local2global(i,...) P

DO j = 1,100 UM
A(i,j) = n + 80%j
END DO
END DO

42

Array “slicing”, or rank-reduced sectioning, introduces some complication.

PROGRAM TEN
REAL A(100,100),B(100)

'HPF$ PROCESSORS P(4)

'HPF$ DISTRIBUTE (BLOCK,*) ONTO P :: A

'HPF$ DISTRIBUTE (CYCLIC) ONTO P :: B
B=1
A(30,:) = B

The 30th row of A is distributed on processor 2, thus other processors should not perform
the array assignment. To cope with this situation, a logical runtime function onMe() may

be designed.

PROGRAM NODE_10
include ’mpif.h’

REAL A(25,100),B(25),T(25)
CALL loop_bounds(...1,100,cyclic,l,u,s)
DO i=1,u,s

B(i) = 1
END DO
CALL loop_bounds(...1,100,2,*,1,u,s)
CALL some_communication_function(T,B,...) I T <-——- B

IF (onMe(A,30,...)) THEN
k = global2local(30,block,...)
DO i=1,u,s
A(k,i) = T(i)
END DO
END IF

Question: parameters of onMe() 7 We also see another runtime function global2local()
used in the node program.

Note: it is possible to design loop_bounds() in such a way that it returns proper (1,u,s)
so that the DO loop will not be executed on processors with onMe() false. In that case,
node program does not have to call onMe ().

Our last example involves subroutine calls.

PROGRAM ELEVEN
REAL A(100)

'HPF$ PROCESSORS P(4)

'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A
CALL FOO(A(1:99:2))

SUBROUTINE FOO(X)

43

REAL X(:)
X=X+1
RETURN
END

A general array section as actual argument passed to subroutine is something difficult to
deal with in compilation system. Nevertheless, the following should be a reasonable skeleton
for this example.

PROGRAM NODE_11
include ’mpif.h’
REAL A(25)

CALL loop_bounds(...,1l,u,s)
CALL FOO(A(1l:u:s)...)
SUBROUTINE FOO(X...)

REAL X(*)

CALL loop_bounds(...l,u,s) ! we can not simply copy the l,u,s from

DO i=1,u,s ! main program, since a subroutine may
X(...) =X(...) +1 ! be separately compiled.

END DO

RETURN

END

Question: how we are going to figure out l,u,s in a subroutine without knowing dimension
information of dummy X ?

Homework: Given

DIMENSION X(1x:ux)
'HPF$ PROCESSOR P(p)
IHPF$ TEMPLATE T(1t:ut)
IHPF$ ALIGN X(i) WITH T(ax*i+bx)
IHPF$ DISTRIBUTE T(d) ONTO P

where d takes one of BLOCK and CYCLIC. Derive a formula (or procedure) that deter-
mines l,u,s of local X(l:u:s) corresponding to global X(gl:gu:gs) for each processor, assum-
ing local array index starts from 0. (As you may realize, this procedure is the core of
loop_bounds().) For instance, given 1x=2, ux=40, p=2, 1lt=-5, ut=80, ax=2, bx=-1,
d=BLOCK and gl:gu:gs = 6:30:3, your procedure (or formula) should figure out: 1:u:s =
16:40:6 for processor 1, and 1:u:s = 3:21:6 for processor 2.

44

Chapter 5

Data distribution model

Explicit array data distribution is the core concept of HPF, which potentially frees compiler
from the task of data partitioning. We discuss HPF data distribution model in detail in this
lecture. While HPF programmer and implementor may have different views of this model,
we approach it from the latter. In particular, a reasonable local memory allocation scheme
corresponding to this model is elaborated.

5.1 The impact of data distribution directives on compilers

Without HPF data distribution directives, the compiler has to perform data partitioning,
either according to some rule-of-thumb, or based on an analysis of data access pattern
presented in the program. Now with HPF directives, what compilers have to do with
respect to data partitioning then becomes

e Analyze the data distribution directives given by programmer;

e Allocate proper local storage in node program, corresponding to the global arrays
specified in the HPF program;

There are many issues connected with the word proper. One essential issue is that the
storage allocation scheme should make global to local (and vice versa) index conversion (an
unavoidable common operation in both node program and runtime) as efficient as possible.
The following example should give you some idea on what we mean by index conversion or
index mapping. For the HPF program below,

INTEGER X(100)

'HPF$ PROCESSORS P(4)

'HPF$ DISTRIBUTE X(BLOCK)
FORALL (i=1:100) X(i) = i

A reasonable node program may look like,

45

INTEGER X(25)
DO i=1,25

X(i) = local2global(...,i)
END

That is, the 100 elements are evenly distributed on 4 processors (each gets 25), and the
runtime function local2global() must return different values for the same value i on different
processors. The way how local storage is allocated determines the algorithm used in this
function.

In general, given a description of data distribution (say array X), there is a list of related
questions should be answered efficiently (from algorithmic point of view).

e Shape of corresponding local array ?

Layout of effective elements in the local array ?7

Which processor(s) hold a particular element of X ?
e What’s the corresponding local index for this element ?
e What portion of X does a processor have ?

What’s the corresponding global index of a local element 7

The following program illustrates the concept behind the second item in the above list.

INTEGER X(50)
'HPF$ PROCESSORS P(4)
'HPF$ DISTRIBUTE X(BLOCK)

Since SPMD node program is to be produced by the compiler, we need to allocate at least
13 elements for local array on each of the 4 processors. As a result, some of the 52 local
memory locations do not hold any of the 50 array elements. For those do, we call them
effective local array elements.

5.2 An alignment-distribution arithmetic

This section describes a local memory allocation scheme and algorithms, with respect to
the scheme, to answer the questions posted in the previous section.

For convenience, we define an alignment-distribution scheme (or AD scheme in short.)
is composed of two maps

46

_X’(’Lll7 ’L'27 vy Zm) — T(el, €9, ey €n)
T(dh d27 cey dn) — P(p17p27 7pk)

the first map is called alignment, the second distribution, where
e i;, j=1,...,m, is align-source-list, each align-source is one of

— align-dummy,
— %,
where align-dummy is a variable name.

® ¢;, j=1,...,n, is align-subscript-list, each align-subscript is one of

— a linear expression of some align-dummy, such as a*i+b, where i is an align-
dummy, a and b are constants.

— %
e d;, j=1,...,n, is dist-format-list, each dist-format is one of

— BLOCK
— CYCLIC

— %

e p;, j=1,...k, is a list of positive integers.

Constraint:

e cach align-dummy must appear in align-subscript-list exactly once;
e an align-subscript may contain at most one align-dummy;

e the number of non * in dist-format-list must be equal to k.

Semantics of AD-scheme

e dimension matching

— align-dummies in align-source-list match linear expressions in align-subscript-list
by dummy name. Thus, permutation on dimensions is possible;

— non * items in dist-format-list match dimensions of processor grid by position,
from left to right.

e position matching
— the expression a*i+b specifies a position in template for an array element indexed

by 1i;

47

Table 5.1: Illustration of alignment

X(i,j) =-=-> T1(i,2*j) | stridden in the second dimension

X(i,*) ==> T2(i+5) the second dim of X is collapsed,

each element of T2(6:15) holds a row of X.
Y(i) ==> T1(i,*) each element of Y is replicated along

the second dimension of T1 for the first 10
rows of T1, i.e.,
T1(i,1)=T1(i,2)=...=T1(i,30) := Y(i)
X(x,1) -=> T1(i,*) each column of X is replicated along

the second dimension of T1 for the first 10
rows of T1, i.e.,
T1(i,1)=T1(i,2)=...=T1(i,30) := X(1:10,)

e collapsing and replication

— a * in align-source-list means the corresponding array dimension will be ‘col-
lapsed’ onto the template element specified by other non * items in align-source-
list.

— a * in dist-format-list means the template dimension is ‘collapsed’ on processor
grid;
— a * in align-subscript-list means the array element(s) mapped to the template

element specified by other non * items of align-subscript-list is(are) replicated
along this template dimension.

Note: * in T(...) in alignment has nothing to do with * in T(...) in distribution.
They have different meanings and may appear in the same or different positions.

Table 5.1 illustrates some examples of alignment for specification X(10,10), Y(10), T1(20,30),
T2(20),

Table 5.2 illustrates some examples of distribution for specification T1(20), T2(20,30),
T3(20,30,40).

Template elements are distributed/partitioned among processors; the ultimate effect is
the array elements aligned to template elements are distributed.

5.3 How do we determine local rank and shape of an array ?

Local rank. From the distribute directive, we see local rank should be in general at least

48

Table 5.2: Illustration of distribution

T1(CYCLIC) --> P(4) template is cyclically distributed
T2(BLOCK,BLOCK) --> P(2,2) | two dimension block distribution
T2(*,CYCLIC) --> P(4) columns of T2 are collapsed, i.e. each

processor owns several columns of T1,
ie. T2(1,i),T2(2,i),...,T2(20,i) are all
on the same processor for fixed i.
T3(*,*,BLOCK) —-> P(4) each processor owns several two
dimensional slices of T3, i.e.,
T3(1:20,1:30,i) is on a processor

for any fixed 1.

as template rank. Notice each template element may correspond to some ‘slice’ of original
array, due to collapsed alignment, we have

rank(local) = rank(template) + number of collapsed dims of global X

on the other hand, we see the non replicated template dims capture the whole global array,
and the array is replicated as many dimensions as number of replicated template dims.
Thus, we also have

rank(local) = rank(global) + number of replicated dims of template

(we can also derive the second formula from the first one by noting the constraint: number
of non collapsed X dims = number of non replicated T dims. Note the rank(local) is
independent of rank(processor).)

Local shape. We need to decide extent of each local dimension as well as order of the
dimensions.

o Extents
— if a template dimension of extent e is distributed (either block or cyclic) over p
processors, we have a local extent = |'§'|;
— if a template dimension of extent e is collapsed, we have a local extent = e;
— if an array dimension of extent e is collapsed, we have a local extent = e;
e Dimension orders. We let a local array preserve the same dimension order as its
global array.
— if array dim i is collapsed, local dim i will have the same extent as global one;

— if array dim i is aligned to template dim j, local dim i will have extent resulting
from template dim j;

49

Table 5.3: Determine local shape from AD scheme

X(i,*) -=> T1(i+5) X has local shape (5,10)
T1(CYCLIC) --> P(4)
X(i,j) -=> T2(i,2%j) X has local shape (10,15)
T2(BLOCK,BLOCK) --> P(2,2)
Y(i) --> T2(i,*) X has local shape (20,8)
T2(*,CYCLIC) --> P(4)
X(*,i) --> T2(i,*) X has local shape (10,10,5)
T2(CYCLIC,BLOCK) --> P(2,2)
X(i,j) --> T3(2*j-1,2*i+1,*) | X has local shape (30,20,10)
T3(*,*,BLOCK) —--> P(4) Figure 5.1 depicts this situation

3

A

X

permutedly aligned, and
- ? / 1 replicated alogn 3rd dimension
e By T

BLOCK P 7
. R l 2
1/
Space of Template T3

Figure 5.1: A view of an AD scheme
— the extents resulting from replicated template dimensions will be placed after
the first rank(global) positions in order they appear in template.

Table 5.3 shows the local array shapes corresponding to various AD schemes for specifica-
tion,

X(10,10), Y(10), T1(20), T2(20,30), T3(20,30,40)

When given an AD scheme and declaration of array X and template T in the form

X (zrngy, xrngs, ..., trng,,) and T(trng,, trngs, ..., trng,) where zrng;, i=1,...,m, and trng;,
j=1,...,n are in the form I, : u, and l; : u; (with I < u being integers). For convenience, we
use rey, ..., re, to denote the extents of xrngy, ..., zrng,,, namely u-1+1, respectively; and
use teq, ..., te, for extents of trngy, ..., trng,.

We want to be able to answer:

50

e Which processor(s) hold a particular element of X, say X (a4, ag, ..., a,,) 7 What’s the
corresponding local indices for this element ?

e What portion of X does a processor (given its coordinates in its grid) have ? Note, we
refer to HPF processor grid here, not to confused with processor mesh in MPI. Here,
coordinates are 1-based, while MPI mesh uses 0-based coordinate system.

e Local shape (layout) of X on a particular processor ?
e What’s the global indices of a local X 7

We distinguish six types of alignment:

1. offset alignment: ¢ — 1+ b

2. stridden alignment: ¢ — @ * ¢

3. permuted alignment: (¢,7) — (J,1)
4. collapsed alignment: (x,7) — (%)

5. replicated alignment: (i) — (7, *)

of course, a particular alignment may demonstrate more or all of the above.

6. perfect alignment: permutation function is identity function; shape(X) = shape(T),
(the above two imply a=1, b=0); no collapsing (the above three imply no replication.)

We distinguish three types of distribution:

1. BLOCK distribution
2. CYCLIC distribution

3. collapsed distribution

Assumptions

e Memory allocation of a local array is based on the shape(local) description specified
early.

e The index of local array is 0-based.

We note, an AD scheme induces a function from {1,2,....m} to {1,2,...,n,%}. Let’s call
this function perm(), and we may think of a vector of length m to represent it. For instance,

X(i’*)j:ka*:*) -—=> T(*)j_11k+1’*)2*i+1)

the perm() vector would look like: (5,0,2,3,0,0), we use 0 for "*’.
An AD scheme also induces an order preserving onto function from {1,2,....n} to {1,2,....k}.
Let’s call it on(), and we may also think of a vector of length n to represent it. For instance,

51

T(*,block,block, *,cyclic) --> P(2,3,4)

the on() vector would look like: (0,1,2,0,3)
Now, where is X (a1, ag, ..., am) ? (a1, ..., @ are given integer constants.)

e for each i=1,...,m, such that perm(i) # 0,
compute €,c,m(;), based on the AD scheme and a;;

We end up with an ‘instantiated’ T'(ey,eg,...,€,), where e; is either some integer
constant or *.

e for each i=1,...,n, such that on(i) # 0, {
if (e; 2" +") then
if d; = "block’ {
w; = [tel/pon(l)—|7
Con(i) — [(el —It; + 1)/wl-|7

if d; = ’eyclic’ {
Con(iy = ((€i = It;) mod pon(y) + 1;

Con(i) = 17 27 "'7pon(i)

}

Then (¢, ¢z, ..., cx) obtained from the procedure represent the coordinate(s) of the pro-
cessor(s) that hold the X (aq, az, ..., am).

Note, it’s possible for more than one processor to have the same element.
Examples. For the declaration X(10,10), Y(10), T1(20), T2(20,30), T3(20,30,40), we
locate the questioned global array elements for each of the cases below.

X(1,1) 7

X(i,*) —--> T1(i+5)
T1(CYCLIC) --> P(4)

P(2) has it as X(1,0).
X(5,8) 7
X(i,3) -=> T2(i,2%j);
T2(BLOCK,BLOCK) --> P(2,2);
P(1,2) has it as X(4,0).
Y(6) 7

Y(i) --> T2(i,*);
T2(*,CYCLIC) --> P(4);

52

X(*,5.%)

X(25,-1) - X(1,4,2)
X(1:10,-3:10,-10:10), T(0:20,31:60)

X(*,0, %) > T(i+5, %) Local X(10, 6, 21)

T(b, b) --> P(4, 30)

Figure 5.2: Locate global element in local array

P(1:4), i.e., every one, have it as Y(5,0:7), i.e., even multi copies in one processor (we’ll
place some restriction on replicate alignment to avoid this waste.)

X(5,8) 7
x(*)i) —-—=> T2(1x*);
T2(CYCLIC,BLOCK) --> P(2,2);

P(2,1:2) have is as X(4,3,0:14).

X(1,1) 7
X(i,j) —--> T3(2%j-1,2%i+1,%)
T3(*,*,BLOCK) --> P(4);

P(1:4) have it as X(2,0,0:9).

In the above examples, we have not only answered which processor owns a particular
global array element, but also given its local index. In general, local index of the element
z(h1y ..oy By ooy hg), (note g-m+1 = number of replicated template dimensions), may be
determined by the following procedure.

53

for i=1,...,m
if perm(i)=0 then h(i) = a(i)-1x(i); /* local index O-based */

for i=1,...,n, such that e(i) <> "*"
if (on(i) <> 0) then
if d(i) = ’block’
w(i) = ceiling(te(i)/p_on(i));
h_perm’ (i) = e(i)-1t(i) mod w(i);
if d(i) = ’cyclic’
h_perm’ (i) = floor((e(i)-1t(i))/p_on(i));

else
h_perm’ (i) = e(i)-1t(i);
/* the above fill up the first m dimensions. For the rest
dimensions, let r(i) be the i-th replicated template dimension */
for i=1,...,q-m+1
if d(r(i)) <> ’*’ then
h(m+i) = {0,1,...,ceiling((ut(r(i))-1t(r(i)))/p(r(id))};
else
h(m+i) = {0,1,...,ut(r(i))-1t(xr(i))};

As mentioned above, arbitrary replication may result in multi copies of the same element
in a processor, which is a waste. For any practical use, we might want to impose the following
constraint on AD scheme:

in ALIGN directive, if an array is replicated along certain dimensions of a tem-
plate, the corresponding dimensions of the template must be distributed, and
extents of the dimensions must be equal to the extents of corresponding dimen-
sions of the processor grid.

under this constraint, we shall always have rank(local) = rank(global).
We see one more example. For the following,

X(1:10,-3:10,-10:10), T(0:20,31:60)
X(2,5,-1) 7

X(*,1i,*%) ——> T(i+5,%*)

T(b,b) --> P(4,30)

Processors P(2,1:30) have the questioned element as x(1,4,2). Figure 5.2 depicts the situa-
tion.

Homework:

1. For the following setting, which processor(s) have the questioned element ? And
what’s its local index 7

54

X(10,100,200,300), T(100,200,300,400,500)
X(1,50,100,150) 7

X(i,%,],%) —=> T(*,2%1i,*,j+10,%)
T(b,*,c,b,*) ——> P(4,4,4)

(Do you get: P(1:4,1:4,2) have the element as local x(1,49,9,149,1:25,1:75,1:500) !!)

. Design an algorithm that for given processor P(cy, g, ..., cx) and an AD scheme, de-
termines what portion of global X this processor has.

55

Chapter 6

Distributed array descriptor
(DAD)

The third interface of a data parallel compilation system can be conveniently (and con-
ceptually) viewed as composed of two components: data interface and functional interface.
This chapter presents a detailed design of the data interface, namely a data object that
describes a distributed (global) array to runtime functions (node).

6.1 How do we pass an array to a subroutine in FORTRAN
77

Put it in another way, what caller has to prepare to call a Fortran subroutine, or how should
a subroutine writer design its parameter structure ?
To its completeness, we see the following information is necessary for each array,

e base address, usually represented by the name of an array.

e clement type (often implied by nature of the subroutine), used to determine how many
bytes of memory an array element takes.

e dimension information, i.e., shape of the array.

e majority, if the call is within the same language, it’s often implied; but needed for
mixed language programming, unless some other equivalent measure is taken.

in addition to the basic assumption that an array is stored in a contiguous address space in
the memory.

Some common mistake is often observed, due to not understanding the above. For
instance, the following program won’t output 3 as one might think it would. What’s wrong
with it ?

56

SUBROUTINE SUB(X,n,m)
REAL X(n,m)
DO i=1,n

DO j=1,m

X(i,3) = i+j

END DO
END DO
END

PROGRAM MAIN
REAL X(10,10)

DATA X/100%0/ ! initialize to all O
READ *,n,m ! say n=2, m=3

CALL SUB(X,n,m)

PRINT *, X(1,3) ! do you get 4 77
END

Youll actually get 0 ! This is because the MAIN and SUB see two arrays of the same base
address, the same type, the same majority, but different shapes. One way to do it right is
the following,

SUBROUTINE SUB(X,d1,d2,n,m)
INTEGER d1,d2,n,m
REAL X(d1,d2)
DO i=1,n

DO j=1,m

X(i,3) = i+j

END DO
END DO
END

PROGRAM MAIN
REAL X(10,10)

DATA X/100%0/ ! initialize to all O
READ *,n,m

CALL SUB(X,10,10,n,m)

PRINT *, X(1,3) ! I get 4

END

This time, two program units see exactly the same array in memory.
What do you expect to get if the SUB is called by the following C main ?

main() {
float x[10]1[10] = {0,0,...,0}; /* there are 100 zeros */
int n,m,d1=10,d2=10;
scanf ("%d%d4d",&n,&m) ;

sub_(x,&d1,&d2,&n,&m); /* FORTRAN routine needs address */

57

printf("%f\n",x[0]1[2]);
}

Do you get 4 7 No, you'll get 0, instead ! This is because x[0][2] is the 3rd element in the
memory from C point of view, but FORTRAN’s 3rd element is x(3,1), which is not touched
by the SUB. One way to get expected 4 is by switching dimension information when calling

FORTRAN routine as,

main() {
float x[10][10] = {0,0,...,0%};
int n,m,d1=10,d2=10;
scanf ("%d%d",&n,&m) ;

sub_(x,&d2,&d1,&m,&n); /* switch the dimensions */

printf("%f\n",x[0]1[2]);
}

Thus, if we let data type be understood by the design of subprograms, we may see (base
address, dim info) as array descriptor in sequential program. Here, we assume caller’s
responsibility to take care of majority problem, though it’s possible for callee to handle it
(then majority info must be included in the parameters, callee uses it to do IF statement).
Since the information in such a descriptor is not much, we normally do not use a distinct
data object to represent it.

To describe a distributed (global) array to a node program (such as a runtime function),
much more information is needed. It’s convenient to use a distinct data object, called DAD,
to encompass the information. Incidentally, to my knowledge (after we pick it for distributed
data descriptor), DAD was first used as acronym in related context for data access descriptor
in [16].

6.2 Design of a DAD

In design of a DAD, two basic aspects should be considered.
e what information should be in the DAD ?
e how do you organize those pieces of information ?

if redundant information is introduced for efficiency reason, a third issue must be considered

e the relation among different pieces of information.

if we would want the DAD to support HPF subprograms (not node program), a fourth issue
to be considered is

58

e a mechanism to represent dummy array to runtime function. For example,

SUBROUTINE SUB(X,Y)
IHPF$ INHERIT X,Y

REAL X(0:),Y(1:)

X=Y+ 1

END

there is no AD information for X and Y available, how does a compiler generate node
program to call runtime functions, in case the assignment needs communication, etc.

?

Naturally, DAD of actual argument should be used, but there are some complications.

— array section can be used as actual argument from caller;

— dummy may be specified as assumed-shape array.

6.2.1 What should be in DAD ?

We’ll develop the contents of a DAD in this section. We first observe some preliminary
need, and then refine it as we understand the requirement.

e local base address. Yes, it’s local. HPF arrays are only logical entities used in program
by programmers. Physical address must be local.

e clement type

e global shape. We need it for index mapping. Although a programmer may specify
lower bound and upper bound for an array dimension, we only need extent in DAD,
assuming compiler takes care of normalization work when providing parameters to
runtime.

e rank, to know how many elements in the shape.

e template extent that an array dimension is align with. We also need it for index
mapping. Note, we do not need template shape, since what’s really important is the
extent of a template dimension, which potentially determines the local array’s extent,
as we discussed in last chapter.

e alignment information, including things in “align-source-list” and “align-subscript-
list”

e distribution information, including things in “dist-format-list”
e processor dimension this array dimension is eventually distributed on.

e processor shape (or extents).

59

The above information is sort of orthogonal and complete. Let’s see how they may be
represented.

struct Dad {
void base_address;
int type_code;
int rank;
int p_rank; /* to tell # elements in p_shape

int *g_extent; /* "rank" integers */
int *t_extent;

int *t_stride;

int *t_offset;

int *dist_code;

int *on_pdim;

int *p_shape; /* "p_rank" integers */

¥
We define:

o *(t_extent+i) = O iff the 7 + 1** dimension of the array is ‘collapsed’, otherwise
*(t_extent+i) is the extent of the template that array dimension i+1 is aligned
with.

(note the relation between *t_extent and perm() function introduced in last chapter.)

e when *(t_extent+i)==0, *(t_stride+i) and *(t_offset+i) are insignificant, oth-
erwise, they represent the stride of array elements and the offset of the first array
element on the template dimension, respectively.

e *(on pdim+i) indicates the processor grid dimension that this array dimension is
distributed on.

e *(p_shape+i) is the number of processors in (i+1)th processor grid dimension.
Is the above sufficient 7 Consider

PROGRAM HPF_F00
REAL X(16,16),Y(17,17)
'HPF$ PROCESSORS P1(4)
'HPF$ PROCESSORS P2(2,2)
'HPF$ TEMPLATE T(100,100)
IHPF$ ALIGN X(i,j) WITH T(2*i+5,j)
IHPF$ ALIGN Y(i,j) WITH T(3*i+7,j)
'HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P2

X(1:16,1:16) = Y(2:17,2:17)

END

60

with a reasonable node program as,

PROGRAM NODE_FOO
REAL X(25,25),Y(25,25)

(call DAD comstructor for array X)
(call DAD comstructor for array Y)
CALL data_move(DAD_X,1,16,1,16,DAD_Y,2,17,2,17)

END

How does a process (executing one copy of the node program) know what data it has,
and where to get the data it needs ?

e it must know its position in the processor grid

e then it must first know which processor grid the array is distributed on, noting HPF
allows more then one PROCESSORS directive.

Thus, processor grid the array is ultimately distributed onto should have an identity
presented in DAD, and some way for a processor to get its position in the processor group.

The representation of a processor group identity is implementation dependent. If MPI
is used as an underlying communication system, an MPI communicator is a natual choice,
and the way for a processor to get its position in the processor group could be by calling

MPI_Comm_rank (MPI_Comm comm, int *myid);
MPI_Cart_coords(MPI_Comm comm, int myid, int maxdims, int #*coords);

As a reasonable alternative, we may let the DAD contain the coords[] information during
its creation (at runtime), so that no need to call the above two MPI functions each time
when some data movement is needed. Then we may add the following entries to struct Dad

struct Dad {

MPI_comm comm;
int *my_coord; /* "p_rank' integers */

Note, this is an example of trading space for time. Also, importantly, the *my_coord is
the first piece of information in DAD (so far) that is processor dependent.

Now, we should say our DAD is quite complete, if we do not want to support HPF
subprograms. From information contained in it, runtime function is able to figure out the
basic question we posted last lecture, namely what data do I have %

Nevertheless, to answer such a question, based on the above DAD info, is non trivial.
And since this question (or some variant of it) needs to be answered very often, it should
be a good idea to store the answer in DAD during its creation, to avoid repeated non trivial
computation — another example of trading space for time. In particular, we would like to
have

61

struct Dad {

int *1_extent; /* "rank" integers for local shape of the array */

int *1_1b; /* "rank" integers for indice of 1st effective element */
int *1_ub; /* "rank" integers for indice of last effective element */
int *1_stride; /* "rank" integers for local stride on each dimension */

One of uses of these quantities is they are simply handy for traversing local effective
elements, such as

for (i=0;i<rank;i++)
index[i] = *(1_1b+i);

do {
for (i=0;i<rank;i++)
for (j=i+1;j<rank; j++)
coef[i] = coef[i]l*(*(1_extent+j));

address = base_address;
for (i=0;i<rank;i++)
address = address + index[i]*coef[i];

. *address ... /* is the element, we assume row major here */

index[rank-1] = index[rank-1] + *(1_stride+rank-1);
for (i=rank-1;i>0;i--) /* it’s like carry propagation */
if (index[i] > *(1_ub+i)) {
index[i] = *(1_1b+i);
index[i-1] = index[i-1]+*(1_stride+i-1);
}
}

while(not all index[i] == *(1_1b[i])); /* finish when return to init */

We note, I_eztent and [_stride are processor independent. (the first one is easy to observe,
the second, may need some thought.), while [_lb and I_ub are clearly processor dependent.

To support subprogram, another entry slice_coord is needed in DAD, to represent
rank reduced array section passed as actual argument (more on this later.). Another often
needed support is ghost area. We include them in DAD.

Before we go on to algorithms for the last 4 quantities, we elaborate a little bit on the
DAD organization. It could be just like the struct, if C is used as language for runtime.

struct Dad {
void base_address;
int type_code;
int rank;
int p_rank;

62

MPI_comm comm;
int majority;

int *g_extent; /* "rank" integers */

int *t_extent; /* "t_rank' integers */

int *t_stride; /* align stride, "rank" integers. */

int *t_offset; /* align offset, "rank" integers */

int *dist_code; /* code for BLOCK, CYCLIC, and * */

int *on_pdim;

int *1_extent; /* "rank" integers for local shape of the array */

int *1_1b; /* "rank" integers for indice of 1st effective element */
int *1_ub; /* "rank" integers for indice of last effective element */
int *1_stride; /* "rank" integers for local stride on each dimension */
int *ghost_size;

int *p_shape; /* "p_rank" integers */
int *my_coord; /* "p_rank' integers */
int *slice_coord;

}

However, if we are designing a DAD for potentially mixed language runtime functions, say
intrinsic functions are coded in Fortran, other data movement functions in C, the above
struct would be inconvenient. Thus, we might want to employ an integer array, called
DAD_dim, of 15 x 7 that is used to hold

struct Dad {
int *g_extent; /* "rank" integers */
int *t_extent; /* "t_rank' integers */
int *t_stride; /* align stride, "rank" integers. */
int *t_offset; /* align offset, '"rank" integers */
int *dist_code; /* code for BLOCK, CYCLIC, and * */
int *on_pdim;
int *1_extent; /* "rank" integers for local shape of the array */
int *1_1b; /* "rank" integers for indice of 1st effective element */
int *1_ub; /* "rank" integers for indice of last effective element */
int *1_stride; /* "rank" integers for local stride on each dimension */
int *ghost_size;
int *p_shape; /* "p_rank" integers */
int *my_coord; /* "p_rank' integers */
int *slice_coord;

}

in the first 14 rows (we know ranks are no more than 7 in Fortran.), and use the last row

to hold

int typeCode;
int rank;
int p_rank;

63

g_extent 0
t_extent 1
t_stride 2
t offset 3
dist_code 4
on_pdim 5
|_extent 6
I_1b 7
|_ub 8
|_stride 9
ghostsize 10
p_shape 11
my_coord 12
dice_coord 13
’ type ‘ rank ‘ p_rank‘ comm ‘ major ‘ ‘ ‘ 14

bass_address

Figure 6.1: A practical distributed array descriptor

MPI_comm comm;
int majority;

Together with base address, we see a DAD represented as in Figure 6.1.

6.2.2 DAD constructor algorithms

Now, we study the algorithm for [_extent, [.lb, [.ub, and [stride. First, we recall that we
actually had a procedure for em 1_extent in the last lecture notes. Second, it is clear, in our
current context, [_stride = t_stride for BLOCK distribution.

What might not be so obvious is for CYCLIC distribution,

1_stride = lcm(t_stride, p_shape)/p_shape

64

where lem() is the least common multiple. This is equivalent to say, if

a0, a0+d1l, ..., aO+m*dl,
and
b0, b0+d2, ..., bO+n*d2,

meet, they meet at every other lem(d1,d2) position in the axis. For instance, d1=4, d2=6,
lem(d1,d2) = 12

1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61, . ..

3,9,15,21,27,33,39,45,51,57,63, . ..

This is clear if we think of two sequences of stridden points on axis.

K———k———k———k———k———k———k———k———k———%
*————— *————— *————— *————— *————— *————— *

and consider the effect of CYCLIC distribution on local memory allocation: a processor gets
its next element from every other p_shape template element. We see the claim for [_stride
holds.

The algorithm for [_lb and [_ub. You’ll see it’s quite similar to one of previous homeworks.
This algorithm is implemented as part of DAD constructor function invoked at runtime.
We’ll present its core here followed by an illustration.

Consider a one dimensional array distributed onto a one dimensional processor group,
suppose those global parameters hava been collected in DAD, for processor i (the index to
the processor group), the following procedure computes I_lb and [_ub:

switch (distCode) {
case 1: /* block */

w = ceil(t_extent/p);

1_t = wx(i-1); /* note i is processor number */

u_t wki-1;

if u_t < t_offset or t_stride*(g_extent-1)+t_offset < 1_t
1_1b = 1_ub = 1_stride = 0;

else {
j = ceil((1_t-t_offset)/t_stride);
/* determine min j in O:g_extent-1,

such that t_stride*xj+t_offset >= 1_t. */

if (j<0) j=0;
1_1b = t_stridexj+t_offset - 1_t; /* O-based local index */
j = floor((u_t-t_offset)/t_stride);
/* the max j in 0:g_extent-1, t_stridexj+t_offset <= u_t. */
if (j>g_extent-1) j=g_extent-1;
1_ub = t_stridexj+t_offset - 1_t; /* O-based local index */

65

}
break;
case 2: /* cyclic */
o = t_offset+1;
eea(t_stride,-p,&x0,&y0,&d); /* extended Euclidean algorithm */
if (d does not divide (i-o0))
1_1b = 1_ub = 1_stride = 0;

else {
a0 = ceil((d*(g_extent-1) - (i-0)*x0)/(-p));
al = floor(-(i-0)*x0/(-p));

bl = floor(-(i-o)*y0/t_stride); /+* t_stride > 0 */
b0 = ceil((d*(t_extent-i)/p - (i-o0)*y0)/(-t_stride));
if (intersection(a0,al,b0,bl,&1,&u)==0)

1_1b = 1_ub = 1_stride = 0;

else {
1_1b = y0*(i-o0)/d -u*t_stride/d;
1_ub = y0*(i-o0)/d -1l*t_stride/d;
}
}
break;

case 3: /* collapsed */

1 _1b = t_offset;

1_ub = t_stridex(g_extent-1)+t_offset;
}

where eea(a,b,x0,y0,d) is a procedure implementing the extended Euclidean algorithm
as described in [17]. More specifically, for given integers em a and b, it finds z¢, yo, and d,
such that a-zg+b-yo = d, where d = ged(a, b). Since this algorithm is essential for effective
treatment of CYCLIC distribution, we will devote a subsection to it later.

intersection(a0,al,b0,b1,1,u) finds intersection [l,u] of two intervals [a0,al] and
[b0,b1], returning 0 if the intersection is empty.

6.2.3 Extended Euclidean Algorithm

For Diophantine equation

a-z+b-y=c (6.1)

let d = ged(a,b). We have: equation 6.1 has a solution iff d | c.
The Extended Euclidean Algorithm is to compute d, zg, and yo, such that a-zo+b-yg = d.
If d| ¢, then the general solution to equation 6.1 is

z=c zog+b -t
y=c -yg—a -t

where ¢ is any integer, and (a’, b, ') = (a/d,b/d, c/d).
Further, if x and y are bounded as

0<z<X, 0<y<Y (6.2)

66

the intersection of the following two sets of ¢’s
0<c -ag+b-t<X
0<c y—a-t<Y
will give the solution to equation 6.1 under constraint 6.2.

The Algorithm:
1. Initialize (z1,y1,¢1) «— (1,0,] a|); (z2,y2,c2) «— (1,0, b |);
2. If ¢ =0, set (zq, Yo, d) «— (sig(a) - z1,sig(b) - y1,cl), done.
3. Set ¢ = [Z];
(t1,t2,t3) ¢ (1,91, ¢1) — ¢+ (22, Y2, €2);
(1,91, 1) ¢— (22,2, €2);
(T2, Y2, €2) ¢— (1,12, 2);

goto step 2.

The basic idea behind this algorithm can be viewed as maintaining

1 N |a | _[@
T2 Y2 |6 C2
by Gaussian elimination with basic Euclidean algorithm applied on ¢; and cs.

6.3 DAD implementation

Related to our course project, I'd like to discuss a possible implementation of the DAD in
a compilation system.

We know in general, DAD = (base_address, info(15,7)). Since bass address is normally
passed separately into runtime functions, we would just consider DAD as the 15 x 7 data
object for the discussion.

From each processor’s point of view, a global storage, called ‘DAD _pool’, may be conve-
niently employed to maintain the collection of DADs during the execution of a node program.
This DAD _pool is accessible by all runtime functions, and possibly by node program. In C,
it may be implemented as

extern int DAD_pool[1000%15*7];
while in Fortran it could be

INTEGER DAD_pool(1000%15x7)
COMMON /DADs/DAD_pool

67

In node program, a DAD is simply represented by an integer (handle), thue, a typical
approach to create a DAD might be

DAD_X = DADalloc()
CALL set_DAD_values(DAD_X,all necessary data quantities
collected from HPF program)

The DADalloc() keeps track usage of DAD _pool, returns an index to the DAD pool. Clearly,
DADalloc() should internally record the usage status of DAD _pool.

set_DAD_values() fills the 15*7 elements starting from DAD_pool(DAD _X). DAD_X then
can be used to call other runtime functions. For instance,

FORALL (i=3:n:m) X(i) = 1
could be turned into node program segment as

CALL loop_bounds(DAD_X,1,3,n,m,l,u,s) ! the 1 is for dimension
DO i=1,u,s

X(i) = local2global(DAD_X,1,i) ! 1 designates dimension.
END DO

Each runtime function sees DAD _pool and can access proper information, given an index
to it. Note, this is the first node program segment in this course that show complete
parameters to a non trivial runtime function. We recall that we always had ‘... in those
runtime function calls previously.

Homework: Design and implement the following runtime functions:

local2global(DAD,dim,1i)
global2local(DAD,dim,i)
loop_bounds(DAD,dim,gl,gu,gs,11,1lu,ls)

68

Chapter 7

Runtime functions

We address the second component of compiler/runtime interface, namely functions and
calling sequence specifications. After this lecture, I think we should have done enough to
begin working on our term project. Thus, a setting of the project is described after the
main material.

As mentioned in the first lecture, our runtime functions may be classified into four
categories. It should be understood that while the functions described here indeed constitute
a working runtime, not all runtime must have precisely the same set of functions, though
any runtime supporting HPF system should more or less provides a similar functionality.

7.1 Interface functions to DAD

SUBROUTINE set_array_info(dad,type,rank,p_rank,comm,major)
INTEGER dad,type,rank,p_rank,comm,major

Description: use dad handle to access DAD_pool(), set the last row of DAD table. We
use 1 for type=INTEGER, 2 for type=REAL. Before calling this function, two other func-
tions, new_processor grid() and dad_alloc(), must be called to obtain comm and dad,
respectively.

SUBROUTINE set_dim_info(dad,dim,g_lb,g_ub,collapsed,a_stride,
a_offset,t_lb,t_ub,dist_code,p_dim,ghostsize,num_procs)

INTEGER dad,dim,g_lb,g_ub,collapsed,a_stride

INTEGER a_offset,t_lb,t_ub,dist_code,p_dim,num_procs

Description: set array dimension and alignment/distribution information for one dimen-
sion. g_lb and g_ub are bounds of the array declared in HPF program, which will be turned
into g_extent in DAD; ¢_[b and ¢_ub are corresponding template bounds, unspecified when
collapsed=1 indicating the array dimension is collapsed; a_stride and a_offset are alignment
stride and offset, to be converted to {_stride and t_offset in the DAD. For dist_code, we
use —1 for block, +1 for cyclic, and 0 for *.

This function should be called multi times for a multidimensional array.

69

SUBROUTINE set_dad_done(dad)

Description: compute [_extent, I_lb, l_ub, I_stride, and my_coord for all dimensions, using
the algorithm presented in last chapter. A dad is created after this routine.

Thus, to create a DAD, the above three functions need to be called. It’s possible, though,
to design on function that does all.

INTEGER FUNCTION dad_copy(dad_source)

Description: returns a new DAD handle with DAD content identical to dad_source. An
error message is issued if no more DAD space.

Note, this function will call dad_alloc(). The reason we want dad_alloc() to be
explicitly called before set_array_info(), and implicit here is a matter of taste. For one
thing, we want as few runtime functions appearing in node programs as possible; for the
other, we want to emphasize the semantics of setting some information into a data object.

INTEGER FUNCTION section_dad(dad,dim,low,up,step)

Description: returns a new DAD handle, which inherits content of dad but with some
modification at dimension dim according to the sectioning information, low:up:step. Note,
the compiler should provide normalized low and up against declared lower bound of the
array dimension.

Procedure to do this modification could be something like

g_extent = (up - low)/step + 1
t_offset = t_stride * low + t_offset
t_stride = t_stride * step

1_1b = ...

l ub = ...

1_stride

7.2 Index conversion functions
(8) INTEGER FUNCTION global2local(dad,dim,i)

Description: returns the local index for global index i on dimension dim. For non repli-
cated array, exactly one processor should have a corresponding local index. Return -1 for
‘I don’t have this element’. (note, local array is 0-based. Also note, -1 here is not an error
condition, error only if every process returns -1, which means no body has that element !)

INTEGER FUNCTION local2global(dad,dim,i)

Description: returns the global index for local index em i on dimension dim. It’s possible
that some local index (for non effective local element) has no corresponding global index.
A runtime error message is issued for that case. (note, different processors usually return
different values, all valid, for the same local index)

70

SUBROUTINE loop_bounds(dad,dim,gl,gu,gs,l,u,s)

Description: returns the local triplet [:u:s corresponding to global gl:gu:gs on dimension
dim. 0:-1:1 is returned if no local correspondence.

This function is kind of ‘global2local()’ conversion function. It maps a global triplet to
a set of local ones. The name of the function may not properly reflect its semantics. We use
it, since it’s convenient for determining local DO loop bounds out of global FORALL indices.

SUBROUTINE loop_upper_bound(dad,dim,gl,gu,gs,ub)

Description: this is a variation of loop_bounds (). It basically returns ub = (u-1)/s, or -1.
Sometime this function is convenient for node program generation.

7.3 Data movement functions

SUBROUTINE remap(x,dad_x,y,dad_y)

Description: move data from x described by dad_z to y described by dad_y. Note, globally
the two data objects described by dad_z and dad_y should have shape conformance (this
does not mean X and Y must conform), otherwise a runtime error message is issued.

SUBROUTINE bcast(sink,x,dad_x,index)
(choice) (OUT) sink

INTEGER (IN) dad

INTEGER (IN) index()

Description: broadcast the global array element X(indez) into replicated scalar sink. Size
of index should match rank of the array. Care should be taken for replicated X(indez).

SUBROUTINE edge2ghost(x,x_dad,dim,amount)
INTEGER (INOUT) x_dad
INTEGER (IN) dim, amount

Description: send data from edge of x to the ghost area of the neighbor processor along
dimension dim. The width of the edge is specified by amount. z_dad will be modified to
reflect the resulting situation.

7.4 Other functions

INTEGER FUNCTION new_processor_grid(p_rank,p_shape)
INTEGER (IN) p_rank
INTEGER (IN) p_shape(p_rank)

71

bf Description: returns a handle to a newly created processor group, given the shape
of it. With MPI as underline communication system, the handle could be an MPI commu-
nicator (INTEGER in Fortran). This might cause problem if runtime is mixed language
programmed, since communicator is represented differently in Fortran and C. Thus, a gen-
eral runtime may maintain its own group representations.

SUBROUTINE minihpf_init()

Description: initialize runtime system. This is the first function to call.

SUBROUTINE minihpf_done()

Description: clean up minihpf runtime system.

INTEGER FUNCTION dad_alloc()

Description: returns a handle to a DAD. In our implementation, The handle is actually
an index to DAD_pool. If no more DAD space exists, a runtime error message is issued,
program exits. (I initially wanted it to return -1 for ‘no space’, but I realize there is no
point doing that way, since ‘no space’ implies ‘nothing can be done further’. Thus, a simple
exit is more natural, which also simplifies node program — no checking is need after calling
dad_alloc().)

INTEGER FUNCTION malloc(size)

Description: allocate memory for given size, returns a base address of allocated memory,
or a runtime error message is issued if no space available.

During runtime, some temporary arrays may be need. This function is intended to
accommodate that need. For FORTRAN 77 as target, the temporary storage may be imple-
mented as a big COMMON block, and malloc() returns an index to that block.

INTEGER FUNCTION myid(comm)

Description: returns MPI rank in communicator. This function is convenient for control-
ling I/O operations.

LOGICAL FUNCTION on_me(dad,dim,i)

Description: determines if global array index 4 at dimension dim is distributed on this
processor. Clearly, this can be viewed as a variation of global2local().

72

7.5 Examples of node programs with the runtime functions

One of the purposes of taking a runtime oriented approach in this course is to enable students
readily write down a node program manually for a given HPF program. Understanding and
producing the correspondence between an HPF program and a node program are considered
essential for compilation system construction. With the runtime functions discussed so
far, we’ll see how they are actually used, and work in concert, in terms of complete node
programs. (We only talked segments of node programs before.)

Consider the following minihpf program

PROGRAM minihpf_1
REAL A(100)
'HPF$ PROCESSORS P(4)
'HPF$ TEMPLATE T(300)
'HPF$ ALIGN A(i) WITH T(2*i+5)
'HPF$ DISTRIBUTE T(BLOCK) ONTO P

A=1
PRINT *,A
END

A complete node program could be

PROGRAM node_1

include ’minihpf.h’

include ’node_only.h’

REAL A(75)

INTEGER comm,p_shape(1),dad_a,l,u,s
p_shape(1) = 4

CALL minihpf_init()

comm = new_processor_grid(1,p_shape)

dad_a = dad_alloc()

CALL set_array_info(dad_a,2,1,1,1,comm,1)

CALL set_dim_info(dad_a,1,1,100,1,1,2,5,1,300,1,1,4)
CALL set_dad_done(dad_a)

CALL loop_bounds(dad_a,1,1,100,1,1,u,s)
DO i=1, u, s

a(i) = 1
END DO
PRINT *, ’From processor’, myid(comm),’: ’,(a(i), i=1l,u,s)

CALL minihpf_domne()
END

73

As we can see, 9 runtime functions are involved. For the following,

PROGRAM minihpf_2

REAL A(100),B(100)
'HPF$ PROCESSORS P(4)
'HPF$ TEMPLATE T(300)
'HPF$ ALIGN A(i) WITH T(2*i+5)
'HPF$ ALIGN B(i) WITH T(3*i-1)
'HPF$ DISTRIBUTE T(BLOCK) ONTO P

A
B=4

1l
-

PRINT *,B

END

A complete node program could be

PROGRAM node_1

include ’minihpf.h’

include ’node_only.h’

REAL A(75),B(75)

INTEGER comm,p_shape(1),dad_a,dad_b,1l,u,s
p_shape(1) = 4

CALL minihpf_init()

comm = new_processor_grid(1,p_shape)

dad_a = dad_alloc()

CALL set_array_info(dad_a,2,1,1,1,comm,1)

CALL set_dim_info(dad_a,1,1,100,1,1,2,5,1,300,1,1,4)
CALL set_dad_done(dad_a)

CALL loop_bounds(dad_a,1,1,100,1,1,u,s)
DO i=1, u, s

a(i) = 1
END DO

dad_b = dad_alloc()

CALL set_array_info(dad_b,2,1,1,1,comm,1)

CALL set_dim_info(dad_b,1,1,100,1,1,3,-1,1,300,1,1,4)
CALL set_dad_done(dad_b)

CALL remap(a,dad_a,b,dad_b)
CALL loop_bounds(dad_b,1,1,100,1,1,u,s)

PRINT *, ’From processor’, myid(comm),’: ’,(b(i), i=1l,u,s)

CALL minihpf_done()
END

74

Besides the previous 9, remap() is also needed to run this program.

7.6 Project setting

Task: building a compilation system for a subset of HPF, called minihpf.
Purpose: acquiring an integrated working experience with a data parallel compiler/runtime
system construction.

This work consists of two parts. We’ll start from implementing the runtime functions
specified today, and work on compiler part two weeks later.
Environment setting

e The platform: DEC Alpha cluster, MPI.
Working directory: lxm/minihpf.

e minihpf.h — the file to be included in both node program and all runtime functions.
This file currently declares COMMON blocks shared by node program and runtime.

INTEGER CAPACITY

PARAMETER (CAPACITY=1000)

INTEGER DAD_pool (CAPACITY*15%7)
INTEGER int_stack(CAPACITY*1000)
REAL real_stack(CAPACITY*1000)
EQUIVALENCE (int_stack,real_stack)
COMMON /DADs/DAD_pool

COMMON /STACK/real_stack

It’s possible for node program not seeing DAD _pool, and runtime not seeing stack
(only knowing its size). The approach we take is for some general convenience.

e runtime_only.h — the file to be included in all runtime functions. mpif.h is included
in this file. Currently, it is as

include ’mpif.h’
INTEGER dad_pool_ptr,stack_ptr
COMMON /POINTERS/dad_pool_ptr,stack_ptr

Note, we use one pointer to keep track two ‘virtual’ stacks (real_stack,int_stack).

e node_only.h — the file to be included in node program. This file explicitly declares
(not defines) runtime functions with proper types. If some runtime function needs
to call other runtime function, it should declare the callee explicitly, instead of in-
cluding ’node_only.h’, since 'node_only.h’ may contain the caller, which will cause a
'redeclaration’ warning.

e minihpf.a — the runtime library.

75

e Makert — a make file to compile a newly developed file for runtime function/subroutine,
and archive it to minihpf.a. If your program file is in Fortran, do

% make addf OBJ=file -f Makert
ifin C, do
% make addc OBJ=file -f Makert
o Makefile — a make file to compile and link a node program for execution.
% make EXEC=node

e wrapper.f — the wrapper file for Fortran interfaces to C functions. (we’ll say more
about the wrapper later.)

e minihpf.lst — the list of runtime functions/routines available so far. Each entry to
this list is of format:

function/subroutine header, file name, author

For instance, right now we already have “minihpf Runtime function/subroutine list”:

SUBROUTINE minihpf_init(), global.f, lxm
SUBROUTINE minihpf_done(), global.f, lxm
INTEGER FUNCTION dad_alloc(), memory.f, lxm
INTEGER FUNCTION malloc(size), memory.f, lxm
INTEGER FUNCTION myid(comm), global.f, lxm
SUBROUTINE set_array_info(), dad.f, lxm
SUBROUTINE set_dim_info(), dad.f, lxm

Collaboration process

e lintroduce ideas behind each runtime functions (simple ones first) in lectures and give
assignment;

e You design and implement the functions in the shared directory (create a symbolic
link from your directory to Ixm/minihpf); archive them to minihpf.a, register an
entry to minihpf.1lst, and if it’s a function, declare it properly in node _only.h.

e For the initial couple of weeks, I'll provide testing node programs to test your runtime
functions. For instance, the following program tests some of the functions I've written:

76

PROGRAM node

include ’minihpf.h’

include ’node_only.h’

INTEGER i, new_dad, real_base, int_base

CALL minihpf_init()

DO i=1,1000
new_dad = dad_alloc()
print *, new_dad

END DO

CALL minihpf_done()

END
It can be compiled, linked, and run under MPI environment. Of course the developer
of the runtime should be able to tell if the output is as expected.

e After we have built up some basic runtimes and got some knowledge on program
transformation, I'll give some minihpf programs and ask you to hand-translate them
to node programs, and run.

e Finally, we investigate the strategy to replace the “hand translation” process by a
program — the ‘compiler’.

In case you want to write some runtime functions in C. A Fortran interface is needed,
since our node program is in Fortran. DEC Fortran compiler provide some convention for
calling C subprograms. (a handout, and an example.) Main points in the convention:

o declare C functions as EXTERNAL

C functions defined with a trailing underscore, referenced without it.

use %VAL() to pass value to C function, otherwise address is passed.
e C array is 0-based, Fortran 1-based.

e C array is stored in row major, Fortran column major.

Use global variable of proper struct type to match Fortran COMMON block. The global
variable must end with an underscore.

7

Chapter 8

Communication detection and
insertion

After covering key issues in runtime library design, we now turn to compiler (translator)
related tasks. As pointed out earlier, HPF directives and owner computes rule free the com-
piler from data partitioning and computation partitioning tasks. Communication detection
and insertion becomes the central issue.

8.1 Motivating examples
Consider HPF statement

REAL X(16), Y(16)

i&i:15) = Y(2:16)

How this assignment statement is turned to a segment of node program depends on many
factors. Data distribution is obviously a primary one. The following instances provide some
motivation.

1. A need for shift communication. Consider,
REAL X(16), Y(16)
IHPF$ TEMPLATE T(48)
I'HPF$ PROCESSORS P(4)
'HPF$ DISTRIBUTE T(BLOCK) ONTO P
'HPF$ ALIGN (i) WITH T(i) :: X,Y
X(1:15) = Y(2:16)

we see the data layout in memory as

78

P1 P2 P3 P4
X(1:15): XXXXXXXXXXXX | Xxx—————-———- |- |-

v(2:16): -yyyyyyyyyyylyyyy-—------ il Ee

A shift of Y by 1 location to the left (41) is needed. Note, the shift is best visualized
on template. It is, in general, not a shift on array. This notion will be clearer by later
examples.

2. No communication needed, due to proper alignment.

REAL X(16), Y(16)

TEMPLATE T(48)

PROCESSORS P(4)

DISTRIBUTE T(BLOCK) ONTO P
ALIGN X(i) WITH T(i+1)
ALIGN Y(i) WITH T(i)

k&i:15) = Y(2:16)

Although the assignment statement appears like a shift operation, no actual commu-
nication is needed as shown in the following data layout.

X(1:15): —XXXXXXXXXXX | xxxx--——————- |- |-

v(2:16): -yyyyyyyyyyylyyyy-—------ il B

3. Some kind of ‘difficult’ communication is required.

REAL X(16), Y(16)

TEMPLATE T(48)

PROCESSORS P(4)

DISTRIBUTE T(BLOCK) ONTO P
ALIGN X(i) WITH T(i+1)
ALIGN Y(i) WITH T(i)

i&i:9:2) = Y(2:14:3)
has the following data layout in memory.
X(1:9:2) -x-x-x-x-x——|-——————————- [=== [===
¥(2:14:3) -y--y--y--y-l-y————-——- | ——=—mmm - | ==

Obviously, communication is needed, but a shift on template can not eliminate it.
We call those communication requirement, that can not be met by a shift, remap
communication.

Thus, for an assignment between two arrays/sections, three kinds of communication
requirement may result.

79

e No communication;
e Shift communication, ‘+’ to the left, ‘-’ to the right;

e Remap communication.

4. Complicated situation may not imply remap communication. See

REAL X(16), Y(16)

TEMPLATE T(48)

PROCESSORS P(4)

DISTRIBUTE T(BLOCK) ONTO P
ALIGN X(i) WITH T(3*i-1)
ALIGN Y(i) WITH T(2*i+1)

X(1:9:2) = ¥(2:14:3)
with the following memory layout,

X(1:9:2) -x--x—-x--x—|-x——x—-x——x-|-x————————— | ———
¥(2:14:3) —-y-y-y-y-y-ly-y-y-y-y-y-ly-y-y-—-----l=-mmmmmm
No communication is need, each processor has what it needs.

5. CYCLIC distribution introduces some new issue.

REAL X(16), Y(16)

TEMPLATE T(48)

PROCESSORS P(4)

DISTRIBUTE T(CYCLIC) ONTO P
ALIGN X(i) WITH T(3*i-1)
ALIGN Y(i) WITH T(2*i+1)

X(1:9:2) = ¥(2:14:3)
has memory layout as,

X(1:9:2) —X——X——X-—X——X——X-—X——X——X——————————————————————
12341234123412341234123412341234

¥(2:14:3) —-y-y-y-y-y-yy Yy y-y-y-yoy-y-omoommmommomomoo—-
12341234123412341234123412341234

It needs a shift, +1 or -3, on template. Note BLOCK distribution always results in shift
in one direction, if needed.

80

6. Templates make difference. The following program is almost the same as the second
one above.

REAL X(16), Y(16)

TEMPLATE TX(36)

TEMPLATE TY(48)

PROCESSORS P(4)

DISTRIBUTE (BLOCK) ONTO P :: TX,TY
ALIGN X(i) WITH TX(i+1)

ALIGN Y(i) WITH TY(i)

X(1:18) = ¥(2:16)
but it needs a remap communication, as shown below.

B
X(1:15): -XXXXXXXX | xxxXxX%X%X-— | ————————— [===

v(2:16): -yyyyyyyyyyylyyyy-—------ il Ee

You may argue that a shift -3 is good enough. Yes, true for these very specific array
segments. What if the segments span across 3 processors ?

7. The last one.

REAL X(8), Y(8)

TEMPLATE TX(36)

TEMPLATE TY(48)

PROCESSORS P(4)

DISTRIBUTE (BLOCK) ONTO P :: TX,TY
ALIGN X(i) WITH TX(3%*i+1)

ALIGN Y(i) WITH TY(4%*i-1)

i&i:?) = Y(2:8)
X(1:7): ———x--x--|x-—x--x—— | x-—-x---—- [===
v(2:8): ----—- y—=-y-l-—-y-—y—y-l-—y—y-—— |-
No communication.

One of our compiler’s job is to detect different communication requirements based on
an analysis of the program, and generate proper node program segments correspondingly.

81

8.2 A theory of communication detection

We want to develop some conditions that distinguish the three communication patterns.
We observe the following factors affecting the condition

e description of array sections (and their offsets from lower bound of the array index),
xl:xu:xs, xo; yl:yu:ys, yo

e size of templates (we assume the sizes are multiples of p), tx; ty
e alignment parameters ax,bx; ay,by
e distribution mode BLOCK, CYCLIC
Among the 3 communication patterns, ‘shift communication’ is the key, since
e ‘no communication’ can be viewed as ‘shift communication’ with shift_amount=0;
e ‘not shift communication’ — ‘remap communication’
Thus, our task becomes: determine the condition for shift communication,

if the condition holds, then

calculate shift_amount;

if shift_amount=0 then

we have ’no communication’ condition;

end if
else

we have a ’remap communication’ condition;
end if

Although there are many parameters involved in this model, we observe that status

of section elements on templates is what we are ultimately interested in. This status is
described by

e size of the templates, and number of processors the templates are distributed on; tx,
ty, p

e position of the first section element on template; xo, yo
e stride on template sx = ax#*xs, sy = ay*ys
e distribution mode, BLOCK or CYCLIC

shift-homomorphic condition: assume template TX(tx) and TY(ty) are distributed over
P Processors,

Two array sections X(x1:xu:xs) and Y(yl:yu:ys) are shift-homomorphic with respect
to TX and TY, and alignment parameters (ax,bx) and (ay,by), respectively, if

82

They have the same extent (number of elements), and

ar - Ts tx

= — 1
ay-ys ty &1

for both TX and TY being block-distributed;
ar -xs=ay-ys (mod p) (8.2)

for both TX and TY being cyclic-distributed.

We want to show shift-homomorphic condition is the condition for shift communication,
namely, if two array sections satisfy the condition, it is always possible to shift X or Y some
amount along its template, so that corresponding section elements lie in the same processor.

For BLOCK distribution

Idea of the proof: let # and y be the positions of first element of X(x1:xu:xs) on
template TX, Y(yl:yu:ys) on template TY, respectively. If we can show that

there exits a position 3’ on template TY, such that if we shift array Y along TY so
that the first element of Y(y1l:yu:ys) lies at position y’ then each processor will
contain the same number of elements from both X(x1:xu:xs) and Y(yl:yu:ys),

we done !

To this end, we claim: y' = [Z].

Proof: define wl=tx/p and w2=ty/p, and ®(i) = f%} Let
i, i+sx, i+2*sx, ..., i+k*sx
be any consecutive subsection of X(xl:xu:xs). We show if

(n—1)-wl+1<4, and i+k-sz<n-wl

then
(n—1)- w2+ 1< ®(4), and (i) +k-sy < n-w2

Clearly, if this is true, each processor will have the same number of elements from sequences
X, X+sx, Xx+2%sx, ..., Xtm*sx
and

y’, y’+sy, y’+2*sy, ..., y’+m*sy

83

Indeed, from (n — 1) - wl+ 1 <7, we have

ty .ty
—1NNewl+1)- L <2
((n)w—}—) tm_l tx

M(n-1)-wl+1)- 2 <1i- 2 = a()

tr — tx

t .
[(n—1) w2+ 2] < 2(3)
note wl*ty/tx=w2.

(n=1)-w241< (n=1)- w2+ (i—% < B(i)
x
on the other hand, from 7 + k - sz < n - wl, we have

t t
(i—}—k-sm)-%ﬁn-wl-—

T tx

1ty (i +Fk-sz)-ty n * wl * ty
k-sy= <
[, 1 +k-sy=T = I<l— 1
note s1*ty/tx = s2
T

Q.E.D.
Clearly, shiftomount =y — y = [%1 - Y.

For CYCLIC distribution

Recall condition sx = sy (mod p).
Once again, let z and y be initial positions (on templates) of the first elements from
X(x1l:xu:xs) and Y(yl:yu:ys). Let 3’ be any feasible position on template TY, such that

z =1y (mod p)

we claim if we shift ¥ such that first element of Y(yl:yu:ys) lies on y’, then X(i),
i=xl,xu,xs, will be in the same processor as Y(j), j=yl,yu,ys.

z =1y (mod p) — X (zl) is with Y(yl)

the next corresponding elements X(x1+xs) and Y(yl+ys) are at positions z+ sz and y' + sy,
respectively. Since

84

z =1y (mod p), and sz = sy (mod p)
imply
z+ sz =y + sy (mod p)

we see X(x1+xs) and Y(yl+ys) are in the same processor, too. Obviously, this analysis
can be applied recursively until all elements are exhausted.

Q.E.D.
Note, we have used feasible position to describe y’.

1234123412341234
—X—X—X-X-——"

123412341234123412341234
YT y———-) y-

The second and 6th positions on TY are feasible, 10th is not. Thus, we need a way to
determine the closest feasible position and induced ’shift_amount’ in this case.

if ((x-1)%p + 1) > ((y-1)%p + 1) and y > x then
shift_amount = (y-1)%p+1 - (p - ((x-1)%p+1))
else
shift_amount = (y-1)%p - (x-1)%p

for the above example, shift_amount= 1 - (4-2) = -1. Two more examples,

1234123412341234
X—X—X—X—X-——7——"——

123412341234123412341234
YT y———-) y-

shift_amount = 0 - 0 = 0, no communication

1234123412341234
——————X—X—X—X-X-—

123412341234123412341234
Ty y———-) — y-

shift_amount = 0 - 2 = -2.

To apply the above result to compilation practice — compiler algorithm, upon seeing

X(x1l:xu:xs) = Y(yl:yu:xs)

85

do

step 1. Insert a call to runtime function as
CALL loop_bounds(dad_x,1,1,u,s,11,lu,ls)

where dad_x is a descriptor for distributed array X.
step 2. Check if communication is detectable. If not, go to 6.

step 3. Detect communication pattern between arrays X and Y under this assignment state-
ment. If shift communication is detected, the shift_amount is also determined.

step 4. If no communication, insert

CALL loop_bounds(dad_y,1,1,u,s,lly,luy,lsy)
iy = 11y
DO i = 11,1u,ls
X(1) = Y(iy)
iy = iy + 1sy
END DO

where dad_y is a descriptor for distributed array Y.

step 5. Else if shift communication, insert

CALL dad_copy(dad_tmpy,dad_y)
CALL edge2ghost(y, dad_tmpy, 1, amount)
CALL loop_bounds(dad_tmpy,1,1,u,s,lltmpy,lutmpy,lstmpy)
itmpy = 1lltmpy
DO i = 11,1u,ls
X(i) = Y(itmpy)
itmpy = itmpy + lstmpy
END DO

where dad_tmpy describes the result of Y after edge2ghost().

step 6. Else remap communication is needed, insert

dad_xs = section_dad(dad_x,...)
dad_ys = section_dad(dad_y,...)
CALL remap(tmpx,dad_xs,y,dad_ys)
DO i = 11,1u,ls

X(1) = tmpx(i)
END DO

86

where dad_xs and dad_ys are descriptors for the sections involved.

Finally, let’s see the node programs for preceding examples (7), (5), and (3).

! for convenience, I note the interfaces for
! set_array_info(dad, type,rank,p_rank,comm,major)
! set_dim_info(dad,a_dim,g_lb,g_ub,collapsed,a_stride,a_offset,
! + t_1lb,t_ub,dist_code,p_dim,ghostsize,num_procs)
PROGRAM NODE_7
include ’minihpf.h’
include ’node_only.h’
REAL X(9),Y(12)
INTEGER comm,p_shape(1),dad_x,dad_y
INTEGER 11,1u,ls,1ly,luy,1lsy,iy
p_shape(1) = 4
CALL minihpf_init()
comm = new_processor_grid(1,p_shape)

dad_x = dad_alloc()

CALL set_array_info(dad_x,2,1,1,comm,1)

CALL set_dim_info(dad_x,1,1,8,0,3,1,1,36,1,1,0,4)
CALL set_dad_done(dad_x)

dad_y = dad_alloc()

CALL set_array_info(dad_y,2,1,1,comm,1)

CALL set_dim_info(dad_y,1,1,8,0,4,-1,1,48,1,1,0,4)
CALL set_dad_done(dad_y)

CALL loop_bounds(dad_x,1,1,7,1,11,1u,1ls)
CALL loop_bounds(dad_y,1,2,8,1,11y,luy,1lsy)
iy = 1ly
DO i = 11,1u,ls
X(1) = Y(iy)
iy = iy + 1lsy
END DO
CALL minihpf_done()
END

PROGRAM NODE_5

include ’minihpf.h’

include ’node_only.h’

REAL X(12),7Y(12),tmpy(12)

INTEGER comm,p_shape(1),dad_x,dad_y,dad_tmpy
INTEGER 11,1u,1ls,1ly,luy,1lsy,iy

p_shape(1) = 4

CALL minihpf_init()

comm = new_processor_grid(1,p_shape)

87

dad_x = dad_alloc()

CALL set_array_info(dad_x,2,1,1,comm,1)

CALL set_dim_info(dad_x,1,1,16,0,3,-1,1,48,2,1,0,4)
CALL set_dad_done(dad_x)

dad_y = dad_alloc()

CALL set_array_info(dad_y,2,1,1,comm,1)

CALL set_dim_info(dad_y,1,1,16,0,2,1,1,48,2,1,1,4)
CALL set_dad_done(dad_y)

CALL loop_bounds(dad_x,1,1,9,2,11,1u,1ls)
dad_tmpy = dad_copy(dad_y)
CALL edge2ghost(Y,dad_tmpy, 1, +1)
! note edge2ghost() will adjust dad_tmpy according to result of shift
CALL loop_bounds(dad_tmpy,1,2,14,3,11y,luy,lsy)
iy = 1ly
DO i = 11,1u,ls
X(i) = Y(itmpy)
iy = iy + 1lsy
END DO

CALL minihpf_done()
END

PROGRAM NODE_3

include ’minihpf.h’

include ’node_only.h’

REAL X(12),7Y(12),tmpx(12)

INTEGER comm,p_shape(1),dad_x,dad_y,dad_xs,dad_ys
INTEGER 11,1u,ls,1ly,luy,1lsy,1iy

p_shape(1) = 4

CALL minihpf_init()

comm = new_processor_grid(1,p_shape)

dad_x = dad_alloc()

CALL set_array_info(dad_x,2,1,1,comm,1)

CALL set_dim_info(dad_x,1,1,16,0,1,1,1,48,1,1,0,4)
CALL set_dad_done(dad_x)

dad_y = dad_alloc()

CALL set_array_info(dad_y,2,1,1,comm,1)

CALL set_dim_info(dad_y,1,1,16,0,1,0,1,48,1,1,0,4)
CALL set_dad_done(dad_y)

CALL loop_bounds(dad_x,1,1,9,2,11,1u,1ls)
dad_xs = section_dad(dad_x,1,1,9,2)
dad_ys = section_dad(dad_y,1,2,14,3)
CALL remap(tmpx,dad_xs,y,dad_ys)

88

DO i = 11,1u,ls
X(i) = tmpx(i)
END DO

CALL minihpf_done()
END

Applying the result to FORALL statement. Consider,
REAL X(..), Y(..)
PROCESSORS ..
TEMPLATE ...
ALIGN ...
DISTRIBUTE ...
FORALL (i=l:u:s) X(a0*i+b0) = Y(alxi+bl)
END
Observe this FORALL statement is equivalent to

X(x1l:xu:xs) = Y(yl:yu:ys)

where

x1 a0*1+b0, xu a0*u+b0, xs = al*s
yl = al*l+bl, yu = al*u+bl, ys = alxs

We done !

Homework: As we have observed, once a shift-homomorphism condition is detected for
BLOCK distribution, the shift-amount may not be unique. Derive a formula that determines
the range of the shift-amount.

89

Chapter 9
Writing a compiler for minihpf

-

In lecture 7 (Chapter 7 of this notes), we described a general setting of our term project.
As we are finishing the runtime part of the project, we’ll discuss compiling (translation)
techniques in this lecture.

We specify a subset of HPF, called minihpf, for a term project. Students are expected
to write a compiler (translator) that turns a minihpf program into a node program in
FORTRAN 77, calling runtime functions developed earlier in this course. Once compiled
by a native FORTRAN 77 compiler and linked with the runtime, a collective execution
of multiple copies of the node program should achieve the same semantical effect as the
minihpf program.

A compilation strategy for this project is also discussed in the lecture.

9.1 The minihpf language

A complete syntax specification of minihpf is provided at end of this chapter. Here are
some basic considerations behind the decisions made on this minihpf.

e It should be feasible as a term project to be completed in two months.
e Rationals on technical aspects:

— cover most of key issues in data parallel compilation system construction, in
particular:

* The ‘forest’ — a complete process from source to target translation, instead
of just some ‘key technologies’, and to be able to observe the generated node
program to be linked with runtime and run ! This is in compliance with
designed outcome of this course.

* The ‘trees’ — the following technical issues will be delt with in the work,
though may not be thoroughly discussed.
- DAD

90

- global «— local index conversion

- data movement

- communication detection and insertion
- subprogram interface analysis

- Inemory management

We consider they are fundamental issues one must encounter when constructing
a data parallel compilation system. (I regret I eventually gave up ‘subprogram
interface analysis’, due to loss of two lectures for some business trips.)

— avoid low % features.
Based on these thoughts, we have
e The language:

— one dimensional arrays and templates

— single processor grid

— REAL and INTEGER data types

— assignment statement with one term at right hand side
— one index FORALL statement without masking

— DO loops with control variable not used in body.

— subroutines

— no input statement

— simple PRINT statement for output

9.2 Outline of minihpf compiler code
We may see two passes of processing by the compiler.

1. Analysis: gather information about the program, and record them properly.

2. Node program generation: based on the information gathered from the first pass and
translation strategy, spell out corresponding statements sequence in node program for
each minihpf statement.

Assuming we have a front-end (such as HPFfe) that can parse HPF programs into some
intermediate representation (IR), and unparse IR for node program back to FORTRAN 77
program, then, the compiler program could look like:

main{int argc, char * argv[]) {
input IR of a minihpf program;

91

analyze(it);
transform(it) ; // into node program’s IR
output the transformed IR;

}

We discuss the algorithm involved in analyze() and transform() today, in particular, the
interface between them.

9.3 Developing a translation scheme

Considering whole array as a special case of array-section, and see constant as a scalar value,
we distinguish the following 13 cases to transform.

1. assignment statement — involving 3% — 2 cases

scalar to scalar
scalar to array-element

array-element to scalar

scalar to array-section

(11)

(12)

(13)

(1.4) array-element to array-element
(1.5)

(1.6) array-element to array-section
(1.7) array-section to array-section

(we can not have ‘array-section to scalar’ or ‘array-section to array-element’, due to
shape conformance requirement.)

2. FORALL statement, in its assignment statement,
(2.1) FORALL index (scalar) to array-element

(2

(2

3. PRINT statement

) non FORALL index scalar to array-element

2
.3) array-element to array-element

(3.1) scalar
(3.2) array-element

(3.3) array-section
Let’s elaborate a translation strategy for them one by one

(1.1) scalar to scalar

92

(1.3)

(1.4)

sl = s2 -—> sl = s2

scalar to array-element

x(a*i+b) = s -—> it = global2local(dad_x,1,a*i+b)
IF (it .NE. -1) x(it) = s

array-element to scalar

s = x(a*i+b) -—> CALL bcast(s,x,dad_x,a*i+b)

(for simplicity, we assume bcast() takes a scaler as the 4th argument, since we only
deal with one dimensional arrays.)

array-element to array-element

x(a*i+b) = y(c*i+d) --> CALL bcast(s,dad_y,c*i+d)
it = global2local(dad_x,1,a*i+b)
IF (it .NE. -1) x(it) = s

Note, we should pick properly typed scalar for s. Let’s use is, and rs, respectively.

scalar to array-section

x(al*il+bl:a2*i2+b2:a3*i3+b3) = s
--> CALL loop_bounds(dad_x,1,al*il+bl,a2*i2+b2,a3*i3+b3,11,ul,sl)
DO i = 11,ul,sl
x(i) = s
END DO

Note, Il, ul, and sl should be typed INTEGER in the node program.

array-element to array-section

x(al*il+bl:a2%i2+b2:a3%i3+b3) = y(ad*id+b4)
--> CALL bcast(s,y,dad_y,a4*i4+b4)
CALL loop_bounds(dad_x,1,al*il+bl,a2*i2+b2,a3*i3+b3,11,ul,sl)
DO i = 11,ul,sl
x(i) = s
END DO

Once again, properly typed scalar must be chosen for s.

93

(1.7) array-section to array-section

x(al*il+bl:a2%i2+b2:a3%i3+b3) = y(ad*i4+b4:ab*i5+b5:a6*i6+b6)

compiler function detect_comm() should be called to decide on one of three possible
node program segments.

(a) CALL loop_bounds(dad_x,1,al*il+bl,a2*%i2+b2,a3*i3+b3,11,ul,sl)
CALL loop_bounds(dad_y,1,a4*i4+b4,ab*i5+b5,a6*i6+b6,1lr,ur,sr)
ir = 1r
DO i = 11,ul,sl

x(1) = y(ir)
ir = ir + sr
END DO

(b) CALL loop_bounds(dad_x,1,al*il+bl,a2*%i2+b2,a3*i3+b3,11,ul,sl)
dad_tmp = dad_copy(dad_y)
CALL edge2ghost(y,dad_tmp,1,amount)
CALL loop_bounds(dad_tmp,1,a4*i4+b4,ab*i5+b5,a5%i5+b5,1r,ur,sr)
ir = 1r
DO i = 11,ul,sl
x(1) = y(ir)
ir = ir + sr
END DO

(c) dad_s1 = section_dad(dad_x,1,al*il+bl,a2+i2+b2,a3*i3+b3)
dad_s2 = section_dad(dad_y,1,a4*i4+b4,ab*i5+b5,a6*i6+b6)
CALL remap(x,dad_s1,y,dad_s2)

(2.1) FORALL index (scalar) to array-element, assume FORALL triplet is gl:gu:gs.

x(a*xi+b) = i
—-=> CALL loop_bounds(dad_x,1,a*gl+b,a*gu+b,a*gs,11l,ul,sl)
DO i = 11,ul,sl
x(1) = (local2global(i) - b)/a
END DO

(2.2) non FORALL index scalar to array-element

x(a*xi+b) = ¢
—-=> CALL loop_bounds(dad_x,1,a*gl+b,a*gu+b,a*gs,11l,ul,sl)
DO i = 11,ul,sl
x(i) = ¢
END DO

94

(2.3) array-element to array-element

x(a*i+b) = y(c*i+d)

compiler function detect_comm() should be called to decide on one of three possible
node program segments.

(a) CALL loop_bounds(dad_x,1,a*gl+b,a*gu+b,a*gs,11,ul,sl)
CALL loop_bounds(dad_y,1,c*gl+d,c*gu+d,c*gs,lr,ur,sr)
ir = 1r
DO i = 11,ul,sl

x(1) = y(ir)
ir = ir + sr
END DO

(b) CALL loop_bounds(dad_x,1,a*gl+b,a*gu+b,a*gs,11,ul,sl)
dad_tmp = dad_copy(dad_y)
CALL edge2ghost(y,dad_tmp,1,amount)
CALL loop_bounds(dad_tmp,1,c*gl+d,c*gu+td,c*gs,lr,ur,sr)
ir = 1r
DO i = 11,ul,sl
x(1) = y(ir)
ir = ir + sr
END DO

(C) dad_xs = section_dad(dad_x,1,a*gl+b,a*gu+b,a*gs)
dad_ys = section_dad(dad_y,1,c*gl+d,c*gu+d,c*gs)
CALL remap(x,dad_xs,y,dad_ys)

(3.1) scalar

PRINT *,s --> PRINT #*, ’From proc’,myid(comm),’:’,s

(3.2) array-element

PRINT *, x(a*i+b)
--> it = global2local(dad_x,1,a*i+b)
IF (it .NE. -1) THEN
PRINT *, ’From proc’,myid(comm),’:’,x(it)
END IF

(3.3) array-section

PRINT *, x(al*il+bl:a2+%i2+b2:a3*i3+b3)
—-=> CALL loop_bounds(dad_x,1,al*il+bl,a2*i2+b2,a3*i3+b3,11,ul,sl)
PRINT *, ’From proc’,myid(comm),’:’,(x(i),i=11,ul,sl)

95

9.4 What else to be worried about ?

e interface between the two passes

— analyze() figures out the 13 cases (in fact, 17 cases, considering different results of
detect_communication()), and stores the result, together with related parameters,
in a record;

— transform() looks at the record, emits code as described above.
e storage management

— some additional variables are needed in the node program. We need to have a
naming convention to create them. A good news is that we only have to deal
with scalars for these variables, due to the strong restriction that expression can
only contain one term.

— determination of local array sizes, especially in the case of non zero ghost area.

9.5 The interface — information in the record

The idea is that we want to have a unified record structure capable of representing all of
the 17 cases. After examining the 17 cases, we may end up with the following

struct executable_stmt {
int case;
statement *stmt-ptr; // pointer to the statement in IR
symbol *left;
expression *expr-1;
expression *expr-2;
expression *expr-3;
symbol *right;
expression *expr-4;
expression *expr-5;
expression *expr-6;

Let’s map the structure with cases (refer to section 9.3 for translation scheme).

(1.1) scalar to scalar

case =1, others NULL. Transform() sees this record, leaves the statement intact.

(1.2) scalar to array-element

case=2, left points to x entry in the symbol table, expr-1 points to the expression
axi+b, right points to s entry in the symbol table. Others NULL.

(in case a*i+Db is degenerated to simple variable or constant, conversion to expression
needs to be done in analyze().)

96

(1.3)

(1.4)

transform() sees this record, make up two statements, and replace original statement
by the two. It will need additional variable it and dad_z. We note it can be reused,
and some convenience may result if dad of an array with name is alway named as
dad_name.

array-element to scalar

case=3, left, right, and expr-4 are effective.

array-element to array-element

case =4, left, expr-1, right, and expr-4 are effective. Note, transform() deter-
mines is or rs to be used.

scalar to array-section

case =5, left, expr-1, expr-2, expr-3, and right are effective.

array-element to array-section

case =6, left, expr-1, expr-2, expr-3, right, and expr-4 are effective. Again,
transform() determines is or rs to be used.

array-section to array-section

As discussed previously, one of the three sub cases may result.

(a) case=7,left, expr-1, expr-2, expr-3, right, expr-4, expr-5,and expr-6

are all effective.

(b) case=8, left, expr-1, expr-2, expr-3, right, expr-4, expr-5,and expr-6

are all effective, though node program segment is different from case 7.

(c) case=9, left, expr-1, expr-2, expr-3, right, expr-4, expr-5,and expr-6

are all effective.

FORALL index (scalar) to array-element

case =10, left, expr-1, right, expr-4, expr-5,and expr-6 are effective, with a
understanding that expr-4, expr-5, and expr-6 represent components of the FORALL
triplet.

non FORALL index scalar to array-element

case =11, 1left, expr-1, right, expr-4, expr-5, and expr-6are effective, with
a understanding that expr-4, expr-5, and expr-6 represent components of the
FORALL triplet.

array-element to array-element

Again, three sub cases may result.

97

(a) case =12, left, expr-1, expr-2, right, expr-4, expr-5, and expr-6 are
effective, with a understanding that expr-4, expr-5, and expr-6 represent com-
ponents of the FORALL triplet, and expr-2 represents expression in right hand
side element.

(b) case =13, left, expr-1, expr-2, right, expr-4, expr-5, and expr-6 are
effective, with a understanding that expr-4, expr-5, and expr-6 represent com-
ponents of the FORALL triplet, and expr-2 represents expression in right hand
side element.

(c) case =14, left, expr-1, expr-2, right, expr-4, expr-5, and expr-6 are
effective, with a understanding that expr-4, expr-5, and expr-6 represent com-

ponents of the FORALL triplet, and expr-2 represents expression in right hand
side element.

(3.1) PRINT a scalar

case =15, left is effective.

(3.2) PRINT an array-element

case =16, left and expr-1 are effective.

(3.3) PRINT an array-section

case =17, left, expr-1, expr-2, and expr-3 are in effect.

9.6 Specification part

We have more or less done with execution-part. Now we deal with the variable-spec-part
with respect to HPF-directive-part.

How should analyze() prepare for transform() to specify local variables 7

We observe that in our case, most additional variables are transient. They are only
needed for a segment of code, then can be reused. If you examine carefully, only 17 plus
number of DADs additional variables are needed, no matter how big a minihpf program is !

We adopt the following assumptions/conventions:

e All variables used in a minihpf program keep the same names in node program, i.e.,
X(100) in minihpf program will also be called X(..) in node program, though extent
may be changed.

e All arrays declared are aligned and distributed explicitly.

e DAD of an array with name will be designated by dad_name. For instance, REAL
X1(200) will have dad_x1. (These are long lasting additional variable names.)

e In case of shift communication, the temporary DAD for an array will be dad_tmp,
independent of array names.

98

Returned local loop bounds for left hand side of assignment will be 1l,ul,sl, while Ir,
ur, sr for right hand side, independent of array names.

Use ’amount’ for shift amount.

Use ’ir’ for right hand side array element index in local loop, while using i’ for left
hand side and DO loop index.

Use ’dad_s1’ and ’dad s2’ for array sections in case of remap.

Use ’it’ for returned value from global2local; use ’is’ for integer scalar in beast(), 'rs’
for real scalar.

The above has identified those transient names, 15 of them. There are 2 more long
lasting variables:

pshape(1), comm

We should realize in general that a scheme for naming and keeping track of additional
variables may be non trivial, though we are able to do some exhaustive analysis here. Any
way, we may see the specification part of our node programs always look like something

like,

PROGRAM name

include ’minihpf.h’

include ’node_only.h’

REAL ... modified from minihpf program ...

INTEGER ... modified from minihpf program ...

INTEGER p_shape(1), comm, amount, i, ir, dad_sl, dad_s2
INTEGER dad_tmp, 11, ul, sl, 1lr, ur, sr, it, is

REAL rs

INTEGER ... the DADs ...

Analyze() should provide enough information for transform() to complete those unfin-
ished declarations, in particular, size of local arrays. Here is a proposed structure to record
this information.

struct re_decl {

}

statement * stmt-ptr; // pointer to a type-spec-stmt
local_size * list[]; // a list of pairs

struct local_size {

X

symbol * symb-ptr; // pointer to an array name
int extent; // local extent figured out by analyze()

Thus, analyze() prepares a bunch of re_decl’s (number of them depends on the number of
type-spec-stmts in miniphf program), and transform() looks at them one by one and mod-
ify the declaration based on ’extent’. For non array items in the type-spec-stmt, transform()
just skips it.

99

Moreover, the ’re_decl’ also gives hint for the DAD variable declarations, namely every
symbol appearing in the list[] will have a DAD.

9.7 Initialization and finishing

Not done yet ! We see the skeleton of our node program:

PROGRAM name
. specification part ...
p_shape(1) = 7
CALL minihpf_init()
comm = new_processor_grid(1,p_shape)

. a sequence of dad creations ...
dad_x = dad_alloc()
CALL set_array_info(dad_x,-,1,1,comm,?)
CALL set_dim_info(dad_x,1,1,-,0,-,-,1,-,-,1,-,7)
CALL set_dad_done(dad_x)

. the execution-part ...

CALL minihpf_done()
END

Thus, analyze() also provides: (1) a pointer to an expression for size of processor array,
p-size. (2) The following structure for dad creation

struct dad_primitive {
symbol * symb-ptr; // pointer to symbol of an array
expression * data_type; // data type code

expression * g_ub;
expression * a_stride;
expression * a_offset;
expression * t_ub;
expression * dist_code;
expression * ghostsize;

}
for each array.
Putting all together, the interface between analyze() and transform() is:
e 2 list of re_decl;
® p_size;
e a list of dad_primitive;

e a list of executable_stmt;

100

9.8 Calling detect_comm() in analyze()

We have implemented a detect_comm() based on the algorithm developed in last lecture.

The analyze() can simply call it by observing the following.
For a general FORALL statement as,

FORALL (i=l:u:s) X(a0*i+b0) = Y(alxi+bl)
prepare parameters to call

detect_comm(detect_DIM * dad_x, detect_DIM * dad_y,
int *1, int *u, int *s,
int *a0, int *b0, int *al, int *bl, int *amount);

where

typedef struct detect_DIM {
int dist_code;
int num_procs;
int t_1b;
int t_ub;
int t_stride;
int t_offset;
} detect_DIM;

and get return value: 0 no communication; 1 shift communication, amount is effective; 2
remap communication.

9.9 Minihpf specification

It’s basically a direct stripped-down from Fortran 95 and HPF spec.

R1101 program is PROGRAM name
[variable-spec-part]

[HPF-directive-part]
[execution-part]

END
R304 name is 1letter [alphanumeric-character]
R302 alphanumeric-character is letter

or digit

R501 variable-spec-part is type-spec—-stmt
[type-spec-stmt]

R502 type-spec is INTEGER entity-decl [, entity-decll]
or REAL entity-decl [, entity-decl]

101

R504 entity-decl is name [(int-constant)]
(note: we use default lower bound for arrays.)

H100 HPF-directive-part is !'HPF\$ PROCESSORS name(int-constant)
other-stuff
[other-stuff]

H101 other-stuff is 'HPF\$ TEMPLATE name(int-constant)
'HPF\$ DISTRIBUTE name(dist) ONTO name
'HPF\$ ALIGN name(name) WITH name(linear-expr)

H102 dist is BLOCK
or CYCLIC
H103 1linear-expr is name

or int-constant

or 1int-constant * name

or 1int-constant * name + int-constant
or 1int-constant * name - int-constant

Constraint: ’name’ must be a scalar.

R208 execution-part is executable-stmt
[executable-stmt]

R216 executable-stmt is assignment-stmt
or forall-stmt
or print-stmt

R735 assignment-stmt is variable = expr

R601 variable is name
or subobject

R602 subobject is array-element
or array-section

R615 array-element is name(subscript)

R616 array-section is name(subscript-triplet)

R619 subscript-triplet is [subscript] : [subscript] [:stride]
R617 subscript is linear-expr

R620 stride is linear-expr

102

R723 expr is constant
or variable

R306 constant is int-constant
or real-constant

R404 int-constant is digit-string

R413 real-constant is digit-string . digit-string

R402 digit-string is digit [digit]

R754 forall-stmt is FORALL (forall-triplet-spec) assignment-stmt

R750 forall-triplet-spec is name = subscript : subscript [: stride]

R911 print-stmt is PRINT * , variable

103

Chapter 10

Compiler construction tools

Three packages were discussed. HPFfe, Sage++, and SUIF. Purpose of this lecture was two-
folded: to help students work on project; to acquaint students with some of contemporary
compiler construction tools out there in public domain. Nevertheless, I'll just include an in-
troduction to HPFfe in this chapter, and refer readers to http://www.extreme.indiana.edu/sage/
and http://suif.stanford.edu/suif/suif.html for Sage++ and SUIF, respectively.

10.1 An overview of HPFfe

HPFfe is a compiler front-end for High Performance Fortran Version 1.0, developed by a joint
effort of NPAC at Syracuse University, USA, PACT Lab at Harbin Institute of Technology,
China, and PACT group at Peking University, China.

The main thrust of HPFfe is its complete coverage of HPF 1.0 syntax and most of
compile-time checkable semantics. As a result, Fortran 90 is fully covered.

For a more detailed general description of HPFfe, the reader is referred to [12]. For
technical implementation details, the reader is referred to [13]. This document describes
how HPFfe may be used. Since HPFfe has adopted the internal data structure of Sage++
system, which in turn was evolved from Sigma system, the reader is referred to [14] for a
discussion of its origine.

10.1.1 The intended users

- The primary users of HPFfe are HPF (or its subsets) compiler writers.
- HPF flavored compiler tool builders may also use HPFfe as a basis to start their work.

- Any language translation work that is to take HPF or its subsets as input will find
HPFfe useful. For instance, Qiang Zheng and Wu Zhigang at Harbin Institute of
Technology have crafted a Fortran to Java (f2j) translator based on this front-end.

104

10.1.2 Macro operations of HPFfe

There are four separate executable programs provided with HPFfe package. They are

- hpf2dep — takes as input any HPF program, say filename.f, produces filename.dep

as output.

filename.dep is a file that contains an intermediate representation of

the input HPF program, in terms of an abstract syntax tree (AST) and some tables
(among them the symbol table (ST) is the most important one).

Usage:

hpfc2dep [-fixed] [-d] HPF_file.f
-d : debugging switch
-fixed : fixed format

- hpfsc — takes as input a file filename.dep, performs various semantics check while
augments the AST to some extend, and outputs a modified version of filename.dep.

Usage:

hpfsc [-vhcdoiD] HPF_file.dep
-v : version

-h : usage

-m : write .mod files for module

-c : compile the source files, but do not link
-d : debugging parser

-o : output filename

-i : standard library compilation

-D : display the module dependence

- dumpdep — takes as input a file filename.dep, either from output of hpf2dep or output
of hpfsc, produces a readable form of it to stdout.

Usage:

dumpdep [-d nnn] [-m] dep_file
-d : debugging switch
-m : generate the readable AST in HTML format

- unparse — takes as input a file filename.dep,either from output of hpf2dep or output
of hpfsc, generate an equivalent HPF program onto stdout.

Usage:

unparse [-debug] [-verbose] [-version] dep_file
-debug : Print useful debugging information
-verbose : Turn on Verbose Mode

-version : Print version number of compiled program

105

The relation of these operations is shown as in the Figure 1.4.
Besides these 4 executables, there is a class library xsageop also included in the package.
This library is valuable for writing program transformation modules.

10.2 Installation

HPFfe has been successfully installed on the following platforms with various combinations
of cc, gece, lex, flex, yacc, and bison.

- IBM RS/6000, AIX 3.2.5

- Sun SparcStation 1+, OS 4.1.1

- Sun Sparc 10, OS 4.1.4

- Sun Sparc workstation, Solaries 2.4
- Sun Sparc workstation, Solaries 2.5
- DEC Alpha, OSF/1, V3.0

- HP, HP-UX

- SGI INDY, IRIX 5.3

- PC, Linux 2.0

HPFfe package comes in a compressed tar file (about 700K) named as
hpfFrontEnd-x.xx.tar.gz, where x.xx designates version number. The highest version as
time of this writing is 1.71. Here is a step by step installation and testing procedure.

1. Visit http://www.npac.syr.edu/projects/pcrc/hpffe.html and download the hpfFrontEnd-
x.xx.tar.gz to your favorite directory, say xyz.

2. Do
xyz% gzip -d -c hpfFrontEnd-x.xx.tar.gz | tar -xvf -

As a result, you should see a subdirectory hpfFrontEnd-x.xx created in xyz. It’s
about 5MB in size.

3. If you do not like the directory name “hpfFrontEnd-x.xx”, rename it now.

4. Go into the subdirectory, do
hpfFrontEnd-x.xx% configure

A Makefile will be generated automatically according to your system configuration.

106

5. Do
hpfFrontEnd-x.xx% make install

This will build the system and move executable programs to proper places. The
resulting directory takes about 21MB disk space. After this step, you should be able
to see the following directory structure

hpfFrontEnd-x.xx/
INSTALL
README
Makefile
configure
bin/
dumpdep
hpf2dep
hpfsc
unparse
src/
basicop/
hpf2dep/
hpfsc/
xsageop/
tools/
dump/
unparse/
include/
include/
testsuite/
1ib/
libbasic.a
libhpf.sl
libxsage.a

The four files in hpfFrontEnd-x.xx/bin correspond to the four macro operations intro-
duced in the previous section. You can set your environment variable path to include
the directory, if you want to conveniently apply them in other directories.

6. Some testing HPF files are also supplied with the package. To see if you have installed
HPFfe successfully, do

107

hpfFrontEnd-x.xx% make check

which conducts a comprehensive test.

7. If you want to save some disk space, you may do
hpfFrontEnd-x.xx% make clean

now, which removes all object/executable files except those four in hpfFrontEnd-
x.xx/bin. The resulting directory hpfFrontEnd-x.xx takes about 8MB spaces. (make
distclean will remove all object/executables, bring the directory back to the status
right after the package is opened (tarred).)

10.3 A skeleton of applications utilizing HPFfe

As indicated in section 10.1.1, primary users of HPFfe would be HPF compiler writers.
Thus, by “application”, we mean some program that perform some kind of program trans-
formation on the intermediate representation of an HPF program. As special examples,
three of the four macro operations of HPFfe (hpfsc, dumpdep, and unparse) may be viewed
as such applications.

Input and output of an application: In general, we anticipate an application takes the
.dep file generated by hpf2dep or hpfsc as input, and produces a possibly modified .dep file
as output.

There are two possible ways to use the front-end.
One is to use the class library xsageop, which is an extension of Sage++ to our front-
end, to write compiler transformation modules. The following is a sample skeleton.

#include '"sage++user.h'
main(int argc, char * argv[])
{
SgProject * project = new SgProject("test", argc, argv);
for (int i=0; i< project->numberOfFiles(); i++) {
SgStatement * s;
s = global_file->firstStatement();
global_file->saveDepFile('"nodeProgram.dep");

+;

return 0;

108

For use of xsageop classes, please visit Indiana’s Sage++ site as I indicated in the
beginning of the chapter. A good online documentation is provided.

The other way is more hacker oriented, which uses some primitive operations provided
with the package. Although we do not encourage this approach, a general description is

given below any way.

Since .dep file is to be input, which encompasses a rich set of data structures defined
in header files in hpfFrontEnd-x.xx/include, those header files must be included before
doing anything on the .dep file. We call these data structures internal interface between
compilation modules and the front-end. HPFfe also provides some primitive functions that
operate on the data structures. This functions exist as 1ibbasic.ain hpfFrontEnd-x.xx/lib.
We call the functions external interface. Thus, a generic framework of an application would
look like (suppose .dep file is supplied on the command line as the first argument to your
application)

#include "hpffe.h" /* with proper use of -I switch when compiling */

FILE *depFile;
PTR_FILE f = (PTR_FILE) calloc(1, sizeof(struct file_obj)));

depFile = fopen(argv[1i], "r");
f->fid = depFile;

x_readNode(f);

/* possible calls to other functions in libbasic.a */

x_writeNodes(f, (char*)'someName.dep");

The application code would then be compiled and linked to libbasic.a.

The terms internal interface and exrternal interface make sense here, since an application
may not call the functions at all, while it must include those header files.

The available functions are defined in src/basicop.

10.4 External interface

Besides the four macro operations (utilities) mentioned above, HPFfe provides a minimum
functional interface for compiler writers to build their own compilation modules.

10.4.1 How to read the output of dumpdep

Before discussing the functions in libbasic.a, let’s first see how to read the output of
dumpdep utility. Taking the following program as an example,

program test
integer a,b

109

a=0; b=20

if (a.eq.0) then
a=a+1

else
b=b-1

end if

call sub(a)

end

subroutine sub(n)
n=n+1

return

end

After processing by hpf2dep and hpfsc, we end up with a test.dep file.
xyz’% dumpdep test.dep
will generate the following to stdout.

Source is "test.f"

#blob #bfnd #1lnd #symb #type #labl Gb1Bf #deps #cmnt #file

%*BIF NODES*

id var cp bpl cmnt sym 1pl 1p2 1p3 dpl dp2 1lab 1bl glin 1lin file thread

1-B 100 ---- =-=- =--=-= -—-- —-——=- === -———= == -- -—== == 0 O 1-F 2-B GLOBAL
L: 2-B 13-B --=
R: -
decl_specs(bits set)=

2-B 101 1-B 13 ---- 3-S —-——=- === === == == -———= == 1 1 1-F 3-B PROG_HEDR
L: 3-B 4-B 5-B 6-B 11-B 12-B --=
R: -
decl_specs(bits set)=

3-B 154 2-B -- ---= -=-- 3-E 1-E === == == -———= == 2 2 1-F 4-B VAR_DECL
L: -
R: -
decl_specs(bits set)=

4-B 111 2-B -- ---= === 6-E 7-E === == == -———= == 3 3 1-F 5-B ASSIGN_STAT
L: -
R: -
decl_specs(bits set)=

5-B 111 2-B =-- ==-- ==-= 8-E 9-E ==-- == -= ---= -- 3 3 1-F 6-B ASSIGN_STAT
L: -
R: -
decl_specs(bits set)=

6-B 145 2-B -- ---= ---- 12-E -——== === == == === == 4 4 1-F 7-B LOGIF_NODE
L: 7-B 8-B --
R: 9-B 10-B --
decl_specs(bits set)=

7-B 111 6-B -- ---- ---- 13-E 16-E === == == === == 5 5 1-F 8-B ASSIGN_STAT
L: -
R: -

decl_specs(bits set)=

110

10-B

11-B

12-B

13-B

14-B

15-B

16-B

104

111

104

113

104

102

111

136

104

decl_specs(bits set)=
6-B --
L: -
R: -
decl_specs(bits set)=
6-B --
L: -
R: -
decl_specs(bits set)=
2-B --
L: -
R: -
decl_specs(bits set)=
2-B --

L: -

R: -

decl_specs(bits set)=
1-B -- ---- 8-S

L: 14-B 15-B

R: -

decl_specs(bits set)=
13-B --
L: -
R: -
decl_specs(bits set)=
13-B --
L: -
R: -
decl_specs(bits set)=
13-B --
L: -
R: -
decl_specs(bits set)=

xLOW-LEVEL NODES

id var type
1-E 479 1-T
2-E 307 -—=-
3-E 312 9-T
4-E 307 -—=-
5-E 312 9-T
6-E 307 1-T
7-E 300 1-T
8-E 307 1-T
9-E 300 1-T
10-E 307 1-T
11-E 300 1-T
12-E 328 6-T
13-E 307 1-T
14-E 307 1-T
15-E 300 1-T
16-E 334 1-T
17-E 307 1-T
18-E 307 1-T
19-E 300 1-T
20-E 350 1-T

symb

4-5

5-§

4-5

17-E

23-E

16-B

24-E

111

2-E

4-E

10-E

14-E

18-E

20-E

-——- -- 10

——- - 12

27-E

-———- -- 13

——- - 14

-——- -- 15

tag

5-E

11-E

15-E

19-E

111

TYPE_OP
VAR_REF

EXPR_LIST

VAR_REF

EXPR_LIST

VAR_REF
INT_VAL
VAR_REF
INT_VAL
VAR_REF
INT_VAL
EQ_OP
VAR_REF
VAR_REF
INT_VAL
ADD_OP
VAR_REF
VAR_REF
INT_VAL

MINUS_OP

10

10-B

11-B

12-B

13-B

14-B

15-B

16-B

CONTROL_END

ASSIGN_STAT

CONTROL_END

PROC_STAT

CONTROL_END

PROC_HEDR

ASSIGN_STAT

RETURN_STAT

CONTROL_END

21-E 307 1-T 4-5 - -—-- VAR_REF

22-E 312 9-T -—-- 21-E -—-- EXPR_LIST
23-E 370 -—-- 8-8 22-E -—-- PROC_CALL
24-E 307 1-T 9-5 - -—-- VAR_REF
25-E 307 1-T 9-5 - -—-- VAR_REF
26-E 300 1-T 1 INT_VAL
27-E 334 1-T -—-- 25-E 26-E ADD_OP

xSYMBOL NODES

id var type attr next scope variable-name
1-s 550 ---- 0 2-5 1-B * DEFAULT
2-§ 505 ---- 0 3-5 1-B PROG_NAME symb_lst= ---- prog_hedr = 2-B PROGRAM_NAME
3-S5 505 -—-- 0 7-8 1-B test symb_lst= ---- prog_hedr = 2-B PROGRAM_NAME
4-5 503 1-T 536870912 5-§ 2-B a local= 600 nxt_in= ---- nxt_out= ---- VARIABLE_NAME
5-5 503 1-T 536870912 6-S 2-B b local= 600 nxt_in= ---- nxt_out= ---- VARIABLE_NAME
6-5 600 2-T 0 === === sub LOCAL
7-8 505 ---- 0 8-5 1-B PROG_NAME symb_lst= ---- prog_hedr= 13-B PROGRAM_NAME
8-S 506 -——- 0 -——- 1-B sub n_in= 1 n_out= 0 n_jo= 0
in_1= 9-§ out_l= ---- sy_l= 9-S p_hdr= 13-B PROCEDURE_NAME
9-5 503 1-T 536870912 ---- 13-B n local= 603 nxt_in= ---- nxt_out= ---- VARIABLE_NAME
%xTYPE NODESx%
id var name length
1-T 551 -———= == T_INT
2-T 552 ---- -- T_FLOAT
3-T 553 ---- -- T_DOUBLE
4-T 554 ---- -- T_CHAR
6-T 556 ---- -- T_STRING
6-T 555 ---- -- T_BOOL
7-T 564 ---- -- T_COMPLEX
8-T 583 ---- -- T_DCOMPLEX
9-T 550 ---- -- DEFAULT
10-T 584 ---- -- T_PROCESSORS
11-T 585 ---- -- T_TEMPLATE
bits set: 0 syn/protected, 1 shared/public, 2 private, 3 future, 4 virtual,

5 inline, 6 unsigned, 7 signed, 8 short, 9 long, 10 volatile,
11 const, 12 typedef, 13 extern, 14 friend, 15 static, 16 register,
17 auto, 18 global, 19 Sync, 20 atomic, 21 __private, 22 restrict
*%*LABEL NODES***
*%%COMMENT NODES***

FILENAME NODES

1-F test.f

The first line indicates the name of corresponding source file name, followed by a statis-
tics of various data objects used by the program. The “L” and “R” lines after each bif node
indicate its left and right control children (in a chain of blob nodes), respectively.

10.4.2 The interface functions

This interface exists as libbasic.a in hpfFrontEnd-x.xx/lib. It contains the following
functions:

112

Table 10.1: Columns in the BIF NODES section

id the sequence number of the node

var the class (tag,variant) of the node

cp its control parent

bpl

cmnt | possible comment/annotation associated with the statement
sym user provided symbol associated with some statement

Ipl the first low level node associated with it

1p2 the second low level node associated with it

1p3 the third low level node associated with it

dpl (data dependency test related)
dp2 (data dependency test related)

lab statement label

1b1l label involved in the statement, such as goto
glin global line number in the file

llin local line number in the program unit

file file it belongs to
thread | its next bif node in allocation sequence

e PTR.SYMB xlookupSymb(PTR_FILE file, PTR_BFND scope, char* name);

Look up the name in the scope, returns a pointer to the entry if found; SMNULL if
not found.

Strickly speaking, even if the name is found in scope but no tag conflict, we should
also be able to create a new symbol entry. Among the 16 possible tags of a symbol,
CONST_NAME(500) and VARIABLE_NAME(503) will be considered as conflicting
tags, namely, if there is a name with tag=>500 then we can not have the same name with
tag=>503. But it should be OK if the same name is used both for VARIABLE_NAME
and PROCEDURE_NAME. For simplicity, we’ll leave this capability out.

e PTR.SYMB x_makeSymb(PTR_FILE file, int tag, char* name);

Create a new symbol node of name with tag. Returns a pointer to the node, or
SMNULL if no memory available. Scope information, if necessary, is assumed to be
set by application after this function.

e void x_enterSymb(PTR_FILE file, PTR_.SYMB new);

Enter a symbol node to symbol table. Appropriate adjustments to hash table and
other internal parameters (such as number of symbols) are performed.

e int x_deleteSymb(PTR_FILE file, PTR_BFND scope, char* name);

113

Remove the symbol with given namein the scope of the file from symbol table, memory
associated with the symbol is deallocated. Return -1, if the symbol is not found.

PTR_LLND x_makeLInd(PTR_FILE file, int tag, PTR_.SYMB symbol, PTR_LLND
left, PTR_LLND right);

Make an expression node with tag, taking its subexpression from left and right, re-
spectively. Returns a pointer to the expression.

void x_deleteLInd(PTR_FILE file, PTR_LLND node);

Remove the low level node together with its children low level nodes from AST. As-
sociated memory is released. Leaves (symbol nodes) in the expression tree are kept
intact.

PTR_BFND x_makeBfnd(PTR_FILE file, int tag);

Memory is allocated for a bif node, initialize the bif node with tag.

void x_insertBfnd (PTR_FILE file, PTR_.BFND node, PTR_BFND next);

Insert a control structure headed by bif node before next. The control structure
will be in the same control branch as nezt. Proper link updates are performed, the
resulting structure is as if it came from a source program with one additional construct
in designated position.

Note, a control structure may be a single assignment statement or an entire if-then-
else-endif structure.

void x_deleteBfnd(PTR_FILE file, PTR_BFND node);

Delete the control structure headed by node from AST. The associated low level nodes
are also deleted. For simplicity at this point, we do not touch related symbols.

Thus, if node = global_bfnd then the entire AST is deleted.
PTR_BFND x_setBfndList(PTR_BFND first, PTR_BFND second);

Returns a pointer to a bif node list composed of the first and the second lists. Note,
the bif node lists are implemented by blob node lists, and always associated with
some control structure. This function is useful for adding a sequence of statements
into some control branch.

PTR_LLND x_setLIndList(PTR_LLND first, PTR_LLND second);

Combine two expression lists. Items in an expression list are linked by their second
low level node pointers. Expression lists occur in triplets, subroutine parameters, etc.

PTR_SYMB x_setSymbList(PTR_SYMB first, PTR_.SYMB second);

Combine two symbol lists. Items in a symbol list are linked by their id_list fields.
Symbol list may occur in variable declarations, etc.

114

e int x_hash(char * string);

Compute the hash value for string.

e void x_insert_hash(PTR_SYMB symbol, PTR_HASH hash_tbl[]);

Create a hash table entry corresponding to symbol; insert the entry in hash_tbl.

e int x_readNodes(PTR_FILE file); Read an entire dep file into memory. Note: the file
must be opened before calling the function, and the file handle must have been put

in the fid field of file.

o int x_writeNodes(PTR_FILE file, char * string);

Write out an internal representation, pointed by file, of a program from memory to a
disk file named string.

Note, x_writeNodes and x_readNodes observe the same data format. Thus, they should
be used together.

To understand how to make use of them, we need to have some idea on what consists
of the intermediate representation (IR) of an HPF program under HPFfe and how the
intermediate representation is constructed by HPFfe.

For simplicity, let’s ignor the complications involved with separate compilation. We in
what follows assume an HPF program always corresponds to a single file, though there may

be multi program units in the file.
IR of each program file is represented by a data entity with a structure as:

struct file_obj {

char xfilename; /* filename of the .dep file */
FILE *fid; /* its UNIX file id */
int lang; /* type of language */
PTR_HASH *hash_tbl; /* hash table for this file obj */
PTR_BFND global_bfnd; /* global BIF node for this file */
PTR_BFND head_bfnd, /* head of BIF node for this file */
cur_bfnd; /* the last BIF node in bif node list */
PTR_LLND head_1l1lnd, /* head of low level node */
cur_11lnd; /* the last low lovel node */
PTR_SYMB head_symb, /* head of symbol node */
cur_symb; /* the last entry to symble table
PTR_TYPE head_type, /* head of type node */
cur_type; /* the last entry to type table */
PTR_BLOB head_blob, /* head of blob node */
cur_blob; /* the last blob node */
PTR_DEP head_dep, /* head of dependence node */
cur_dep; /* the last dependence node */
PTR_LABEL head_lab, /* head of label node */
cur_lab; /* the last label node */
PTR_CMNT head_cmnt, /* head of comment node */
cur_cmnt; /* the last comment node */

115

PTR_FNAME head_file;

int num_blobs, /* no. of blob nodes */
num_bfnds, /* no. of bif nodes */
num_llnds, /* no. of 11 nodes */
num_symbs, /* no. of symb nodes */
num_label, /* no. of label nodes */
num_types, /* no. of type nodes */
num_files, /* no. of filename nodes */
num_dep, /* no. of dependence nodes */
num_cmnt; /* no. of comment nodes */

};

This data entity captures all handles to various data structures representing the underline
program. In what follows, we give a description for each of components in the structure.
To facilitate the discussion, we first note a few terms (confusing, but frequently used in

HPFfe).

BIF node or bif node — high level node in abstract syntax tree, which normally
represents a statement in a program. The linkage of bif nodes in AST represents the
control structure of a program. Each bif node contains two pointers which possibly
point to a list of bif (LOB, or BLOB) nodes as its children, respectively. We call the
first pointer true or left branch, and the second false or right branch.

The right branch is null for most statements.

Low level node or 1l node — low level node in abstract syntax tree, which normally
represents a expression in a statement. Each bif node contain three pointers to 1
nodes.

BLOB node or blob node — as indicated above, they serve to form a list of bif nodes
corresponding a branch of control flow. In other words, a bif node accesses its control
children via blob nodes.

filename — points to the character string of a .dep file to be processed.
fid — the UNIX file handle of the .dep file
lang — a code designating the language. We only deal with HPF.

hash_tbl — hash table is organized as a one dimensional array of pointers which point
to a list of hash entries, respectively. This "hash_tbl” is a pointer of pointer, which
points to the first element of the array.

global_bfnd — there is a global BIF node designed for each file. It’s left branch
corresponds to the list of program units in the file.

head_bfnd — points to the first bif node of the program, it’s the same as global_bfnd
in value, but emphasizes different aspect of the intermediate representation, namely,

116

all bif nodes of a program are also linked as a list, according to lexical order, via the
component thread in bif node data structure. This way, one may talk about some
thing like “the 100th bif node of the program”. id in bif node data structure indicates
the position of a bif node in the list.

cur_bfnd — the last BIF node in the bif node list linked by thread.

head_llnd — similarly, all low level nodes are also linked as a list, headed by head_llnd.
cur_llnd — the last low level node in the low level node list linked by thread.

head _symb — all symbols are also linked as a list, via thread component, headed by
head_symb.

cur_symb — the last entry to symble table (the list linked by thread).

head_type — all type nodes are linked as a list headed by head_type.
cur_type — the last entry to type table

head_blob — it looks like all blob node are also linked as a global list, though does
not make much sense to me.

cur_blob — the last blob node

head_dep — this is some thing related to data dependence analysis, we don’t address
it in this document.

cur_dep — the last dependence node.

head_lab — head of label node
cur_lab — the last label node in the list linked by next.

Label nodes records statement lables in a scope. We include its structure here for
easy reference.

struct Label {

int id; /* identification tag */

PTR_BFND scope; /* level at which ident is declared */
PTR_BLOB ud_chain; /* use-definition chain */

unsigned labused :1; /* if it’s been referenced */

unsigned labinacc:1; /* illegal use of this label */
unsigned labdefined:1; /* if this label been defined */
unsigned labtype:2; /* UNKNOWN, EXEC, FORMAT, and OTHER */
long stateno; /* statement label */

PTR_LABEL next; /* point to next label entry */
PTR_BFND statbody; /* point to body of statement */
PTR_SYMB label_name; /* label name for VPC++ */

117

e head_cmnt — head of comment node

cur_cmnt — the last comment node in the list linked by thread, or next ?

struct cmnt {
int id;
int type;
int counter; /* New Added for VPC++ */
char* string;
struct cmnt *next;
struct cmnt *thread;

e head_file — It seems no use for now.

e the numbers of various nodes mentioned above are recorded in num_blobs, num _bfnds,
num_llnds, num_symbs, num_label, num_types, num_files, num_dep, and num_cmnt,
respectively.

10.5 Internal interface

By internal interface, we mean the internal data structures employed by HPFfe. These
data structures are defined by the header files in hpfFrontEnd-x.xx/include.
The related header files are:

- typedef.h — type definitions for all major data structure pointers. Especially, the
struct file_obj is defined here.

- bif.h — define the data structure for each HPF statement. The structures are “unioned”
in a bif node.

Figure 10.1 shows primary information in a bif node and basic control structure in a
program represented in HPFfe. Note, control dependence relations among bif nodes
are implemented via blob nodes.

- defnodes.h — some misc. constant definitions.

- Il.Lh — define the structures for various expressions in an HPF program.

Figure 10.2 shows primary information in a low level node and an example how a
typical expression is represented in HPFfe.

- tags.h — assign a distinct integer (tag or variant) for different types of elements in a
language. This integer is of primary importance in various nodes.

- dep.h — a minor, define two structures for data dependence related matter.

118

bif node structure

int variant
PTR_BFND control_parent ———
PTR_BFND threed —F——
e PTR_LLND first expression
n PTR LLND second expression
t| PTR_LLND third expression
ri PTR_ BLOB true control dep list
y| PTR_BLOB false control dep list
Control structurein AST IF (A.eq.0) THEN
A=A+1
blob % A=A-1
- X ELSE
A=A*1
A.eq.0 END IF
N
A A A*l
A+1
A A-1

Figure 10.1: Basic control structure in AST of HPFfe

119

Low Level Nodes (expressions)

intermediate or variab

int variant
PTR_TYPE type
PTR _LLND thread
PTR _SYMB
PTR_ LLND ——
PTR LLND ——

le |eaf

+
lInd

var_ref
lInd
symbol l
node —
A
A+2*B

Literal Constant |eaf

int variant

PTR_TYPE type

PTR_LLND thread

string_val,
ival, dval,
cval, bva

*
[Ind

value
Ilmd

N =—

™~

var_ref
lInd

l

¥

B

Figure 10.2: Low level node structure in AST of HPFfe

120

Symbol table entry head symb

char* idemt | | ...
int variant thread
PTR TYPE type | [
PTR_BFND scope
PTR _SYMB thread
PTR HASH parent | | -

type related
information

Figure 10.3: Symbol node structure in HPFfe

- decl.h — this is a list of functions used in HPFfe.
- dep_struct.h — defines the structure of .dep files generated by HPFfe.

- symb.h — symbol table and hash table entry structures are defined here.

Figure 10.3 shows primary information in a symbol node and how they are linked as
a linear list.

To facilitate operations on the symbol table, a hashing mechanism is also created and
associated with symbol table. Figure 10.4 shows information in a hash entry and
how a hash table is organized in HPFfe.

- makenodes.h — declares functions in libbasic.a and necessary extern variable to use
the functions.

The most important data structures are the abstract syntax tree and symbol table.

The AST is composed of two types of nodes, bif nodes and [l nodes. Each statement in
the program is represented by a bif node, the expressions under a statement are represented
by 1l nodes.

121

hash_entry

ident. —— char string of the symbol
next_entry —— with the same hash value
id_attr — symbol table entry
*hash tblﬁ
-
0 \\
1
i JAN
hashMax-1 — — I e

Figure 10.4: Hash table in HPFfe

122

10.6 A sample session

We present two example applications that use HPFfe. The first one makes use of the class
library xsageop; the other calls basicop directly.

10.6.1 A sample of using xsageop

This program performs indentation of programs.

#include <stdio.h>
#include "compilerApi.h"

enum FLAG {off, on};

FLAG in_main_program;
FLAG in_procedure;

int tabnumber=0;

void puttab(int number) {
for(int i=0; i<number; i++)
printf(" ");
}

void action(SgStatement * s) {

puttab(tabnumber) ;

printf("id:%4d variant:%4d\n", s->id(), s->variant());
}

void transform(SgStatement * s) {
switch(s->variant()) {
case GLOBAL: {
int org_number0fChildren=s->number0fChildrenListi();
SgStatement * * children = new SgStatement * [org_number0fChildren];

for (int i=0; i<org_numberOfChildren; i++)
children[i]=s->childList1(i);

for (i=0; i<org_number0fChildren; i++)
transform(children[il);

delete [] children;
break;

};
case PROG_HEDR: {

int org_number0fChildren=s->number0fChildrenListi();
SgStatement * * children = new SgStatement * [org_number0fChildren];

123

for (int i=0; i<org_numberOfChildren; i++)
children[i]l=s->childList1(i);

in_main_program = on;
action(s);
tabnumber++;

for (i=0; i<org_number0fChildren; i++)
transform(children[il);

tabnumber--;
in_main_program=off;
delete [] children;

break;

}

case PROC_HEDR: {
SgProcHedrStmt * prochedr = (SgProcHedrStmt *)s;

int org_number0fChildren=s->number0fChildrenListi();

SgStatement * * children = new SgStatement * [org_number0fChildren];

for (int i=0; i<org_numberOfChildren; i++)
children[i]l=s->childList1(i);

in_procedure=on;

action(s);

tabnumber++;

for (i=0; i<org_number0fChildren; i++)
transform(children[il);

tabnumber--;
in_procedure = off;
delete [] children;

break;

};

124

case VAR_DECL:

case ASSIGN_STAT:
action(s);
break;

case FOR_NODE: {

int org_number0fChildren=s->number0fChildrenListi();
SgStatement * * children = new SgStatement * [org_number0fChildren];

for (int i=0; i<org_numberOfChildren; i++)
children[i]l=s->childList1(i);

action(s);
tabnumber++;

for (i=0; i<org_number0fChildren; i++)
transform(children[il);

tabnumber--;
delete [] children;

break;

}
case CONTROL_END:
case ENDDO_STMT:
break;
default:

printf ("Not touched statement in transform phase on line %d\n'", s->lineNumber());
break;

+;
+;
int main(int argc, char **argv){
SgProject * project = new SgProject("test", argc, argv);
for (int i=0; i< project->numberOfFiles(); i++) {
SgFile * file = &(project->file(i));

SgStatement * s = file->firstStatement();

transform(s);

125

};

// save a copy of the input file, if you like.
// f->saveDepFile("debug.dep");

return 0;

}

Compile and linking
#x1C -o sample sample.C -I../include ../lib/libxsage.a ../lib/libbasic.a

Run

%sample test.dep

10.6.2 A sample of using basicop

The following application adds the statement
print *, ’Enter a parallel structure’

before each DO statement.
The key here is to make use of x_readNodes() and x_writeNodes() for input and output,
and requires the output is a valid dep file recognizable by dumpdep and unparse.

The code

#include "hpffe.h"

main(int argc, char* argv[]) {
FILE *depFile;
PTR_FILE f = (PTR_FILE) calloc(1l, sizeof(struct file_obj));
PTR_BFND temp,templ,temp2,parent,new;
PTR_LLND str,format,expr_list;
PTR_BLOB foo,trace;

depFile = fopen(argv[i], "r");
f->fid = depFile;

x_readNodes(f);
/*
Starting from head of bif node list, locate the next DO statement

*/

for (templ = f->head_bfnd; templ != BFNULL; templ = templ->thread) {

126

if (tempi->variant == FOR_NODE) {

format = x_makeLlnd(f,KIND_VAL,LLNULL,LLNULL,SMNULL);
format->entry.var_ref.symbol = x_makeSymb(f,templ->control_parent ,DEFAULT,"*",0);

expr_list = x_makeLlnd(f,EXPR_LIST,LLNULL,LLNULL,SMNULL);
expr_list->entry.list.item = x_makeLlnd(f,STRING_VAL,LLNULL,LLNULL,SMNULL);
expr_list->entry.list.item->entry.string _val = (char*)"’Enter a Do loop’";

new = x_makeBfnd(f,PRINT_STAT);
new->entry.print_stat.format = format;
new->entry.print_stat.expr_list = expr_list;

temp = templ->control_parent; /* find proceeding bif node in the control branch */
trace = temp->entry.Template.bl_ptri;
for (trace = temp->entry.Template.bl_ptri;
trace->next->ref->variant != FOR_NODE;
trace=trace->next);
temp = trace->ref;

foo = x_make_blob(f,new,trace->next); /* make and link the blob for the new bif */
trace->next = foo;

new->id = templ->id; /* insert the new bif in the list */
new->thread = templ;
temp->thread = new;

for (temp2 = templ; temp2->thread != BFNULL; temp2 = temp2->thread) {

temp2->id = temp2->id + 1;
} /* update ids */

}
x_writeNodes(f, (char*)'"test.dep");
}

Compiling and linking
hcc -o sample sample.c -I../include ../1ib/libbasic.a
Run

%sample test.dep

127

Chapter 11

Issues in dealing with
multidimensional arrays

So far, what we have discussed is focused on one dimensional arrays, and we should have
got pretty good idea on how to process them, using a combination of runtime and compiler
techniques.

Multidimensional arrays introduce some distinct problems in a compilation system de-

sign.

11.1 Dimension match requirement

The first issue resulting from multidimensional arrays is that we may observe an arbitrary
permutation between dimensions of two arrays involved in an operation. This permutation
directly affects the communication requirement between the two arrays. Let’s see some
examples.

1. A ‘nice’ case.
INTEGER X(16,16),Y(16,16)
PROCESSORS P(2,2)
ALIGN X(i,j) WITH T(2*i+1,2*j—1)
ALIGN Y(i,j) WITH T(i+1,3*j+1)
DISTRIBUTE T(BLOCK,CYCLIC) ONTO P

X=X

We may detect communication requirement of the assignment by calling,

status_1 = detect_comm(dim 1 of X against dim 1 of Y)
status_2 = detect_comm(dim 2 of X against dim 2 of Y)

128

Then 9 combinations of cases may result for (status_1,status_2):

no comm, no comm
no comm, shift
no comm, remap
shift, no comm
shift, shift
shift, remap
remap, no comm
remap, shift
remap, remap

If we consider one ‘remap’ implies a general remap for the whole array, then compiler
would prepare to generate node programs for one of the 5 cases:

no comm, no comm
no comm, shift
shift, no comm
shift, shift
remap

What we have covered in previous chapters should be enough for generating the node
programs.

. Now, if we change the alignment directive a little bit, as:

INTEGER X(16,16),Y(16,16)

PROCESSORS P(2,2)

ALIGN X(i,j) WITH T(2%i+1,2%j-1)

ALIGN Y(i,j) WITH T(3*j+1,i+1) Ny
DISTRIBUTE T(BLOCK,CYCLIC) ONTO P

X=X

the situation becomes quite different. There is a non identity permutation between
dimensions of X and Y. What’s the communication requirement then 7 Our de-
tect_comm() algorithm can not apply to this situation. Why ?

A possible treatment is ‘remap’, once compiler finds out the dimension-permuted
situation. ‘remap’ would then essentially perform some kind of transpose function.

Although some careful analysis is possible that may avoid callings remap, (for instance,
if template T happens to be very big so that X and Y are actually held by P(1,1)
entirely), we think the analysis may not be worthy to be included in compiler — let
runtime (remap) do the job.

To facilitate our discussion, let’s use DMR for dimension match requirement. Each
assignment statement induces some correspondence between dimensions of [hs and
rhs of the statement. For instance,

129

X(:) = Y(:) 1 -->1
X(3,:) = Y(:) 2 -——> 1
X(:,3) =Y(4,:) 1 -—>2
FORALL (i=1:100,j=1:100) X(i,j) = Y(j,1) 1 -->2;2-->1

We say a DMR is met, if for all pairs of corresponding dimensions,

e the two dimensions are distributed on the same processor dimension (not tem-

plate dimension), or

e they are both ultimately (array or template) collapsed
The DMR of this example is not met.

3. Effect of FORALL statement.

INTEGER X(16,16),Y(16,16)
PROCESSORS P(2,2)

ALIGN X(i,j) WITH T(2*i+1,2%j-1)
ALIGN Y(i,j) WITH T(3*j+1,i+1)
DISTRIBUTE T(BLOCK,CYCLIC) ONTO P

FORALL (i=1:16,j=1:16) X(i,j) = Y(j,1i)

compiler should realize the DMR is met. Our detect_comm() then can be employed
as

status_1 = detect_comm(dim 1 of X against dim 2 of Y)
status_2 = detect_comm(dim 2 of X against dim 1 of Y)

and then code will be generated for one of the 5 possible cases. We see alignment
directive and FORALL statement may affect DMR.

4. Collapsing.

INTEGER X(16,16),Y(16,16)
PROCESSORS P(4)

ALIGN X(i,j) WITH T1(2*i+1,2%j-1)
ALIGN Y(i,j) WITH T2(3*j+1,i+1)
DISTRIBUTE T1(BLOCK,*) ONTO P
DISTRIBUTE T2(BLOCK,*) ONTO P

FORALL (i=1:16,j=1:16) X(i,j) = Y(j,1i)

wesee DMR: 1 — 2; 2 — 1. Both dim_1(X) and dim_2(Y) are distributed on the
same processor dim; both dim_2(X) and dim_1(Y) are collapsed. We can do

130

status_1 = detect_comm(dim 1 of X against dim 2 of Y)

and then generate code for 3 possible cases.

5. Not all collapsings make compiler easy.

INTEGER X(16,16),Y(16,16)
PROCESSORS P(4)

ALIGN X(i,j) WITH T1(2*i+1,2%j-1)
ALIGN Y(i,j) WITH T2(3*j+1,i+1)
DISTRIBUTE T1(BLOCK,*) ONTO P
DISTRIBUTE T2(*,BLOCK) ONTO P

FORALL (i=1:16,j=1:16) X(i,j) = Y(j,1i)

DMR: 1 — 2; 2 — 1. dim_1(X) is distributed, dim_2(Y) is collapsed; dim_2(X)
is collapsed, dim_1(Y) is distributed;

The DMR is not met. Whether a DMR is met or not can be detected by compiler, and
we see the notion of DMR suggests a strategy: if not met, go for remap; otherwise,
call detect_comm().

11.2 Rank-reduced sectioning

Before we see some examples, let’s introduce a notion of ‘stridden’ or ‘amplified’ data distri-
bution. (This allows us to avoid a discussion of general BLOCK (n) /CYCLIC(n) distributions.)

We say a dimension of template elements is BLOCK/CYCLIC distributed on processors with
stride k, if two consecutive template elements assigned to the same processor are k locations
apart in local memory. We use BLOCK k/CYCLIC k to denote the situation. BLOCK_1 and
CYCLIC_1 are equivalent to normal BLOCK and CYCLIC, respectively. Note, we are not trying
to modify the language. This notion is only for convenience when we talk about the effect
of rank reduced sectioning. As an example, for

INTEGER X(16)
PROCESSORS P(4)
DISTRIBUTE X(BLOCK_3) ONTO P
we would see the following picture in local memory:

X——X——X——X—— (for every processor, in this example)

The extent of local memory is to be 12, instead of 4. Another example,

131

INTEGER X(16)

PROCESSORS P(4)

TEMPLATE T(40)

ALIGN X(i) WITH T(2%i+5)
DISTRIBUTE T(BLOCK_3) ONTO P

The situation on template T looks like,
T: ——————x-X-|x-x-¥x-x-x- | x—x—%x-%-%- | x—-X-X—%——

Then local extent would be 30 (instead of 10), and we see the local memory profile:

P(1): —————————— - X=—=-=
P(2): x———- Xx-———- X-———- X-—-——- X———-=
P(3): x———- Xx-———- X-———- X-—-——- X———-=
P(4): x———- Xx-———- X-———- X———————————

Note, this situation can be equivalently formulated as

TEMPLATE T(120)
ALIGN X(i) WITH T(6%i+13)
DISTRIBUTE T(BLOCK) ONTO P

We always have the equivalence for BLOCK type distribution, the rule is:

t_extent (BLOCK) = t_extent(BLOCK_k)*k;
a_stride(BLOCK) = a_stride(BLOCK_k)*k;
a_offset(BLOCK) = a_offset(BLOCK_k)*k - (k-1);

where a_stride and a_offset are stride and offset specified in ALIGN directive, they are
different from t_stride and t_offset in a DAD.
An example of CYCLIC distribution.

INTEGER X(16)

PROCESSORS P(4)

TEMPLATE T(40)

ALIGN X(i) WITH T(2%i+5)
DISTRIBUTE T(CYCLIC_3) ONTO P

T: ——————X—X—X-X—X—X—X~X— XX X~X—X~X-X—X———
1234123412341234123412341234123412341234

The local extent is still 30, and we see the local memory profile:

P(1): ——————x——X——X——X——X——X——X——X—-
P(2): —————
P(3): ———x——Xx——X——-X——X——X——X——X-———-
P(4): ————— =

Note, this situation can not be equivalently formulated as some CYCLIC distribution.
Anyway, we need this notion to deal with rank reduced sections. To this end, we use -k
for BLOCK k, k for CYCLIC k, and keep 0 for # for dist_code in DAD.

132

local 0 O 01,0 O O
X009 O O 010 O O
O O 00 O O
B B _®® 8 &
local - PR :

X

U

=
00
o)e
© 0

PG O ®@ O @ O @

Figure 11.1: Effect of rank reduced sectioning

11.3 Subgrid of a processor grid

Meeting DMR is not sufficient for reaching a valid conclusion for communication require-
ment. The assignment,

X(2,:) = Y(86,:)

has DMR 2 — 2. If DMR is met, is there any special problem in communication detection
7 See,

INTEGER X(8,6),Y(8,6)
(6)PROCESSORS P(4,2)

ALIGN X(i,j) WITH T(i,j)

ALIGN Y(i,j) WITH T(i,j)

DISTRIBUTE T(BLOCK,BLOCK) ONTQ P

X(6,:) = ¥(2,:)

The data distribution is depicted as in Figure 11.1.

The DMR is met, if you call our detect_comm() for dim_2 of X and dim_2 of Y, it will
return ‘no comm’. But row 6 of X and row 2 of Y reside on different rows of processor grid,
which implies communication. This could be discovered by calling detect_comm() with
(dim_1 of X,6) and (dim_1 of Y,2), a shift communication requirement should be returned.
Nevertheless, a more effective approach may be employed.

With the help of DAD, we would like to treat the result of a rank reduced sectioning as
some array of lesser rank. That is, we would like to view X(6,:) as some one dimensional

133

array X' of 6 elements, this X’ will be described by dad_X’. Let’s see how to adjust dad_X
to form dad_X"'.

dad_X:

g_extent
t_extent
t_stride
t_offset

dist_code
on_pdim
1_extent
1_1b
1_ub
1_stride

ghostsize
p_shape

* P OFRP PP ONEFEFL, O OO

we use <1 for BLOCK, 0 for *, >1 for CYCLIC

my_coord

slice_coord -1
1 2 2 comm major

base_address = address of local X(0,0)

H ¥ N O R, NOWNEFR O, OO

Pay special attention to slice_coord, rank, and base_address in the following DAD.

dad_X(6,:):
g_extent
t_extent
t_stride
t_offset
dist_code
on_pdim
1_extent
1_1b
1_ub
1_stride
ghstsize
p_shape

O = O O

1
N

<- dist_code(2)*1_extent(1)

<- 1_extent(2)#*1_extent(1)
<- 1_1b(2)*1_extent(1)
<- 1_ub(2)*1_extent(1)
<- 1_stride(2)#*1_extent(1)

my_coord

slice_coord

= W ¥ B ON PO ON

1 2 comm major
base_address = address of local X(1,0) !'!!

Figure 11.1 also indicate the result of this slicing. It’s not difficult to see it can be seen as

the DAD for
INTEGER X’ (86)

PROCESSORS P(2)
DISTRIBUTE X’ (BLOCK_2) ONTO P

134

What we should realize is that X' is indeed equivalent to X(6,:), in terms of elements
layout in memory, namely the memory location of X(6,i) is indeed that of X'(7), no matter
where it is.

With this concept, we can always view the result of rank reduced sectioning as some
array with reduced rank. This concept can be applied to higher dimension, too. For X
declared in

INTEGER X(16,12,8)
PROCESSORS P(4,2)
DISTRIBUTE X(BLOCK,*,BLOCK) ONTO P

we have
dad_X:

g_extent : 16 12 8
t_extent : 16 12 8
t_stride : 1 1 1
t_offset : O 0 0
dist_code : -1 o -1
on_pdim : 1 -1 2
l_extent : 4 12 4
1_.1b: O 0 0
1l ub : 3 11 3
1_stride : 1 1 1
ghostSize : 0 0 O

p_shape : 4 2

my_coord : 1 1

slice_coord : -1 -1

1 3 2 comm major

base_address = address of local X(0,0,0)

Then for X(2,:,:), we see a DAD for a two dimensional array.

dad_X’(1:12,1:8) = dad_X(2,:,:)

g_extent : 12 8
t_extent : 12 8
t_stride : 1 1
t_offset : 0
dist_code : 0 -1
on_pdim : -1 2
1_extent : 48 4
1_1b: 0 O

1l _ub : 44 3
1_stride : 4 1
ghostSize : 0 0
p_shape : 4 2
my_coord : 1 1

135

slice_coord : 1 -1 note change here
1 2 2 comm major
base_address = address of local X(1,0,0)

Further,
dad_X’’(1:8) = dad_X’(6,:) = dad_X(2,6,:)
g_extent : 8
t_extent : 8
t_stride : 1
t_offset : 0
dist_code : —-48
on_pdim : 2
1_extent : 192
1_1b : 0
1_ub : 144
1l_stride : 48
ghostSize : 0
p_shape : 4
my_coord : 1
slice_coord : 1 -1 no change on slice coord.
1 1 2 comm major

base_address = address of local X’(5,0) or X(1,5,0)

In general, we have the following rule to update DAD upon array slicing or rank reduced
sectioning:
If the slicing occurs at dimension d with scalar index s,

step 1. find the processor coordinate that holds the index s, set associated slice_coord accord-
ingly. (if dimension d collapsed, no change on slice_coord)

step 2. multiply dist_code(d+1),l_extent(d+1),l1b(d+1),l_ub(d+1), and I_stride(d+1) by l_extent(d);
step 3 replace dad(1:11,i) by dad(1:11,i+1), i=1,...,rank

step 4. rank = rank - 1

step 5. base_address = local X(0,0,global2local(s),0,0)

How do we know this is right ?
First, we need to ensure node program (runtime) can still correctly traverse local ele-
ments. Clearly, the following loop accesses local element correctly,

DO i = 1_1b(1), 1_ub(1), 1_stride(1)
DO j = 1_1b(2), 1_ub(2), 1_stride(2)
O X(4,5) ...
END DO
END DO

136

or

DO i = 1_1b(1), 1_ub(1), 1_stride(1)
DO j = 1_1b(2), 1_ub(2), 1_stride(2)
. X(base + i + (j-1_1b(2))*1_extent(1))
END DO
END DO

Second, we should see global2local() and local2global() index conversions can be

performed correctly. For instance,

global2local(i): assume i is a normalized (0-based) global index

dist_code=0:
return 1_lb+i*1_stride; (for either collapsing case).

dist_code < O:
j = i*t_stride+t_offset,
j j mod "block-size'" for the processor having the j,
i = floor(j/t_stride),
return 1_lb+i*1l_stride; ! no need for abs(dist_code) here

If we make use of abs(dist_code), the algorithm would be
j = i*t_stride+t_offset, position on template

j = j mod "block-size'" for the processor having the j,
return j*abs(dist_code);

dist_code > 0:
j = i*t_stride+t_offset,

j = floor(j/p) for the processor having j.
i = floor(j/t_stride),
return 1_lb+i*1l_stride; ! no need for abs(dist_code) here

Again, if we make use of abs(dist_code), the algorithm would be
j = i*t_stride+t_offset, position on template

j = floor(j/p) for the processor having j.

return j*abs(dist_code);

11.4 Broadcasting/replication

Multidimensional arrays also require some special attention when doing communication.
See
3

INTEGER X(4,8),Y(4,8)

PROCESSORS P(2,2)

ALIGN Y(i,j) WITH X(i,j)
DISTRIBUTE X(BLOCK,BLOCK) ONTQ P

137

FORALL (i=1:4,j=1:8) X(i,j) = ¥(i,3) (a)
FORALL (i=1:4,j=1:8) X(i,j) = Y(3,3) (b)
FORALL (i=1:4,j=1:4) X(i,j) = Y(j,3) (c)
FORALL (i=1:4,j=1:8) X(i,j) = Y(3,1) (d)
END

We’ll investigate the node program segments for each of the FORALLs,

(a) the third column of Y is replicated along second dim of X.
DOi=1, 4
CALL bcast(t,y,dad_y, (/1,3/))
CALL loop_bounds(dad_x,2,1,8,1,1,u,s)
DO j =1, u, s

it = global2local(dad_x,1,i)
IF (it.NE.-1) X(it,j) =t
END DO
END DO

The loop_bounds () call may be moved outside of the ¢ loop to improve performance. It is
possible to devise another runtime function that broadcasts an array (section) in one call.

(b) the third row of Y is replicated along first dim of X.
CALL loop_bounds(dad_x,1,1,4,1,1,u,s)
DO j =1, 8
CALL bcast(t,dad_y,(/3,j/))
DO i=1, u, s
it = global2local(dad_x,2,j)
IF (it.NE.-1) X(i,it) = t
END DO
END DO

Note the j loop now is the outer loop.

(c) the third column of Y is replicated along first dim (first half) of X.
CALL loop_bounds(dad_x,1,1,4,1,1,u,s)
DO j =1, 4
CALL bcast(t,dad_y,(/j,3/))
DO i=1, u, s
it = global2local(dad_x,2,j)
IF (it.NE.-1) X(i,it) = t
END DO
END DO

(d) the third row (first half) of Y is replicated along second dim of X.
CALL loop_bounds(dad_x,2,1,8,1,1,u,s)
D0Oi=1, 4
CALL bcast(t,dad_y,(/3,1i/))

138

DO j =1, u, s
it = global2local(dad_x,1,i)
IF (it.NE.-1) X(it,j) = ¢t
END DO
END DO

As a final example, we see a possible treatment for diagonal access.

INTEGER X(8,8),Y(4,8)

PROCESSORS P(2,2)

ALIGN Y(i,j) WITH X(2*i,j)
DISTRIBUTE X(BLOCK,BLOCK) ONTO P

FORALL (i=1:8) X(i,i) = Y(3,1i)

we may have

DOi=1, 8
CALL bcast(t,dad_y,(/3,1i/))
CALL global2local_2(dad_x,i,i,itl,it2)
IF (it1*it2.GE.0) X(it1,it2) = t

END DO

where global2local 2() presumably returns two values that constitute an index to a two
dimensional array element.

This solution is not very efficient (loop is sequentially executed), but quite general.
Clearly, we can have a general global2local() to handle multi dim arrays.

To be more efficient, we may do something like

remap Y(3,i) into TEMP, the distribution of which is the same

as first dim of X;

CALL loop_bounds(dad_x,1,1,8,1,11,ul,sl)

CALL loop_bounds(dad_x,2,1,8,1,12,u2,s2)

CALL fake_remove(dad_x,1,8,1,1,8,1,11,ul,s1)

j =12

DO i = 11,ul,sl

X(i,j) = TEMP(i)
j =] + s2

END DO
Note we assumed some function fake remove(). This is due to loop_bounds() as we
defined only works for one dimension structures, and the diagonal can not be expressed as
a linear composition of two 1-dimensional structures. As a result, four processors all return
‘good’ 11:ul:sl and 12:u2:s2. We need to exclude P(1,2) and P(2,1) in this case. Presumably
fake remove() will adjust 11:ul:sl properly to 0:-1:1 for them.

Clearly, this is not only solution. We may well have another runtime function that
figures out the bounds directly (something like global2local 2() above). A point I am
trying to make here is that the translation scheme may generate requirement for runtime
functions.

139

Chapter 12

Compiling irregular problems

Many important computational problems give rise to irreqular data access patterns. The

term irregular problem in the context of compiler/runtime technologies usually refers to the

application expressed as a program that demonstrates some irreqular data access pattern.
This chapter introduces the concept and related compilation issues.

12.1 What are irregular problems ?

We see three examples.

1. Algebraic operations involving sparse matrices.

Suppose we want to compute Y = AX, where A is an n X n sparse matrix, X is a vector
of n elements. The following storage scheme may be used for A.

counter(1:n) — record number of non zero elements in each row.

index(1:m) — column indices of non zero elements, where m is the total number
of non zero elements in A. For sparse matrices, m is normally in the same order
as n.

value(1:m) — the values of non zero elements.

For instance, for the following sparse matrix A,

OO O OO OO NO -
OO OO OO OHOOO
OO OO OO WO
WO OO OO O &= 1
OO OO O WO o oo
O~ O ODODODODOO OO
OO O OO WO O OO
N O OO OO O OO
OO OO = OO O OO
OO OO OO OO O OO

140

1 3
6
7 8
edgel 11 146454222353
edge2 2466 7775453588

Figure 12.1: An irregular computation graph

we will have,

counter = (/2,3,1,2,2,1,1,1,1,2/)
indez = (/1,4,3,4,8,1,2,3,5,7,9,4,3,6,4,8/)
value = (/1,2,9,4,5,2,1,1,3,8,4,5,4,7,3,2/)

The multiplication procedure would then be

1 =1
DOi=1, n
u =1+ counter(i) - 1
Y(i) =0
DO j = 1,u
Y(i) = Y(i) + value(index(j))*X(index(j))
END DO
1 =1 + counter(i)
END DO

The access to value via indirection array index is known as “irregular”.

. Consider a computational graph of 8 nodes and 15 edges, as shown in Figure 12.1,
(taken from reference [18]).

The graph is represented by the set of its edges, which in program is implemented
by two 1-dimensional arrays edge1() and edge2(). Assume X(1:8) and Y(1:8) are
data arrays associated with nodes, the following program segment is typical,

DO j = 1, n_steps

DO i = 1, 15
Y(edgel1(i)) = Y(edgel(i)) + f(X(edgel(i),X(edge2(i))

141

Figure 12.2: An unstructured mesh

Y(edge2(i)) = Y(edge2(i)) + g(X(edgel(i),X(edge2(i))
END DO
ENI‘) -I‘)O

where fand g are some application dependent functions. To get a sense of what this
segment is doing, take £(a,b) = b, and g(a,b) = a, the effect of this loop is to set
Y of a node to be the sum of it’s neighbors’ X values — isn’t it meaningful ?

We say the loop sweeps over edges.

Once again, data arrays X and Y are accessed/referenced via indirection arrays.

. Consider an unstructured grid represented by a graph as in Figure 12.2, (taken from
reference [15]).

It may be represented by its adjacent matrix as,

[SSTRU RO = ¢ -~ T o W T © PR o T o Y <)

O O O O+ OO0 O+ O®Bw
OO0 00O O0O KR KO BKL O
OO OO Ok, =, OkFR OAON
OO O Fr P, OORKr P, O
O O+ OO O, O OO0
O, OO OO K, O O = H
H kP OO0ORFRrEFP,OOOMm
P O ORFr OFr OO0 O O T
~F OO R, PO OOOOHRH
O Ik OO0 O O O O uw.

Let X and Y be data arrays associated with nodes. Typical applications compute
node-data as a function of the node-data of their neighbors.

142

The adjacency matrix is sparse. To be efficient both in space and performance of
memory hierarchy, we may represent it as

numEdges: 2 3 34 3 353 33

index1: 1 3 6 9 13 16 19 24 27 30

index2: 2 6;1 3 4;2 45;2 36 7;37 8;149;4589 10;57 10;6 7 10;7 8 9
a b c d e f g h i J

Then both X and Y have 10 elements. We observe the following program segment,

DO i = 1, numNodes

0
DO j = 1, numEdges(i)

X(i) = X(i) + Y(index2(index1(i)+j))
END DO
X(i) = X(i)/numEdges (i)
END DO

Once again, we see two levels of indirection in this case, AND some "hybrid’ situation,
i.e. array indexed by an expression involving an indirection vector and an index
variable.

From the above examples, we summarize the following.

e A program presents itself as an irreqular problem, if it has an array indexed by a
vector;

o We may distinguish two kinds of irregular problems, pure and hybrid, such as X(V(i))
and X(V(i)+j), respectively.

e Applications associated with sparse matrices as underlying data representation that
are implemented as a set of 1-dimensional arrays often result in irregular problems.

12.2 Recognizing compilation issues by examples

We start from simple (trivial ?) cases. These cases may not be realistic in the sense that we
do not see them often in real programs, but I see them demonstrate some essential issues
in dealing with irregular problems, in addition to that they seem a natural extension from
what we have done in previous chapters.

In particular, we discuss the following 3 cases within the framework we have established
so far.

(1) X(V) = s, where V is an index vector, s is some scalar constant.

143

(2) X(V) = Y(W) , where both V and W are indirection arrays, and Y and X are different
arrays.

(3) FORALL (i=1:n) X(V(i)) = i, where we assume 1:n covers entire V, though X may
have more elements.

Let’s assume all arrays are regularly distributed (as in HPF) or replicated.

12.2.1 Brute-force approach

We first investigate some translation schemes that merely demonstrate semantical equiva-
lence between HPF code and FORTRAN 77 code (multi copies).

X(V) = s ===>D01i=1,n
X(V(i)) = s
END DO

The assignment is viewed as a DO loop (note: not all parallel assignment statements can
be treated this way). Then node program may look like

D0Oi=1,n
CALL bcast(index,V,DAD_V,i)
it = global2local(DAD_X,1,index)
IF (it.NE.-1) X(it) = s

END DO

It’s not difficult to realize this node program will work, though at any time only one pro-
cessor is doing the assignment — no parallel computation.

X(V) = Y(W) ===> D0 i = 1,n
X(V(1)) = Y(W(i))
END DO

Note this reduction is safe only if X # Y. We then have node program,

D0Oi=1,n
CALL bcast(index_1,V,DAD_V,i)
CALL bcast(index_r,W,DAD_W,i)
CALL bcast(s,Y,DAD_Y,index_r)
it = global2local(DAD_X,1,index_1)
IF (it.NE.-1) X(it) = s

END DO

Once again, very inefficient, but works. A similar treatment may be applied to the FORALL
statement,

144

FORALL (i=1:n) X(V(i)) =i ===> DO i = 1,n

X(v(i)) = i
END DO
with node program,
D0Oi=1,n
CALL bcast(index,V,DAD_V,i)
it = global2local(DAD_X,1,index)
IF (it.NE.-1) X(it) = i ! no local2global

END DO

Yes, we don’t need local2global, since the DO index is in fact global.

12.2.2 Try to do better

The above approach is neat and can be easily generalized, but obviously inefficient in many
ways. For instance, are the communications necessary 7

weak
X(V) = 8 ====> DO i =1,n X:
reduction X(V(i)) = s
END DO

n — *
n — *
0n — %
n — *
n — *
0n — *

We realize if V is replicated, communication can be removed easily, as in,

D0Oi=1,n
it = global2local(DAD_X,1,V(i))
IF (it.NE.-1) X(it) = s

END DO

though the assignment is still executed sequentially.
For distributed V, things may be quite different. For instance, is the following correct ?

CALL loop_bounds(DAD_V,1,1,n,1,1,u,str)
DO i=1, u, str
X(V(i)) = s
END DO I No —— V(i) is global quantity

Consider V. = (/1,6,2,10/) block-distributed on 2 processors and X is X(1:10), also block-
distributed. The loop_bounds() will return 1,2,1 for both processor; Processor 1 will try
to reference X(1) and X(6) — global ; Processor 2 will try to reference X(2) and X(10) —

global ; — but local array X has only 5 elements.
How about the following ?

CALL loop_bounds(DAD_V,1,1,n,1,1,u,str)
DO i=1, u, str
it = global2local(DAD_X,1,V(i))
IF (it.NE.-1) X(it) = s
END DO ! No —— 1 is local quantity

145

Wrong again, consider the same example, global2local() will return 0, -1 and -1, 4 for 2
processors, respectively. As a result, only global X(1) and X(10) get assigned.

Some additional runtime functions may help ! In fact, to deal with irregular problems
effectively, people have developed some useful runtime functions as well as approaches. We’ll
develop some of the runtime functions as we analyze the requirement and try to do a better
job than the above.

We first note that for V(1:n), X(V) at left hand side implies n distinct elements of X
are updated in parallel (no particular order, or any order).

Thus, we may design a runtime function

reorder(V0O,V,DAD_V,DAD_X,u)

where V0 is a replicated array of n elements, the function reorders elements of V into V0
with respect to DAD_X, and also gives local element count u.

For instance, X has 12 elements, V = (/1,3,10,2,6,4/), both block-distributed on 2
processors. After reorder(),

Processor 1 Processor 2
Vo = (/1,3,2,6,4,%/) VO = (/10,%,% % % ,%/)
u=>5 u=1

If X is cyclic-distributed, we would have

Processor 1 Processor 2
VO = (/1,3,%,%,%,%/) VO = (/10,2,6,4,%,%/)
u=2 u=4

Then,

CALL reorder(V0O,V,DAD_V,DAD_X,u)
DO i = 0,u-1
it = global2local(DAD_X,V0(i))
X(it) = s ! we don’t have to test "it == -1"
END DO ! assignment is done in parallel, though load may be inbalanced.

Note, reorder() needs communication and may be costly. The advantage of this ap-
proach becomes evident if X(V) is referenced multi times, say in a repeated loop. Then V0
can be reused.

Also note: size of V0 in this case is actually the local size of X, since the values in V
are not repeated as in X(V) = s.

A further improvement is to remove the global2local() call in the loop. This can be done
by enhancing reorder() to

reorder_localize(V0O,V,DAD_V,DAD_X,u)

such that V0 holds local indices. For the above example, we then have

146

Processor 1 Processor 2

vo = (/0,2,1,5,3,%/) VO = (/3,%,%,%,%,%/)
u=>5 u=1

and
Processor 1 Processor 2
VO = (/0,1,%,%,%,%/) VO = (/4,0,2,1,%,%/)
u=2 u=4

for block and cyclic distributed X, respectively. Node program would be

CALL reorder_localize(V0O,V,DAD_V,DAD_X,u)
DO i = 0,u-1

X(Vo(i)) = s
END DO

It looks like we have no way to remove communication completely.
For X(V) = Y(W), we try to extend the above idea and the function of remap.

e recorder_localize(VO,V,DAD_V,DAD X,u)

e Invent irremap(T,DAD X,V,DAD_V,Y,DAD Y,W,DAD W)

T is a temporary array distributed the same as X. Then the node program segment,

CALL reorder_localize(V0O,V,DAD_V,DAD_X,u)
CALL irremap(T,DAD_X,V,DAD_V,Y,DAD_Y,W,DAD_W)
DO i = 0,u-1

X(Vo(i)) = T(vo(i))
END DO

(We note if it is only for X(V) = Y(W), irremap(X,DADX,V,DAD.V,Y,DAD_Y,W,DAD W)
suffices. The irremap() may be a general function.)

Forinstance, both X and Y have 12 elements, V = (/1,3,10,2,6,4/), W = (/2,10,12,1,3,5/),
all block distributed. After reorder_localize(),

Processor 1 Processor 2
vo = (/0,2,1,5,3,%/) VO = (/3,%,%,%,%,%/)
u=>5 u=1

irremap(T,...) will produce,
T = (/Y2,Y1,Y10,Y5,*,Y3/) T = (/*,%,%,Y12,%,%/)

This approach would allow us to handle X(V) = Y(W) + Z(U), by

147

CALL reorder_localize(V0O,V,DAD_V,DAD_X,u)
CALL irremap(T1,DAD_X,V,DAD_V,Y,DAD_Y,W,DAD_W)
CALL irremap(T2,DAD_X,V,DAD_V,Z,DAD_Z,U,DAD_U)
DO j = 0,u-1

X(vo(i)) = T1(vo(i)) + T2(vo(i))
END DO

though it appears not as efficient as we may want, in particular the use of temporary arrays

T1 and T2 are not only space consuming, but also time consuming.
For the FORALL statement,

weak
FORALL (i=1:n) X(V(i)) = i ====> DO i =1,n X: * % — % — — % x *
reduction X(v(i)) =i [| I
END DO 31 6 425
Again, easy for replicated V,
DOi=1,n
it = global2local(DAD_X,1,V(i))
IF (it.NE.-1) X(it) = i ! no local2global
END DO ! loop executed sequentially

For distributed V, the correspondence between i and V(i) needs to be recorded somehow.
A runtime function map() may be designed for this purpose.

CALL reorder_localize(V0O,V,DAD_V,DAD_X,u)
CALL map(g_index,V,DAD_V,DAD_X) ! record (i,V(i)) relation
DO i = 0,u-1
X(vo(i)) = g_index(i)
END DO

(We assume V is completely referenced, namely 1:n covers all elements.) This map() func-
tion should reflect the result of reorder_localize().

For instance, X has 12 elements, V = (/1,3,10,2,6,4/), both block distributed on 2
processors. (1,2,3,4,5,6)

FORALL (i = 1:6) X(V(1)) = 1

After the FORALL statement, global X should be (/1,4,2,6,*,5,%,%,%,3,%,%/) and
after reorder localize(), we see

Processor 1 Processor 2
vo = (/0,2,1,5,3,%/) VO = (/3,%,%,%,%,%/)
u=>5 u=1

and after map(),

148

g_index = (/1,2,4,5,6,%/) g_index = (/3,%,%,%,%,%/)
Finally after the DO loop,
x= (/1’4’2’6’*’5/) x = (/*’*’*’3’*’*/)

The three cases we’ve analyzed, though kind of superficial, should have exposed us with
typical problems that one must encounter when dealing with irregular problems.

12.2.3 One step further, “real stuff”

Consider the second example in the first section again. The computational graph has 8
nodes and 15 edges with the following program segment,

DO i =1, 15
Y(edge1(i)) = Y(edgel(i)) + f(X(edgel(i),X(edge2(i))
Y(edge2(i)) = Y(edge2(i)) + g(X(edgel(i),X(edge2(i))

END DO

Suppose X, Y, edgel, and edge2 are all block-distributed on 2 processors. We want to
investigate how this loop is executed parallelly on the processors.
In particular, we want the following to be the core of node program.

DOi=1,u ! (u=8 for proc 1, u=7 for proc 2)
Y(edgel(i)) = Y(edgel(i)) + £f(X(edgel(i)),X(edge2(i)))
Y(edge2(i)) = Y(edge2(i)) + g(X(edgel1(i)),X(edge2(i)))

END DO

To start easier, let’s first consider a simplified situation
DO i =1, 15

Y(edgel(i)) = £(X(edgel1(i)),X(edge2(i)))
END DO

Data layout

X: x1,x2,x3,x4 X: x5,x6,x7,x8

Y: y1,y2,y3,y4 Y: y5,y6,y7,y8
Local: (1),(2),(3),(4) local: (1),(2),(3),(4)
edgel: 1 1146454 2 23537
edge2: 246 67 775 4 35888

“~” indicates off-processor references. We observe,

149

e To compute the Y, off-processor X(5),X(6),and X(7) are needed for processor 1,
X(2),X(3),X(4) are needed for processor 2.

e Processor 1 also computes Y(5) and Y(6), which owned by processor 2, while processor
2 also computes Y(2) and Y(3) owned by processor 1.

Thus, the node program with communication would look like,

gather off-processor X into local buffer;
DOi=1,u
Y(edge1(i)) = £(X(edge1(i)),X(edge2(i)))
END DO
scatter_add off-processor Y from local buffer;
For the above to work,

e a communication schedule needs to be established before the “gather”;

e allocate local buffer properly — this can be done by extending local arrays X and Y
(a similar idea to ghost area we’ve discussed for regular problems);

e contents of edgel and edge2 need to be adjusted to reflect local index, and the buffers
(a similar idea to reorder_localize();

e a schedule may be also needed for “scatter_add”.

Thus, we will have the following before the loop begins.

X: x1,x2,x3,x4,x5,x6,x7 X: x5,x6,x7,x8,x2,x3,x4
Y: yi1,y2,y3,y4, -, - Y: y5,y6,y7,y8, -, -
Local: (1),(2),(3),(4),(5),(6),(7) (1),(2),(3),(4),(5),(6),(7)
edgel: 11146454 5 56163
* * * % x * *
edge2: 2466 7775 7161444
* k %k k k ok * *

After the loop, local Y(5) and Y(6) are sent off from processor 1 to processor 2, and added
to those in processor 2. Note, processor 2 also computes Y(5) and Y(6).
To implement this scheme, we need a few more runtime functions.

e localize(edgel, DAD edgel, DAD_Y ,edge2,DAD edge2,DAD X schedule)

adjusts indirection arrays, as well as producing a communication schedule; the ”sched-
ule” returned can be viewed as a handle to some runtime data structure describing
how communication is to be done.

e gather(X,DAD X schedule)

Fetch off-processor data before computation;

150

e scatter_.add(Y,DAD_Y schedule)

Send off-processor result after computation, and the receiver accumulates the result

to its own.

This scheme is commonly known as inspector-erecutor model.

code in corresponding node program. The first section is referred as inspector phase which
generates necessary communication schedule. The second section is called ezecutor phase
which uses the schedule to perform communication and computation. What’s a schedule ?
From runtime point of view, a schedule is a data structure containing enough information
for directing communication. As an instance, we may see the schedule for the gather

operations in our example as,

schedule for gather {

fetch_size: specify the # of elements needed from each processor;

send_size: specify the # of elements to be sent to each processor;

send_list: list of indices to data elements to be sent, one list

per processor,

recv_list: specify indices to put the coming data in the buffer,

one list per processor;

}

In particular, we have,

P1
fetch_size: [0,3] [3,
send_size: [0,3] [3,
send_list: P1 -> NULL P1
P2 -> 1,2,3 P2
recv_list: P1 -> NULL P1
P2 -> 4,5,6 P2

P2

0]
0]
->
->
->
->

0,1,2
NULL
4,5
NULL

151

In this model, a global
parallelizable DO loop with irregular data access patterns is turned into two sections of

Chapter 13

Concluding remarks

After 12 lectures, the course was completed, and the students implemented the little
minihpf compiler successfully. Reviewing what has been done and considering what can
be improved as an education process, I see the following;:

e Compilation technologies for data parallel programming languages constitute a set of
distinct and coherent knowledge units that are well suited for a senior or graduate
course in computer science.

HPF provides a sound basis for discussion of various language features in terms of
compilation approaches. It is rich enough for instructors to tailor in unlimited number
of ways.

e Runtime oriented compilation approach, (yves, I call it runtime ‘oriented’, instead of
‘supported’), is of value, not only in compilation system research and development,
but also as an education practice. It always emphasizes the ‘bigger’ picture, without
getting lost in fine points.

e In terms of contents, besides some of the covered topics should be enhanced, I'd like
to add at least one more topic: subprogram interface analysis, in which we’ll see how
DAD plays an essential role in carrying information across subprogram boundaries.

I will not consider things like dependence analysis, DO loop restructuring techniques,
interprocedural analysis in this course. For one thing, they seem not fit well with the
spirit of data parallel languages, which advises the programmer: if you think it can
be parallel, tell me explicitly. For another, I think they deserve a separate course on
their own.

e A substantial term project is not only essential, but also very feasible. With network
of workstations and MPI, plus some existing infrastructure, some meaningful data
parallel compilation system can be constructed with modest effort in one semester.
Although I did not do it this time, I think it’s feasible to include more general right
hand side expressions, multidimensional arrays, and procedures in the project design.

152

Bibliography

[1]

[2]

(8]

[9]

[10]
[11]

[12]

[13]

Andrew Meltzer, “Kernel HPF”, Version 3.0, Cray Research Inc., October, 1995, pre-
sented on HPFF.

Z. Bozkus, A. Choudhary, and G. Fox, et al, "Fortran 90D/HPF compiler for dis-
tributed memory MIMD computers: design, implementation, and performance results,”
Supercomputing’93, pp. 351-360.

Message Passing Interface Forum, “MPI: A Message Passing Interface Standard”, May
5, 1994.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with
the Message-Passing Interface. The MIT Press, Cambridge, MA, 1994.

HPFF, High Performance Fortran Language Specification (version 1.0). May 3, 1993.

C. Koelbel, D. Loveman, et al., The High Performance Fortran Handbook. The MIT
Press, Cambridge, MA, 1994.

International Standards Organization, ISO/IEC 1539: 1991, Information Technology
— Programming languages — Fortran, Geneva, 1991.

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, et al, Fortran 90 Handbook.
McGraw-Hill Book Company, 1992.

Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams, Programmer’s Guide
to Fortran 90. McGraw-Hill Book Company, 1990.

Janes F. Kerrigan, Migrating to Fortran 90. O'Reilly & Associates, Inc, 1993.
Digital, DEC Fortran User Manual, March 1992.

NPACT, "HPFfe: a Front-end for HPF,” NPAC Technical Report SCCS-771, NPAC
at Syracuse University, May, 1996.

NPACT, ” The Implementation of an HPF Front-end,” NPAC Internal Technical Report
ISCCS 7xx, NPAC at Syracuse University, February, 1996.

153

[14] D. Gannon, J. K. Lee, et al, ?"SIGMA II: A tool kit for building parallelizing compilers
and program analysis systems,” IFIP Transactions, A-11, Programming Environments
for Parallel Computing, N. Topham, et al, Ed. North-Holland, 1992, pp17-36.

[15] Antonio Lain, Compiler and Run-time Support for Irregular Computations. Ph.D.
Thesis, UIUC, Oct. 1995, aka Technical report, UILU-ENG-95-2236.

16] V. Balasundaram, “A mechanism for keeping useful internal information in parallel
g
programming tools: the data access descriptor,” J. of Parallel and Distributed Com-
puting, 9(2) 154-170, June 1990.

[17] Utpal Banerjee, Dependence Analysis. Kluwer Academic Publishers, 1997.

[18] Ravi Ponnusamy (ed), A Manual for the CHAOS Runtime Library, Computer Science
Department, University of Maryland, August 12, 1994.

154

Index

AD scheme, 46
semantics, 47
syntax, 46

array operations, 12
key semantics, 12
syntax, 13

communication detection, 34, 78
as applied in compiler, 85
examples, 78

compilation system, 5
three interfaces, 5
two components, 5

compiler’s job list, 32

DAD, see distributed array descriptor
data distribution, 45
data parallel, 1
applications, 2
computation models, 3
definition, 2
explicit paralellism, 7
implicit parallelism, 7
languages, 2
distributed array descriptor, 6
distributed array descriptor, 56
constructor, 64
content, 59
for array slicing, 133
implementation, 67

effective local array elements, 40, 46
Extended Euclidean Algorithm, 66

FORALL, 14
syntax, 14

155

ghost area, 24, 150

HPF, 3
a brief history, 10
directives, 16
ALIGN, 16
DISTRIBUTE, 16
INDEPENDENT, 16
PROCESSORS, 16
TEMPLATE, 16
interesting features, 11
HPFfe, 9
application patterns, 108
functional modules, 105
people involved, 104
two sample applications, 123

index mapping, 45
local to global, 45

irregular problem, 7, 140
compilation issues, 143
examples, 140
inspector-executor model, 149

local memory allocation, 39, 46, 48
local quantities in DAD, 61

minihpf, 9, 90
basic consideration, 90
interface between two passes, 96
specification, 101
translation scheme, 92
MPI, 5
a brief history, 19
basic functions, 20
message space partitioning, 23

multidimensional array
dimension match requirement, 128
multidimensional arrays, 128

node program, 30
initial examples, 36

owner computes rule, 34
processor subgrid, 62, 133

rank reduced sectioning, 43, 131
regular array section, 32
regular problem, 7
runtime, 6
as used in node programs, 73
function specifications, 69

shape conformance, 12, 30
shift homomorphism, 82
SPMD, 3, 39

156

