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Abstract. Various sophisticated finite element models for surface water flow based on the
shallow water equations exist in the literature. Gray, Kolar, Luettich, Lynch and Westerink have
developed a hydrodynamic model based on the generalized wave continuity equation (GWCE) for-
mulation, and have formulated a Galerkin finite element procedure based on combining the GWCE
with the nonconservative momentum equations. Numerical experiments suggest that this method
is robust, accurate and suppresses spurious oscillations which plague other models. We analyze a
slightly modified Galerkin model which uses the conservative momentum equations (CME). For this
GWCE-CME system of equations, we present a continous-time a prior: error estimate based on an
£? projection.
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servation, finite element method, a priori error estimate
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1. Introduction. In recent years, there has been much interest in the numeri-
cal solutions of the shallow water equations. Simulation of shallow water systems can
serve numerous purposes. First, it can serve as means for modeling tidal fluctuations
for those interested in capturing tidal energy for commercial purposes. Second, these
simulations can be used to compute tidal ranges and surges such as tsunamis and
hurricanes caused by extreme earthquake and storm events. This information can be
used in the development planning of coastal areas. Finally, the shallow water hydro-
dynamic model can be coupled to a transport model in considering flow and transport
phenomenon, thus making it possible to study remediation options for polluted bays
and estuaries, to predict the impact of commercial projects on fisheries, to model
freshwater-saltwater interactions, and to study allocation of allowable discharges by
municipalities and by industry in meeting water quality controls.

The 2-dimensional shallow water equations are obtained by depth (or vertical)
averaging of the continuum mass and momentum balances given by the 3-dimensional
incompressible Navier-Stokes equations. Shallow water equations can be used to study
flow in fluid domains whose bathymetric depth is much smaller than the characteristic
length scale in the horizontal direction. We denote by &(@,t) the free surface elevation
over a reference plane and by hy(@) the bathymetric depth under that reference plane
so that H(x,t) = £ + hy is the total water column (see Figure 1). Also, we denote
by u(x,t) = [U(=,t) V(x,t)]T the depth-averaged horizontal velocities. Letting ¢ =
uH, the 2-dimensional governing equations, in operator form [12], are the primitive
continuity equation (CE)

<3

L(&, ushy) = 5 +V-.q=0,

* This work was supported in part by National Science Foundation, Project No. DMS-9408151.

t Department of Computational and Applied Mathematics-MS 134; Rice University; 6100 Main
Street; Houston, TX 77005-1892

! Center for Subsurface Modeling - C0200; Texas Institute for Computational and Applied Math-
ematics; The University of Texas at Austin; Austin, TX 78712.

1



2 Chippada, Dawson, Martinez, Wheeler

Fic. 1. Definition of elevation and bathymetry

hy

MR

and the primitive non-conservative momentum equations (NCME), as derived by Wes-
terink et al [26],

0
M, u; @) = Eu—i—(u-V)u—i—beu—}—kz X feu
1 1
—{—gv.f — EEhAq — ETU)S + calF = 0,

where @ = (hs, 7oy, fer g, En, Tws, Pa, ). In particular, 7¢(¢, u) is a bottom friction
function, k is a unit vector in the vertical direction, f. is the Coriolis parameter, g is
acceleration due to gravity, F), is the horizontal eddy diffusion/dispersion coefficient,
Tws 18 the applied free surface wind stress relative to the reference density of water, and
calF = (Vp, — gVn), where p,(x,t) is the atmospheric pressure at the free surface
relative to the reference density of water, and n(@,t) is the Newtonian equilibrium tide
potential relative to the effective Earth elasticity factor. We will treat 737, 7w, fe, Pa
and 7 as data. Moreover, we will treat the diffusion coefficient £} as a constant.

The primitive conservative momentum equations (CME) are derived from the
NCME as

M®= HM + uL = 0.

The numerical procedure used to solve the shallow water equations must resolve
the physics of the problem without introducing spurious oscillations or excessive nu-
merical diffusion. Westerink et al [26] note a need for greater grid refinement near
land boundaries to resolve important processes and to prevent energy from aliasing.
Permitting a high degree of grid flexibility, the finite element method is a good can-
didate.

There has been substantial effort over the past two decades in applying finite
element methods to the CE coupled with either the NCME or the CME. Early finite
element simulations of shallow water systems were plagued by spurious oscillations.
Various methods were introduced to eliminate these oscillations through artificial dif-
fusion [17, 22]. These methods were generally unsuccessful due to excessive damping
of physical components of the solution. Recently, Agoshkov et al [2, 4, 3] have inves-
tigated a finite element approximation, where the velocity field is approximated by
piecewise linear polynomials and the elevation is approximated by the same functions
plus some additional ones. They have studied the effects of various boundary con-
ditions, and proven stability of various time discretization schemes for a continuity
equation-momentum equation system. In this paper, we will examine a finite element
approximation to a modified shallow water model described below. Computational
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and experimental evidence in the literature suggest that this formulation leads to ap-
proximate solutions with reduced oscillations. Moreover, these approximate solutions
have accurately matched actual tidal data. This modified shallow water model is
based on a reformulation of the CE, which we now describe.

1.1. Historical Development of the Wave Continuity and Generalized
Wave Continuity Equations. In 1979, Lynch and Gray [14] derived the wave con-
tinuity equation (WCE) from the mass and momentum conservation equations,

L
W(, u; ®) W—V-Mc—i—TL:O,

as a means to eliminate oscillations without resorting to numerical damping. Here,
7(x,1) is a non-linear friction coefficient. In this shallow water formulation, the WCE
is then coupled to either the CME or the NCME. The equivalence of this model to
the more standard one based on the CE is discussed in [12].

This formulation has led to the development of robust finite element algorithms for
depth-integrated coastal circulation models. The WCE approach has motivated a sub-
stantial computational and analytical effort [6, 8, 14, 18]. Using Fourier phase/space
analysis of the linearized WCE-CME and of the WCE-NCME system of equations,
Foreman [8] and Kinnmark [12] prove that the WCE formulation suppresses spurious
oscillations of the numerical solution, and is capable of capturing “2Az” waves. The
WCE formulation has also motivated substantial field applications; see [9], [10], [11],
[15], [16], [19], [20], [21], [24], [25]. These studies have demonstrated the advantage
of the WCE formulation for finite element applications in terms of achieving both a
high level of computational accuracy and efficiency.

The generalized wave continuity equation (GWCE) [12] is essentially the same as
the WCE except that multiplication of the continuity equation by 7 is replaced with
multiplication by some general function that may be independent of time. Westerink
and Luettich [13] chose to replace T by a time-independent positive constant 7,. Their
version of the GWCE is given by

2
m T Z v [v- (%qz) ~ (ro — p)a+ (k x foq)
o€

—i—HgV‘f—}—EhVE—Tws—i—HCalF =0.
This choice of 7, yields a system of time-independent matrices when the GWCE is
discretized in time using a three-level implicit scheme for linear terms. (Here and in
the equations below we have used tensor notation reviewed in Appendix A.)
The GWCE can be coupled to the CME, given by

0 1
(2) 9, v. (Eq2> + g+ (kX foq)+ HgVE— EyAq — 7y + HealF = ()

ot

or to the NCME. A finite element simulator based on the GWCE-NCME, which uses
same-order polynomials to approximate elevation and velocity unknowns, has been
developed by Luettich, et al. In [13], it was demonstrated that the approximations
generated by this simulator accurately matched tidal data taken from the English
Channel and southern North Sea.

To date, no formal convergence analysis of finite element approximations to the
WCE or GWCE combined with either the NCME or the CME exists in the litera-
ture. In this paper, we analyze the coupled GWCE-CME system of equations for a
continuous time Galerkin finite element approximation.
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The rest of this paper is outlined as follows. In section 2 we detail the assumptions
we will need in our analysis. We also introduce the weak formulation associated with
the GWCE-CME system of equations. In section 3, we introduce the finite element
approximation to the weak solution.

In the derivation of an error estimate, we investigated various types of projections,
such as the £2, elliptic, and parabolic projections. Because of the highly nonlinear
nature of the coupled system of equations (1)-(2), we found these projections all led
to suboptimal estimates. To that end, we present, in section 4, the simplest derivation
of an a priori error estimate based on an £? projection.

2. Preliminaries.

2.1. Notation and Definitions. For the purpose of our analysis, we define
some notation used throughout the rest of this paper.

Let Q be a bounded polygonal domain in IR? and &= (1, 22) € R

The £? inner product is denoted by

(p,w) = / powde, ,w €L,
Q
where “0” here refers to either multiplication, dot product, or double dot product as
appropriate. We denote the £? norm by ||¢|| = ||50||£2(ﬂ') = (50,50)1/2. In IR* o =
(a1,...,a,) is an n-tuple with nonnegative integer components,
o g 9%n
D =D%...D% — ~__ ...~
! n Jx*  OJap-

and o] = Y1, as.

For ¢ any nonnegative integer, let
HE = {p € L2(Q) | D*¢ € L*(Q) for |a| < £}
be the Sobolev space with norm 1/2

el = | Do 11D 1120
|l <t

Additionally, H}(2) denotes the subspace of H'(2) obtained by completing C5°(£2)
with respect to the norm |[-[[1(q) , where C§°(£2) is the set of infinitely differentiable
functions with compact support in 2.

Moreover, let

W ={p € L2(Q) | D*¢p € L2(Q) for |a| < £}
be the Sobolev space with norm

. —_ a
lellwe (@) = gll?;HD @l zoo () -

For relevant properties of these spaces, please refer to [1].

Observe, for instance, that 7’ are spaces of IR-valued functions. Spaces of IR"-
valued functions will be denoted in boldface type, but their norms will not be distin-
guished. Thus, £2(Q) = [£%(Q)]" has norm ||| = S0, [l@i]|”; H*(Q) = [H'(Q)]”

2 2
has norm ||||31q) = it Ylaj<t D@l ete.

For X, a normed space with norm || - ||x and a map f: [0, 7] — X, define
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T
1o myx) = / 1D dr,
sup [|7(1)]]x.
0<t<T

11 co(c0,7);:x)

Finally, we let K, K;,(: = 0,1,2,..) and ¢ be generic constants not necessarily the
same at every occurrence.

2.2. Variational Formulation. We will consider the coupled system given by
the GWCE-CME described in Section 1, with the following homogeneous Dirichlet
boundary conditions for simplicity

{(z,t) = 0,
(3) w@t) = 0 xedQ, t>0,
and with the compatible initial conditions
%(:E, 0) = &o(=),
(4) a_i(w¢ 0) = 61(‘3)’ €T
u(x,0) = wug(x),

where 012 is the boundary of @ C IR? and Q = QUIS. Extensions to more general land
and sea boundary conditions will be treated in a later paper. As noted in Kinnmark
[12], the condition necessary for the solution of the GWCE-CME system of equations
to be the same as the solution of the primitive form is that

&(x) = —V-q(x,0).

The weak form of this system is the following: For ¢ € (0,77, find £(, 1) € H{(Q)
and q(x,1) € ’Hé(ﬂ) such that

(5) (%,v) + 7o (%ﬁ"”) + (V- {%qz} ,Vv) +((m; — 7)q, Vo)

(a)

+(k x feq,Vv)+ (HgVE V) + Ey (Vg—i, V'U)

—(Tws, VV) + (HealF,Vv) = 0, Vv € H(2),t > 0,

(6) (%—?,w> + <v- {%qz} ,w> + (g, w) + (k x f.q,w) + (HgVE, w)

(®)
+E, (Vq, V) — (Tys, w) + (Heal F,w) =0,  Yw € Hy(Q),t >0,

with initial conditions

(5(% 0),v) = (6(x),v), VveEHQ),
(7) (55 (2,0),0) = (&a(),v), YveH(Q),
(Q(w 0),w) = (go(z),w), Ywe ’Hl(Q)

Here, we have set g, = uoHy.
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2.3. Some Assumptions. Our analysis requires that we make certain physi-
cally reasonable assumptions about the solutions and the data. First, we assume for
(x,t) € Qx (0,7]

A1 the solutions (£, q) to (5)-(7) exist and are unique,

A2 3F positive constants H, and H* such that H, < H(x,t) < H*,

A3 the velocities U(x,t), V(x,t) are bounded,

FEn hb(w) is bounded.
Assumptlon A2 is obvious from Figure 1. Dimensional analysis as explained in [23]
accounts for assumption A3. Second, we assume that for (z,t) € Q x (0, 7]

A5 3 positive constants 7, and 7* such that 7. < ghp(x) < ¥,

A6 1 non-negative constants 7. and 7* such that 7. < 7y < 77,

AT (myy — 7,) is bounded,

A8 d non-negative constants f. and f* such that f, < f. < f*,

A9 FE} is a positive constant,

A10 Vp.(x,t) and Vn(ex,t) are bounded.
Finally, we make the following smoothness assumptions on the initial data and on the
solutions:
AT1 &o(), & (2) € H(D),
AL2 go(x) € ()
A13 H(z, ) € HY(Q)NHHQ) NWL(Q), te(0,T),
Al4 g(x, .) € Hy(Q) NHHQ) NWL(Q), te(0,T),

where £ is a positive integer defined below.

3. Finite Element Approximation.

3.1. The Continuous-Time Galerkin Approximation. Let 7 be a quasi-
uniform triangulation of  into elements F;, ¢ = 1,...,m, with diam(F;) = h; and
h = max; h;. Let 8" denote a finite dimensional subspace of H} 5(€2) defined on this
triangulation consisting of piecewise polynomials of degree at most (s; — 1). Define
H(Q) = H3(Q)NHE(Q), and assume S” satisfies the standard approximation property

(8) 9piensfh o= @l < Ko™ lfollpecqy. v € H(Q),

and the inverse assumptions
llellye-saiy < Kollell gz h(E=s0),
(9) ||"10||L°<>(nj) < Ko ||S"||L2(Q) ht, ¢ €8"(Q),
IVellgo@y < KollVellzay h=t,
for 0 <9<k, sg <f<sp, with k defined from 0 <k <(s; — 1), and where K is a
constant independent of A and v.

We define the continuous-time Galerkin approximations to ¢, g to be the mappings
E(x,t) € 8", Q(z,t) € S for each t > 0 satisfying

10 re %= viilgrl v Q,V
( ) atz U + 7o atav + I ’ v +((be_7-°) ’ U)

(a’)

+(k x f.Q,Vv)+ (IIgVE, Vv) + Ej <Vaa—j, Vv)

— (Tws, Vv) + (Ilcal F, Vv) = 0, Yo € 8"(Q),
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(1) (%—?w) ; (v-{%gz} ,w> +(ryQ,w) + (k x £.Q,w) + (TgVE, w)

("
+E, (VQ,Vw) — (1ys, w) + (cal F,Vv) =0, Yw € 8"(Q),

with boundary conditions

(12) = 0, }meaﬂ,t>0,

i}
—
&
o~
~—
[l
<

and with initial conditions
(B(z,0),v) = (fo(z),v), VYveS"(Q),
(13) S(x,0),0) = (¢ )
(Q(:E, 0)7 ) = (qo(m)’w)’ Vw € Sh(Q)'
Here, II(,t) = hy(x) + E(x, t).

4. A Priori Error Estimate. We will compare our finite element approxima-
tions = and Q, satisfying (10)-(13), to £? projections ¢ and q satisfying

(€-dCn0) =0 Voesht>0,

(14)
((a—a)(,1),w) = 0, Yw € St t > 0.

For the purpose of succinctness in the rest of the paper, we define
0 £— (G
15
(1%) { % q-

X
Clearly, ¢ — = =80 —1 and g — Q = ¢ — x. We shall call § and ¢ the projection errors
and we shall call ¥ and y the affine errors.

_é’
-q.

mmz
Q111

The following results are standard.

LEMMA 4.1. Let 0 < s9 <k, s <€ <s1, 0<k<(s1—1), and H(Q) =
HI(Q) NHEQ). Let € € L2((0,T),H(Q)) and g € L2((0,T), H(Q)) and let (é', q) be
the corresponding L2 projections defined by (14). And let 0 and ¢ be defined as above.
If for some integer 3 > 0

P e o rym@), 22 e o H(Q
WE ((0,7); ()):%E ((0,7); H(Q2))
then
»E o’q
a0 € L£2((0,7); 8"(2)) a0 € £2((0,7);8"(9)),
and
B\ Coht=s [[(2)’
H(at) 9‘ £2((07T);’HS(Q)) < I\Oh (8t) g‘ L:2((07T);Hq(ﬂ)))
EAY {~h9—3 AT
H(af) ¢‘ £2((0,T)H(Q) — Kok (%) q‘ £2((0,T);H(82))

for some constant Ky independent of &, ¢, h, £, where ¢ = min(¥, s1).



8 Chippada, Dawson, Martinez, Wheeler

We will also need the following result.

LEMMA 4.2. &,q and their first-order spatial derivatives are bounded above in
L2 ((0,7); £2°(R2)) by a positive constant K*.

Proof. See [5] Corollary 4.8.9. O

Before proceeding, it will be necessary to make certain assumptions about the
Galerkin approximations. We employ an argument similar to that made in [7] to
handle nonlinearities. In particular, we will assume that the Galerkin approximations
are bounded by some constant in order to derive the a prior: error estimate. Then
we will show for sufficiently small A, in the case of polynomials of degree at least two
(s1 > 3), that we can remove the estimates’ dependence on the assumed bound of
the approximations, being dependent instead on a smaller bound on the comparison
projections.

To that end, we assume that, given K* defined in Lemma 4.2, 3 positive constants
C, < % and C* > 2K* such that

B1 C, <I(x,t) < C*, and

B2 Q| zoe (0,120 (02)) < €

The following lemma will be needed when we bound the right-hand sides of (18),
(19), and (20).

LEMMA 4.3. Let Assumptions A2, B1 hold. There ezists constants K1(C), K2(Cx)
such that

H% _ %H < Ky (18] + 1911) + K (111 + 11l

Proof.
a_ 2l _ ||[¢@-H)+(qg-9H
H 1 HTO
q 1
< el - 14 4], 0
71wy~ 10|, 0= @

K ||E—€||+ Ko |lg— Q.

Assumptions A2, B1 are used to get the first part of the inequality and assumption
B1 is used to get the second part of the inequality. O

4.1. Error Estimate. In order to obtain an error estimate for (¢ — E) and

(¢g— Q), we must first obtain an estimate on the affine error terms (2 —,f;:) and (Q@—7).
Then, with the approximation result stated in Lemma 4.1 and with the estimate on
the affine error to be obtained in the proof of Theorem 4.4, an application of the
triangle inequality will yield an estimate for (¢ — E) and (¢ — Q).

It will be useful to employ the following expansion of terms (a)-(b) in (5)—(6):

V-{%«f} = (#£Va) + (V-a) 1 = (Vhy-a) 75 = (VE-a) 7.

Similarly, the expansion of terms (a’)—(b’) in (10)—-(11) gives

Q =
o~ (VEQ)

v-{%y} - (%-vg>+(v-g)%—(vm-g)
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Subtract (5) from (10) and (6) from (11), using the fact that we can write
($0-3) (s + (859

($50)-Gra-) - ([3-5]3)

- (852)- (e (3-8 %)

V(Q- )5~ (Vea) &4 (V) o

= (VE-ot-va|[L-2];

[I]

(v(

~5-Q) o~ (Vea) L+ (VEQ)

= (VQ) o~ (Viha) L~ VE { 4] - [%]2}

MgV (E —€) — HgVE + MgVE = TgVe — HgV(E — &) — (H —M)gVE

MgV — HgVo — 0gVE + g VE.

and

Consequently, we obtain the following GWCE-CME error equations

o (G (5 () =)+ (o)

((V1/} Q)= e ) + ((msp — 70)x, V) + (k x fox, Vv) + (IgVy, Vo)

By <vaa—1f,w) + (ealF, V)
= ((rve).v) + (|- ) 73 70) + (G0 70)
+((v 7 [g ﬁ] w) (vhb.{(%)l (%)}v)
+ (Vo) L, v0) + (v&i{(%)z—(ﬁ)z},w)+<<nf—n)¢,w>

+ (k% f.0,V0) + (HgV0, Vo) + (agvé', Vv) — (wvé’, Vv)

0
+Ey (vg—t, W) + (0cal F,Vv), Yo € 8"(Q),t > 0.

o () (7)) (g ) (o)

m’
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+(mpx, w) + (k x fox, w) + (LgVy, w) + Ej (Vx, Vw) + (Yeal F, w)

)+
= ((ve) )+ ([ - 7] ) + (T0rff0)
w(wals-3] )+(w-{<%>2—<%> Jo)
+((V0-q)%,w)+( { (%) },W)+(be¢aw)

+(k x [, w) + (HgV0,w) + (097 w) — (49VE w)
+Ey (Vo, Vw) + (fcal F,w) Yw € 8*(Q),t > 0.

4.1.1. Choice of Test Functions and their Manipulation. We now choose
special test functions to obtain the affine error estimate. Let r be a positive constant

to be chosen. We let vy(-,1) ft e " Y(+, s)ds and va( ft e L 57U(-,5)ds be
the test functions in (16). And, we let w= X be the test functlon in (17)

First, we will investigate the use of v; and v as the test functions in (16) followed
by temporally integrating over (0,77]. Note that v1(-,7)=0, va(-,7)=0. Also recall

that given ¢, the following relations hold: (4¢,¢)=3-4 (||§||2) and -4 (6_” ||§||2) =

Lertd (Jfsl”) = 5ot lel[”

Now, consider the first two terms of (16). When v = v;, we obtain, upon inte-

grating by parts,
T 792 o Ovy O roor O
[ (GEe)a = = [ (G5 ()], = [ (o) @
_ 1 Td —rt 2 r T—rt 2
= [ G ) as g [P

1 _, r T_T
L T||¢<~,T)||2+—/e j| P
2 2 Jo

T T
o _ vy o —rt 2
TO/O <8t ,11) dt = - / <¢, o > dt = TO/O e~ |[W]|7dt.

We also have from the diffusion term upon integrating by parts in time:

Tr oy r 2
E/ (va,wl) dat = Eh/e-”nvwndt.
0 0

We are also able to manipulate part of the eighth term in (16) by using the
definition of v; as follows:

! 1 /7, d
/ (ghe Vi, Vu)dt = —— / (ghs Vv, Vuy) di
0 0

2 dt
‘\/gth‘vl ‘ ) dt + - /

_ 1 /T_

T
% Y« r
T Vo (2, 0)]]* + 2L /ef||vv1||2dt.
2 2/,

and

‘\/gh Vv

‘dt

v
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Similarly, using v = vy as the test function in (16) followed by temporally inte-
grating over (0,77 yields

[G)o - [y a- [
[ (a0 [ (1)

T
T T
= T TP+ ok / e[|t
2 2/,

2

% dt;

ot

The first equality below follows from the definition of vs:

T T
oy £y . d
E vV—,V dt = —— " — (Vwg, Vus) dt
h\A ( 315 ’ '()2) 2 o € dt ( V3, '()2)
_ Ey, ’ d rt 2 rEh rt
= -5 ; au (e [[Vvs| ) dt + 2 / ||VL2|| dt

rk
= Do, o)+ T [ v Pt
0

The temporal integration of terms (%, X) (Trxs x), En (Vx, Vx)in (17) are straight-

forward.

4.1.2. Bounding the GWCE Error Equations. Using v (- ft e~ (-, s)ds
as the test function in (16), integrating in time over (0,77, and usmg the relatlons
above yields

18) 2P+ EET et 2 o e, 01

5 T T
+r7*/ e”||Vvl||2dt—|—Eh/ e~ |V dt
0 0

(g5 se)a [z

+/0T<(V1/J Q)HQQ; ) dt —/OT((be — 7o)X, Vi) dt

-/ "k x fx, Vun) di - / gV, Vo) di 1 | (weatr o)
o[ (Grwe)wm)ars [ ] wave) @
[cagmjus [ (ali-5)e)s

+ OT(Vhb { [%]2},%) dr + /0 T((va- )L Vo) di

(v { [%r},wl) dt+/0T((rbf_ro)¢,wl) ar

T

+
0
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T

T T
+/ (k x f.0, Vy) dt—i—/ (HgV@,Vvl)dt—l—/ (agvg,wl) dt
0 0 0

T _ T/ o T
_/ (wvg,wl) dt+Eh/ <v—,vv1> dt+/ (0calF, Vo) dt

0 0 at 0
=it A)+ (Prt -+ Pra).

Here, A denotes an affine error term and P denotes a projection error term.

We will explore the nonlinear terms appearing in the right-hand side of (18) in
more detail. It will be implicitly understood that we use either the the Holder In-
equality or the Arithmetic Geometric Mean Inequality or both in the treatment of the
affine and projection error terms. We will explicitly mention additional justifications
in the derivation of bounds for these terms.

From Assumptions A9, B1 B2, there exists K3 = K3(FEp,Cy,C*) and K4 =
K4 (Ep, Cy, C*) with which we obtain the following bounds on .4;, A3 and on A3 :

T Q T T
A = _/ ((ﬁ'v")’wl) dtge/ e‘”||VX||2dt+K3/ et [V |2dt,
0 0 0

T Q T T
Ay = —/ ((v-x)ﬁ,v-Lq) dtge/ e‘”||VX||2dt—|—K3/ et ||V |[*dt,
0 0 0

T Q T T
As = / ((vwg)m,wl) dtSE/ 6_”||V1/}||2dt+ff4/ e ||V ||at.
0 0 0

From Assumption A7, there exists K5 = Kj (||be — 7'<,||£m((0 T)'ﬁm(ﬂ))) such

that we obtain a bound on A4:

T
Ay = —/ ((rsp — 7o)X, V1) dth/
0 0

T T
e~ |x|]dt + K / et ||V |[*dt.
0

From Assumption A8, there exists Kg = K¢ (f*) such that we obtain the following
bound on Asj :

T T T
As = —/ (k x fex, Vo) dtsf(/ 6_”lell2dt+Ke/ ¢t [[Vur|"dt.
0 0 0

From Assumptions A9, B1, there exists K7 = K (E}, C*) such that bound for
Ag is as follows:

T T T
As = _/ (Eng),Vvl)dtge/ e‘”||V1/;||2dt+K7/ et ||V |[*dt.
0 0 0

From Assumption A10, there exists Kg = K3 (To, ||CalF||L°°((0,T)~L°°(Q))) such
that the bound for A7 is as follows:

T
A7 = / (YealF,Vuy) dt < e/
0 0

T T
e~ |y 7dt + KS/ et || Vo |[Pdt.
0

q

From Assumptions A2, A3, there exists Kg = Ko < I

) so that
£22((0,T);£°°(£2))

we obtain the following upper bound on the projection error terms P; and Ps:
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P, = /OT((%-vqﬁ) ,V«ul) dt < Kq

Ps = /OT((v-qs)%,vvl) dt < Ko

T
|v¢||i2((0,T);£2(ﬂ)) + K/O e ||V |[Pdt;

T
2 - 2
|v¢||ﬁ2((0,T);L2(ﬂ))+A/O e ||Vur||dt.

From Lemma 4.3, and Lemma 4.2, there exists K19 = K10 (70, K1, K2, K*) such
that the bounds for P, and P, are as follows:

T q Q T T
Po = [ (|&-F|vava)ask [erofase [ erra
0 H II 0 0

T T r
+K/ 6_”||¢||2dt—|—K/ e‘rtHX”deKlo/ ¢t [[Vur|"dt,
0 0 0

/0T<(v-a) [% - %] ,vvl) dt < K

T
+K (1] Z2(0,m),c2060)) + K 11X Z2(0,m),22¢00)) + KlO/O e ||V dt.

Ps

T
OEqompexay + ¢ | 7 vl

From Lemma 4.3, Lemma 4.2 and Assumptions A2, A3, A4, B1, B2, there
exists K11 = K11 (To,Kl, K, ||Vhb||cw((0,T)~£w(Q)) , Oy, C’*) such that the bound for

/(w { 4] [g]} v) at
[ ({52 [+ 2[4} o)

T
0o ey + < [ € IvIld+ K |

Ps is as follows:

Ps

IN

K|

¢||i2((0,T);L2(Q))

FK |

T
2 - r 2
X||£2((0,T);£2(ﬂ)) —|—I\11/ e t ||V1}1|| dt
’ 0

From Assumption A2,A3, there exists K13 = Ko ( }‘I—z ) such
£22((0,T);£°(Q))

that we obtain the following upper bound on the projection error term Ps:

T T
P = / ((V0-a) 755, Vo) dt < K 19011z o,ryc20a + Kz / ¢t |V Pdt.
0 0

From Lemma 4.3, Lemma 4.2, and Assumptions A2, A3, B1, B2, there exists
K13 = K13(70, K1, K2, Cy, C*, K*) such that the bound for P7 is given by

= (rqr2 [Q]°
= L] ) )
T
- ~ (g ©Ql[q O Qq—gQ 4
A I RO
< K /Te‘” ||0||2dt+e/T€_” w|[*dt + K /Te_” |lpl|*dt

T T
+K/ e‘”||X||2dt+K13/ et ||V |[*dt.
0 0
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Term Psg is treated similarly to A4 and term Py is treated similarly to A5 if, for both,
we treat ¢ like x.

From Assumption A2, there exists K14 = K14 (||Hg||£(,0((0 T)~£°°(Q))) such that

we obtain the the following upper bound on the projection error term Pg:

T
V6’||i2((0,T);£2(ﬂ))+K14/0 e ||V ||dt.

T
Pro = / (HgV0,Vuvy)dt < K
0

From Lemma 4.2, there exists K15 = K15 (K*) and K16 = K16 (7o, K*) such that

we obtain the following bounds on P;; and on Pi5 :
T

T T
P = / (agvg,wl) dt < K/ e_”||0||2dt+K15/ et ||V || dt
0 0 0
T

T T
Py = _/ (wgvg,vvl) at < e/ e_”||1/;||2dt+K16/ et || Vo || dt.
0 0 0

Obtaining a bound on P;3 is straightforward:

T 2
0 0
7?13 = Eh/ (Va—,Vm) dt S K 8
o \ ot

v
ot
Finally, term P14 is treated similarly to A7.

T
+ 1{17/ et ||V |[*dt.
0

£2((0,7);£2(5))

Using va(-, ) :ftTe_” % (-, s)ds as the test function in (16), integrating in time

over (0,77, and using the relations above yields

T 2 T
(19) [Cemrt|| S| a2l DI+ T [ el
0 2 2 Jo
E E, [T
o [Vea(a O + 75t [t [9ualat
0

ot
_ —/OT<<%-VX> ,vw) dt — /0T<(v-x)%,vvz> dt

+f T<(V1/)'Q)%,V‘vz> ar- | (g = ), Vo)

- /OT(k % fuxt, Vo) di - /0 (g v e, Tua) dt + /0 (vealF, Tus) dt
o (Grwe) ) ace [ ([f- 5 v w) o
+/0T((v-¢)%,vzvz) dt + /0T<(v-a) [% _ %] ,wz> at
+/0T(wl,,.{[%]z _ [%]2} ,wz) dt+/0T((V9-q)%,Vv2) at
+/0T(v§- { [4]" - [%r} ,wz) dt—{—/oT((be 1), V) dt

T T T _
+/ (ke x fob, Vo) dt—i—/ (HgVo,Vv) dt+/ (9gV€,V’Ug) dt
0 0 0
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T _ T/ g T
_/ (d;gVé’,va) dt + Eh/ <Va, Vv2> dt +/ (0calF,Vus) dt
0 0 0
= (At +F)+ (Pt +Pn).

The terms on the right-hand side of the inequality are handled as in (18). Note
that term A differs from .4 by one term. From Assumptions A2, A9, there exists
K15 = K158 (C*) such that the the upper bound on .4 is as follows

T

T T
As = —/ (g V4, Vus) dtge/ e_”||V1/;||2dt—|—K18/ et || V| [*dt.
0 0 0

4.1.3. Bounding the CME Error Equation. Using w = x as the test func-
tion in (17) followed by integration in time over (0, 7], yields

1 2 2
(20) EHX(: T)“2 + Ep ||VX||,C2((0,T);L2(Q)) + ||v Tof X| |£2((0,T);Lz(ﬂ):)

[ ((85) ) o [ [ (-0

- /0 11V, x) dt + / “(eal, ) di

o f () s [ ([~ 5] wax) o

[ (wot >dt+/ (v [~ F] )
/OT(Vhb { [%r}x) dt+/0T((ve 9) 77 x) dt

L () o) e

0 by (14)
T T _
+/ (k x fedb, x) dt+/ (HgVo,x) dt+/ (ﬁgvé’,x) dt
0 0 0

+

T

_/OT(d;gV,g, X) dt + E, /OT(Vqﬁ, Vx) dt—I—/o (OcalF, x) dt
= (D + A+ A) + (B+ Fz) + (Pr+- +P7) + (Pot o+ Pua)

The terms on the right-hand side of the inequality are handled as in (18). Again,

observe that term ZE differs from .As by one component and is thus treated similarly
to Ag in (19). Also, the treatment of term P;3 differs slightly from the treatment of
the corresponding terms in the previous equations:

T
Pis = Eh/O (Ve V) dt < Ko [[Vl[2a(qo,my,e2(0)) + € IV X Z2((0,0)5020) -
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4.1.4. Bounding the Sum of the Error Equations. We observe that the
right-hand-side of (18) can be bounded by

T T T
(21) e/ e_”||1/;||2dt—|—e/ e‘”||V1/;||2dt—|—Kv1/ et || Vo ||Pdt + K
0 0 0

X220, 7y.c2(2))

2 Al - 2
Fel VX z20,myc20)) + K N0lz20,1yc200)) + K NVOz20,1:02(0))

a01)*

+ K
£2((0,1;£2(52))

Dllz2omyexcay + K NV Zago,ryc2))

where K,, = K,, (K1,...,K17).

The right-hand-side of (19) can be bounded by

T T T
(22) e/ e_”||1/;||2dt—|—e/ e_”||V1/;||2dt—|—Kv2/ e || Vuo|[Pdt + K
0 0 0

2
X2 0,7y c2())

; 2 a2 - 2
+E Vxllz2(0,y02)) + K N0l z2 00 1y5220)) + K VO 2200, 1y,0202)
o0 S - 2
K| Vo + K 1@llz2(0,m)c2(00) T KNV 20,1020
£2((0,17);£2())
where [(1)2 = I(UQ (I{l, ey [(6; I(g, ceey 1{18) .

Finally, the right-hand-side of (20) can be bounded by

T T T
(23) e / Pt + e / e~ |Vl |dt + Kup / et |xllat
0 0 0

- 2 2 - 2
FE Ixllz2 (0 7y,0200)) T € NVX 200, 7y,2200)) + K N0 z2(00 7y,02000))
+K

2 - 2 - 2
IVl 22 0,my0200)) T K NDlz2c0,m)c200)) + KNV Olz201):0200))
where [{w = [{w (1{1, ceey ]{4, [{8; ceey [{16; [{18, ]{19) .

Now choose r = max {2K,, /7«,2K,,/Er} , such that

ry = (r%k — KUI) >0

E
ry = <r7h - I{v2> > 0.

Then, summing (18), (19), and (20), using the above choice for r, and using
bounds (21), (22), and (23) yields

and

Iy

2

r(r, +1 T _ To +1 _
ey Tt [ertppacs (2) e e P
’ 2 2 2
[ e Iveltacs 3 v o
0
| S S ——

T 2
_|_/ 6—rt ad}
0
A

— || dt
ar|| ¢
Eh 2 ’ rt 2 ’ rt 2
+ - [[Vva (e, 0)||" +r1 ™ ||[Vor||7dt 474 e || Vsl dt
. , 0 0
B c D
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1 2 2 En 2
+§ ||X('a T)” + ||V Tof X| |£2((0,T);£2(Q)) + 7 ||VX||£2((0,T);LQ(Q))

a01)*

- 2 - 2 -
< KNl0lz2(0,ry5e2(y) + BNV O z2(o, 2y + K ||Vgy

£2((0,17);£2())
- 2 - 2 - 2
+E Dl z2¢0,m),0200)) T KNV z2¢(0,m),0200)) + K20 XN 2200, 1),0202)
where Ko = Kye'l + K.

From (24), we have
(25)  [Ix(-,T)II” < 2K |

2 . 2
9||L2((0,T);£2(n)) + 2K ||V9||L2((0,T);£2(n))
2

V% + 2K
£2((0,T);£2())

+2K

|¢||i2((0,T);£2(ﬂ))

+2K |

2 - 2
vqs”ﬁz((oj);gz(g)) + 2Ky ||X||£2((0,T);L2(Q)) :

Applying Gronwall’s Lemma to (25) yields
(26)  [x(. DI < 2Kz {K

2
0112200 7y200 ()

o8
ot

2

+K ||V

+ K ||¢||i2((O,T);H1(Q))} :

£2((0,T);£2(52))

where Ky = 2207

We now return to (24) to bound it above and below. Let 31 = min{E}, r(7,+1)},
observe that terms A, B, C, D are all non-negative, and use (26) to obtain,

oy ||?

2
(o + DIl DI +2 |2

2
Tt b1 ||1/’||L2((0,T);H1(n))
L£2((0,T);£2(2))

2
+1x( DI + 2 ||v/7er x| |£2((0,T);L2(ﬂ)) + En “vX”iQ((O,T);ﬁ?(ﬂ))]

S (1+2K0KnK)K {||9||iz((o,T);H1(n))

1
(27) 56—”

2

90
* HVE + ”¢||i2<<o,T);w<m>} :

£2((0,7);£2(51))

Now, letting x = min{ (7, +1),2, 31,1, Ex} and multiplying through by 2¢"
we obtain

@) eI+ | 5

2

+ 181122 co.my701 (a2
£2((0,17);£2())

2 2 2
+ ||X(', T)H + ||\/be X| |£2((0,T);£2(Q)) + ||vX||L‘2((0,T);£2(Q))
2

2
+ ||¢||Lz((0,T);H1(Q))}

- 2 o0
= {”lgllp((o’m;w(m) i HVE £2((0,T);£2(%2))

T -
with Ko = 2 (1+2i2”K21K)K. Observe that K5, depends on 7, s1,7,and on K*, C,, C*.

Use the approximation result stated in Lemma 4.1,

06
v
ot

) ||¢||£2((0,T);’H1(Q)) S I(th—l’

1011 z2¢c0 7y 72 (2)) »
(omea) £2((0,7);,£2(0))
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to obtain

+ 1120y )
£2((0,7);£2(1))

(29) (. Tl + Haa_if

+ ||X(7T)|| + ||\/ Tof X| |£2((0,T);£2(Q)) + ||vX||L2((0,T);L2(Q)) S [(23hz_1

where [(23 ~ ](0\/ [{22.

Finally, applying the triangle inequality to the projection error and to the affine
error (29) yields the following error estimate.

THEOREM 4.4 (A Priori ERROR ESTIMATE). Let 0<sg<k, sg<€<s;, 0<
k< (s1—1), and let H = HEQ) N HYQ). Let (§,q) be the solution to (5)-(7).
Let (E,Q) be the Galerkin approzimations to (¢,q). If £(t) € H(Q) N WL (Q),,
q(t) € H(Q) N WL (Q), for each t; if E(t) € S*(Q), Q(t) € S"(Q) for each t;
and suppose that assumptions A2-A10 and B1, B2 hold; then, 3 a constant K =
K(T,s1,r, K*,Cy,C*) such that

0
Lie—= —B)(-,T — Bl s s
(30) H@t (€-E) P + 1 E=E)C D)+ 116 = Ell 20,7200 ()

+11(a= QG 1 +VA7(a = Dl c2o.y.c2a)
+ ||vq - vQ”ﬁQ((O’T);L:?(Q)) S I_\/rhz_l.

Moreover, for h sufficiently small and sy > 3 then
[1E] coo (0,720 (02)) F 1@l coo ((0,7):000 () < 2K7 < C7,
and H,
= > > > C,.

Thus, the dependence of K on C,,C* is removed.
4.1.5. Boundedness of Approximations. The proof of the theorem is now
complete in the case of linears since we assumed that B1, B2 holds for this case.

We now complete the proof of the theorem in the case of at least quadratic
polynomials (s; > 3).

From the inverse assumptions, the boundedness of the £? projection and affine
error estimate (29), we obtain

1Qll ooy < 11Q =@l oo o ry;e000)) T @l zoo0,1),20(02))
Koh™ 1Q = @ll oo 0.7y 200y + K
Koh™'Ky3h ' + K*

Kosh* =2 + K*

IN A

For h sufficiently small, viz, h*~2 < II((—M, we get

2 ¥ *
||Q||,C°°((07T);L:oo(ﬂ)) <2K* < (C*.
The upper bound for II(x,t) is shown similarly.

To get the lower bound for II(#,t), use Assumption A2, inverse assumptions, and
estimates on the affine and projection errors.

0O = H-(H-M=H-0+%¢
> H, — Kosh* ™2
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Hy

For h sufficiently,small, viz. h*~2 < T on

, we get

H,
I>—>C,.
2
Thus for the case of quadratics and higher, there exists a K bounded above
independent of C*, C\.
This completes the proof of the theorem.

5. Conclusions. We have analyzed a full nonlinear coupled GWCE-CME sys-
tem of equations. Making physically-realistic assumptions, we derived an « priori error
estimate for the Galerkin finite element approximation to the solution of GWCE-CME
system of equations, in weak form, by using an £? projection. This led to a subop-
timal estimate. That is, if we use continuous, piecewise polynomials of degree s; — 1
to approximate the elevation and velocity unknowns on a mesh with grid-spacing h,
then the approximations tend to the solutions of the weak form like A*1~!. To our
knowledge, our error analysis of a system of shallow water equations is the first of its

kind.
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A. Review of Tensor Notation. Let ¢, € IR%.
The dyadic product is defined as (¢);; = @;9;. Thus,

2
p? = ( ’50’1 50’15202 )
P21 #3
The dot product of a tensor with a vector is the usual matrix-vector multiplication
result [M-w]; = 32, M;jw;.
The scalar product (or double-dot product) of two tensors is defined as S:7' =
25 ST

The gradient of a vector is defined as {Vy};; = 9¢i For example,

ox;
9p1  Opa
Oz dxq
\v =
¥ dp1  Op2
dxo dxo

The divergence of a tensor is defined as [V-S]; = 3, 52-S;;. Thus,

i Ox;

62‘:91 + 62‘,91

2 2 A\«
vvcp _ oz dz3 _ ¥1
P | 0% Ay
a3 a2

2 2 2 2
Observe that (Vy:Ve) = (6%1901) + (65’72901) + ((3%@2) + (6%2902) and
2 2 2 2
that V+(V-¢?) = aa—xfs'o‘rf + acsas (P201) + gragar (P192) + aa—xg@%

REFERENCES

[1] R. A. Apawms, Sobolev Spaces, vol. 65 of Pure and Applied Mathematics, Academic Press, New
York, 1978.

[2] V. 1. AcosHkov, E. OVCHINNIKOV, A. QUARTERONI, AND F. SALERI, Modified finite element
approzimation to shallow water equations and stability results, in Finite Elements in Fluids:
New Trends and Applications, K. Morgan, E. Onate, J. Periaux, J. Peraire, and O. C.
Zienkiewicz, eds., Centro Internacional de Métodos Numéricos en Ingenieria, Wales, 1993,
Pineridge Press, pp. 1020-1025.

, Recent developments in the numerical simulation of shallow water equations II: Tem-
poral discretization, Mathematical Models and Methods in Applied Sciences, 4 (1994),
Pp. 533-556.

[4] V. I. AcosHkov, A. QUARTERONI, AND F. SALERI, Recent developments in the numerical
stmulation of shallow water equations I: Boundary conditions, Applied Numerical Mathe-
matics, 15 (1994), pp. 175-200.

[5] S. C. BRENNER AND L. R. ScoTT, The Mathematical Theory of Element Methods, vol. 15 of
Texts in Applied Mathematics, Springer-Verlag, New York, 1994.

[6] J. DroLET AND W. G. GRAY, On the well-posedness of some wave formulations of the shallow
water equations, Advances in Water Resources, 11 (1988), pp. 84-91.

[7] R. E. EwiNeg AND M. F. WHEELER, Galerkin methods for miscible displacement problems in
porous media, SIAM Journal of Numerical Analysis, 17 (1980), pp. 351-365.

[8] M. G. G. FOREMAN, An analysis of the “wave equation model” for finite element tidal com-
putations, Computational Physics, 52 (1983), pp. 290-312.

[9] , A comparison of tidal models for the southwest coast of Vancouver Island, in Compu-

(3]

tational Methods in Water Resources: Proceedings of the VII International Conference,
MIT, USA, June 1988, M. A. C. et al, ed., Amsterdam, 1988, Elsevier.

[10] W. G. GRAY, A fintte element study of tidal flow data for the North Sea and English Channel,
Advances in Water Resources, 12 (1989), pp. 143-154.



Finite Element Approximations to a System of Shallow Water Equations 21

[11] W. G. GraY, J. DROLET, AND 1. P. E. KINNMARK, A simulation of tidal flow in the southern
part of the North Sea and the English Channel, Advances in Water Resources, 10 (1987),
pp. 131-137.

[12] I. P. E. KINNMARK, The Shallow Water Wave Equations: Formulation, Analysis and Appli-
cations, vol. 15 of Lecture Notes in Engineering, Springer-Verlag, New York, 1985.

[13] R. A. LugeTTicH, J. J. WESTERINK, AND N. W. ScHEFFNER, ADCIRC: An advanced three-
dimensional circulation model for shelves, coasts, and estuaries, Tech. Report 1, Depart-
ment of the Army, U.S. Army Corps of Engineers, Washington, D.C. 20314-1000, December
1991.

[14] D. R. LyNcH AND W. G. GRrRAY, A wave equation model for fintte element tidal computations,
Computer and Fluids, 7 (1979), pp. 207-228.

[15] D. R. LyncH AND F. E. WERNER, Three-dimensional hydrodynamics on finite elements, part
II: Nonlinear time-stepping model, International Journal for Numerical Methods in Fluids,
12 (1991), pp. 507-534.

[16] D. R. LyncH, F. E. WERNER, J. M. MoLINES, AND M. FORNERINO, Tidal dynamics in a
coupled ocean/lake system, Estuarine, Coastal and Shelf Science, 31 (1990), pp. 319-343.

[17] P. W. PARTRIDGE AND C. A. BREBBIA, Quadratic finite elements in shallow water problems,
ASCE Journal of Hydraulic Engineering, 102 (1976), pp. 1299-1313.

[18] R. A. WALTERS, Numerically induced oscillations in finite element approrimations to the
shallow water equations, International Journal for Numerical Methods in Fluids, 3 (1983),
pp. 591-604.

[19] , A model for tides and currents in the English Channel and southern North Sea, Ad-
vances in Water Resources, 10 (1987), pp. 138-148.
[20] , A finite element model for tides and currents with field applications, Communications

in Numerical Methods in Engineering, 4 (1988), pp. 401-441.

[21] R. A. WALTERsS AND F. E. WERNER, A comparison of two finite element models of tidal hydro-
dynamics using a North Sea data set, Advancesin Water Resources, 12 (1989), pp. 184-193.

[22] J. D. WaNG AND J. J. CONNOR, Mathematical modeling of near coastal circulation, Tech.
Report 200, MIT Parsons Laboratory, Cambridge, MA, 1975.

[23] T. WEIYAN, Shallow Water Hydrodynamics, vol. 55 of Elsevier Oceanography Series, Elsevier,
Amsterdam, 1992.

[24] F. E. WERNER AND D. R. LyNcH, Field verification of wave equation tidal dynamics in
the English Channel and southern North Sea, Advances in Water Resources, 10 (1987),
pp. 115-130.

, Harmonic structure of English Channel/Southern Bight tides from a wave equation
simulation, Advances in Water Resources, 12 (1989), pp. 121-142.

[26] J. J. WESTERINK, R. A. LUETTICH, A. M. BAPTIsTA, N. W. SCHEFFNER, AND P. FARRAR,
Tide and storm surge predictions in the Gulf of Mezico using a wave-continuity equation
finite element model, in Estuarine and Coastal Modeling: Proceedings of the 2nd Interna-
tional Conference, e. a. Malcolm L. Spaulding, ed., New York, 1992, American Society of
Civil Engineers.

(23]




