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Various sophisticated finite element models for surface water flow exist in the litera-
ture. Gray, Kolar, Luettich, Lynch and Westerink have developed a hydrodynamic
model based on the generalized wave continuity equation (GWCE) formulation,
and have formulated a Galerkin finite element procedure based on combining the
GWCE with the nonconservative momentum equations (NCME). Numerical ex-
periments suggest that this method is robust, accurate and suppresses spurious
oscillations which plague other models.

A simulator developed by Westerink et al, based on the GWCE-NCME for-
mulation, has been parallelized to run on distributed memory parallel platforms.
Speed-up efficiencies on clusters of workstations as well as on the Intel Paragon
are presented.

We have analyzed a slightly modified Galerkin model which uses the conserva-
tive momentum equations (CME). For this GWCE-CME system of equations, we
present an a prior: error estimate.



1 Introduction

In recent years, there has been much interest in the numerical solution to
shallow water equations. Simulation of shallow water systems can serve nu-
merous purposes, including modeling tidal fluctuations and computing tidal
ranges and surges such as tsunamis and hurricanes. The shallow water hy-
drodynamic model can also be coupled to a transport model in considering
flow and transport phenomenon, thus making it possible, for example, to
study remediation options for polluted bays and estuaries.

The 2-dimensional shallow water equations are obtained by depth av-
eraging of the continuum mass and momentum balances given by the 3-
dimensional incompressible Navier-Stokes equations. We denote by (@, 1)
the free surface elevation over a reference plane and by hy(@) the bathymet-
ric depth under that reference plane so that H(«,t) = £+ h; is the total water
column. Also, we denote by U(e,t), V(x,t) the depth-averaged horizontal
velocities. Letting v = (UH, VH)T, the 2-dimensional governing equations,
in operator form [2], are the primitive continuity equation (CE)

CE(, U, Vihy) = %—I-V-v:(),

and the primitive non-conservative momentum equations (NCME) [4],

s = )+ ) oo () o4 )
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where ® = (hy, 77, fo, 9, Eny Tws, Payn). In particular, 7¢(¢, U, V) is a bot-
tom friction function, k& is a unit vector in the vertical direction, f. is the
Coriolis parameter, g is acceleration due to gravity, £} is the horizontal
eddy diffusion/dispersion (constant) coefficient, 7, is the applied free sur-
face wind stress relative to the reference density of water, p,(@,t) is the
atmospheric pressure at the free surface relative to the reference density of
water, and n(@,t) is the Newtonian equilibrium tide potential relative to
the effective Earth elasticity factor. The primitive conservative momentum

equations (CME) are derived from the NCME as
CME = H(NCME) + v(CE)/H = 0.

The numerical procedure used to solve the shallow water equations must
resolve the physics of the problem without introducing spurious oscillations
or excessive numerical diffusion. Westerink et al note a need for greater
grid refinement near land boundaries to resolve important processes and to
prevent energy from aliasing. Permitting a high degree of grid flexibility, the
finite element method is a good candidate.

There has been substantial effort over the past two decades in applying
finite element methods to the CE coupled with either the NCME or the



CME, see [1] for a discussion of much of this prior work. Early finite element
simulations of shallow water systems were plagued by spurious oscillations.
Various methods were introduced to eliminate these oscillations through arti-
ficial diffusion. In this paper, we will examine a finite element approximation
to a modified shallow water model described below. Computational and ex-
perimental evidence in the literature suggest that this formulation leads to
approximate solutions with reduced oscillations. Moreover, these approxi-
mate solutions have accurately matched actual tidal data. This modified
shallow water model is based on a reformulation of the CE.

The generalized wave continuity equation (GWCE) [2] is an extension of
the wave continuity equation derived by Lynch and Gray [3]. It is derived
by
Jd(CE)

ot
where 7, is a time-independent positive constant. The GWCE can be coupled
to the CME or to the NCME. This formulation has led to the development
of robust finite element algorithms for depth-integrated coastal circulation
models. A finite element simulator (ADCIRC) based on the GWCE-NCME
has been developed by Luettich, et al [4].

Recently, we have derived an a prior: error estimate for a finite element
approximation to the GWCE-CME formulation, assuming equal order poly-

GWCE(¢,U,V;0) = — V+(CME) + 7,(CE) = 0,

nomial approximating spaces for elevation and velocities. We have also par-
allelized the ADCIRC simulator for distributed-memory parallel platforms.
The results of this work are summarized in this paper.

The rest of the paper is outlined as follows. In section 2, we introduce
the weak formulation associated with the GWCE-CME systems of equations
and summarize, in a theorem, the results of our error analysis. In section
3, we discuss the the numerical approximation strategy taken in ADCIRC
to solve the GWCE-NCME system of equations. A parallelized versions of
ADCIRC has been developed, and is referred to as PADCIRC. In section
4, numerical results for PADCIRC are discussed. Finally, we conclude with
closing remarks and future directions in Section 5.

2 A Priori Error Estimate for the GWCE-
CME Formulation

For the a priori error estimate analysis, we consider the coupled system given
by the GWCE-CME with, for simplicity, homogeneous Dirichlet boundary
conditions

(e, t)=0, U(e,t)=0,V(x,t)=0, xe€d t>0, (1)
and with the compatible initial conditions

f@.0) =&(e), F@0=bl) |, g |
U(z,0) = Us(x), V(x,0)=Vy(x), } € Q, (2)



where 9Q is the boundary of @ C IR? and Q = Q U 9. Extensions to
more general land and sea boundary conditions will be treated in a later
paper. As noted in Kinnmark [2], the condition necessary for the solution of
the GWCE-CME system of equations to be the same as the solution of the
primitive form is

L(z) = —Veu(x,0).

We denote by H*(Q) and HE(f2) the standard Sobolev spaces. Denote by
(¢, <) the usual Lebesgue integral over © of the dot product of functions ¢
and c¢.

The weak form of this system is the following: For ¢t € (0,71, find {(@,t) €
HY(D) and v(x,t) € Hy() satisfying

(g—if,v) + 7 (%,v) + <V- {%’UZ} ,Vv) + ((1p5 — 70)v, V)

+ (k x fov, Vo) + (HgVE Vo) + Fy (V%, V'v)

— (Tws, VU) + (HVp,, Vo) — (HgVn, Vo) =0, Vo e H{(Q),t > 3)

(aa_";’w) + (V- {%Uz} 7w> + (msv,w) + (k x fov,w)

+ (HgVE w) + Ep (Vou, Vw) — (15, w)
+(HVpa,w) — (HgVny,w) = 0, Vw € Hy(Q),t >0, (4)

with initial conditions

(f(zc,()),v) = (fo(w)vv)v Vv € H(IJ(Q)v
(% 513,0),'0) = (‘51(33)7 v), VYve H(IJ(Q)v (5)
(v(z,0),w) = (vo(®),w), Yw € H(N),

where vy = (Ho Uy, HOVO)T. Here we have used tensor notation.

The result stated below is proved in [1]. Details on the assumptions
needed in the proof can be found there, in particular, we assume for (&,t) €
Q0 x (0,7] that the solutions (£, v) to (3)-(5) exist and are unique. Fur-
thermore, we make physically reasonable assumptions about the elevation
and velocity solutions and on the force terms. We also make smoothness
assumptions on the initial data.

Let 8" denote a finite dimensional subspace of H}(€) (defined on a tri-
angulation of  into elements whose maximum diameter is k) consisting of
piecewise polynomials of degree k& — 1. Define H(Q) = HL(Q) N HY(Q), and
assume S" satisfies the standard approximation property and an inverse as-
sumption.



Theorem 1 (A Priori Error Estimate in Continuous Time) Let 0 <
s<U <k, U,k >2 Let (£ v) be the solution to (3)-(5). Let (Z,7) be the
continuous-time Galerkin finite element approximations to (¢, v).
If (1) € H(Q), v(t) € H(Q) for each t, and if =(t) € SH(Q), T(¢) €
"(Q) for each t, then under physically reasonable assumptions, 3 a constant

S

C =C(T,k) such that
— d - —

I €=2).1) l1+]| e -2 +1IE = Zles ooy
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@ = X)) 410 = Tl oy < Ch

3 A GWCE-NCME Simulator

The Advanced Circulation Model ADCIRC uses continuous, piecewise linear
triangular elements for ¢, U, V in the finite element spatial discretization.

Westerink et al chose to discretize the GWCE in time using a three-level
implicit scheme for linear terms with explicit treatment of non-linear terms.
A global (time-dependent) linear system results at each time step.

The NCME are discretized in time using Crank-Nicolson, except that
diffusive terms are handled with a two-level implicit scheme and advective
terms are treated explicitly. A diagonal linear system results at each time
step.

Consequently, the GWCE-CME is decoupled. That is, the GWCE is
solved first for elevation £&. Then the NCME is solved for velocities U,V
using updated values of £. Initial and boundary conditions are applied as
follows. At land boundaries, normal flux is specified. At open (ocean or
river) boundaries, free surface elevation is specified, a discharge is specified,
or a radiation boundary condition is used to allow waves to enter or exit
domain.

A grid generation package is used to provide an efficient triangular mesh
which fits the domain and refines the mesh near land boundaries to capture
steep gradient information.

The parallelized version of ADCIRC is referred to as PADCIRC. In pre-
serving the spirit of the simulator, modifications to A DCIRC were kept to a
minimum. To that end, a single program-multiple data (SPMD) approach
was taken. Specifically, a domain (data) decomposition with message-passing
was implemented. The message passing calls were needed in the Jacobi Con-
jugate Gradient routine (used in the GWCE system solve) as well as at the
end of each time step to pass elevation and velocity information.

In the parallelization of the simulator, no global arrays are used. Each
processor reads and writes its own data. A preprocessor was developed to
take a global input file and divide the triangle vertices as evenly as possible
among the processors (see Figure 1). The preprocessor also constructs local
connectivity tables and establishes inter-processor communication. Because
elements share vertices, there is roughly one layer of overlap of elements in



Figure 1: Data Decomposition over 3 processors on a grid consisting of 50

elements, 36 nodes
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Figure 2: Quarter donut harbor - fine grid: 2000 elements, 1066 nodes
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our decomposition, as indicated in Figure 1. This leads to some unnecessary
computation, but becomes negligible for larger problem sizes.

A postprocessor was developed to take output generated by each processor
and write global output files for plotting and visualization. The preprocessor
and postprocessor run on workstations.

4 Numerical Results

A series of standard test cases were run to determine the efficiency of the par-
allel code. Figures 1 — 3 show the spatial domains used in the parallelization
experiments.

For the coarse grid test case, we employed a time step size of At = 86.4sec.
with final time of 7' = 10 days. In the fine grid test case, we used At = 86.4
sec., and T' = 10 days. And finally, for the east coast grid test case, we used
At = 37.5 sec. and T' =1 day.

Table 1, shows CPU times for each computational domain on a 40 node In-
tel Paragon. The upper bound for the number of processors used in each test
case was determined by the parallel efficiency of the case being considered. In
particular, when efficiency began to decline, which inevitably happens with
a fixed problem size, further decompositions were not attempted. This phe-
nomenon suggests that employing larger domain data sets per processor will
yield improved speed-up efficiencies. For example, the coarse grid test case
was more efficient on 1 processor than on 3, because of the surface/volume



Figure 3: United States east coast grid: 18578 elements, 10147 nodes
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Table 1: CPU times on the Intel Paragon (in minutes)

Number of Processors
1 3 4 10 20 30
Coarse grid 5.5 6.3 - - - _

Fine grid 84.0 - 276 16.5 - -
East Coast | 755.0 - 55.5 275 16.35 13.5
Here, -7 signifies test not actualized.

ratio of the domains and the amount of message passing relative to compu-
tation on each processor.

In the test case of Figure 2, we see a speed-up of 3.04 on 4 processors
and a speed-up of 5.09 on 10 processors. Optimal speed-up factors would be
4 and 10, respectively. These results indicate again that as the number of
processors increases for a fixed problem size, the speed-up factor eventually
decreases.

The CPU time for 1 processor in the east coast test case actually is the
CPU time on a CRAY Y-MP. Due to memory limitations it was difficult to
run the simulator on 1 processor on the Intel Paragon. The minimum number
of processors from which speed-up could be measured was 4 processors. We
see speed-ups (relative to 4 processors) of 2.16, 3.39, and 4.11 on 10, 20 and
30 processors, respectively. Optimal speed-up factors would be 2.5, 5 and
7.5.

Table 2 shows, for the fine grid test case, the definite advantage of the
parallelized simulator over the sequential simulator on a network of worksta-
tions. We observed a speed-up of 2.68 in using 4 processors over 1 processor.
The use of 10 processors did not yield additional speed-up, but this number
is highly dependent on network traffic at the time the simulation is being
performed.



Table 2: CPU times on a Cluster of Sun Workstations (in minutes)

Number of Processors
1 4 10
Fine grid | 138.0 51.4 51.1

5 Conclusions

In conclusion, analysis and parallelization of an existing shallow water simu-
lator has been completed. The parallelized simulator shows great promise for
solving larger data sets than ever attempted before in a reasonable amount
of time. The authors are currently working on various projects extending
this research. Included in this effort is the development of an a priori error
estimate for the GWCE-CME formulation in discrete time. Additionally, the
authors are developing numerical algorithms for solving the shallow water
equations based on the primitive formulation.
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