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Abstract. Various sophisticated finite element models for surface water flow exist in the litera-
ture. Gray, Kolar, Luettich, Lynch and Westerink have developed a hydrodynamic model based on
the generalized wave continuity equation (GWCE) formulation, and have formulated a Galerkin finite
element procedure based on combining the GWCE with the nonconservative momentum equations.
Numerical experiments suggest that this method is robust, accurate and suppresses spurious oscilla-
tions which plague other models. In this paper, we analyze a closely related Galerkin method which
uses the conservative momentum equations (CME). For this GWCE-CME system of equations, we
present, for discrete time, an a priori error estimate based on an £? projection.
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1. Introduction. In this paper, we derive a-priori error estimates for a discrete-
time finite element approximation to a model of shallow water flow. These estimates
extend our continuous-time analysis given in [1]. We consider a shallow water model
of Gray et al described in a series of papers beginning in [7]; see also [6].

We denote by &(x,t) the free surface elevation over a reference plane and by
hy(®) the bathymetric depth under that reference plane so that H(x,t) = £ + hp is
the total water column. Also, we denote by u = [U(x,t) V(=z,t)]? the depth-averaged
horizontal velocities and let ¢ = uH.

The formulation we consider consists of deriving a wave equation for the free
surface elevation and combining that with the conservative momentum equations for
velocities. The generalized wave continuity equation (GWCE) is given by

il
+fekxq+ HgVE+ uVé + HF]) = 0.

(1) &t + Tkt — V- [V (iqz) - (Toq - be‘])

Here, 7, is a time-independent positive constant, 7¢(£, u) is a bottom friction
function, k is a unit vector in the vertical direction, f. is a Coriolis function, ¢ is
acceleration due to gravity, p is the horizontal eddy diffusion/dispersion coeflicient,
and F = (—7ys/H + Vps — gVn), where 75 is the applied free surface wind stress
relative to the reference density of water, p,(#,t) is the atmospheric pressure at the
free surface relative to the reference density of water, and n(#,t) is the Newtonian
equilibrium tide potential relative to the effective Earth elasticity factor. Now, as
defined in [6], the bottom friction function is given by

vzt vz lelle _ | lle/H ]l

be(g’u) = Cf H - C.f H =¢f H )
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2 Chippada, Dawson, Martinez, Wheeler

where c; is a friction coeflicient. Futhermore, the Coriolis function is given by
fe(®) = 2wsine,

where w is the angular velocity of the earth in its daily rotation and « is the degrees
latitude. We will treat f., 7y, Vpq, and Vn as data.

The GWCE can be coupled to the conservative momentum equations (CME),
given by

1
(2) q,+ V- (Eq2>+beq+fck><q+HgV§—yAq+Hf =0,

or to the non-conservative momentum equations (NCME). In this paper we will con-
sider the GWCE-CME formulation. For technical reasons, we have found that this
model lends itself more easily to error analysis.

A finite element simulator based on the GWCE-NCME formulation has been
developed by Luettich, et al. In [6], it was demonstrated that the approximations
generated by this simulator accurately matched tidal data taken from the English
Channel and southern North Sea. The temporal discretization scheme we will consider
adheres closely to the scheme implemented in this simulator.

The rest of this paper is outlined as follows. In section 2, we review the weak
formulation associated with the GWCE-CME system of equations and also detail the
assumptions we will need in our analysis. In section 3, we introduce the discrete-
time finite element approximation to the weak solution. In section 4, we derive an
a priori error estimate based on a discrete £? projection. The proof of the error
estimate relies on on an induction argument to obtain £ boundedness of the Galerkin
approximations.

2. Preliminaries.

2.1. Nondimensional Form. Because mathematical inequalities involving di-
mensional units may have no meaning without some basis for comparison, we will
look at the non-dimensionalized form of the shallow water equations (1)-(2).

Suppose there exist reference or characterisitic quantities: velocity U, length ﬁ,
and depth H. Then, we make the following change of variables

w=0Uu, H=HH° a=Lxz°, :%t".

Thus, for given ¢, we denote by ¢° the non-dimensionalized form.

In non-dimensionalized form, (1)-(2) become

8260 oago o o 1 0\2 o o o
(3) W—I—Toato—V-[V-(E(q)>—(TO—Abe )q
+fok>< O+LHOv0£O+ Ovoaﬁ_}_HOfO _0_
¢ q Ir2 # ote 7
aqo o 1 02 o _o
(4) 500 TV (ﬁ(q ) > +Ans°q

1
+fcokxqo+ﬁHovo€o —,UOAoqo—f—HofO:O.
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AR %fc, e = %,u, F° = #.’F, and Fr = \/i_ff is the
Froude number.

Observe that (3)-(4) is nothing more than (1)-(2) with multiplicative biasing fac-
tors that faciliate understanding the importance of each term under limiting condi-
tions. Moreover, under the SWE assumption that A > 1, we observe that the bottom
friction term is a significant term in the equations.

Letting U= \/g? so that F'r = 1, letting 73;° = A7;°, and dropping all extra-
neous symbols in the nondimensionalized equations above, we obtain equations of the
form (1)-(2) except that gravity g doesn’t appear explicitly. We will analyze these
equations with the implicit understanding that all the terms are now nondimension-
alized.

2.2. Notation. For the purposes of our analysis, we define some notation used
throughout the rest of this paper.
For J=[0,7], NAt=T, At > 0, let us define a temporal subdomain by

Jn = {t"eT|th=kAt, k=0,...,m}
so that Jy=J, Jy_1=[0,7— At], and J; =[0, At]. Denote J,,, = J;, — {0, mAt} and
IS = Jm — {0}.
For X, a normed linear space with norm || - ||x, and ¢: [0,7] — X, define
s¥ = ¢(-,t*) and the following norms
||C||IL;F(Jm;X) = Z ||Ck(m)||§( At, 1 S p < 00,
k=0
lellem(rnixy = sup |l<*(2)llx,
0<k<m
T
oy = [ Nl . 1<p<oo,
I6llemoy = up [l O e

Furthermore, define
Ou (") = (A)THHMH = ¢F); Oie(”) = A1) 7 = P71,
O (s*) = (A TH" = ¢F7h) 0%(") = (A 72 (P — 268 465

and ¢ftz = (¥ + ¢*)/2. Finally, we let K, K;, (i = 0,1,2,..) and ¢ be generic
constants not necessarily the same at every occurrence.

2.3. Variational Formulation. We will consider the coupled system given by
the GWCE-CME described in Section 1, with the following homogeneous Dirichlet
boundary conditions for simplicity

{(et) = 0,
(5) w(@,i) = 0, x €0, t>0,
and with the compatible initial conditions
g(w: 0) = €o(w), _
(6) Li(=,0) = &(=), » z€Q,

u(x,0) = wuo(e),
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where 09 is the boundary of @ C IR? and Q = QU 9Q. By compatible, we mean
&1 = —V-qq, where gy = uoHg = ug(hs + &), see [5].

The weak form of this system in discrete time that we will consider is the following:

For t* € J, find &*(x) € H}(Q) and ¢*(x) € H} () such that

(7) (fttO;‘U) + 7 (&0, 'U) + (V' {% (qO)Z} av'U> — ((To - beO)QO: V'U)
+ (ke xq°, Vo) + (B VE?, V) + (£°VE°, Vo)
+u (V&L Vo) + (H°F°,Vv) =0, Vv e H§(Q),

(8) (&tk,v) + 7o ({:tk,v) + <V' {% (qk)z} ;V‘U> - ((7'0 — bek)qk,v“)
+ (flexq®, Vo) + (R VER, V) + (€FVEF, Vo)
i (vgt’“,w) + (H’“]—‘k, V'v) =0, YoeHyQ), k>1,

© o)+ (Vg @)+ (et ) + (k)
+(HPEE, w) + (V' Vw) + (H F* w) =0, v e HY(Q), k>0,

with initial conditions

(€)= (), Vo € H(Q),
(10) (€Lv) = (€Y v) = 2A¢(&1,v), Yv e HY(Q),
(¢, w) = (q0,w), Vw € H(Q).

Observe that (7) is simply (8) at initial time using the initial conditions on elevation.
The second initial condition, in (10), on elevation will allows us to handle the trun-
cation error for the second-order time derivative approximation at time ¢ = 0, in the
spirit of [2].

2.4. Some Assumptions. Our analysis requires that we make certain physi-
cally reasonable assumptions about the solutions and the data. First, we assume for
(z,t) e Qx JY,

A1 the solution (£, q) to (7)-(10) exist and are unique,

A2 3F positive constants H. and H* such that H, < H(x,t) < H*,

A3 the velocities U(®,t), V(x,t) are bounded,

A4 Vhy(x) is bounded,

A5 3 non-negative constants 7, and 7* such that 7, < 7p(,u) < 7%,

A6 f.(x)is bounded,

AT pu is a positive constant,

A8 Vp,(x,t) and Vy(x,t) are bounded.

Finally, we make the following smoothness assumptions on the initial data and on the
solutions

A9 &(x), &1(x) € HA(Q) NH(Q),

AL0 go(a) € 74(0) 074 (0),
A1l H(z,t) € HY(Q)NHY Q) NWL(Q), te Jn,
A12 g(=,t) € Hy(Q) NHH Q) NW!(Q), tE .
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And, additionally, for (x,t)
A13 ¢(=,t) e H2((0,1) N A ( 0,7); £3()),
A14 &(x,t),En(x,t) € (0, At);H (Q))

Al5 £m(93,t) € L™ ((0, t) 2( ))
A16 g(z,t) € H? ((0,1); HY(R)) .

where the non-negative integer E is defined in the next section.

eEQxJy
SHI(Q))

Q
1
= ((

Q
0
L

3. Finite Element Approximation.

3.1. The Discrete-Time Galerkin Approximation. Let 7 be a triangula-
tion of 2 into elements E;, i = 1,...,m, with diam(E;) = h; and h = max; h;. Let S*
denote a finite dimensional subspace of’H 5(€2) defined on this triangulation consisting
of piecewise polynomials of degree less than s;. Define H(Q) = H}(Q) N'HY(Q), and
assume S” satisfies the standard approximation property

11 inf |jv— |
(11) Jnf o = ¢l

HSO(Q) < I(th_su ||U||Hl(ﬂ) 3 v H(Q)a

and the inverse assumptions
llellye-say < Kollell gz h(E=s0),
(12) Iellemy < Kollellean h, p e SH(Q).
IVellzo@y < KollVelleaq h=,
Here, sy and ¢ are integers, 0 < sy < k for any integer k£,0 < k < s;, and ¢ satisfies
sg <£<s;. Moreover, Kg is a constant independent of h and v.
At time t = t*, let II* = hy + =% and
. 194/
m* '
We define the discrete-time Galerkin approximations to £¥(x), ¢*(z) to be the map-
pings Zf(z) € 8", Q% (z) € S" satisfying

(13) Pt =

2
(14) E (ath , U ) + To atb‘—' J’ thE% ) +,U (@bv._. ,VU)

+
:é(fl,v)— ( { },Vv ((ro = 7;°)Q°, V)

— (f.kxQ°, Vv) — (E°VE®, Vv) — (I°F°, Vv), VveS"(Q)

1
(15) (0LEF,v) + 7 (04 EF,v) + (V- {ﬁ (Qk)Q} ,V'U) - ((To — )0k, V'U)
+ (fhx Q5 Vo) + (B VEFE, Vo) + (B4 VEF, Vo)
+4 (0, VEE, Vo) + (T FE, Vo) =0, Yoes'(@), k21

and with 1 + 32 = 1,

(16)  (0QF* w) + <v-{% (Q’“)2} ,w) + (%bf’“Q’“%,w)

+(LRx Q@ w) + (IVES, w) + 4 (5,7 Q" + 5,V QF, Vu)

+(Hk.’Fk,w) —0, Vw € SM(Q), k> 0,
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with boundary conditions

(17) Ek(w) = 0, Qk(w) = 0, xe€0Q, k>0
and with initial conditions
(E%v) = (&,v), Vv € SH(Q),
(18) (E=1v) = (BYv) —2At¢E,v), Yo e Sh(Q),
(Q%w) = (Qp,w), Yw € 8"(Q).

As before, equation (14) arises from considering (15) at £ = 0 and using the fictitious
value Z~! defined in (18).
REMARK: It should be noted that, in the simulator, a Crank-Nicolson approach is
taken for solving the NCME. And thus, in the simulator, 8; = 2 = % and the NCME
is centered at k + % except for advection terms which are treated explicitly.
However, it will be clear that because of the explicit treatement of advective
terms (and other forcing terms), eliminating tight coupling between the GWCE and
CME, the best that can be achieved is a first-order in time scheme. To that end,
we only consider the cases when diffusion terms in the CME are treated explicitly

(f1 =0,8: = 1) or implicitly (8, = 1, 52 = 0).

4. A-Priori Discrete-time Error Estimate. Following the analysis in [1], we
will compare our finite element approximations (=, Q) satisfying (15)—(18) to £? pro-
jections (&, q) satisfying

(€ =8)0) =
(19) b~k
«q—q)wo =
For the purpose of succinctness in the rest of the paper, we define
gk — £k_gk Pt o= Ek_gk
20 > ’ S )
20) { ' = ¢"-7", x' = ot -g"
Clearly, ¢ — BF = g% — ¢* and qF — Q% = ¢" — x*. We shall call #* and ¢" the

projection errors at time t*, and we shall call ¥* and x* the affine errors at time t*.

Yo e St k> —1,

0,
0, Yw e 8" k> 0.

Before proceeding, it will be necessary to make certain assumptions about the
Galerkin approximations. We employ an inductive argument similar to that made in
[3] to handle nonlinearities. In particular, we will assume that the Galerkin approxi-
mations are bounded by some constant (for £ =0,..., N —1) in order to derive the «
priori error estimate. Then we will show for sufficiently small mesh size h, in the case
of polynomials of degree at least two (s; > 3), that we can remove the estimates’ de-
pendence on the assumed bound of the approximations (for £ = N), being dependent
instead on a smaller bound on the comparison projections.

Let us proceed with the inductive argument. Based on the continuous-time ana-
log, Lemma 4.2 of [1], 3 positive constants C,, C* and C,, = C*/2, C** = 2C"* such
that for £ =0,..., N,

(21) C. <{m+&, v(h+E)} < 7,
and
o (] o) <

Next, we assume that for k =0,...,(N —1)
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B1 C.. < (=, t*) < C*,

B2 |Qk| < C** .
We immediately have the base case for the inductive proof: C,. < II° < C** and
|Q0| < C** . In the remainder of this paper, from the derivation of the a prior: error
estimate, we prove the hypothesis for time t = ¢V

Observe that B1 and B2, in definition (13), imply

B3 3 non-negative constants 7. and 7* such that 7, < 7y < 7.
Moreover, we have implicitly assumed that the Galerkin approximations exist and are
unique.

4.1. Error Estimate. In order to obtain an error estimate for (¢ — E) and
(g — Q), we must first obtain an estimate on the affine error terms (E — E) and
(Q — 7). Then, with standard approximation results and with the estimate on the
affine error to be obtained in the sequel, an application of the triangle inequality will
yield an estimate for (¢ — E) and (¢ — Q).

It will be useful to employ the following expansion of the advective terms in
(71)—(9), at time ¢ = t*,

Lol _ (4 q q
V{Hq} = (qu)+(VQ)H—(VHq)H2~
Similarly, the expansion of the advective terms in (14)—(16) gives, at time ¢ = t*,
1wl . (2 Q Q
v.{ﬁg } - (H VQ> (V0T ~ (VI-Q) .

Subtract (7) from (14), (8) from (15), and (9) from (16), using the fact that we can

write

&rt0-- ()« (§0) - (§70) - (79)- (3~ &)=

TO-DE - (Vo) 2+ (VDT = (T0E - (VoL - (79 | L 2]
(vE-80) = - (Vea) L + (VEQ) 2

= (V-Q) o~ (Via) L~ VE { 4] - [%]2}

and

IV(E—§)— HVE +TIVE = VY — HVO — OVE + Y VE.

Moreover, we obtain, using Taylor’s Theorem with integral remainder, the follow-
ing truncation-in-time terms:

2 1 At
8 = &'+ Al (&1 — 0p") = _W/o (At — 5)*Epyds;
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tk th+t
5(’;21 = 5ttk - 3t2c€k = —m {/tk_l(S - tk_l)gftm ds + /tk (tk+1 - 5)35mt dS} )

k 1

6{6 = & - 8tf€k = _E/tk (tk+1 — 5)&u ds;
JEH
85 = —(VEHH - veh) = - / o Véads;
511c = th - atqu =T AL /tk (tk+1 — 5)qy; ds;
thtt

es = —(¢"'-4¢")=- " q, ds.

Consequently, we obtain the following GWCE-CME error equations:

2 .k I’ Qk & Qk
(23) (024", 0) + 7 (900", 0) + | = VX", Vo) + ((Vx =
+ <(v¢k'Qk)Q—k Vv) - <(7' — 7" )x" VU) + (fokexx*, Vv)
(Hk)2’ o f ) c s

+ (et vo) 4 (BV6H, Vo) 4 (0 VR V) + (R F V)

= (;—Z-V(]Sk,VI’) + ([ff—z — Qk] Vg w) <(v ¢ )ﬁ,vv>
< 13_’; - ﬁ—:] (v-&"“),w) + (Vhb- { (g—i)z - (ﬁ—:) },w)
(a7 ) ¢ (ng' { () - <§_>} ’W)

— ((To - bek)qﬁk,Vv) + (fckxqﬁk,Vv) — ((?bfk — bek)ak,Vv)
+ ((HV0y+3, Vo) + (570", Vo) + (098, Vo) — (¢*VE, Vo)
p(
1
2

+ 3th9k,Vv) (Hk]-k Vv) + (6(’)“, v) + 7o (6{“, v)

+= (ghs6%,Vv) 4+ p (V8F, Vv) Yo e S"(Q), k> 1;

PN (- U Y- B -
1o X ,'(U)+ Hk X ,w + ( X )Hk’w + ( 1/} Q )(Hk)Z’w
+ (R X w) + (fdexx ™ w) + (T VoF, w)

+u (BVXE + B VX, V) + (wkfk’ w)
= <§_’;-V¢k,w> + ([g—i - ﬁ:] Vg' w) ((V ¢ )% >
n ([;_Z - ﬁ—:] (v.a’“),w> + (Vhb- { <;k - 2} )
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(e erte) ({5 ()}

+ (bek¢k+%,w) + (fck><¢’“+%,w) - ((?bfk - bek)'ék+%,w)

+ (HPV0F w) + (akvé’k,w) - (wvé’“,w)

+1 (31765 + 3V" V) + (0°FF w) + (f,w)

% (ros"el + folexel w) + pBy (Veb, V), vYw € $7(Q), k> 0.

For reasons that will be clear later in the proof, we write (23) separately at £ = 0
as follows:

At

(e w) o ([ §] ) (o)
———] sane) s (wn{(5) - () ) )
oot )+ (- {(2) ()} )

(ro — #01°)8°, V) + (foke x ¢°, V) — ((%bfo - rbfo)ao,w) + (HOV0°, V)

—(
+ (€076, Vo) + (aovéo,vu) + 1 (0,V0°, Vo) + (0°F°, Vo)
(

(25) <L7-0At> (al‘b,ll}l ; 'U) + (hbv’l/)%, V'U) + H (@bVﬂ)l, v’U)

+ (89, v ) + 7, (6?, ) (ghbég, Vv) + u (V&?, Vv) . Vv € Sh(ﬂ);

We have used in (25) the fact that, from (10),(18), and (19), ¥° = 0, ¢~ = ¢!, x° = 0.

4.2. Choice of Test Functions. We now choose the test functions employed
to obtain the affine error estimate. Let r be a positive constant to be determined.
Let v = vf*! = E;V:k+l e~TIAYI At and v = vEtT! = Ej\;kH e"TIAL 9ihd At be the
test functions in (23). Let v = ¢! and v = 9,s9! be the two test functions in (25).
Let w = x**! be the test function in (24).

First, multiply (23) and (24) by At and sum from k = 0 to k¥ = (VN — 1) using the

test functions above. Then manipulate (25) to derive upper bounds for ||1/}1||H1(ﬂ)
and for ||3tb1/;1||7_t1(m .

Finally, after manipulating appropriate terms terms in (23) and (24), using the
derived bounds on ||1/)1 | |H1(Q) and on ||8tb Pl | |H1(Q) , adding the resulting inequalities,
applying a generalized discrete Gronwall’s inequality (GDGI), and taking bounds
above and below, we will obtain a relation giving an estimate of the affine error.

REMARK: In order to complete our estimate, we will need to define a function

2
k

Ak:e—rkAt||1/}k||2+ Ze‘rijAt +||ch||2

j=0 H1(Q)
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Moreover, we will need to add ||\/gTb v?”2 to both sides of the inequality obtained
from (23), using v= v’f‘H, after multiplying by At and summing over k. We will then,
after some work, obtain AV in which Ei\;o A*At will be hidden in the spirit of the
GDGI (see Heywood and Rannacher [4]).

4.3. Bounding the first time-step of the GWCE Error Equation. First,
use v = ¥! in (25) to obtain

2+ T, At *
(26) (ﬁ)IWIIZ%||w1||2+ﬁllwlllz < Pt P

Here, P; denotes a projection error term. Terms P; — Py and P11 — P15 are treated
similarly to the corresponding terms in continuous time (using test function v; with
r = 0) investigated thoroughly in [1]. We now investigate the remaining terms.

In estimating P;g, recall (2) and use Lemma 4.2 and Lemma 4.3 in [1] to obtain

Pro = ((f'bfo—beo)ao,Vd}l)
[ Qo me , 0/ 0 U]
o ([l 0]
'Ho Qo o 2_Ho 0/ 0 o
o ([ ] )
[(#° - 1) [|Q°/1°|,.
= ¢ 0 70
e (|]Q°/m°|| . — [[a°/H°]],2) | ~
+ HZOHO £ qo,v,‘z}l
(¢0_90)||Q0||2
< Cf(l (02 0 £
a1 1 5| PP 1P 1 | P
s e+ Ll [ o
< vl [l + K (10
In estimating P6, consider
At)?
(27) ||68||2 < %||£m||iw((o,m);£2(ﬂ))’

so that,
2 . 2
P = (6(())’ 1/’1) s € ||¢1 || TR (At)z ||5m||£oo((o,m);£2(ﬂ)) :
In estimating P17 and Pig, consider, for instance,

At?

||5?||2 < T||€tt||iw((o,m);£2(ﬂ))’

so that,

S
-~
I

7o (87,91) < e ||1/)1||2 + K(At)? ||€tt||i°<>((0,At);£2(ﬂ)) )
Pis = p(Ve,Vyl) < €||V¢l||2+[{(At)2||V£”||iw((07.&t);£2(ﬂ:)).
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Finally, in estimating P;g, consider

2 2
62]]" < A {IVE o (0,002 -
so that,

Prs= o (88 01) < el [6!]]* + KA IVEN 2w 0 aay -

N —

Consequently, we observe that the right hand side of (26) is bounded above by
2 2 . 2 . 2 . 2
o611+ (901 + K (101 + K [[90°)+ 5 |2 700)
. 2 .
+K ||¢°|]” + K(At)? ||5m||iw((o,m);z2(n)) + K(At)? ||V5t||iw((o,m);£2(n))
+E (A1) (&3l 200 (0, 80).c2(0y) T K (A [[VEul [z (0, a0).2(02)) -

Let ¢g = 13—67'02 so that At < % = k1. Now, let op = (%) — ¢ > 0 and

o = ”7* — €1 > 0. Thus,
oo [[v! 1"+ ou [V "+ G 19|
< K0 + & ||V " + & (|00 VOl + K [
+ K (A [[€vttl [ 20w (0,80),220) + K (A IVE [z 0, 207,252
+K(At)? ||‘5tt||iw((o,m);ﬁ(ﬂ)) + K(At) ||v‘5“||i°°((0,m);£2(ﬂ)) :
Finally, we have

(28) [0 oy < K (B0 (07).

Now, use v = 9;p2! in (25) to obtain

24+ 1, At Y
(29) ( Al )||8¢b¢1||2+2m||v¢1||2+;¢||atbv¢1||2 < Pit P

After some work similar to that above, we determine that the right hand side of

(29) is bounded above by
2 00|+ o [T [+ K P + K [90°) + K [0 00°]
+K [|6°])” + K (At)? 1€setl zo 0,80y c200) + K (A8 IVl 2o 0, 801,22 (52))
+E (A1) (&t 2oo 0.80.c2(0y) T K (A [[VEul 2o (0, a00.02(02)) -
Let 0o =7 — €3 > 0 and 03 = p — €3 > 0. Then,

2+ 0o At .
(%) 190w |[” + 5oz V6| [* + o3 [0 V|

< K0 + K [|[VO°|* + K ||0u Vo |* + K ||¢°]|]
HE (A0 IEstillzo (0, a0),c2(a)) + KA IV [eon 0,803
K (A [[€ul | zoe (0. 20220 + KA [Vl 2o (0, a0)22(2)) -

Finally, we have

(30) 1000 [y + 11V sy < K (W70 +(20)7).
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4.4. Bounding the GWCE-Error Equations. Recall that II° and |Q°| are
bounded above by C** and II° is bounded below by C.,.. And that we assumed that
Cuw < I¥F < C** and |Q*+ | < C** for k=0,...,N — 1.

Using v = ’U’f+1 as the test function in (23), multiplying by At and summing from

=0tok = (N —1), using the tools in Appendix A, and adding ||\/m v | |2 to both
sides of the resulting inequality yields

N
(31) %e_TNAt“d}NHQ‘F (To + 2660) Ze—rk.&t ||’l/)k||2At
k=0
r N-1
T S\ PR St L
k=0 k=0

+3 Z TR |t (a0 + TR 4 18]

E+1
(Hk)2’ Vuy >At

k=0
N-1 -1
+ ((ro—%bf’“)xk,w’f“)m Z(fckxx Vol ddt
k=0 k=0
N-1 N-1
I CALRER LT VN (vh 7, wul*t) At
k=0 k=0
N-1 N-1 k 16)
+ (% vc;sk) ,W’f+1>At+ ( ;k F] v§, v ’f+1>At
k=0 k=0
N-1 k N-1 k k
+ > (V) 5V ’f“) At + ((V ) [% - ﬁk] v ’f“) At
k=0

} k=0
N-—- ~ qk 2 Qk 2 N-1
+ ver { [ﬁ] ﬁ] } Y ’f“) At — ((To — ") ,VU’fH)At
k=0 k=0
N-1 N-1
+ (fckxqﬁk,vaH)At — ((f'bfk — be VUkH)At
k=0 k=0
N-1 N-1 N-1 ~
n (H’“VGH%,VUTH)A%F I GAYARCIRDINES (9kv.5k,vu’f+1)m
k=0 k=0 k=0
N-1 ~ N-1 N-1
- (wvg’“, w’f“)m +u S (8, VOF, Tkt At + (9’“.’7—-]“,V'U’f+1)At
k=0 k=0 k=0
N-1 N-1 1 N-1
+ 2 (68, o5t At + 7 ; (8%, ¥+ AL 4 5 kz_o (ghs%, VolH1) AL
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N-1
—|—/LZ V&f,VUk'H At—l—’y ||UO||
k=

:51+S2+(A1+~-~+A7)+(751+~~+7521).

Here, A; denotes an affine error term and S; denotes a term resulting from sum-
mation by parts. Terms A — ./ZI7,751 — 759, and P11 — Pi are treated similarly to
their continuous-time analogs which are investigated thoroughly in [1]. Again, we
investigate the remaining terms.

The treatment of terms S; and S is straightforward. From (28) and (30),

5= gllIP <k (e o)
S = = (0ewt o) < K (B0 £ A) 4[]
The treatment of Py is similar to that given in the previous section:
N-1
Pro = Y, ((%bfk B bek)ak’v,vllc+1)At
k=0
N-1 gk) ||Qk|| )
S 3 Z (l Hk. sz :
=0
k k
(% — 0%) ||¢*|] . H¢ ‘ Al
ool L o)
N-— N-1 N-1
< Z e [N S S | W R S W
£E=0 k=0 k=0

N-— -1
+K EH¢ [tk Z rkat ||yt || At
:0

In estimating P17, consider

2 At)3 k! ¢
Hé(’fZlH < (1) / |[€¢eze] ) d5+/ ||€sseell” ds ¢ -
136 1k tht

Noting that v¥+1 = o) — Ef:o e~ TtALk At and using (27), we obtain
2

N-1 N-1|| &
Pz = Z 60,uk+1 At<€||v?|| + K Z Ee_rjmd)kAt At,
k=0 k=0 [|j=0

T
+K(At)4/0 ||€useell* ds + K (At)° ||£ttt||iw((o,At);L2(Q)) ~

In estimating P1g and Pag, consider, for instance,

1R+1

. Lo 4
6{“ < ‘_E (/tk (tk+1_5)2d5) (/tk (gn)st)

1

()
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so that
2 At e
||6f|| ? ||~fn||2 ds .
Thus,
N-1
7518 = To Z (Sf, k+1
k=0
5 N-1 k ) 2 T
< || HE DD e A At+K(At)2/ ||| ds;
k=0 [|j=0 0
_ N-1
P = “Z V(Sf,vaH At
k=0
2
, N-1 k ) T
< e[|Vl E DD D eTiAtvyt A At+K(At)2/ | V&) ds.
k=0 j:O 0

The treatment of P;o follows similarly

2
. P N=1 7N—1 k »
Plgzikzﬂ)(ghbég,V'L”f+l)At < €||Vv?||2—|—1&§ ge IstgyEAL | At

T
+K(At)2/ V& ds.
0

Finally, algebraic manipulation yields

N N
7)21 _ 7 ||U1 || _ 7* (Z €_rkAt’l/}kAt,Z€_rkAt’l/}kAt)

k=0 k=0

N 2 N

< e Ze_rkAtl/)kAt _1_1{2 ||€—rkAt1/}k||2At
k=0 k=0
0|2 - al —rkAt k(|2

= €||vl|| +[x2||e ) || At.

k=0

Using v = ‘v§+1 as the test function in (23), multiplying by At and summing from
k=0to k= (N — 1), and using the relations above yields
N N

(32) Ze—rkAt ||atb'l/)k||2At+ ;_oze—rkAt ||8tb1/2k||2 (At)2

k=0 k=0

S bt gt (a0 2 )+ 9
k=0
rT N 2 r N 2
el YA At e ek |7l A
k=0 k=0

— (@u/)l, 'vg) -7 (@M/}l, 'vg) At — p (@de)l, V'vg) At
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N-1 N-1 Qk
(( > ,V'v’;'H) At — ((V-Xk)ﬁ,V'vg'H) At
0
1
k -k

k= k=0
N- Qk N-1
_ ((VW« ) 2,Vv’2“+1>At_|_ ((7-0 — 7y )Xk,VUkH)At
k=0 (H ) E—0
N-1 No1 .
et 7ty 2 werns e 2 o s
k=0 k=0 k=0
N-1 N

(
N-1 N-1
+ (H’fvak+%,vv§+1)m+ PN GAARAS N (ekvgk,vv’gﬂ)m
k=
(

I
- o
o

Z >

N-1
¢’“v€’“,vu’;+1)m+u (aﬁvak veithat+ Y (6’“.7—"“ wé“)m
k=0 k=0

Z
Il
— O

N-1

N-1
(6(’)“, vé“)At + 7 Z (6{“, v§+1 At+p Z Vvé“ At
k=0 k=0

=S+ S48+ (A + -+ A7) + (Pr4 -+ Pro) .

+

£
I
o

All ofvthese terms are treated analogously to those in (32) with the exception of Sy, Ss
and P17 — P19 which we detail now.

From (28) and (30),

Sy = —r (Bt 00) AL < €| o3| + KA (hw—l) ¥ Aﬂ) ,

S3

1 (00 V!, Vo) AL < ||[Vod|[ + KA (h21) 4+ Ar?)

Observe that the treatment of P;7 — P;g differs slightly from the treatment of
related terms in (31) as follows:

N-1 T N-1
Pur = Y6k )A€ K80 [ el ds K3 e 4 o
k=0 0 k=0

B (A IEatel oo (0,022
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) N T4+At N 9
Pio = n A < A7 [ el e St o o
k=0 0 k=0
) N T+At N 5
Pro =p Y (VoF, Voith)ar < K(At)2/ [V&utl|” ds + 1Y em*A [ Vol +H]]” At
k=0 0 k=0

4.5. Bounding the CME-Error Equation. Using w = x**! as the test func-

tion in (24) followed by summation in time, yields
PNl N-1
/%bfk Xk+1

3
(53) x| + 3 Z|I3bxk“|l CURS DY

k=0
wu(pr 2 §_ |[Vah+| | A
plbt 3 2

2
At

Ee N-1 /15 N-1
k+1 k+1
< EOS [l () + B2 3 (vt (o
k=0 k=0
N-1 N-1
QF QF
-3 ((F Vx’“) ,x’““)At - ((V X)X ) At
k=0 k=0
N-1 0 P N2
- ((W)’“ Q’“)(Hk)z,x’““> At—o > (fokxx", x"*)at
k=0 k=0
N-1 N-1
_ (Hka}k k+1)At _ (1/}kfk’ X’““)At
k=0 k=0
N-1 & N-1 k k
q k k41 q Q ~k k41
+ ((W-v(p ) )At+ Z([ﬁ W] vg', )At
k=0 k=0
N-1 q N-1 qk Qk
D (e INED S (L Bl = P I
k=0 k=0
N-1 £ 72 k72 N-1 k
q Q k+1 k ky 4
hp < | = — At 0 At
k=0 k=0
N-1 k12 k12 N-1
by Q
+ (va’“- { [%] s W] },x’““)AH (rostettH x4 ) At
k=0 k=0
N-1 ) N-1 .
+ 30 (Fekxd* ) A= 3 (R - mg @ E )
k=0 k=0
N-1 N-1 N N-1
+ 30 (VO X A+ Y (0 VER X ) ar— 3T (WEVE, M) At
k=0 k=0 k=0
N-1 N-1
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N-1 N-1 N-1
+ Z (e k+1 At+ % Z bekeg + fckxeg,xkﬂ)At—l—,uﬁl Z (Veg,VXkH)At
k=0 k=0 k=0

~

=S+ 8+ (A4 ds) + (Pt +Prs)

Again, all the terms on the right-hand side are treated analogously to the terms in
(32) with the exception of the following terms.
In estimating S», we use the inverse assumption to obtain

Kyp = E+1]|2 3
K01) S o+ a0
k=0

And the truncation terms are estimated as follows

IN

N-1
~ M 2
S =g L N0evxt [ (an?

No1 N-1
Pro = 3 (b th)ar < K( At)z/ llaeell® ds + 3 ||| At.
=0 k=0
) 1N—1 N-1
e =3t s et wan < oy [ lad? an i 3 e o
E—0 k=0
N—1 N-1
Pis = 3 (Vek, v )AL < K(A) / IVa|I” ds+e 3 [[7x*+][" At
E—0 k=0

4.6. Bounding the Sum of the Error Equations. We observe that the right-
hand-side of (31) can be bounded by

N-1 N-1 N-1
() 30 eS| A Y e[| A Y ([T
k=0 k=0 k=0
N-1
el [0 17+ el 1” 4+ 5 30 (1101 + 190° | + || ve| ) ac
k=0

N-1 9 N-1 9
+E Y H¢’“H A+ K HwﬁH At+ K (hw‘l)—i—Aﬂ)
k=0 k=0

(A8 [Eeaael (220 7y, 20)) T KOO [eellzao )y
+K(At)? ||an||22((o Tycaay) + K (AP ||5m||i°°((o At)~£2(ﬂ))

N-1 N-1
+E Y erEA [ AL+ K > IPiasilk At—|—]x2||e_rkm1/) " At
k=0 k=0 k=0
N-1 k E N-1 k 2
FE DD S eIAIAL | At+ KDY |D D eTTAVY AL At
k=0 [|j=0 k=0 ||j=0

The right-hand-side of (32) can be bounded by



(36)

such that,

and

Chippada, Dawson, Martinez, Wheeler

N-1 N-1 N-1

62 o—TkAt ||1/}k||2 At + ¢ Z o—TkAt ||V,¢)k||2 At + € Z ||VXk+1||2 At
k=0 k=0 k=0
= 2 2 2 N-1 2
K3 (1P + 1901+ [0 7ot |1°) a4 K 3 |||
k=0 k=0

N-1 N-1
+K Y HqukHzAt + K3 [ At K (R0 4 A1) Ar
k=0 k=0

+E(AL)? ||~5mt||iz((o,T);m(n)) + K(At)? ||~5n||iz((o,T);N(ﬂ))
)2

- 2 e 2
FE (A Vel z2(o,r)c2iy) + KA €t oo (0, 802002
N-1 , N-1 \
+Ey Y AT T AL+ K Y et A || Vub | At
k=0 k=0

Finally, the right-hand-side of (33) can be bounded by

A% 2 - N-1 N-1
(T K 5 o 80+ 3 e o
k=0 k=0
N-1 N-1
te 30 e vyt P At € Y ||Vt || A
k=0 k=0
N-1 N-1 9 9
+IES (1 vet ) s i X (Jfof][ [ [mat][) o
k=0 k=0

N-1 5 5 N-1 5
+E Y <H¢k+1H +||ve' || >At+KE||Xk+1|| At
k=0 k=0

+K(At)? ||qtt||i2((0,T);£2(ﬂ)) + K(At)? ||Vqt||i2((0,T);L2(ﬂ))

And, observe that

Choose {2[{1 2K, 2](3}
T = max s [ ;
e To H
r = T”y?*ee - ]\71 Z 0;
L — 7’;—069 - [\72 Z Oa
- r%ee — K3 > 0.
. 2
AP = e—rkAt||¢k||2+ ||Xk||2+ Ze—e"imq/ﬂAt
§=0 H(Q)
. 2
> et S
j=0

H(S)




(37)
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Now, sum (31)—(33), using bounds (34)—(36) and the choice for r above to obtain

1 _, 2 al . 2
Se Nm||¢N|| —|—(ro—|—2e€°)Ze kAt||1/}k|| At

k=0
N

N
I [ e P M R N0,

k=0 k=0

(a)
N 2 N 2
+/£Z€_rkm||v¢k|| At+%26_rkm||3tbv¢k|| (At)2
k=0 k=0
(6)
I
e |[0]* + S (V03] + 5 [[o8]+ S 198
H/—/ H—/
(¢) (d)
N-1 , N-1 ,
+r Z erkaVv’f‘HH At + 7y Zerkm ||'v§+1|| At
k=0 k=0
(e) ()
N-1 L N1
75 Y €A [Tt |7 AIf+—||XN|| +3 ZHabxk“H At)?
k=0 k=0
(9)
L N-1 N-1 ,
+5 kzzo Vit () AH—# (ﬁl+ ) k:0| x| at
(h)
#h2 4 2K =
< (TR Y o | A0+ cof] P+ 9
k=
N-1 , N-1 ) N-1 ,
-I-eze_rkad;kH At+eZe‘r’“m||V¢k|| At+ez [[Vx* || At
k=0 k=0 k=0
N-1 ) N-1 ,
OB D A e | RN (e el e [NV
k=0 k=0
= 2 = 2 2 2
Ky 3 [P ang k3T (10| + (19041 + o vet| )
k=0 k=0

N 2 9 N ) ,
+I{Z<H¢kH +|[vot| >At+K2(H¢k+1H oot )At
k=0 P

+E(At)* ||5mt||iz((o,T);L2(n)) + K(At)® ||€H||iz((0,T);L2(Q))
- 2 e 2

+E (A" V&l 2201y 0207 + K (AL [€ettl oo (0,801,202
. 2 - 2

HE (A 1l z2(0,1).c200)) T E (B IV a2 0,1y,02(0)
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N
R Y AEAL+ K (R0 4 AR) 4+ K (R0 £ AR) A2
k=0

Assume, in addition, that At < 2h? (#*h? + 2[{0;562)_1 = K» so that
l %*h2—|—2[{0/£62
2 4h2

04 =

>At > 0.

Using the above choice for At, hiding all terms multiplied by ¢, and observing
that terms (a)-(h) are all non-negative, we can write (37) as follows
1

N
(38) ie_er ||1/;N||2 + (;_0 + geeo) Ze—rkAt ||¢k||2 At
k=0

N N
DD [ N e I\l [ [ e
k=0

k=0
1 2 = 2 1 Ié; = 2
PRI o X oo o+ (54 22) 3 ot
k=0 k=0
N-1 ,
< K011z, 2y + K VO, ez + 5 Y |0 V08| At
k=0

+E |20y 300 2y) + K 191122050700 ()

+E(At)* ||£Htt||i2((0,T);£2(ﬂ)) + E(At)? ||£tt||i2((0,T);£2(ﬂ))
+EK(At)? ||v€tt||iz((0,T);L2(ﬂ)) + K (At)? ||€ttt||iw((0,At);£2(ﬂ))
+E(At)? ||qtt||i2((0,T);£2(Q)) + K(At)? ||Vqt||i2((0,T);L2(ﬂ))

N
+E S AFAL+ K (hw‘l) i At2) + K (hw‘l) i At2) At?
k=0

Recalling that
AN = AN | 4 [N+ (8 sy

apply the GDGI to finally obtain
N N-1
(39) eTThA ||1/}k||2At + T_°Ze"‘km ||1/»k||2At+ geeu §ereat ||¢k||2At

2
k=0 k=0

N N
+ Y e [yt At BT e ||V P At 25 |68
k=0 k=0

(£2)

N-1

1 N-1
LRI o X oo o+ (54 22) 3 ot
k=0 k=0

N-1

R 2

<K {||6||§2(JN_1;H1(Q)) + 3 [0 VO " A+ 1172 700
k=0

+(An)* ||£tttt||i2((0,T');£2(Q)) + (At)? ||€H||iz((0,T'};H1(Q))



System of Shallow Water Equations 21

+(A)? ||€ttt||iw((o,m);ﬁ2(ﬂ)) + (At)? ||qn||i2((0,T);L2(ﬂ))
+(At)? ||Vqt||iz((0,T);£2(ﬂ)) + (hw_l) + At2) (1+ At2)}
for At sufficiently small and K = K exp (KT/(05 — KAt)) where 05 = 1 min{1, 7.}.
Bounding above and below, we obtain the estimate on the affine errors.
(40) 914 1 s + 1106094 [ e
+ ||XN||2 + ||VX||§2(JN_1;£2(Q))
<K {||9||§2(JN_1;H1(Q)) + ||affvgk||j2(JN_1;£2(ﬂ))
+ ||¢||52(JN;’H1(Q)) + (At ||€Htt||i2((0,T);L2(ﬂ))
(A st 2o,y ey + (A8 [&ase [zoe (0, 201530
+(At)? ||Qtt||iz((0,T);£2(ﬂ)) +(At)? ||th||iz((0,T);L2(ﬂ))
+ (hw‘l) + At2) (1+ At2)} .
Using the standard approximation results, we obtain
(41) N+ 1l ez im0 + 11008 |22y
+ x|+ IVXlle2(ry_yic20)) S K {ht + At}

The result of the theorem now follows by an application of the triangle inequality
to the projection error and to the affine error (41).

Consequently, we can prove the following result.

THEOREM 4.1. Let 0<so<k, so<€<sy, 0<k<sy. Let (€5, g*) be the solution
to (8)-(10) and suppose that assumptions A2-A16 hold. Let (Z*, QF) be the Galerkin
approzimations to (¢¥,q%). If 2F € §"(Q), QF € S*(Q) for each k; then, for h and
At sufficiently small, 3 a constant K = K(T,s1,r,Cy,C*, Cyx, C**) such that

€Y —EY || 4 11€ ~ E Il s )
+ || qN - QN || + || Vq - VQ ||Z2(JN_1;L2(Q)) S K (hz_l + At) .

In particular, At < min{o(h), k1, K2}, where K1 = 8/7,, k2 = 2h? (7"*}12 + 2[(()#62)_1 )

In the case s; > 3 and [ > 2, we can now complete our induction argument.

2% < XM +1a"]
< Kh™Y(R'TU 4 At +C*
< C**

for h and At sufficiently small (with At = o(h)). A similar argument give an upper
bound for II"V. For the lower bound on IV we have

HN _ 1/}N _|_gN
> —Kh 'R+ AN+ C
> Chx,

again for h and At sufficiently small (with At = o(h)).
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A. Appendix: Summation by Parts and Other Tools. We now introduce
tools used in the previous sections. First investigate the use of v’f“ and v;““ as
the test functions in (23) when we multiply by At and sum over k. For a generic

¢ € HY(Q), consider the following relations:

N-1 N-1 trkAt || k]2 +r(k—1)At || k—1]|2
1 eXTFAL]|cF||” — eRrtbm DA |||
(A) 3 FrH Bt o) At = 52( Al At

E=0
1Nl 1 -l N-1
_}_5 etrkat || k|| + = Z +r(k— 1)At|| k— 1|| Z etrkat (Ck—l’gk)
k=0 k=0 =
1% 2 1= 2
=3 E O (e:trkAt ||§k|| )At—i— 5 Z e:tr(k—l)At(l _e:trAt) ||§k—1||
k=0 k=0
1 N1
+§ 6:trkAt ||6tb§k|| At
k=0
1% 2 1= 2
=3 O (e:trkAt I )At +3 eETRAL(] _ craty || ok |
k=0 k=0
+%6:tr( 1)m(1 +rAt || —1”2 _ %6:tr(N—1)At(1_e:trAt) ||§N—1||2
1NVl
+§ eztrkAt ||8t k|| At
k=0
1 2 1 P ety 2
_ §€:trNAt ||§N—1|| -3 ||§—1|| T 569 kz_oeirkm ||§k|| At
P N-1
+5 eEEAL |9, gk“ At)? 0 € (0, £rAt),
k=0

where the last equality results from an application of the Mean Value Theorem.

(B) N-1 eirkm 8, Ck,ck+1) At = ENZ_:I <6ir(k+1)At ||§k+1||2 _ pErkAt ||§k||2) N

k=0 2 k=0 At

1= 1 V=1
L 6ir(k+1)m ||§k+1||2 + = Z eErkat ||§k||2

2 k=0 2 k=0

N-1

+rkAt ||§k+1|| :I:rkAt F k+1)

t2 e Z

1N ! 2 2
=3 Z Bys ( £rkAL|[ck]| )At+ 5 Z eETRAL(] _ gEraty ||kt |2 Ay

k=0 k=0

1 +rkAt k(|2 2

—1—5 e ||6tf§ || (At)

=0

1ier N2 Loz reN_l +rkAt || k4112
= G NI I g X e
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N-1
R o, k| P (A1), 0 € (0,+rAt),
k=0

L1
2

where the last equality follows from the Mean Value Theorem.

And finally,
N-1 LNl N-1
(C) Z cErkAt (atfgk’gk) Al = 5 Z Bys (ezl:rkAt ||Ck||2) At T gee Z ALY ||Ck+1||2At
k=0 k=0 k=0
1= 2
=5 2 ot | (at)?, 0 € (0, £rAt).
k=0

We understand the following to be true: v’f>N:0, v§>N:0.

Now, consider the first two terms of (23). When v = v’f“, we obtain
N-1 N-1

ST@EvE it At = = (0ptF, Oy vf) At — (9,00, 0]) + (0™, 0lY)

k=0 k=0

I
WE

e A (Ot ) At — (9090, 07)

k=0
4 1 2 1 PR )
= §€_er ||1/}N—1|| _ 5 ||1/}—1|| _1_5690 kzzoe—rkm ||,l/}k|| At
1 )
+§k2ﬂe"“f |00 || (A1) — (9%, 09) , 6o € (—rAt, 0);
N-1 N-1
To Z 8”1/}16 vk+1 At = -1, Z (1/)k,8tbvlf+1)At— Y (1/}0,,05)) +7 (1/}]\7’1)117\7)
k=0 k=0
N
= n et A
k=0

The first equalities above result from temporal summation by parts. We also have
from the diffusion term upon summing by parts in time:
N-1 N ,
k -
p > (0 Ve Vit AL = ) emTEA [Tk || At
k=0 k=0

We are also able to manipulate the eighth term in (23) by using the definition of v;
as follows:

Z

-1

erkat (ghb 6tb(va+1), V'L7’f+1)At

2
‘)At

| =
N —

-1
: > (ghs VY5, VoIt At
k=0

:0
1

2

B) _

 ghy V'U’f

1
Z atf (erk At

k=0
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2
vV 9hs V'v]fHH At

7’ p rkAt
+4¢ Z
k:
1 -l
_Zkz_: rkAt

0,1 (v/9hs Vok) H A2, 0 (0,rAt)

N-1
> ||V 0|| +7”Y* SZerkAt||vvk+1|| At
k=0
1 al —rkAt k 2 2
N N H (A1)?, 0 (0,rAl);
k=0
and
1N—1 1N—1
5 (ghy VFH1 Vit AL = 5 (ghb vk Vvl)At—i— (ghy VYN, Vo) At
k=0

"B (ghy 9y ( (Vokth), Vob) At

Il
l\-')l — e
||
==

e
I

0

N
© 1 r
c Zzaﬁ( o v et )
k=0
r 2
+Ze€Zerkm \/gTvafHH At
1 N
20 €8 |0us (ghy To8) H NG (0, rAt)
k=0

v

N
LRI + e Yo et vt || a
k=0

Vahs w’“H2 (At)?, 0 € (0,rAl).

1 N
—rkAt
+Z kz_o €

Similarly, using v = vi*! as the test function in (23), we obtain
N-1

Z (a?c ; §+1)At = Z atb'l/} atf U t_ (atb'l/)O,'Ug) + (atb1/)N, Uév)
k=0 k=0
N 2
= D A0 " || At + (91, 08)
k=0

where the first equality above results from summation by parts.

N-1 N-1
To 3 (Out® o5t AL = 7 Y (0, vB) AL+ o (0™, vy ) AL — 7, (0,00, 05) At
k=0 k=0

N
—To Eerkm Oppv k+1 vé)At - T (@H/JO, 'vg) At
=0
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(C) 7-0 TTo 9

erkAt ||,Ulzc+1||2 At+ 7, (@H/}la '0(2)) At
k=0

> S]]+ 5

N
ST oyt ||* (A2 0 € (0,rA);
k=0

N-1 N
i @ (V), Vet AL = B[4 et Yo ek [vu || A
k=0 k=0

N
[ 2
1 (0 V!, Vi) At+§k§_0:e FA 100 (V)| |7 (A1)
0 € (0,rAt).

The two terms above are manipulated using the definition of the test function followed
by an application of (C).

Finally, algebraic manipulation of the following terms from (24) yields:

N-l L N1 , , )
Z(atbxk-H XAt = 5 <||Xk+1|| — It + [[owxt ] (At)z)
k=0 k=0
1
= 5P +3 Z||3bxk“|| (At
N-1 N )
(be X" +1 k+1) Al = > 7A'bfk Y| At
k=0 k=0
L Nl
T3 ( #s (T = (FF = xM) VR x )At
k=0
g N-! 2 1 -1 9
> 1 be Xt At_ZZ #4" Opx
k=0 k=0
= 3 N-1 ,
NZ(ﬁ1vxk+1+ﬁzvxk’vXk+1) At > u<ﬁ1+72> Z||ka+1|| At
k=0
Hﬁz Z ||a (vxk+1 || At
k=0
REFERENCES

[1] S. CHipPADA, C. N. DawsoN, M. L. MARTINEzZ, AND M. F. WHEELER, Finite element ap-
prozimations to the system of shallow water equations, Part I: Continuous time a priort
error estimates, Tech. Report TR95-35, Rice University, Houston, TX, December 1995. To
appear in SINUM.



26 Chippada, Dawson, Martinez, Wheeler

[2] L. C. CowsaRr, T. F. DupoNT, AND M. F. WHEELER, A priort estimates for mized finite
element methods for the wave equation, Computer Methods in Applied Mechanics and En-
gineering, 82 (1990), pp. 205-222.

[3] R. E. EwING AND M. F. WHEELER, Galerkin methods for miscible displacement problems in
porous media, SIAM Journal of Numerical Analysis, 17 (1980), pp. 351-365.

[4] J. G. HEYwooDp AND R. RANNACHER, Finite element approzimation of the momstationary
Navier-Stokes problem Part IV: Error analysis for second-order time discretization, SIAM
Journal of Numerical Analysis, 27 (1990), pp. 353—384.

[5] I. P. E. KINNMARK, The Shallow Water Wave Equations: Formulation, Analysis and Applica-
tions, vol. 15 of Lecture Notes in Engineering, Springer- Verlag, New York, 1985.

[6] R. A. LueTTicH, J. J. WESTERINK, AND N. W. ScHEFFNER, ADCIRC: An advanced three-
dimensional circulation model for shelves, coasts, and estuaries, Tech. Report 1, Department
of the Army, U.S. Army Corps of Engineers, Washington, D.C. 20314-1000, December 1991.

[7] D. R. LyncH AND W. G. GRAY, 4 wave equation model for finite element tidal computations,
Computer and Fluids, 7 (1979), pp. 207-228.



