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Abstract. A class of interior—point trust-region algorithms for infinite-dimensional nonlinear op-
timization subject to pointwise bounds in L”-Banach spaces, 2 < p < oo, is formulated and analyzed.
The problem formulation is motivated by optimal control problems with L?-controls and pointwise
control constraints. The interior—point trust-region algorithms are generalizations of those recently
introduced by Coleman and Li (SIAM J. Optim., 6 (1996), pp. 418-445) for finite—dimensional prob-
lems. Many of the generalizations derived in this paper are also important in the finite—dimensional
context. They lead to a better understanding of the method and to considerable improvements in their
performance. All first— and second—order global convergence results known for trust-region methods
in the finite-dimensional setting are extended to the infinite—dimensional framework of this paper.
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1. Introduction. This paper is concerned with the development and analysis
of a class of interior—point trust-region algorithms for the solution of the following
infinite-dimensional nonlinear programming problem:

®) minimize  f(u)
p
subject to u € B=E {u € U : a(z) < u(z) < b(z), = € Q}.
Here  C R™ is a domain with positive and finite Lebesgue measure 0 < p(2) < oc.
Moreover,

Ud:epr(Q), 2 <p< oo,

denotes the usual Banach space of real-valued measurable functions, and the objective
function f : D — IR is continuous on an open neighborhood D C U of B. All
pointwise statements on measurable functions are meant to hold p-almost everywhere.
The lower and upper bound functions a,b € V,

VEL™(Q),
are assumed to have a distance of at least v > 0 from each other. More precisely,
b(z) —a(z) >v on Q.
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Problems of type (P) arise for instance when the black-box approach is applied to
optimal control problems with bound—constrained LP-control. See, e.g., the problems
studied by Burger, Pogu [3], Kelley, Sachs [14], and Tian, Dunn [20].

The algorithms in this paper are extensions of the interior—point trust-region
algorithms for bound constrained problems in IRY introduced by Coleman and Li [6].
Algorithmic enhancements of these methods have been proposed and analyzed in the
finite—dimensional context in Branch, Coleman, Li [2], Coleman, Li [5], and Dennis,
Vicente [11]. Dennis, Heinkenschloss, Vicente [10], and Heinkenschloss, Vicente [13]
extend these methods to solve a class of finite-dimensional constrained optimization
problems with bound constraints on parts of the variables. See also Vicente [23].
The interior—point trust-region methods in [6] are based on the reformulation of the
Karush-Kuhn-Tucker (KKT) necessary optimality conditions as a system of nonlinear
equations using a diagonal matrix D. This affine scaling matrix is computed using the
sign of the gradient components and the distance of the variables to the bounds. See
§ 2. The nonlinear system is then solved Py an afline-scaling interior—point method
in which the trust-region is scaled by D™2. These methods enjoy strong theoretical
convergence properties as well as a good numerical behavior. The latter is documented
in [2], [6], [10], [11] where these algorithms have been applied to various standard
finite—dimensional test problems and to some discretized optimal control problems.

The present work is motivated by the application of interior—point trust-region
algorithms to optimal control problems with bounds on the controls. Even though
the numerical solution of these problems requires a discretization and allows the ap-
plication of the previously mentioned algorithms to the resulting finite-dimensional
problems, it is known that the infinite-dimensional setting dominates the conver-
gence behavior if the discretization becomes sufliciently small. If the algorithm can
be applied to the infinite-dimensional problem and convergence can be proven in the
infinite-dimensional setting, asymptotically the same convergence behavior can be
expected if the algorithm is applied to the finite-dimensional discretized problems.
Otherwise, the convergence behavior might — and usually does — deteriorate fast as
the discretization is refined.

In the present context, the formulation of the interior—point trust-region algo-
rithms for the solution of the infinite-dimensional problem (P) requires a careful
statement of the problem and of the requirements on the function f. This will be
done in § 3. The infinite-dimensional problem setting in this paper is similar to the
ones in [12], [14], [15], [20]. The general structure of the interior-point trust-region
algorithms presented here is closely related to the finite-dimensional algorithms in
[6]. However, the statement and analysis of the algorithm in the infinite-dimensional
context is more delicate and has motivated generalizations and extensions which are
also relevant in the finite—dimensional context. The analysis performed in this paper
allows for a greater variety of choices for the affine scaling matrix and the scaling of
the trust-region than those presented previously in [6], [11]. Our convergence analysis
is more comprehensive than the ones in [5], [6], [11], [23]. In particular, we adapt
techniques proposed in Shultz, Schnabel, and Byrd [18] to prove that under mild as-
sumptions every accumulation point satisfies the second—order necessary optimality
conditions. Moreover, the convergence results proven in this paper extend all the
finite-dimensional ones stated in [17], [18], [19] to our infinite-dimensional context
with bound constraints. In the follow up paper [22] we present a local convergence
analysis of a superlinearly convergent affine-scaling interior—point Newton method
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which is based on equation (13) and prove under appropriate assumptions that in a
neighborhood of the solution the generated trial steps are accepted by our trust-region
algorithms. There a projection onto the set B will be used in the computation of trial
steps. This extension to the finite-dimensional method, which was originally moti-
vated by the function space framework, has also led to significant improvements of the
finite-dimensional algorithm applied to some standard test problems, not obtained
from the discretization of optimal control problems. See [22].

Trust-region methods for infinite-dimensional problems like (P) have also been
investigated by Kelley, Sachs [15] and Toint [21]. In both papers the constraints are
handled by projections. The paper [21] considers trust-region algorithms for min-
imization on closed convex bounded sets in Hilbert space. They are extensions of
the finite-dimensional algorithms by Conn, Gould, Toint [7]. It is proven that the
projected gradient converges to zero. A comprehensive finite-dimensional analysis of
trust-region methods closely related to those introduced by Toint can be found in
Burke, Moré, Toraldo [4]. In contrast to the results in [21], our convergence analysis is
also applicable to objective functions that are merely differentiable on a Banach space
LP(Q), p € (2, 00], which reduces the differentiability requirements substantially com-
pared to the L2-Hilbert space framework. Furthermore, for the problem class under
consideration our convergence results are more comprehensive than the ones in [21].
The infinite-dimensional setting used in [15] fits into the framework of this paper, but
is more restrictive. The formulation of their algorithm depends on the presence of a
penalty term o [, u?(x)dz in the objective function f and they assume that Q C R is
an interval. Their algorithm also includes a ‘post smoothing’ step, which is performed
after the trust-region step is computed. The presence of the post smoothing step en-
sures that existing local convergence results can be applied. Such a ‘post smoothing’
is not needed in the global analysis of this paper.

We introduce the following notations. L£(X,Y) is the space of linear bounded
operators from a Banach space X into a Banach space Y. By || -[|, we denote the
norm of the Lebesgue space L4(€), 1 < ¢ < 00, and we write (-, -), for the inner product
of the Hilbert space H = L%(Q). For (v,w) € (L9(Q), L4(Q)*), with LI(Q)* denoting
the dual space of L9(Q), we use the canonical dual pairing (v, w) = [, v(z)w(z) dz,
for which, if ¢ < oo, the dual space L?(€2)* is given by Lq/(Q), 1/¢+1/¢ =1 (in the
case ¢ = 1 this means ¢’ = o0). Especially, if ¢ = 2, we have L2(Q)* = L%(Q) and (-, ")
coincides with (-,-),.

Finally, we set U’d:epr/(Q), 1/p+ 1/p’ = 1, which is the same as U*, if p < oc.
Moreover, it is easily seen that w — (-, w) defines a linear norm-preserving injection
from L'(Q) into L>°(Q)*. Therefore, we may always interpret U’ as subspace of U*.
As a consequence of Lemma 5.1 we get the following chain of continuous imbeddings:

VaelU—sH=H" U < U= V"

Throughout we will work with differentiability in the Fréchet—sense. We write
g(u) = Vf(u) € U* for the gradient and V2 f(u) € L(U,U*) for the second derivative
of f at uw € B if they exist. The || - || -interior of B is denoted by B°:

B°E (JBs, Bs= {uelU: a(x)+6<u(zx)<bx)—6 2€Q}.
6>0

We often write fx, g, ... for f(ur), g(ug),...
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This paper is organized as follows. In the next section we review the basics of
the finite-dimensional interior-point trust-region algorithms in [6] and use this to
motivate the infinite-dimensional setting applied in this paper. In § 3 we formulate
the necessary optimality conditions in the framework needed for the interior—point
trust—region algorithms. The interior—point trust-region algorithms are introduced in
§ 4. Some basic technical results are collected in § 5. The main convergence results are
given in § 6, which concerns the global convergence to points satisfying the first—order
necessary optimality conditions, and in § 7, which concerns the global convergence to
points satisfying the second—order necessary optimality conditions. These convergence
results extend all the known convergence results for trust-region methods in finite
dimensions to the infinite-dimensional setting of this paper. The local convergence
analysis of these algorithms is given in the follow up paper [22], which also contains
numerical examples illustrating the theoretical findings of this paper.

2. Review of the finite—dimensional algorithm and infinite-dimensional
problem setting. We briefly review the main ingredients of the affine-scaling interior—
point trust-region method introduced in [6]. We refer to that paper for more details.
The algorithm solves finite-dimensional problems of the form

minimize  f(u)

(Pn)
subject to uEBNd:ef{UGIRN: agugb},

where f : RV — IR is a twice continuously differentiable function and a < b are
given vectors in R™. (One can allow components of @ and b to be —oo or oo, respec-
tively. This is excluded here to simplify the presentation.) Inequalities are understood
component wise.

The necessary optimality conditions for (Py) are given by

V() - p*+p* =0,
a<u<b,

(@—a)'n + (b-a)'@" =0,
at >0, 5" >0.

With the diagonal matrix defined by

wr [ (b—wi 0T (V@) <0,
@ (Pw) { (u—a) i (V/(2)); 20,
fore=1,..., N, the necessary optimality conditions can be rewritten as
D(w)"V f(u) =0,
a <u<hb.

(2)

where the power r > 0 is applied to the diagonal elements. This form of the necessary
optimality conditions — we choose r = 1 — can now be solved using Newton’s method.
The i-th component of the function D(u) is differentiable except at points where
(Vf(u)); = 0. However, this lack of smoothness is benign since D(u) is multiplied by
Vf(u). One can use

(3) D(u)V? f(u) + diag(V f(u))J (u)
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where J(u) is the diagonal matrix

L it (V/()); <0,
(J@), = it (Vi) >0,

0 else,

as the approximate derivative of D(u)V f(u). After symmetrization, one obtains
() 1 (a) = D() 2V £ () D(u)? + diag (¥ £ (1) (u).

One can show that the standard second—order necessary optimality conditions are
equivalent to (2) and the positive semi-definiteness of M (@). The standard second—
order sufficient optimality conditions are equivalent to (2) and the positive definiteness
of M(4).

A point satisfying the necessary optimality conditions (2) is now computed using
the iteration ugy1 = ur + sk, where for a given u; with a < wg < b, the trial step

Sp = D,lc/2§k satisfies a < uy + si < b, and §; is an approximate solution of

(5) min ¢y, (3) subject to [|3]|, < Ap, up+ D,lc/2§ € By

with @/;k(§) d:eff]gé’ + %gTﬂﬁlké, = D}C/Qka. The trust—region radius Ay is updated
from iteration to iteration in the usual fashion. In (5) the Hessian V?f(uz) might
be replaced by a symmetric approximation Bj. If the approximate solution §; of (5)
satisfies a fraction of Cauchy decrease condition

S

P (3k) < Bmin {@k(g) 8= 1gs, 1 <0, |3l < Ay, up+ D3 € BN}7

lI3k[l2 < BoAk,

then under appropriate, standard conditions one can show the basic trust-region con-
vergence result

liminf | D (u)'/*V f(ug)|| = 0.
k—oo

Stronger convergence results can be proven if the assumptions on the function f and
on the step computation §; are strengthened appropriately. See [6] and [5], [11].
Coleman and Li [6] show that close to nondegenerate KKT-points one obtains trial
steps §; which meet these requirements if one first computes an approximate solution
of (5) ignoring the bound constraints and then satisfies the interior-point condition
a < ug + s < b by a step-size rule. A careful analysis of the proofs in [6] unveils that
the same holds true for nearly arbitrary trust-region scalings. It becomes apparent
that the crucial role of the affine scaling does not consist in the scaling of the trust—
region but rather in leading to the additional term diag(V fi)Ji in the Hessian My
of QL]C. Near nondegenerate KKT—-points this positive semi—definite diagonal-matrix
shapes the level sets of %;k in such a way that all ’bad’ directions § which allow only
for small step-sizes to the boundary of the box cannot minimize QLk on any reasonable
trust-region. The trust-region scaling in (5), (6) tends to equilibrate the distance of
the origin to the bounding box constraints {§ : u; + D,lc/2§ € By}. However, for
this feature the equivalence of 2- and oc-norm is indispensable and thus it does not
carry over to our infinite-dimensional framework. In fact, in the infinite-dimensional
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setting the affine—scaled trust-region {Hszp < Apg} no longer enjoys the property of
reflecting the distance to the bounding box constraints. Therefore we will allow for
a very general class of trust-region scalings in our analysis. See also [11]. Since, as
mentioned above, the term diag(V fx)Jx in the Hessian M, plays the crucial role in
this affine-scaling interior—point all convergence results in [6] remain valid. It is also
worth mentioning that in our context an approximate solution §; of (5) satisfying (6)
can be easily obtained by applying any descent method which starts minimization at
§ = 0 along the steepest descent direction —gi. Moreover, we show in [22] that near
an optimizer satisfying suitable sufficiency conditions admissible trial steps can be
obtained from unconstrained minimizers of ’lLk by pointwise projection onto 5. Here
our flexibility in the choice of the trust-region scaling will prove to be valuable.

The finite-dimensional convergence analysis heavily relies on the equivalency of
norms in R™. This is for example used to obtain pointwise (|| || ) estimates from
|| - ||, estimates. In the infinite-dimensional context the formulation of the algorithm
and the proof of its convergence is more delicate.

We will make use of the following Assumptions:

Al) f:D — R is differentiable on D with ¢ mapping B C U continuously into U’.

(
(A2) The gradient g satisfies g(B) C V.

(A3) There exists ¢; > 0 such that [|g(u)||,, < ¢1 for all v € B.

(A4) fis twice continuously differentiable on D. If p = oo then V2 f(u) € L(U,U")
for all w € B, and if (hy) C V converges to zero in all spaces L1(2), 1 < ¢ < o0,
then V?f(u)hy tends to zero in U’

For p € [2,00) the assumptions (A1) and (A4) simply say that f is continuously
Fréchet—differentiable or that f is twice continuously Fréchet—differentiable, respec-
tively. If p = oo, then the requirements that g(u), V2f(u)h € U’ = LY (Q) # U* for
w € B, h € V is a further condition. It allows us to use estimates like (v,g(u)) <
lg(w) |l [l]l,, for p € [2,00) and p = oo. Moreover, since on L'(Q) the L'- and (L°)*-
norms coincide, assumption (A4) implies that V2f : B C U — L(U, U') is continuous
also for p = co. Finally, (A1) ensures that the gradient g(u) is always at least an L!-
function which will be essential for many reasons, e.g. to allow the definition of a
function space analogue for the scaling matrix D.

The assumption (A2) is motivated by the choice of the scaling matrix D and the
fraction of Cauchy decrease condition (6) in the finite-dimensional case. The infinite-
dimensional analogue d(u) of the diagonal scaling matrix D(u) will be a function.
Given the definition (1) of D(u) it is to be expected that d(u) € L= (Q) if a < u < b.
If g(u) € LP'(Q), then d(u)'/?g(u) € L”' (R). Hence, the candidate for the Cauchy step
satisfies ¢ = —td(u)'/%g(u) € LP'(Q). Since p' # oo, one will in general not be able
to find a scaling 7 > 0 so that a < u + 7d(u)'/25° < b. The assumption (A2) assures
that §° = —td(u)g(u) € V. The uniform boundedness assumption (A3) is, e.g., used
to derive the important estimate (26). We point out that in (A3) the uniform bound
on g(u) has to hold only for w € B which is a bounded set in L>(€2).

The conditions (A1)-(A4) limit the optimal control problems that fit into this
framework. However, a large and important class of optimal control problems with
LP-controls satisfy these conditions. For example, the conditions imposed in [12,
p. 1270], [20, p. 517] to study the convergence of the gradient projection method
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imply our assumptions (Al), (A2), and (A4). The assumption (A3) can be enforced
by additional requirements on the functions ¢ and S used in [12], [20]. The boundary
control problems for a nonlinear heat equation in [3] and in [14], [15] also satisfy the
assumptions (Al)—(A4). See [22].

3. Necessary optimality conditions and affine scaling. The problem under
consideration belongs to the class of cone constrained optimization problems in Banach
space for which optimality conditions are available (cf. [16]). But we believe that for
our particular problem an elementary derivation of the necessary optimality conditions
for problem (P) not only is simpler but also more transparent than the application of
the general theory. This derivation also helps us to motivate the choice of the affine
scaling which is used to reformulate the optimality condition and which is the basis
for the interior—point method.

3.1. First—order necessary conditions. The first—order necessary optimality
conditions in Theorem 3.1 are completely analogous to those for finite-dimensional
problems with simple bounds (cf. § 2, [6]). We only have to replace coordinatewise by
pointwise statements and to ensure that the gradient g(u) is a measurable function.

THEOREM 3.1 (FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS). Let u be a

local minimizer of problem (P) and assume that f is differentiable at u with g(u) € U’.
Then

(01) u € B,

=0 fora € Q witha(z) < u(z) < b(z),
(02) g(u)(z)< >0 forz e Q with u(z) = a(z),

<0 forazeQ with u(z) = b(z)

are satisfied.
Proof. Condition (O1) is trivially satisfied. To verify (02), define

A_={z€Q: a(z)=a(z), g(u)(z) <0} , A* ={zc A_ : g(u)(z) < —1/k},

and assume that A_ has positive measure y(A_) > ¢ > 0. Since p is continuous from
below and A* 1T A_, there exists [ > 0 with ,u(Al_) > . This yields a contradiction,
because u 4+ 7s € B, s=x4_(b—a), for 0 <7 <1, and

d
(@t Ts)lr=0 = (s, 9(w)) < _571/ <0.

Hence we must have u(A_) = 0. In the same way we can show that u(A;) = 0 for
Ay ={z € Q : u(z) =b(z), g(u)(z) > 0}. Finally, we look at

I={2€Q: a(z) <u(z)<bz), g(a)(z)#0}.
Assume that (1) > ¢ > 0. Since I* | I with
= {eeQ: a(e)+1/k < a(e) < b() - 1k, lg(@)()] > 1/k),
we can find [ > 0 with u(I') > ¢ and obtain for

g(u)
g(u)l

S:—XIZ|
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that u +7s € B, 0 <7 < 1/I, and

Tl s o = (s,9(@) < =5 <0

g u TS)|r=0 = (S, glu)) < I )
a contradiction to the local optimality of . Hence pu(I) = p(A_) = p(A4) = 0 which
means that (O2) holds. O

3.2. Affine scaling. Let assumption (A1) hold. Our algorithm will be based on
the following equivalent affine-scaling formulation of (02):

(7) d"(u)g(u) =0

where r > 0 is arbitrary and d(u) € V, u € B, is a scaling function which is assumed
to satisfy

=0 ifu(z)=a(z) and g(u)(z) > 0,
(8) d(u)(z) (= 8 ifl u(z) = b(z) and g(u)(z) <0,
> else,

for all z € Q. The equivalence of (02) and (7) will be stated and proved in Lemma
3.2. Before we do this, we give two examples of proper choices for d. The first choice
d = dp is motivated by the scaling matrices used in [6] (see (1)). Except for points
with g(u)(z) = 0 it equals those used in [6] and [11]:

)20 and a(e) — ale) < b()  ule)
det u)(z) =0 and u(z) — a(z) < b(z) — u(z),
0)  dilw) (@)= b(z) — u(x) ?fg(u)(x < 0or
)(2)

=0 and b(z) — u(z) < u(z) — a(z).

The slight modification in comparison to (1) will enable us to establish the valuable
relation (16) without a nondegeneracy assumption.

While the global analysis could be carried out entirely with this choice, the dis-
continuous response of d(u)(z) to sign changes of g(u)(z) raises difficulties for the
design of superlinearly convergent algorithms in infinite dimensions. These can be
circumvented by the choice d = dy, where

min{lg(u)(z)],c(z)}  if —g(u )(af > u(z) - a(z)

(10)  da(w)(z) 2 { Mintlg@ @) e@)} il g(w) x>>fz<>

b(z) —u(z),c(z)} else.

Here ¢ : z € Q — min{((b(z) — a(z)),x} with ¢ € (0,1/2] and & > 1.

It is easily seen that d = dj and d = dy both satisfy (8). An illustrative example
for the improved smoothness of the scaling function dy(u) will be given in § 4.1.

LemMMA 3.2. Let (A1) hold and uw € B. Then (02) is equivalent to (7) for all
r > 0 and all d satisfying (8).

Proof. Since d", r > 0, also satisfies (8), we may restrict ourselves to the case
r = 1. First assume that (O2) holds. For all z € Q with g(u)(z) = 0 we also have
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d(u)(z)g(u)(z) = 0. If g(a)(z) > 0, then by (02) u(z) = a(z) and if g(u)(z) < 0
then @(z) = b(z). In both cases d(u)(z) = 0 and hence d(%)(z)g(%)(z) = 0. On the
other hand, let d(z)g(2) = 0 hold. For all z € Q with a(z) < @(z) < b(z) we have
d(u)(z) > 0 which implies g(u)(z) = 0. For all z € Q with @(z) = a(z) we obtain
g(u)(z) > 0since g(u)(z) < 0 would yield the contradiction d(@)(z) > 0. Analogously,
we see that g(u)(z) < 0 for all z € Q with @(z) = b(z). Therefore, (02) holds. O

3.3. Second-order conditions. If assumption (A4) holds, we can derive second—
order conditions which are satisfied at all local solutions of (P). These are also analo-
gous to the well known conditions for finite-dimensional problems.

THEOREM 3.3 (SECOND—ORDER NECESSARY OPTIMALITY CONDITIONS). Let
(A4) be satisfied and g(u) € U’ hold at the local minimizer u of problem (P). Then
(01),(02) and

(03) (s,V%f(u)s) > 0 for all s € T(B,u)

are satisfied, where
T(B,a)E {scV : s(z) =0 for all z € Q with a(z) € {a(z),b(z)}}

denotes the tangent space of the active constraints.

Proof. Let the assumptions hold. As shown in Theorem 3.1, (O1) and (02)
are satisfied. In particular, we have that sg(u) = 0 for all s € T(B,u). Now
assume the existence of s € T(B,u) and ¢ > 0 with (s,V2f(u)s) < —e. Let
I={2€Q: a(z) < u(z) < b(z)},

(11) In={x€Q: alz)+ 1/k < u(z) <b(z)—1/k}

and define restrictions s* = y7, s € V. Since I, | I and s = xys, we get ||s* — SHZ <
w(I\ Ir)||s||%,. Hence, the restrictions s* converge to s in all spaces L¢(Q), 1 < ¢ < oc.
Therefore, V2f(@)(s — s*) tends to zero in U’ by (A4) and, using the symmetry of

V2 f(u),
(s, V2f(u)s") = (s, V2f(a)s) — (s + 5", V2 [ (u)(s = s"))
< 2|V f(@)(s = sM)llllsll, — ¢
< —¢/2
for all sufficiently large k. Let [ > 0 be such that (s',VZf(a@)s') < —¢/2. The

observations that s' € T(B,u) and @+ 7s' € B for 0 < 7 < 1/(I||s]|,,) now yield the
desired contradiction:

d
S (ut 1) =0 = (s,9(w) =0,
2

=
This readily shows that (O3) holds. O

(@ + 78,20 = (', V2f(a)s') < —/2 < 0.
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4. The algorithm.

4.1. A Newton-like iteration. The key idea of the method to be developed
consists in solving the equation d(u)g(u) = 0 by means of a Newton-like method
augmented by a trust-region globalization. The bound constraints on u are enforced
by, e.g., a scaling of the Newton-like step. In particular, all iterates will be strictly
feasible with respect to the bounds: uy € B°.

In general it is not possible to find a function d satisfying (8) that depends
smoothly on u. For an efficient method, however, we need a suitable substitute for
the derivative of dg. Formal application of the product rule suggests to choose an
approximate derivative of the form

D(u)sz(u) +dy(u)g(u), ueB°,

with dy(u)w € L(U,U’), w € U’, replacing the in general non-existing derivative of
uw € Br—— d(u)w € U’ at u. Here and in the sequel the linear operator D" (u), r > 0,
denotes the pointwise multiplication operator associated with d”"(u), i.e.

D" (u) : v — d(u)"v.

Since d"(u) € V, D" (u) maps LI(R), 1 < g < oo, continuously into itself. Moreover,
if the assumption (D2) below is satisfied and u € B°, then D" (u) defines an automor-
phism of L1(Q), 1 < ¢ < oo, with inverse D" (u). In fact, for all u € B° there exists
0 < 6 < é4 such that u € Bs, and thus d(u)(z) > €4(6) on Q by (D2). If we look at
the special case d = dj, the choice d (u)w = df(u)w with

1 if g(u)(z) > 0or
g(u)(z) =0 and u(z) — a(z) < b(z) — u(z)
-1 if g(u)(z) < 0or
g(u)(z) =0and b(z) — u(z) < u(z) — a(x)
for u € B, z € ) seems to be the most natural.
For the general case this suggests the choice

D(w)V*f(u) + E(u) ,

12)  di(w)(e) ™

where F(u) : v — e(u)v is a multiplication operator, e(u) € V, which approximates
dy(u)g(u). Properties of £ will be specified below.

We are now able to formulate the following Newton-like iteration for the solution
of d(u)g(u) = 0:

Given uy € B°, compute the new iterate ugy1 := ur+ s € B° where s; € U solves
(13) (Dk Bk + Eg)sg = —dygx,

and By, denotes a symmetric approximation of (or replacement for) V2 f(ug), i.e.
(v, Byw) = (w, Byv) for all v,w € U.

We assume that By satisfies the following condition:
(A5) The norms || Bgl|;;;y are uniformly bounded by a constant ¢z > 0.

In the following, we will not restrict our investigations to special choices of d and e.
Rather, we will develop an algorithm that is globally convergent for all affine scalings
d and corresponding e satisfying the assumptions (D1)—(D5):
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(D1) The scaling d satisfies (8) for all u € B.

(D2) There exists 5 > 0 such that for all § € (0,484] there is e4 = £4(6) > 0 such that
d(u)(z) > eq for all w € B and all 2z € Q with a(z) + ¢ < u(z) < b(z) - 6.

(D3) The scaling satisfies d(u)(z) < di(u)(z) for all w € B, z € Q and d; given by (9).
In particular, d(u)(z) < ¢4 for some ¢q > 0.

(D4) For all w € B the function e(u) satisfies 0 < e(u)(z) < ¢, for all z € Q and
g(u)(z) =0 implies e(u)(z) = 0.

(D5) The function e(u) is given by e(u) = d'(u)g(u), where d'(u) satisfies |d’(u)(z)| <
cq for all w € B and z € Q.

We have seen that assumption (D1) is essential for the reformulation of the first—
order necessary optimality conditions and that (D2) ensures the continuous inverta-
bility of the scaling operator D(u) for u € B°. Furthermore, assumption (D2) will be
used in the second-order convergence analysis. The assumption (D4) together with
(A5) is needed to ensure uniform boundedness of the Hessian approximations My to be
defined later (see Remark 4.2). The assumption (D5) is needed to prove second-order
convergence results.

Obviously, (D1)-(D3) hold for either d = dy and d = dyi. The assumption (D4)
is satisfied for e(u) = di(u)g(u), where di(u) is given by (12), provided that ||g(u)||_,
is uniformly bounded on B, i.e. provided that (A3) holds. The following example
illustrates that the relaxed requirements on the scaling function d can be used to
improve the smoothness of d and the scaled gradient dg substantially®:

ExXaMPLE 4.1. The quadratic function

5 = g3~ 1 ([ ot d)

is smooth on L%([0,1]). The gradient and the (strictly positive) Hessian are given by

1 1 1

g(u):u—§ : u(z) dz VQf(u):vn——wJ—%/o v(z)de.

[ assumes its strict global minimum on the box B = {z + § < u(z) < 2} at the lower
bound @, u(z) = z43. At u. = ute(x+155), € > 0, the gradient g(u.) = v4e(z—555)
becomes negative for small z. Plot (a) in Figure 1 shows di(u.) (dashed), du(u.)

(solid) and |g(u.)| (dotted) for ¢ = 0.001. Note that dy is continuous at the sign-
change of g(u.) and retains its order of magnitude in contrast to di. Plot (b) depicts
the remainder terms

di()g() — di(uc)g(ue) — (di(ue)g(ue) + di(ue) V?f (ue)) (@ - ue)

for i =1 (dashed) and i = I (solid) while |g(u.)| is again dotted. Here d! is as in (12).
Note that the remainder term for dig does not tend to zero near the sign—change of
g(ue) in contrast to dpg. In fact, it follows from our investigations in [22] that

ldn(@)g (@) — du(u)g(u) — (dn(u)g(w) + du(w) VS (w)) (@ = w)l], = o([Ju — ull,)
foru € B, 1 < ¢ < 00, and @ satisfying (O1), (02),if g : B CV — V is locally Lip-
schitz at @ and g : B C V — L%(1) is continuously differentiable in a neighborhood

8_1

of w. Our example admits the choice ¢ = co.

! The advantages of the improved smoothness will be seen in the local convergence analysis [22].
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F1G. 1. Smoothness properties of the scaling functions di(u) and du(u)

4.2. New coordinates and symmetrization. Since neither the well-defined-
ness nor the global convergence of the Newton-like iteration (13) can be ensured, we
intend to safeguard and globalize it by means of a closely related trust-region method.
To this end we have to transform (13) into an equivalent quadratic programming
problem. While the iterates are required to stay strictly feasible with respect to the
bound constraints, we want to use an affine-scaling interior—point approach to reduce
the effect of the interfering bound constraints in the quadratic subproblem as far as
possible. The afline scaling can be expressed by a change of coordinates s ~+ § and has
to be performed in such a way that we get enough distance from the boundary of the
box B to be able to impose a useful fraction of Cauchy decrease condition on the trial
step. An appropriate change of coordinates s ~» §is given by § & d."s. Here r > 1/2
is arbitrary but fixed throughout the iteration. Performing this transformation and
applying Dz_l, the multiplication operator associated with dz_l, from the left to (13)
leads to the equivalent equation

(14) Myée = —i

with §(u) e d (u)g(u), M, ¥ By, + Cy, where B, &< D} B Dy, and C= EszT_l.
REMARK 4.2. Assumptions (D4) and (A5) imply that ||Mgl|,; ;. are uniformly
bounded by a constant ¢z > 0. 7
Since Mj is symmetric, §; is a solution of (14) if and only if it is a stationary
point of the quadratic function

2 ~ e PN 1 N PN
Dr(3) = (3, 95) + §<57 My3).
We will return to this issue later.

4.3. Second—order necessary conditions revisited. If By = V2 f(u;), then
the operator

(15) N (u) 2 D(w) V2 f (u) D(w)” + E(u) D(w)* "

also plays an important role in the second—order necessary optimality conditions. In
fact, we will show that if conditions (O1), (O2) hold at @, then (O3) can be equivalently
replaced by
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(03") (s, M(w)s) > 0 for all s € T(B,7)
or even
(03") (s, M(u)s) >0 forall s € V.

The proof requires the following two lemmas.
LemMa 4.3. Let (D1) be satisfied, let g(u) € U’, and suppose that (O1), (02)
hold at u. Then

(16) FE{zeQ: da)(z)>0y={zeQ: a(z) <u(z) <blz)} =1.

Proof. The inclusion I C I* is obvious from (8). Now let € I* be given. Then
g(u)(z) = 0 by (02) and Lemma 3.2. From (8) we conclude u(z) ¢ {a(z),b(z)}, i.e.
xel. O

LEMMA 4.4. Let (D1) and (D4) be satisfied, let g(u) € U’, and suppose that (O1),
(02) hold at w. Moreover, assume that f is twice continuously differentiable at u with
V2f(u) € L(U,U"). Then the statements (03") and (03") are equivalent.

Proof. Obviously ii) implies i). To show the opposite direction, assume that i)
holds. Set A = Q\ I, were [ is the set defined in (16). For arbitrary s € V' we perform
the splitting s = sy + s4, s; = x1s € T'(B,u), s4 = x4s. Lemma 4.3 implies that
d"(u)s4 = 0 and we obtain

(s, M(a)s) = (s7, M(@)s1) + 2(s4, e(@)d? " (a)s])
+2(d"(w)sa, VEf(a)d (@)s;) + (d"(@)sa, VEf(@)d" (@)sa)
+ (sa, e(@)d” 7! (w)sa)
= (s7, M(@)s1) + (sa,e(@)d* Y (a@)sy) > (s;, M(a@)s;) > 0

This completes the proof. O

THEOREM 4.5. Let (D1), (D2), and (D4) be satisfied. Then in Theorem 3.3
condition (0O3) can be equivalently replaced by (03') or (03").

Proof. Since the conditions of Theorem 3.3 and Lemma 4.4 guarantee that (O3')
and (O3") are equivalent, we only need to show that (O3) can be replaced by (03).

Let (O1), (O2) be satisfied. Then for all s € T(B,u) we have sg(a) = 0. To
show that (O3) implies (03'), let s € T(B,u) be arbitrary. Then h = d’(u)s is also
contained in T'(B,4). Therefore, (s, M(a)s) > (h, V2f(a)h) > 0.

To prove the opposite direction, assume that there exist s € T'(B,u) and ¢ > 0
with (s, V2f(u)s) < —e. As carried out in the proof of Theorem 3.3, we can find [ > 0
such that s' = yz, s € T(B, ), I as defined in (11), satisfies (s, VZf(a)s!) < —¢/2.
Since d(u) is bounded away from zero on I; by assumption (D2), we obtain that kA =
x1,d77(@)s is an element of T'(B, ) that satisfies (h, M(a)h) = (s', V2f(a)s') < —&/2
(note that e(z)h = 0 by (D4)). This contradicts (03'). O

Define

Blul () (3, 8(u)) + (8, M (u)3)

with M (u) given by (15) and §(u) % d” (u)g(u). Note that o[uy] = @’A‘)k|Bk:V2f(uk)- The
previous results show that ¢[@](3) is convex and admits a global minimum at § = 0 if
u is a local solution of (P).
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4.4. Trust-region globalization. The results on the second—order conditions
in the previous section indicate that the Newton-like iteration (14) can be used locally
under appropriate conditions on By. To globalize the iteration, we minimize QL}C(§) over
the intersection of the ball s < Aj and the box B which leads to the following
trust—region subproblem:

WS
Compute an approximate solution 8 with ug + d}3; € B°® of

(17) min ¢ (5) subject to [|ig3|

, Ak, up+ diEEB

Here Wy € V is a positive scaling function for the trust-region, see assumption (W)
below. As noted in § 2, the crucial contributions of the affine scaling are the term
E(u)D(u)¥~'in the Hessian M (u) and the scaling j of the gradient. The trust-region
serves as a tool for globalization. Therefore, more general trust-region scalings can
be admitted, as long as they satisfy (W) below. This freedom in the scaling of the
trust-region will be important for the infinite-dimensional local convergence analysis
of this method. See [22].

We will work with the original variables in terms of which the above problem
reads

Compute s, with uy + sp € B® as an approximate solution of
(18) min ¢y (s) subject to [Jwgs||, < Ap, up+s€B

with 1/)]{(8) = <5,gk> + %<5,1Wk8>, My =B+ Cy, Cr = Elezl, and wy = d,;%bk.

The only restriction on the trust-region scaling is that wlzl as well as Wy, = djwy, are
pointwise bounded uniformly in k:

(W) There exist ¢,, > 0 and ¢, > 0 such that [|djw|| < ¢y and [Jwit]|_ < ¢, for
all k.

Examples for wy, are wy = d;” which yields a ball in the 3-variables, and wj = 1
which leads to a ball in the s—variables. Both choices satisfy (W) if (D3) holds. See
also [11].

The functions d," and d;l are only well defined if up € B°. Therefore, the
condition uy + d}.5; € B° on the trial iterate is essential. However, it is important to
remark that the bound constraints do not need to be strictly enforced when computing
3. For example, in the finite-dimensional algorithms in [6], [11], an approximate
solution of

min ¢ (3) subject to llog3], < Ag

is computed and then scaled by 7, > 0 so that uy + 7,d}.5; € B°. Similar techniques
also apply in the infinite—dimensional framework. Practical choices for the infinite—
dimensional algorithm will be discussed in [22].

4.5. Cauchy decrease for the trial steps. An algorithm which is based on
the iterative approximate solution of subproblem (18) can be expected to converge to
a local solution of (P) only if the trial steps s; produce a sufficiently large decrease
of ¥r. A well established way to impose such a condition is the requirement that
the decrease provided by si should be at least a fraction of the Cauchy decrease.
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Here the Cauchy decrease denotes the maximum possible decrease along the steepest
descent direction of 95 at s = 0 with respect to an appropriate norm (or, equivalently,
appropriate coordinates) inside the feasible region of the subproblem. We will see in
Lemma 6.1 that the new coordinates § = d,"s indeed provide enough distance to the
boundary of B to allow the implementation of a useful Cauchy decrease strategy.

Unless in the Hilbert space case p = 2, the steepest descent direction of ﬁk at
4 = 0 is not given by the negative gradient —g; but rather by any ¢ # 0 satisfying
(3%, i) = |87 ]p gk ]p,. On the other hand, if g € H then —Vz@k(O) = —§i is the
|| - ||,-steepest descent direction of ¢, at § = 0. This is a strong argument for choosing
this direction as basis for the Cauchy decrease condition. Of course this approach is
only useful if we ensure that u; — 7d}.g, € B° for all 7 > 0 sufficiently small which
can be done by imposing condition (A2) on g which is not very restrictive. Assuming
this, we may take —dj gr = —d3"gx as Cauchy decrease direction of ¢, and therefore
define the following fraction of Cauchy decrease condition:

There exist 3,39 > 0 (fixed for all k) such that s; is an approximate solution of
(18) in the following sense:

(19a) |lweskll, < BoAk, ug + sk € B°, and ¢r(sg) < Bvr(sy),
where 5§ is a solution of the one-dimensional problem
(19b)  min ¢(s) subject to s= —tdi"gr, t >0, up+s€B, lwes|l, < Ag.

4.6. Formulation of the algorithm. For the update of the trust—region radius
Aj and the acceptance of the step we use a very common strategy. It is based on the
demand that the actual decrease

(20) aredy,(s;) = fr — f(up + s)

should be a sufficiently large fraction of the predicted decrease
def 1 1
(21) predy(s) = = (sk: k) = 5 (sk: Brsk) = —¥n(sk) + 5(sk: Chsi)

promised by the quadratic model. Since the model error is at most O(HS}CH;), the
decrease ratio

def ared(sk)

(22) Pk = predy (si)

will tend to one for s, — 0. This suggests the following strategy for the update of the
trust-region radius:

ALGORITHM 4.6 (UPDATE OF THE TRUST-REGION RADIUS Ay).

Let 0<m <mp<ms<l,and 0 < 91 < 1< 73 < 7s.
1. If py < ny then choose Apyq € (0,71A%].
2. If pr. € (1, 7m2) then choose Agyq € [y1 Ak, Ag].
3. If pr € [m2,n3) then choose Agyq € [Ag, y2A%].
4. If pr, > n3 then choose Apyy € [v2A%, ¥3A%].
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REMARK 4.7. The forms of predicted and actual decrease follow the choices used

n [11], [23] (and [10] for the constrained case). In [6] the decreases and the ratio are
computed as follows:

e . 1 o aredl(s
predy(sp) = —p(sy) , aredy(sy) = aredy(sp) — =(sk, Crsg) , pr= #
predy (si)

2
Since the crucial estimates (25) and (38) also are true for pred(sg), and under (D4)
the relations

pred(sp)(pp — 1) = pred,(si)(pr — 1) , aredj(sk) < aredy(sy)

hold, all convergence results presented in this paper remain valid if py is replaced by
pi . We restrict the presentation to the choice (20), (21).

The algorithm iteratively computes a trial step sj satisfying the fraction of Cauchy
decrease condition. Depending on the decrease ratio py the trial step is accepted or
rejected, and the trust-region radius is adjusted.

ALGORITHM 4.8 (TRUST-REGION INTERIOR-POINT ALGORITHM).

Let m; > 0 as in Algorithm 4.6.

1. Choose ug € B° and Ag > 0.

2. For k=0,1,...
2.1. If gr = 0 then STOP with result ug.
2.2. Compute s, satisfying (19).
2.3. Compute py, as defined in (22).
2.4. If px > m then set ugy1 = ug + Sg, else set up4q = uy.
2.5. Compute Agyy using Algorithm 4.6.

5. Norm estimates. In this section we collect several useful norm estimates for
Li-spaces. The first lemma states that || - ||, is majorizable by a multiple of || - | , if
92 2> q1-

LEMMA 5.1. Forall1 < ¢ < ¢z < o0 and v € L2(Q) we have

1ollg, < Mgy allvll,,

a1 —

1_1
with my, 4, = p(Q)ar 2. Here 1/00 is lo be interpreted as zero.
Proof. See e.g. [1, Thm. 2.8]. O
As a consequence of Hélder’s inequality we obtain the following result, which

allows us to apply the principle of boundedness in the high- and convergence in the
low-norm.

LeEmMA 5.2. (Interpolation inequality) Given 1 < ¢ < g3 < 00 and 0 < 0 < 1,

let 1 <q< oo satisfy1/g=0/q + (1 —0)/q2. Then for all v € LI2(Q) the following
s true:

4 1-6
(23) 1olly < lvllg, llvlg,

Proof. In the nontrivial cases 0 < # < 1 and ¢ < oo observe that [¢;/(8¢)]™" +
[q2/((1 = 8)q)]7! = 1 and apply Hélder’s inequality:

o = 2, < o

(7] 1-8
w = 0l o) L0,

a _92
g (1-6)q
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The next lemma will be used in the proof of Lemma 7.1.
LemMA 5.3. Forv e LI1(R),1< ¢ < oo and all § > 0 holds

p{z e fo(z)] 2 6}) <67l

Proof.
Nolld = ol > Ixgpzslol?ll, > #({lv] > 6})é.

6. Convergence to first—order optimal points. The convergence of the algo-
rithm is mainly achieved by two ingredients: A lower bound for the predicted decrease
for trial steps satisfying the fraction of Cauchy decrease condition, and the relation
aredp(sg) > mpred;(sk) which is always satisfied for successful steps s;. The lower
bound on the predicted decrease is established in the following lemma:

LEMMA 6.1. Let the assumptions (A1), (A2), (D1)~(D4), and (W) hold. Then
there exists ¢4 > 0 such that for all uy € B° with §i # 0 and all s, satisfying (19) the
following holds:

Lo 2. Ay dxll5 e
(24) predi(se) 2 —¥r(sk) 2 55lgx[l; min 0, — —,
cwlldrlly 1kl o llgell2” gkl
2 Ay 1Gx]12 e
(25) > C4Hngp’ min ~ ) ~ NICE .
cwllgrlly” [ Mellypllgell, I19xllo

Proof. Since C}, is obviously positive by (D4), we have

predy (sg) = —¥r(sk) + %<5k70k5k> > —p(sk).

Now we will derive an upper bound for the minimum of ¢(7) = ¥ (—7d3 gx) on [0, 7]
with 7% = min{r,7,}, where

Ts = max{r :b(z) — ug(z) + 7di" (v)gr(z) > 0, and

ug(z) — a(z) — 7di (z)gr(z) >0 Yz € Q}

and
Ta = 2 = 2
lwed? gill, — drgull, = cwlldel,
Therefore, using (D3),
bz) - - d
75 = min in M, inf M —  inf M
d;IC_QT(CC) ‘ C(IJ_QT 62—27«

in L7 > inf .
T {an@20} [gr(2)] T {ax@20} |9x(@)] T gkl

We have ¢(1) = —k17 + %5272 with

k1= (d¥gr,gr) = gl> 5 ke = (d¥ gr, Mpd? gz) = (Gr, Mris),
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9k

and observe |kz| < HZ\ALCHU’UJ ]]29 Let 7* be a minimizer for ¢ on [0, 7F]. If 7% < 77

then kg > 0, 7* = K1 /K, and

¢(T*):—%:_i§_%”ﬂ;[ ||’§k!3A .
kllorer 19w,
If 7% = 75 and Ky > 0 then k1 /Ky > 75 and
¢(T*):—517A+@72<—ﬂq— <—1L@A.
247 2T o [lgll, "

If 7* = 7, and Kz < 0 then even ¢(7*) < —k17o. For 7* = 75 the same arguments
show

~ 12

K1 1o 19kl
P < ——15 < ——¢ .
) 277 27 gl

The first inequality (24) now follows from these estimates and (19). The second
inequality (25) follows from (24) and the application

gl < mpr 2|kl

of Lemma 5.1. Note that p > 2 and 1/p+ 1/p' =1 yield p' < 2.0

REMARK 6.2. The sequence of inequalities for the estimation of 75 uses the
inequality dir_l < c?f_l. This is where we need the restriction to r > 1/2.

Let the assumptions of Lemma 6.1 hold. If the kth iteration of Algorithm 4.8
is successful, i.e. pr > m (or equivalently ugi; # ug), then Lemma 6.1 provides an

estimate for the actual decrease:

~ 2 _
A Gkl ey }

fe — frg1 > mucal|grl|? min { A § .
! Gkl 117kl 11115 1198l

Coy

If in addition the assumptions (A3) and (A5) hold, Remark 4.2 and the previous
inequality imply the existence of ¢5 > 0 with

(26) fk - fk—l—l > C5Hng§, min {Ak’ Hgkui"cb—%“} )

The next statement is trivial:

LEmMMA 6.3. Let (Ag) and (pr) be generated by Algorithm 4.8. If pr, > ny for
sufficiently large k then (Ay) is bounded away from zero.
Now we can prove a first global convergence result.

THEOREM 6.4. Let assumptions (A1)—(A3), (A5), (D1)~(D4), and (W) hold. Let
the sequence (uy) be generated by Algorithm 4.8. Then

. - o
hgr_l}gf kgl = 0.
Fven more:

liminf ||dpgxl|, =0 for all1 < g < oc.
k—oo g
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Proof. Assume that there are K > 0 and ¢ > 0 with [|gk||,, > ¢ for all k > K.
First we will show that this implies Y 72, Ag < co. If there is only a finite number
of successful steps then Agyy < y1Ag for large £ and we are done. Otherwise, if the
sequence (k;) of successful steps does not terminate, we conclude from fj | and the
boundedness of f that Y 2o (fr — frt1) < 0.

For all k = k; we may use (26) and obtain, since [|gx,[|,, > € for k; > K, that Ay,
tends to zero and, moreover, obeys the inequality

1
AL < —(fr. — f1.
k< (fes = frit1)

for all k; sufficiently large. This shows ) 725 Ay, < oo. Since for all successful steps
k € {k;} we have Ap11 < v2A; and for all others Agy < 71 Ag, we conclude

27) S A< YA <1+1’/2 )<oo
k=0 =0 o

71

In a second step we will show that |pr — 1| — 0. Due to

(28) lurr = well, < llsill, < Bollwi [l Ak < Bocw Ax

and (27), (ux) is a Cauchy sequence in U. Furthermore,

, 1
2| Yk (sk) — (S, k) — §<5k7ck8k>

= (k> Besi)| < |1 Brllyollsill;
S CQﬁgczu/A%.

The mean value theorem yields f(ur + sx) — fx = (Sk,gx) for some 7, € [0,1] and
gr = g(uk + Trsk), and hence

predi(se)llps = 11 = |F(un + 52) = S+ 55w, Cos) = ulse)

IN

+ [(Sk, Gk — g&)|

1 .
(Sk, gr) + §<5k70k5k> — P (sk)

A

< (;—2 et Ak + Bocw||gr — ngp/) Ap.
Since (uy) converges in the closed set B, g is continuous, and (Ag) as well as ([|skl|,)
(see (28)) tend to zero, the first factor in the last expression converges to zero, too.
Lemma 6.1 garantees that |predy(sx)|/Ak is uniformly bounded away from zero for
k > K, since by assumption ||gk||,, > €. This shows [pz — 1| — 0. But now Lemma 6.3
yields a contradiction to A — 0. Therefore, the assumption is wrong and the first
part of the assertion holds.

The second part follows from Lemma 5.1 for 1 < ¢ < p’ and from (A3) and the
interpolation inequality (23) for p’ < ¢ < c0. O

Now we will show that if § is uniformly continuous the limites inferiores in Theorem
6.4 can be replaced by limites.

We introduce the following assumptions:

(A6) The scaled gradient § =d"g : B C U — U’ is uniformly continuous.
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(A6’) The gradient g : B C U — U’ is uniformly continuous and d = d; or d = dy.

Condition (A6) is not so easy to verify for most choices of d. With Lemma 6.5,
however, we provide a very helpful tool to check the validity of (A6). Moreover, we
show in Lemma 6.6 that (A6') implies (A6). The proofs of both lemmas can be found
in the appendix. As a by-product of our investigations we get the valuable result
that g inherits the continuity of g if we choose d = dj or d = dyy. We will derive the
results concerning continuity and uniform continuity of g simultaneously. Additional
requirements for the uniform continuity are written in parentheses.

LEmMMA 6.5. Let (A1)-(A3), (D3) hold and g : B C U — U’ be (uniformly)

continuous. Assume that ||X(g(u)g(a)>0}(d(u) — d(u))”p, tends to zero (uniformly in
w€BCU) foru—winB CU. Then g =dg:B C U — U is (uniformly)
continuous.

Proof. See appendix. O
The previous lemma is now applicable to the choices d = dy and d = dp:

LemMMA 6.6. Let (A1)~(A3) hold and d = dy or d = dy. Then g =d"g : B C
U — U’ is continuous. If, in addition, ¢ is uniformly continuous, then the same is
true for g.

Proof. See appendix. O
Now we state the promised variant of Theorem 6.4.

THEOREM 6.7. Let assumptions (A1)—(A3), (A5), (D1)~(D4), (W), and (A6) or
(A6") hold. Then the sequence (uy) generated by Algorithm 4.8 salisfies

2 lim ||d}gx|,, = 0.
(29) Jim | digill, =0

Fven more:

(30) kh_)rlgo | drgkll, =0 for all 1 < ¢ < ooc.

Proof. Since, due to Lemma 6.6, § = d"g is uniformly continuous, it suffices to
show that under the assumption ||k, > €1 > 0 for an infinite number of itera-
tions k there exists a sequence of index pairs (m;,l;) with [|gy, — gu,[|,, > é > 0 but
|, — ul, — 0, which is a contradiction to the uniform continuity of §.

So let us assume that (29) does not hold. Then there is ¢; > 0 and a sequence (m;)
with [|gy,||,; > €1. Theorem 6.4 yields a sequence (k;) with [|gx,[|,, — 0. For arbitrary
0 < g2 < 1 we can thus find a sequence (/;) such that

Gl = €2, mi <k <l [|gull, <e2.

Since §i; # §i,—1, iteration [; — 1 is successful and one has for all successful iterations
k, m; <k < l;, by Lemma 6.1 and (26)

(31) Jr — fre1 > €5¢3 min {Ak,sg,cé_%}.

The left hand side converges to zero, because ( f;) is nonincreasing and bounded from
below, i.e. is a Cauchy sequence. We conclude that A tends to zero for successful
steps m; < k < I; and get with (28) that

2
Cs&
2/ k1 — well,

ﬁOCw

def

Jr = frpr > ese3 A > = col|wnr — urll,,
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which is clearly true also for unsuccessful iterations. Summing and using the triangle
inequality yields

Sy = J1i 2 col|tm; — uli”p'

Since (fx) is a Cauchy sequence, the left hand side converges to zero for ¢ — co. Hence,
|, — ulin — 0 but

Hgm; - f}lin/ > |§m¢Hp' - | gli”p/ >ep—¢e > 0.

This is a contradiction to the uniform continuity of §. The second assertion follows as
in the proof of Theorem 6.4. O

7. Convergence to second—order optimal points. The first—order conver-
gence results in the previous section could be shown under rather weak conditions on
the trust-region step s; and for arbitrary symmetric and bounded Hessian ‘approxi-
mations’. If stronger assumptions are imposed on By and on sg, then it can be shown
that every accumulation point of (uy) satisfies the second-order necessary optimality
conditions. This will be done in this section. We need the following assumption on
the Hessian approximation:

(A7) For all accumulation points @ € U of (ux) and all ¢ > 0 there is § = é§(u,e) > 0
such that [Jug — al|, < é implies || By — V?*f(a)

vy SE-
Obviously (A7) is satisfied if By = V2 f(ux) and if (A4) holds. However, (A7) also

applies in other important situations. For example, (A7) applies if f is a least squares
functional, f(u) = 0, and By is the Gauss-Newton approximation of the Hessian.

The fraction of Cauchy decrease condition does not take into account any proper-
ties of the quadratic part of ;. Apparently, this condition is too weak to guarantee the
positivity of M (@) at accumulation points of (uy). The decrease condition has to be
strengthened in such a way that for @ satisfying (O1) and (O2) but not (O3") there are
a,e,¢ > 0 such that ¢y (sy) < —emin{Af, o} for all iterates ug with [lux —ul, < e.
For the finite—-dimensional problem one can establish such an inequality near nonde-
generate points @ by using techniques similar to those of Coleman and Li [6] if the s
satisfy a finite—dimensional fraction of optimal decrease condition of the form

llwrsklly, < BoAk, up+ s, € B, and Pp(s) < Bvr(rrsy),
where 7, = max {7 >0 : wuy+ 75y € B} and s solves
min ¢ (s) subject to ||wgs|l, < Ag.

This approach is not directly transferable to our setting because the example
1

(32) min —/ ts*(t)dt subject to |[s|l, < A
0

shows that even in a Hilbert space s} may not exist. Moreover, the proofs in [6] use
extensively a convenient characterization of s derived from the Karush-Kuhn—Tucker
conditions (cf. [19]) and the equivalence of 2- and co-norm in RY. Since, as shown by
(32), in Banach space the quadratic subproblem may not have a solution, this is not
applicable in our framework. Our convergence proof requires that the trial steps yield
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a fraction of the Cauchy decrease, and, moreover, a fraction of the decrease achievable
along directions of negative curvature of 1y at s = 0. For convenience and simplicity of
notation, however, we favor a more intuitive but stronger fraction of optimal decrease
condition:

There exist 3,5y > 0 (fixed for all k) such that

(33a) lweskll, < BoAk, ug + sk € B°, and r(sg) < By,
where
(33b) Py < inf Pr(s) subject to urp+s€B, HwksHp < Ay

In the next lemma we show that in a neighborhood of an accumulation point # of
(ug) at which (O1), (02), but not (O3”) hold, one can find a direction of negative
curvature h"™ of ¢, such that u; + h"™ € B.

LeMMA T7.1. Let assumptions (A1), (A2), (A5), (A7), (D1)—~(D5) hold and let the
sequence (uy) be generated by Algorithm 4.8. Assume that u € B is an accumulation
point of (uy) with §(u) = 0 and that there are h € V, h #£0, and X\ > 0 with

(34) (h, M()h) < ~A||A]]3.

Then there exist ¢, a, A > 0 such that for all uj, with l|ue — ﬂ”p < e onecanfindh €V,
k], =1, with ux + Tadyh € B for all T € [-1,1] and
(h, Wby < —A|h2.

Proof. Since u € B and §(u) = 0, (O1) and (O2) are satisfied due to Lemma 3.2.
Lemma 4.3 yields 1= {z € Q : a(z) < a(z) < b(z)} = {z € Q : d(@)(z) > 0} =TI
Define Is = {z € Q : a(z) +¢é < u(z) < b(x) — 6} for arbitrary 0 < & < 4é4 with 6y
as in (D2). We first show that (34) implies the existence of h € V with ||A]|, = 1,
{h #0} C Is, and

s s A
(35) (h, M(u)h) < —5
From g(u) = d"(u)g(u) = 0 we see that g(u)(z) = 0 on I* = I. We write vg = x40
for measurable functions v and measurable sets A C Q. Then
0> ~MAIE > (b N(@)R) = (b | ()g(@)|> (@)R) + (@ (@)h, V2 (@) (@)

> (d"(a)hr, V2 f(a)d (@)hf) = (hy, M(@)hy).
So, ﬁj € V'\ {0} and (34) holds for h; instead of k. Furthermore, using the symmetry
of M(u) and the identity hy = hy, + BI\st

(h1, M(@)hi,) = (h1, M(@)hi) = (b1, + h1, M (a)hp,)
o, N )
< = Allhlly + 2 M (@) hp g ] [Pl

Since the measure of [ \ Is can be made arbitrarily small by reducing § > 0 and thus
b1, tends to zero for 6 — 0 in all spaces L7(Q2), 1 < ¢ < oc, we find 6 > 0 with

N .
2015 @hnl < Sleall,
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- h -
Then (35) holds with h = HBLSH . Obviously, {h # 0} C Is. Fore > 0 and uy
55l

with [Ju — ||, < ¢, define h € V' by

(gg)M if min {ug(z) — a(z),b(z) — up(z)} > 27

hz) = &y (2)

o pual

else.

def

We have [, = {h #0} C Is and conclude from assumptions (D2) and (D3) that
€q(6/4) < dg(z) < ecqon I and €q(6/4) < d(u)(z) < ¢q on Is, which implies that

. 1 - ch
Bl < Bl < ~llh Rl > =||A ith ~ = d__.
(36) H Hp > 7 ) H HOO = 7“ Hoo ? H Hp - 7” Ih”p Wi / 52(6/4)

From u(z) — a(z) > 6 < b(z) — u(z) on Is follows
Is\ I, C{z € Q : |ug(z) —u(z)| > 36/4}.
If p = oo we achieve iljé\lh = 0 for ¢ < 36/4. Otherwise, due to Lemma 5.3, we can

make ”BLs\Ith < p(Is\ Ih)zl_?HizHoo arbitrarily small by making ¢ > 0 small. Hence, in
all cases we can reduce ¢ such that

1 - 1/ = - 1
(37) el 2 el 2 = (1A, = lanll,) = 5

By the definition of ~ and the fact that g(u)(z) =0 on Is D I}, we get
(h, Myh) = (h, digrdy ~'h) + (d}h, Brd}h)
oo 112 X2 gkl 1o B, + (" (@) B, Bed” (w)h,)
< cwed T X gkl pllll oo 1ll, + (R, M (u)ha,)
+ @2 By = V2 @)y o
< cwed gk — g (@)l 1Bl + (h, M(w)h) = (bt b, , M(u)hy\g,)
+ e 1By = V2 @) g,
< coed gk — 9@l Bl IR, + (B, M (@)h)
20 BV @)y ol + €2 11Bx = V2 @) gl
< (2eac =il llge 9@l - o + 871 @lo Vi,

+ &1 Bk = V2L (@)l ) 1012

IN

A

In the derivation of the last inequality we have used (35), (36), (37), and Hil”p =1.
We have already shown that Hth\Ith can be made arbitrarily small by making
¢ > 0 small. By continuity the same is true for [|gx — g(u)[|,, and by (A7) for
|Br = V2f(@)]ly 0 (since [Jug — ||, < ¢). Hence, there exist ¢ > 0 and A > 0 such

that for all uy with [[uy — ul|, < & we can carry out the above construction to obtain

h €V \ {0} with
(h. N1h) < ~A|lh]2.
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= 1
Since h # 0, [|All,, < 7[hll,, and ||A[], > o where v only depends on §, we get

3
-~

h 7 e
Wee < gy, 2 c.
IA,

In addition, we have by construction I, C {2 € Q : a(z) 4+ 6/4 < up(x) < b(x)—8/4}
and consequently

b € B forall 7e€[-1,1].

u + 7 —d
k - Yk

Setting o = and renorming h to unity completes the proof. O

é
4C'¢c),
Now we establish the required decrease estimate.

~ Lemma 7.2. Let assumption (W) hold and sy satisfy (33). If for ug there exist
Aa>0, hy €V, [|hill, =1, with up + Tadihy € B for all 7 € [-1,1] and

(R, Mihi) < =A[|hl[2,

then

A A?
(38) predy(sg) > —¢r(sk) > %min{c—;,a{‘)} .
Proof. The first inequality is obvious. Now let ;\, a>0 be given. For all uj which
admit hy € V, [|hgl|, = 1, with ugx + adjhy, € B and (hy, Mghi) < = ||hg )2, set

Sy =+ min {Ag/cy,a} hy and s; = djsE,

and choose the sign such that (3, gx) < 0. Then [Jwgsi||, < Ag by assumption (W)
and uy + s} € B. Hence s} is admissible for (33b) and can be used to get an upper
bound for ¥ (sg): The fraction of optimal decrease condition (33) gives

B

D (sk) < Br(sp) = Bow(3E) = B(3E, Gu) + ﬁ<§Z,Mk§Z> < 5<~§k,Mk§Z>

2
ﬁ& n|12 ﬁX . AQ
S —7 Sk ’p:—Tmln C—zf,OZQ .

For a large class of trust—region algorithms for unconstrained finite-dimensional
problems Shultz, Schnabel, and Byrd [18] proposed a very elegant way to prove that
all accumulation points of the iterates satisfy the second—order necessary optimality
conditions. The key idea is to increase the trust-region radius after exceedingly suc-
cessful steps (case 4. in Algorithm 4.6). The following convergence theorem is an
analogue to [18, Thm 3.2].

THEOREM 7.3. Let assumptions (A1)—(A7), (D1)~(D5), and (W) hold. Moreover,
let the sequence (uy) be generated by the Algorithm 4.8 and let all s satisfy (33). Then
every accumulation point u € U of (uy) satisfies the second-order necessary conditions

(01)-(03).
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Proof. Let u € U be an accumulation point of ug. Then @ € B and, since
g :B C U —— U is continuous, §(u) = 0 by Theorem 6.7. Using Lemma 3.2, this
implies (O1) and (02).

Now assume that (O3) does not hold at @. Then due to Theorem 4.5 there are
heV,h+#0,and A > 0 with (h, M(a)h) < _/\HB”;- Lemmas 7.1 and 7.2 yield
a,cr,e > 0 with pred;(sg) > ez min{AZ%, a?} for all uy satisfying ||ug — ﬂ”p <e. By
choosing 0 < A < o we achieve that for all k with Ay < A and ||u — ﬂ”p <e

pred;(sg) > c7 A7,

Using this estimate, (A4), (A7), and |[[sk[|, < Bocw A (see (28)) we find — possibly
after reducing ¢ — with appropriate 7, € [0, 1]

predy(sk) |pr — 1] = | f(ur + k) — fr + %<3k76k5k> — (k)

‘<5k7 (V2 f(ug + mhsk) — Bk)3k>‘

IN

1
>
1
= (V2 (s + 7is) = P2 £ @ oo + IV (@) = Bl ) llsell?
(1

— n3)erAF < (1 = n3) predy(sg).

This shows pr > 53 for all & with Ay < A and |Jug — ﬂHp < ¢ and hence Apyy €
[72Ak, 13Ak].

For all K > 0 there is [ > K with [lu; —ul|, < ¢/2 and p; > n1. In fact, since
@ is an accumulation point of (uy), we can find I’ > K with |lup —af|, < /2. Now
pr < m for all & > I’ cannot occur, because then A < 7{“_1/Ap eventually satisfies
Ay < A and consequently pg > 13 > ;. Hence, there is [ > I’ > K with u; = uy and
pPL> M-

Since Agy1 > 724 for all k£ with ||ux — ﬂHp < ce¢and Ap < A, it is easily seen
that

1. A;>Aor
2. A; < A and there is m > [ such that |Ju — ﬂHp <ecand A < Aforl <k <m,
and

21 A, >Aor
2.2 Ay <A and [Juy, —all, > e.

In case 1. we get
fi = fiy1 > mermin{A?, a?} > nier A%

For 2.1. we have A > A,,_1 > A, /73 > A/vs, and p,,—1 > 73, hence

2

_ ; 2 ;
_ > 2> :
J—1 = [ > m3er AL > '73677 .
3
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In case 2.2. we get Agy1 > 7240k, k=1,...,m — 1. This implies Ay < 7§_m+1Am_1
and

m—1
€ — _
= <l ll, — = ], < flum — ], = | 3
k=1 P
m—1 m—1 m—1 oy
S Hsk”p S ﬁOCw’ Z Ak S ﬁOCw’Am—l Z ﬁ/éc—m—l—l S ﬁOCw’Am—lﬂf ! 1
k=l k=l k=l 2=

This yields

e(y2 - 1))2‘

m—1 = m> A2 > <
Sm—1 = fm 2 maer AL 1 > m3cr ot

Therefore, we get for infinitely many steps k a decrease fi, — fr+1 of at least a constant

value which yields fr — —oc. This contradicts the boundedness of f on B, which
follows from (A1)—(A3). Thus, (O3) must hold at @. O

8. Conclusions and future work. We have introduced and analyzed a globally
convergent class of interior—point trust-region algorithms for infinite-dimensional non-
linear optimization subject to pointwise bounds in function space. The methods are
generalizations of those presented by Coleman and Li [6] for finite-dimensional prob-
lems. We have extended all first— and second—-order global convergence results that
are available for the finite-dimensional setting to our infinite-dimensional LP-Banach
space framework. The analysis was carried out in a unified way for 2 < p < oc.
The lack of the equivalence of norms required the development of new proof tech-
niques. This is also a valuable contribution to the finite—dimensional theory because
our results are derived completely without using norm equivalences and hence are al-
most independent of the problem dimension. In this sense our convergence theory can
be considered to be mesh—independent. Moreover, we have carried out our analysis
for a very general class of affine scaling operators, and almost arbitrary scaling of
the trust-region. This is new also from the finite-dimensional viewpoint. Numerical
results for optimal control problems governed by a nonlinear parabolic PDE which
prove the efficiency of our algorithms can be found in the forthcoming paper [22].
Furthermore, we present therein results for finite—dimensional standard test—examples
compiled in [8] which verify that a combination of the findings in this work and [22]
yield improvements also for finite-dimensional problems. Our investigations suggest
to incorporate a projection onto the box in the computation of approximate solutions
of the trust-region subproblems. This new technique was tested in an implementation
of the methods described in [10], [13], and [23], and proved to be superior to other
choices.

The results of this paper and [22] represent a first important step towards a
rigorous justification why trust-region interior—point and trust-region interior—point
SQP methods perform so well on discretized control problems. See [10], [13], and [22]
for applications. The extension of our theory to methods with additional equality
constraints is in progress.
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9. Appendix. In this section we present proofs of Lemma 6.5 and 6.6. These
proofs require the following three technical results:

LEMMA 9.1. For0<r <1,1< ¢ <00, v1,v3 € LYQ), v1,v3 > 0, the following
holds:

(39) 101 = v3lly < mg,qellor = w2l

Proof. For r = 1 the assertion is trivial. For o, > 0, 0 < 7 < 1, we use the
estimate

(40) la” = B[ < o — B

This estimate can be seen as follows. Due to symmetry we may assume that a > 3 > 0.

The function h(a) = |a — 5" — |a” — 37| satisfies h(5) = 0,

W (a)=r ((a ) ar_l) >0 (a>p)

and, thus, h(a) > 0 for all a > 5.
In the case ¢ = oo the assertion follows immediately from (40). For 1 < ¢ < o0
we use Lemma 5.1 to get

r
g q
HUI - ,Ug”q S mq,q/r”UI - vSHq/r = qu,q/r </Q |,01(x)7" - UQ($)T|T dx)
T

E T
< mgape ([ Io1(0) = 2@}z )" = g gpelor = vl

This completes the proof. O
LEMMA 9.2, Forr > 1,1 < ¢ < o0, v1,v3 €V, v1,v9 > 0, the following inequalily
holds:

(41) [0 = w3ll, < rmax{[|orl] . [|o2ll o} llor — w2l
Proof. In the case r = 1 there is nothing to show. First we prove that for all
r>1,a,06€[0,7],7 > 0, we have h(a) = ry""!a — 8] — |a” — 57| > 0. In fact, we
may assume a > § and compute h(5) =0,
Wla)=r(y" =) 20 (B<a<y).
Therefore,

[of (@) — o (@)] < rmax {lonlos [lo2lloo} ™" [on (@) = va(2)| forall = €

which immediately implies (41). O
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LEMMA 9.3. Let ay,...,a,, and By, ..., 3, be arbitrary real numbers. Then

| min{ay,...,a,} — min{fy,..., 5, } < max{|a; — Bi|,...,|an — Bul}

Proof. Without restriction, let fy = min{fy,...,0,} < min{ay,...,a,}. Then
the assertion follows from

| min{ay,...,a,} — min{fy,...,5,} = min{ay,...,a,} — B < ap — F.

9.1. Proof of Lemma 6.5. We write || -[|, 4 for [[x4-[|,, A C £ measurable.
For arbitrary u,a € Bset N = {z € Q : g(u)(z)g(@)(z) > 0}. The triangle inequality
gives the following estimate

< () |7, lg(w) — g(@)l, + [1(d" (u) — d" (@) g(@)]],,
< [|d(u)
+lg(@

9(w) = g(@)l,; = [|d"(u)g(w) — d"(@)g (@)
|
|

ollg (@) = g (@) + " (w) = &" (@) g (@) |, 00w
W] oo lld" (u) = d"(@)|] -

We use the fact that |g(u) — g(@)| > |g(@)| on 2\ N and obtain

() = 9@, < ([d(w)lloe + 14" (w) = d"(@) o) [l (w) = g (@)l
Fllg(@)oo lld" (w) = d" (@) [|r
< 3egllg(u) = g (@], + erl]d” (u) = d" (@) |,y -
Now the (uniform) continuity of § follows from Lemma 9.1, Lemma 9.2, the (uniform)

continuity of g, and the assumption [|xn(d(u) — d(@))||,, — 0 (uniformly in u) on
the scaling. O

9.2. Proof of Lemma 6.6. We restrict ourselves to the more complicated case
d = dyi. The result follows from Lemma 6.5 if we verify that

X {g(w)g(a)>0} (d(u) — d(d))Hp, —— 0 as & — u (uniformly in u).

Let w,u € B be arbitrary. Using symmetries, it is easily seen that we are done if
we are able to establish appropriate upper bounds for |d(u)(z) — d(@)(z)| for the three
cases that g(u)(z) > 0, g(@)(z) > 0 and

a) di(u)(z) and dy(@)(z) are both determined by the second case in (10),

b) dn(u)(z) and dy(@)(z) are both determined by the else-case in (10),

¢) di(u)(z) is determined by the second and dp(@)(z) by the else-case in (10).
)=

Set p(z) = |du(u)(z) — du(a)(z)|. We will use Lemma 9.3 several times.

Case a):

p(z) = [min{g(u)(z), c(2)} — min{g(a)(z),c(x)}| < lg(u)(z) — g(a)(2)].
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Case b):

p(x) = | min {u(x) - a(x),b(x) - u(z), e(x)}
~ min {i(z) - a(2), b(x) - a(a), c(x)}

< [u(z) —a(z)].
Case ¢): From b(z) — u(z) < u(z) — a(z) follows u(z) — a(z) > ¢(z) and therefore
du(u)(z) = min {u(e) —a(z), g(u)(2), c(2)}
> min {u(z) —a(z),b(z) — u(z),c(z)}.
If g(a)(z) > b(z) — @(z) then b(z) — @(z) > @(z) — a(x) and hence
du(a)(z) = min {a(z) — a(z), g(a)(2), c(2)} -
Therefore, we obtain
p(e) < max{|u(z) — a(z)],|g(w)(z) - g(a)(z)l} -
Otherwise, if g(@)(z) < b(z) — @(z), we have in the case dy(u)(z) > dp(a)(z) that
p(e) < min{u(z) - a(z),g(u)(z), c(z)} — min {a(z) - a(z),9(a)(z), c(x)}
< max {|u(z) - a(z)],|g(u)(2) - g(@)(2)[},
and for dy(u)(z) < du(a)(z) we get
p(z) < min {a(x) — a(2), b(x) - (2), (@)}

—min{u(z) — a(z),b(z) — u(z), c(z)}
< Ju(z) - a(z)].

Taking all cases together, this shows that

IN

[l = all, + llg(w) = g(@)]l,
myplle —all, + llg(w) = g(@)]l,-

”X{g(u)g(a)>0}/’”p,

IN

Now, the application of Lemma 6.5 shows that § inherits the (uniform) continuity
of g. O
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