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RECOVERING GRID-POINT VALUES WITHOUT GIBBS OSCILLATIONS
IN TWO DIMENSIONAL DOMAINS ON THE SPHERE !

Anne Gelb? and Antonio Navarra?

Abstract

Spectral methods using spherical harmonic basis functions have proven to be very
effective in geophysical and astrophysical simulations. It is an unfortunate fact, how-
ever, that spurious oscillations, known as the Gibbs phenomenon, contaminate these
spectral solutions, particularly in regions where discontinuities or steep gradients occur.
They are also apparent in the polar regions even when considering analytical periodic
functions.

These undesirable artificial oscillations have been the topic of several recent articles
[8],[17],[19]. Navarra et.al. [19] alleviates the problem by employing various filters in
one and two dimensions. Lindberg and Broccoli [17] implement a nonuniform spherical
smoothing spline and zonal filtering, while Gelb [8] applies the Gegenbauer method [13]
in the latitudinal direction for fixed longitudinal coordinates.

Since the physical problems solved on spheres often involve discontinuities or steep
gradients in the longitudinal direction, and since spherical harmonic spectral methods
always introduce oscillations in the polar regions, it is clear that an ideal numerical
method should incorporate the removal of the Gibbs phenomenon in both directions,
as suggested in both [17] and [19]. This paper offers a two-dimensional approach to
the problem by simultaneously applying the Gegenbauer method in both directions.
Assuming only the knowledge of the first (N + 1)2 spherical harmonic coefficients, we
prove an ezponentially convergent approximation to a piecewise smooth function in
regions composed of arbitrary rectangles for which the function is continuous, thereby
entirely removing the Gibbs phenomenon.
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1 Introduction

Spectral methods using the two-dimensional spherical harmonic basis set provide the most
natural way of solving problems that occur on spheres and offer many advantages over
finite difference methods [4],[15] and [20]. Weather forecasts are now routinely performed
by using spectral models that solve the atmospheric equation of motion which includes all
the intricacies of the complex radiative and thermo-dynamical forcing processes. The core
of the algorithm is the pseudo-spectral method [20]. Spectral models have also proven to be
quite capable of simulating the long range behavior of the climate system [18]. In this latter
application, spectral models describe the circulation of the atmosphere component and they
are coupled with ocean models of various complexity, such as sea-ice models and biosphere
subsystems of various kinds. Spectral models have proven to be very robust, accurate, and
flexible for this class of problems [5].

However, the spherical transform involved in the pseudo-spectral method generally used
in these applications is not exempt from the Gibbs phenomenon. The particular formulation
of several models require a transform of the surface mountains that represent a bottom
boundary condition for the equations of motion. The resolution used is usually not sufficient
to properly resolve steep gradients. The Gibbs waves, visible in the model mountains field
as a series of altitude oscillations over the oceans, are especially prominent in the vicinity of
sharp mountain ridges like the Andes or, to a lesser extent, the Himalayas.

Early investigators were well aware of the presence of these waves, but they were con-
sidered a minor problem, or something that could be easily alleviated by compensating the
surface temperature in some way. However in the case of an atmospheric model coupled
to an ocean model the error causes large consequences. In this case, the wind’s spurious
oscillations in the mountain field caused by the Gibbs error interacts with the ocean in a
nonlinear feedback, thereby intensifying the error. Thus it is particularly important to have
an algorithm that recovers the grid-point values of the field of interest with better accuracy,

i.e. without Gibbs oscillations.



To formulate the problem mathematically, we define the spherical harmonic spectral
expansion of a function f(6, ¢) with colatitude coordinate 6 € [0, 7| and longitude coordinate

¢ € [0,27] as

Definition 1.1

[0.6)=3 3 av¥(6,9) (1.1)

9=0 |v|<q

where the spherical harmonic Y;;’(Q, ¢) of degree q and order v is

(2 +1)(g —v)! ”
PV w
g+ )] . (cosf)e

Y;]V(ea ¢) = J

in terms of the associate Legendre functions Py (cosf) [6].

The orthonormality of the spherical harmonics Y(6,¢) over the sphere imply that the

coeflicients a; are given by

0! = / 2” / " 10, 6)[Y (0, 6)]" sin 0d6do, (1.2)
0 0

where [Y”(0, ¢)|* are the complex conjugates of Y,’(0, ¢).
The truncated spectral representation of f(6, @) used in the spectral models is
N
gn(0,0) =" > ay¥[(0,9). (1.3)
4=0|v|<q

Lemma 1.1 If (0, ¢) is infinitely differentiable, then gy (6, ¢) converges spectrally to f (6, ¢).

The proof of this lemma is presented in [20].

It is an unfortunate fact that the truncated sum (1.3) will yield poor results if f(6, ¢)
is discontinuous (or in this case where the steep gradients are not properly resolved), by
introducing spurious oscillations in the regions of the discontinuities. These artificial ripples,
known as the Gibbs phenomenon, will eventually contaminate the solution over the entire

sphere. It has also been noticed [17] that a Gibbs-like phenomenon is evident in the polar



regions, regardless of the analycity of f(6, ¢). This is due to nature of the associated Legendre
functions, and the error is amplified with increased latitudinal resolution.

Attempts made to reduce the effect of the Gibbs phenomenon have met with some success.
Navarra et.al. [19] employs one and two-dimensional filtering to remove the phenomenon,
while Lindberg and Broccoli [17] implement a nonuniform spherical smoothing spline in
conjunction with zonal filtering. One major drawback in utilizing filters is the possibility of
losing the finer features of a function along with the Gibbs phenomenon, thereby reducing
the overall accuracy.

The Gegenbauer method, [8], [9], [11], [12], [13], enables exponential convergence for
piecewise smooth functions, assuming knowledge of their spectral coefficients. This paper
presents an algorithm to eliminate the Gibbs oscillations in a region composed of arbitrary
rectangles on the sphere by combining the method in [11] to the longitudinal direction and
the method in [8] to the latitudinal direction. We confirm that the first (N + 1)? spherical
harmonic coefficients contain enough information to reconstruct a spectrally accurate ap-
proximation to a piecewise analytic function. The results shows that grid-point values free
of Gibbs oscillations can be obtained in arbitrary regions on the sphere with a robust and
flexible algorithm. The procedure consists of the same two steps that were originally created

in [11]:

1. The two-dimensional Gegenbauer expansion coefficients are approximated using
the first (N + 1)2 spherical harmonic coefficients, ay. Exponential accuracy for
these approximated Gegenbauer coefficients is attainable for any L; function as
long as the Gegenbauer parameters meet certain requirements. The error incurred

at this stage is called the truncation error, and is investigated in Section 3.

2. The exponential convergence of the Gegenbauer expansion partial sum to a piece-
wise analytic function in a continuous subinterval has been previously established
in [11] and [12]. The error at this stage is labeled the regularization error and the

results are quoted in Section 4.



The combination of these two errors is the total error between the piecewise analytic function
and the Gegenbauer approximation. Section 5 includes a numerical example to illustrate our
results. Section 2 contains the properties of Gegenbauer polynomials necessary in proving
the exponential accuracy of the Gegenbauer method.

Throughout this paper, A denotes a generic constant or at most a polynomial in the

growing parameters, as is indicated in the text.

2 Preliminaries

2.1 Gegenbauer polynomials

This section contains some useful results about the Gegenbauer polynomials previously com-

piled in [13]. The standardization comes from Bateman [3].

Definition 2.1 The Gegenbauer polynomial C)(z), for X > 0, is defined by

n

(1—22) 20N x) = G(), n)(;‘i—n [(1— 2?2 3] (2.1)

where G(\,n) is given by

(=1)"T(A + 3)T(n+2))

Gn) = T T (n T A % 0 (22)
Formula (2.1) is also called the Rodrigues’ formula [1, page 175].
Under this definition, for A > 0,
A1) = M (2.3)
" ni'(2))
and
Q@) -1<o<l. (2.4

The Gegenbauer polynomials are orthogonal under the weight function (1 — :1:2))‘_%, thus

1 1
/ (1 — 2230 @) CMx)da = Gy nh?, (2.5)
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where, for A > 0,
T(A+1)
CA)(n+ )

The approximation of the Gegenbauer polynomials for large n and ) is dependent upon

R =r2C2(1) (2.6)

the well-known Stirling’s formula for I'(x) given by
(27r)%xw+%efw <T(z+1) < (2%)%x‘”+%e%el2m, x> 1. (2.7)

Lemma 2.1 There exists a constant A independent of A and n such that

A2 A2
AT CM1)<h)< A Ch(1 2.8
S Ch) < ) < A eh) (2.9
The proof follows from (2.6) and the Stirling’s formula (2.7).
O

The following lemma to be used later is easily obtained from the Rodrigues’ formula (2.1).

Lemma 2.2 For any A > 1

G(\,n)
A=1,n+1)

Lla-aicaE)] = (1 - o) 3O w). (2.9

X

The proof follows from taking the derivative on both sides of the Rodrigues’ formula

(2.1), and then using it again on the right hand side.

O
The following formula [1, page 176] will also be needed:
) = 5y (o O (a) — Oy () (210)
" 2(n 4+ A) ‘dg L n-l ’
which is true for all A > 0.
The associated Legendre functions are defined as
Definition 2.2
m 2\ 2 dmf)l(x)
PM(x)=(1—2%)> 0<m<I, -1<z< 1. (2.11)




Employing Rodrigues formula for P;(z), the corresponding Rodrigues formula for P/ (z)
is
1— $2)% dH—m (xQ
21 dxttm

P (z) = ( - 1), 0<m<I.

The equation (2.11) allows rapid development of many properties of the P/, particularly
the recurrence relations [14, page 1005],
for {
(—m+ 1P} — @2+ 1)zB" + (I+m)P", =0,
and for m

V1—22P" 4 2maP™ + (1 +m)(l — m+1)V1 — 2P = 0.

These equations lead to other useful relations as well, notably those used in the truncation

error proofs in Section (3).

3 Truncation Error in a subinterval

Let f(0,¢) be an L; function defined for 6 € [0,7] and ¢ € [0, 27|, such that f(6,¢) is
continuous in the subinterval 0 < ¢ < p < ¢y <271, 0< 6, <0 <0y < 7.

The spherical harmonic partial sum of f(6, ¢),

o (0.6) =3 3 v (6,0) (31)

9=0|v|<q

where the spherical harmonics Y’ (6, ¢) are defined by

Y2 (0, 9) = \l (zq;(?fy_)!”)!z);(cos 0)e? (3.2)

and Py (cosf)) are the associated Legendre functions in (2.11), are computed from the given

coefficients
2T pm .
aj= [ [" 6,0)¥7 0, ¢)]" sin6a0ds (3.3)
where [Y(0, ¢)]* denote the complex conjugates of Y/ (6, ¢).

Note that the coefficients of f(0,¢) € L, must satisfy the following assumption:

7



Assumption 3.1 |ay| < A independent of q.

Unfortunately, while gy (6, ¢) converges rapidly for continuous functions, gy (6, ¢) will
not converge fast if f(6, ¢) has any discontinuities, and furthermore spurious oscillations will
form near the discontinuities.

The goal is to accurately recover f(6,¢) for 0 in [0, 0] C [0, 7], and ¢ € [¢1, ¢po] C [0, 27]
using the spherical harmonic partial sum given in (3.1) and the Gegenbauer polynomials
defined in (2.1). Hence 6 € [0,7] , ¢ € [0,27] are transformed to &,& € [—1,1] and the

following definitions are formulated.

Definition 3.1 The local variables & and & are defined by

(&) = a&+6

92 - 01 92 + 01
€ = ’ 51 =
2 2
#(&) = €&+ 0o
¢ — ¢2;¢1, 5y = ¢2‘;¢1_ (3.4)

The Gegenbauer expansion of f(6, ¢) in the subinterval [0y, 6s], [¢1, @] is

UGS =2 X fCn(@)0 (&) (3.5)
#1=0 p2=0
where
fge = i [ 106), @) - M0 - @) ek €0k (E)dads (36)
H1 T2
and h)l, h)? are given in equation (2.6).

Of course f’\l”\2 is unknown, so it is necessary to construct the approximation

]. 1 1 1 1
= g [, [ ov0@) 0@ (1 - €)@ iO @) C @)t (57

where gy (0(&1), #(&2)) is the partial sum in (3.1) based on the transformation in definition (3.1).

>‘1”\2 approximate f FALA

The truncation error describes how well the coefficients g3 .

8



Definition 3.2 The truncation error is defined by

TE(\,Apymi,me, N) = max | 30 3 (faln? = guid) it (@0 (&) (38)
:}2221 #1=0 p2=0

where fj‘jﬁ‘; and gyi2 are defined in equations (3.6) and (3.7).

The following lemma is required to minimize T E(\1, Ao, m1, Mo, N).

Lemma 3.1

A(ms + o) (my + 201)™ M (my 4 2),)™ T2

FA1,A2 AA1,A2 A A
|( W12 gul,uz)cull(l)cuzz(l)‘ < NN—% (261)\1)/\177117”1
F(m2 + 2)\2)F(}\2) ( 2 >)\21 (3 9)
mQ'F(Z)\z) €2N ‘

for p1r < myq, ps < mg, A is a constant, and X > k > 1.

Proof
; > | Cn)ei) 2¢+1)(g—v)! , ;
|( AL, A2 g/\l,)\Q)C)\l (1)0)\2(1)| — H1 H2 auezuéz
141,442 1,2/ 1 M2 q:;—kl hl)ﬁ h’;)l; |1/|§N 47r(q + l/)! q
1 1
/_1(1 — WO (&) Py (1€ + 61)dE
1 :
[1(1 _ SS)M—%Cﬁ\g (EQ)ewezﬁzdé-Q‘ ) (310)
There is an explicit expression given in [3] for
Lot 2\A—1 ivmg ~x 2 /\~u
= / (1= PO ) dn = (Y (W—V) (4 ) S (70) (3.11)
A -

where J,, 4, (7v) is the Bessel function. Subsequently it was shown in [11] that

CX(1) g1 ) . (M2 4+ Ao)(ma + 2X)C (M) [ 2\
U2 _ 2\ Ae—5 YA weako < 12
m /_1(1 §)7 70 (&)e M dE < ma!T(2)s) <62|y\> (3.12)

for ps < ms.

In [8] it was estimated that
A ! 2\A—1 ~A
Swt = [ (01— @O Py (e6 + b)de

(g+)! (g—w*®T(g=X) |G\ p)
(g —v)! et [(q) [G(0, u+ A)|

IN
N

(3.13)



where A is a constant, A\ > x > 1, and G(A, i) is defined in (2.2). Equation (3.13) and

Stirling’s formula (2.7) imply that

(m1 —+ 2)\1)m1+2)\1 1
(26)\1))‘1m1m1 qn_%

S{;\’l LI

J (2¢ + 1)(g — v)! C21(1) (3.14)

4m(q + v)! ht
for p; < m;y.
Applying the assumption 3.1 and substituting equations (3.12), (3.13) and (3.14) into

equation (3.10) yields the desired result (3.9).

Theorem 3.1 Suppose A1 = a161N, Ao = aoeaN, mq = 11N, and my = [2eaN, where
a;, B; < 1,1 =1,2. Then the truncation error defined in (3.8) can be estimated by

N2 ((B1 + 20y H2 o
ané ( (2011)a1ﬂ1’61 )

(B + 2ap) 2202\ N
(2042€2€)a2ﬂ2ﬁ2

E(/\la/\27m17m27N) S A

(3.15)
where \; > k > 1 and A is a constant.

Proof

From the estimate (2.4) and the equations (3.9), (3.12) and (3.14) it is easy to show that

miom2 A m2 =+ )\2) (m1 -+ 2)\1)m1+2)\1 (m2 —+ 2/\2)m2+2)\2

D

TE()\l, )\2, mi, Mo, N) S max

71 §l<1 p1=0 p2—0 N&—3 (261)\1)’\1m1m1
F(mQ —+ 2)\2)F(A2) ( 2 ))\2—1 (3 16)
mQ'F(Z)\Q) 62N ) :

Simply applying Stirling’s formula (2.7) and a bit of algebra yields the estimate (3.15).

O

Thus, for Gegenbauer parameters i1, 2, A1, Ay ~ N, the truncation error converges expo-

nentially.
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4 Regularization Error

The regularization error is the difference between the Gegenbauer partial sum approximation

and the piecewise analytic function f(6, ¢) in the maximum norm.

Definition 4.1 The reqularization error is defined by

RE(M\, Xa,mi,my) =  max 1f(0(£), ¢ Z Z 3;;3;0*1 0*2(52)|. (4.1)
:1222} 11=0 p2=0

Exponential convergence was proved for the one dimension case in [11], and then extended
to include two dimensions in [9]. For brevity, we simply quote the results in the transformed
coordinates & and &;.

The following assumption and lemma are needed.

Assumption 4.1 Let f(6(&), (&) be a piecewise analytic function for —1 < & < 1
and —1 < & < 1. Then there ezists constants p1 > 1, po > 1, C(p1, p2) such that, for

every [i, (o > 0;

dntie f pia! po!

—lrél?lxgl d§ 1d€ ( (61)7¢(§2)) < C(plaiO?)E@ (42)

“1<6<1

This is a standard assumption for analytic functions [16].

Lemma 4.1 The Gegenbauer coefficient f)‘l”\2

2 as defined in equation (3.6) of an analytic

function satisfying Assumption 4.1 is bounded by

(A + 5)0(p +2)) T(Ay + DT (2 + 2Xs)
Rt (200)M T (2A0) T (11 + A+ 1) At (202)22 1 (220) T (12 + Ao + 1)
(4.3)

|f,i‘11;‘22 AC(p1, p2)

Proof
The proof follows from applying Rodrigues’ formula (2.1) and equation (2.2) to the defi-
nition of fﬁ\ll ;‘22 in (3.6) and performing integration by parts p; + s times. Then employing

assumption 4.1, equation (2.6), and the fact that Cf§(£) = 1, yields the above estimate.

11



O

The combination of Lemma 4.1 and Assumption 4.1 establishes an estimate for the reg-

ularization error in the maximum norm.

Theorem 4.1 If f(0(&1), ¢(&2)) is a piecewise analytic function satisfying Assumption 4.1,

then the regularization error defined in equation (4.1) can be bounded by

¢ T(As + DT (Mg + 1)T(my + 2M; + )T (ma + 22 + 1
RE(\1, Ao, mi, ma) < (p1, p2)T (A1 4+ 5)T (A + 5))T(my + 20 + 1)I'(mg 4+ 2X5 4+ 1)

. (4.4
- m1m22m1+m2p’1n1 png(Q/\l)F(Z\g)F(ml + /\1)F(m2 + /\2) ( )

Proof
Applying estimate (2.8) to equation (4.3) in conjunction with the fact that |C}(€)] < C (1)

for all —1 < ¢ <1 leads to the desired outcome.

O

It follows that the regularization error defined in (4.1) is ezponentially small when \; and

Ay grow linearly with m; and ms.

Theorem 4.2 If \; = yymy and Ay = yoms where v, and v are positive constant, then the

reqularization error defined in (4.1) satisfies
RE(A1, A2, m1,mo) < Aqi™ g3 (4.5)

where q;, 1 = 1,2 1s given by

G — (1 + 27;) 12 (4.6)
b2l (1 )t '

which s always less than 1. In particular, if v; = 1 and m; = B;N where 3; is a positive
constant, then

RE(/\l, /\2, my, mg) S AQ{V(]éV (47)

Bi
27
! <3zpz‘> 48

12

with




Proof

The proof follows from the application of Stirling’s formula (2.7) to the bound proved in
Theorem 4.1. Some algebra leads to equations (4.5) and (4.6), where A involves contributions
from p;, i = 1,2. The value ¢; defined in equation (4.6) is a strictly increasing function of
vi- As v; — 0o, we have ¢; — i < 1. Hence ¢; < é < 1 for all 7; > 0. Now, by substituting

in the value ; = 1 and m; = B;N the estimates in (4.7) and (4.8) are obtained.

O

Summarizing the theorems cited thus far, the following theorem states the exponential

decay of the regularization error.

Theorem 4.3 Assume that f(0(&1), $(&2)) is a piecewise analytic function for —1 < & <1

and —1 < & < 1 that satisfies Assumption 4.1. Let f,j‘ll’l’}? be the Gegenbauer coefficients

defined in equation (3.6) for 0 < py < my and 0 < ps < my. For simplicity let Ay = m; and

Ao = mag. Then
max  |f(0(&) Z Z fardeCon(&)C (&)] < Aq)Y g (4.9)
EEEh #1=0 12=0
—15¢2 >

where ¢;, i = 1,2 is defined in equation (4.8).
O

Section 3 established that the Gegenbauer coefficients can be approximated with expo-
nential convergence provided that \i,lambdas, m;, my ~ N, and Section 4 confirms that
the Gegenbauer partial sum converges exponentially to f(0(&1), #(&2)). These two pertinent

factors determine the following result.

Theorem 4.4 Consider a piecewise analytic function f(0,¢) that satisfies Assumption 4.1.
Assume we are given the spherical harmonic coefficients (3.6). Then for Ay = my = 1N

and \o = mo = (BN, we have, within a constant,

=
o
INA X

Z Z a2 OO (&) Co (&) < N (gD (@)™ + (af)N (2™ (4.10)

#1=0 p2=0

ININA

RSN
)
[

<
N
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where

To_ ((6l+2a1)ﬂ1+2a1>61

il (2a1)a1 ﬁlﬂl
9 Bo+2as \ €2
g o= (Pt - (4.11)
(200€2€)22 35

and qF and ¢F are defined in equation (4.8) for B = Bs < 22L7e

Proof
The total error of the partial Gegenbauer expansion approximation, gy (6, ¢), to the function

f(z,y), is defined as

E(Ala/\QamlaTnQaN) = o, glgl‘§92 Z Z gﬁi:ﬁgc/\l C/\2(£2)|'
1< 6< o p=0pa=0

Thus the total error is bounded by the sum of the reqularization error and the truncation

error, i.e.,
E(/\la/\25m17m27N) S max Z Z 211’2\220)‘1 0A2(§2)|
01S0S02 1 0“2 0
¢1 <P < ¢
+  max |Z Z farmzCp(€)Coe (¢ Z Z GueCat (€02 (&)
1 <0<02 =0 =0 #1=0 p2=0
¢1 << ¢

where the first term is estimated by Theorem 4.3 and the second by Theorem 3.1. This

concludes the proof.

5 Numerical Results

The following simple numerical example is provided to establish the efficacy the Gegenbauer

approximation method.

Example 5.1 Consider the function

c0s 3.20 +sin2.7¢ 7’<9§3”, ggqﬁgg

f(0,9) = { cos 1.50 sin 2¢ + cos 3.2¢ otherwise (5-1)

14
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(R« D))
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0 ™z I 3m2 0, ™
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Figure 1: (1a)The spherical harmonic partial sum approximation and the (1b)Gegenbauer
approximation in the prescribed subinterval.

s
(S=577777-==53 7z
=N
DO NN
0
0 n
s
w2 K&. :
s

0
o "o

Figure 2: (2a)The spherical harmonic partial sum approximation and the (2b)Gegenbauer
approximation for the entire globe.
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1(6.p=172)
10

f(8.9= 3104)
0.0

-0.5
05

-1.0

00
—— exact solution
—e— Gegenbauer

—=— spherical harmonic
partial sum

—— exact solution

—e— Gegenbauer

—=— spherical harmonic
partial sum

-15
o5k

-2.0
-~ ! ! ! ! !
4 w2 LZ ] 4 w2 34 ¢

Figure 3: Approximation for 6 € [T, 2] at (3a) ¢ = Z and at (3b) ¢ =0

10=3m9)
59 (8= 3174,9)

— exact solution

—e— Gegenbauer

—=— spherical harmonic
partial sum

— exact solution
—e— Gegenbauer

—=— spherical harmonic
partial sum

10|

o5k

05

0.0

-0.5

!
w2 s 3m2 ® w2 s 3m2 ®

Figure 4: Approximation for ¢ € [7, 37” at (4a) 0 = ‘%’r and at (4b) 6 = %’r
The contour plot of this example is shown in figures 1 and 2.
We used 48 latitudinal points for § C [0, 7], and 96 longitudinal points ¢ C [0, 27| with
A1 =8, Ao =4, uy =6, and up = 10. No attempt was made to optimize these parameters.
The Gibbs phenomenon clearly dominates the region for the spherical harmonic partial sum
approximation, but is completely eliminated by the Gegenbauer method! Figures 3 and 4
show the one dimensional cross sections.
One major drawback of spectral methods is that they are typically limited to boxes and
are not suited for general domains. This is true for the Gegenbauer reconstruction as well.

However since exponential accuracy is obtained for any continuous region, it can be applied

16



N

21

Figure 5: Contour plot of example 5.1 where the region that f(6,¢) is continuous is not a
simple “box”.
to boxes of any size and thus essentially cover any domain. This is not as trivial as it may
seem, as other filtering techniques [2],[7], must be applied to an entire analytic sub-domain,
since the discontinuity jump value and location are both essential in the reconstruction. Yet
they are limited to boxes as well, making them more impractical in covering general domains.
The Gegenbauer method is therefore ideal for parallel computers, and practical for “real”
problems. To demonstrate, we use the same example 5.1, only in a more generic subregion
shown in figure 5.
We simultaneously applied the Gegenbauer method in smaller boxes, as depicted in
figure 6. The results are displayed in figure 7.

Assessing the numerical convergence is difficult for the following reasons.

1. There is quite a bit of error introduced in computing the spherical harmonic coefficients,
resulting from the singularities at the poles. This is true even for continuous and

periodic functions. The Gegenbauer method requires an accurate evaluation of the

17



2|

_ 9 o0 i 2m

Figure 6: Mesh of example 5.1 where the region that f(6,$) is continuous is not a simple
“box”, we divide the problem into three different boxes and solve simultaneously.

spherical harmonic coefficients and consequently this inaccuracy affects every region

on the sphere.

2. Introducing more latitudinal points amplifies the oscillations in the spherical harmonic
coefficient partial sum approximation at the poles, which in turn affects the Gegenbauer

approximation. Thus too much resolution is an additional source of error.

3. Theoretically,  and A should grow with N, where (IV + 1)? is the number of spherical
harmonic coefficients in the triangular spherical harmonic truncation. Unfortunately,
the value of the Gegenbauer polynomials increase rapidly as the order and degree of
the Gegenbauer polynomials grow and causes computational roundoff errors for larger

m and .

One other important consideration is that this paper assumes explicit knowledge of the
discontinuity locations. If this information is ambiguous, the results may be skewed. The

Gegenbauer method works well in any analytic subinterval, but will produce Gibbs oscil-
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Figure 7: Approximation for example 5.1 in three different subregions (a) Gegenbauer re-
construction (b) Fourier partial sum

lations in a region that contains discontinuities. Therefore it is useful to have on hand a

discontinuity locator, which will be the subject of future papers.

6 Conclusion

This paper has shown that the Gegenbauer approach can be successfully applied simulta-
neously to eliminate Gibbs oscillations in both the meridional and longitudinal direction on
the sphere. The results is of great practical consequence for numerical simulations of the
atmospheric motion often carried out using spectral solution techniques. The method is
robust and flexible, the only inconvenience being that the position of the discontinuity must
be known a priori. In the case of the climate system this is not a major setback because
the main source of Gibbs errors are the surface mountains whose positions can of course be
established well in advance. Further work is under way however to develop an algorithm

that would include a discontinuity locator in the Gegenbauer approach.
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