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Abstract

In this paper we study approximation methods for analytic functions that have
been “spliced” into non-intersecting sub-domains. We assume that we are given the
first 2V + 1 Fourier coefficients for the functions in each sub-domain. The objective
is to approximate the “spliced” function in each sub-domain and then to “glue” the
approximations together in order to recover the original function in the full domain.

The Fourier partial sum approximation in each sub-domain yields poor results,
as the convergence is slow and spurious oscillations occur at the boundaries of each
sub-domain. Thus once we “glue” the sub-domain approximations back together, the
approximation for the function in the full domain will exhibit oscillations throughout
the entire domain.

Recently methods have been developed that successfully eliminate the Gibbs phe-
nomenon for analytic but non-periodic functions in one dimension. These methods
are based on the knowledge of the first 2V 4+ 1 Fourier coefficients and use either the
Gegenbauer polynomials (Gottlieb et al.) or the Bernoulli polynomials (Abarbanel,
Gottlieb, Cai et al., and Eckhoff).

We propose a way to accurately reconstruct a “spliced” function in a full domain
by extending the current methods to eliminate the Gibbs phenomenon in each non-
intersecting sub-domain and then “gluing” the approximations back together. We solve
this problem in both one and two dimensions. In the one-dimensional case we provide
two alternative options, the Bernoulli method and the Gegenbauer method, as well as
a new hybrid method, the Gegenbauer-Bernoulli method. In the two-dimensional case
we prove, for the very first time, exponential convergence of the Gegenbauer method,
and then we apply it to solve the “spliced” function problem.
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1 Introduction

Consider an analytic and periodic function f(x) defined on [a,b] that has been split into
two non-intersecting functions fi(z) and fo(z) in the sub-domains [a,c| and [c,b], where
a < ¢ < b. The functions in each sub-domain are no longer periodic. Now suppose that the

first 2NV + 1 Fourier coefficients for each sub-domain

f) = 2 [ e

cC—a

~ b —2iknx
BO) = [ 1@t

are known. The Fourier partial sum approximation to the function in each sub-domain

N
filz) = Y fik)e*™,  j=1,2 (1.1)
k=—N
yields poor results. The convergence rate of equation (1.1) for non-periodic functions is
slow with error O(+) away from the boundaries, and exhibits spurious oscillations of order
O(1) at the boundaries. This is called the Gibbs phenomenon [11]. Furthermore, summing
the approximations in each sub-domain to obtain an approximation to f(x) over the entire
domain [a, b] results in the spurious oscillations at the center point z = ¢ as well as at the
exterior boundary points x = a and x = b. Therefore, even though f(z) is smooth and
periodic on [a, b], the resulting Fourier approximation after “splicing” f(z) into different
non-intersecting sub-domains no longer converges!

Recently, methods based on the knowledge of the Fourier coefficients f (k) of a smooth
but non-periodic function f(z) in a general interval [a, b], have been developed ([1], [10], [12],
and later [7]) that successfully eliminate the Gibbs phenomenon.

Here we consider a smooth (not necessarily periodic) function f(z) in an interval [a, b|
that has been split into non-intersecting sub-domains. By extending the current theory, we
propose a way to accurately reconstruct f(x) in [a, b] by “gluing” the approximations in each
sub-domain together.

We solve this problem in both one and two dimensions. In the one-dimensional case

we provide two alternative options, the Bernoulli method, [1] and [7], and the Gegenbauer
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method, [12], as well as a new hybrid method, called the Gegenbauer-Bernoulli method. In
the two-dimensional case we prove, for the very first time, exponential convergence of the
Gegenbauer method for analytic but non-periodic two-dimensional functions. Although the
focus of this study is on spliced pictures, for simplicity we prove all of our results for the
interval [—1, 1], noting that a simple transformation leads to the same results in any general
interval. Furthermore, this study applies to any piecewise analytic function, as long as the

picture is spliced at the points of discontinuity.

2 The Bernoulli Method

2.1 The Method of Reconstruction

The objective of the Bernoulli method is to employ the Bernoulli polynomials to construct an
approximation to f(z) based on the knowledge of f (k). This method exploits the rapid decay
rate of the Fourier coefficients for smooth and periodic functions. We follow the description
in [7] closely, and refer readers there for more detail.

We begin by defining the magnitude of the jump discontinuity of f(x) and its first n

derivatives,
Ay =[P O] = [P (1), (2.1)
which leads to the following lemma.

Lemma 2.1 Let f(x) be a continuous non-periodic function. Then for |k| > 1 and any

Q>0

Q A
r __—ikmw E : e+ *Zkﬂ'l‘
Jk) =e mk 1ty / (mik) @+ ° de. (22)

The proof is given in [5] and [7].

Using the lemma above, the partial Fourier sum,

Z F(k)etm, (2.3)



can be rewritten as

Q
n(e) = wn(z) + D AVi(z),

n=0

where wy (x) is the partial sum defined as

1t Agn —ik ik
UJN(CU) = Z (_/ QA rwdx)ez T
Lo 27 (k)@Y
k#0
and V;,(x) are the Bernoulli polynomials whose Fourier coefficients satisfy

e—zlwr

N £ — - k=41+2. ...
V)i = 2(mik)n+1 ’ ’ .
(Va)e { 0 k=0

The first Bernoulli function, V4(x), is defined as
1
V) =i+, wel-L1]
and the subsequent functions V,(z) satisfy the relationship
Vol(z) = /Vn,l(x)dx, n=12,...,
where the constants of integration are determined by

1
/ Vi(2)dz = 0, n=1.2....

-1

(2.4)

(2.6)

(2.7)

(2.8)

Note that wy(z) approximates a @ + 1 times continuously differentiable function w(x)

on the interval [—1, 1], and thus the Fourier coefficients of the partial sum wy(z) decay like

O(leﬂ) as k — 4oo. It is now possible to obtain an algebraically accurate approximation

to f(z) by evaluating wy(z) and S92y A, V,(x) separately.

The algorithm of the Bernoulli method of reconstruction can be described as follows:

e Rewrite f(z) as

Q
f@) = w(z) + 3 AnVa(),

n=0

(2.9)

where w(x) is some () times continuously differentiable function in the interval [—1, 1],

A, is defined in equation (2.1), and V,(z) is defined in equations (2.6), (2.7), and (2.8).

(@ represents the total number of Bernoulli polynomials employed.
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Compute the jump functions A4, forn =0,...,Q.

e Evaluate the Fourier coefficients w(k) by equation (2.9).
. Q 5
wk) = f(k) =Y An(Va)k, k=41,£2,...
n=0
w(0) = f(0). (2.10)

Calculate the Fourier partial sum wy(z) from w(k).

Approximate f(z) by equation (2.4).
To compute A,, we define (see [7])

Cr = (f(k) — (k). (2.11)
Thus (2.10) is equivalent to the system of equations

i An(V)i = Ch. (2.12)

n=0

Since coefficients @ (k) decay like O(g7r) and the coefficients f(k) decay like O(%), for ||

large enough we can approximate

Cy ~ f(k) = Ch. (2.13)

The difference (C, — Cy) is of order O(za71), and thus the values A, in the relation (2.12)

can be estimated by the system

ZQj A,(Vi)e =Ch (2.14)

n=0

for large |k|. In [7] it is shown that the error in approximating A, is of the order O(5g2rr)-
The different options in choosing the ) + 1 values of k£ will be discussed in section 4.

w(k) is now evaluated by equation (2.10) and w(x) is consequently approximated by

N

wy(z) = k_ZNw(k)eik”. (2.15)

Finally f(z) is estimated as

Q
frn(z) =wy(z) + D AV (2).

n=0



2.2 Numerical Examples

We provide a couple of numerical examples for which we are given the first 2NV + 1 Fourier

coeflicients of the “spliced” function in each subinterval, [-1,0] and [0, 1].

Example 2.1
f(z) = ettt r€[-1,1]. (2.16)

The Gibbs phenomenon in the approximation of Example 2.1, prevalent in figure 1(a)
particularly at © = 0,+1, is a result of “splicing” f(z) into two pieces. The smooth approx-
imation (figure 1(b)) is obtained by employing the Bernoulli method with @ = 4 in each

subinterval.

Exact
101 P N -~ - ~Fourier Partial Sum 1.0~

05 - 05

Real(f(x))

00 fr

Real(f(x))
o
B
T

-0.5 ™\

-1.0

Figure 1: Approximation of f(x) = €™ by the (a) Fourier partial sum for N = 32 and (b)
Bernoulli method for N = 8 and @) = 4.

Figure 2 shows the logarithmic pointwise errors using the Bernoulli method for N = 16

with respect to @, the order of Bernoulli polynomial.

Example 2.2
oi38mz  ,il5.8ma
= —1,1]. 2.1

This more complicated example provides insight for the resolution properties of the

Bernoulli method and the Gegenbauer method (Section 3). Figure 3 shows the logarithmic
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Figure 2: Bernoulli Method pointwise convergence for Example 2.1 with respect to ) for
N = 16.

pointwise errors for N = 128. Notice that the accuracy decreases when () = 6. Unfortu-
nately, this is true even if the jump coefficients are known explicitly and system (2.14), which

may be ill-conditioned, need not be solved.

3 The Gegenbauer Method

3.1 Review of the Gegenbauer Method

The Gegenbauer method was developed in [12] where it was shown that knowledge of the
Fourier coefficients of a continuous but non-periodic function provide enough information to
recover this function with spectral accuracy, even at the boundaries.

The Gegenbauer expansion for such a function f(x), z € [—1,1] is defined as

@) =3 FACMa), (3.1)

=0



Log(Error)

Figure 3: Bernoulli Method pointwise convergence for Example 2.2 with respect to @) for
N = 128.

where fl" are the Gegenbauer coefficients based on the function f(z) defined by

fr= [ =G @ @

The Gegenbauer method is described in these two steps:

1. An exponentially accurate approximation to the first m ~ N coefficients fl)‘ in the
Gegenbauer expansion is obtained from the first 2N +1 Fourier coefficients of f(x). The
parameter A\ must grow with the number of Fourier modes for exponential convergence,

but it is possible to yield algebraic convergence for a fixed A. These approximate

coefficients, denoted ¢}, are defined as

! / (1= 22N @) fi () da, (3.2)

AN+
= h J-1
_ N £ ikTx
where fn(x) =Yy f(k)e™* ™.

2. The coefficients g} are now used in the partial Gegenbauer sum to approximate the



original function f(z) as
(@) =3 9'C (). (3-3)

There are two errors incurred here. The error between the exact Gegenbauer coefficients
and the ones obtained from the Fourier coefficients is called the truncation error, and the error
between the Gegenbauer expansion of f(x) and its approximated partial sum is known as
the regularization error. In [12], both approximations are proven to converge exponentially
in the maximum norm. Since this paper also proves the exponential convergence of the
Gegenbauer method in two dimensions, we have included an appendix that contains some

important properties of the Gegenbauer polynomials.

3.2 Numerical Results of the Gegenbauer Method

—— Exact

Gegenbauer Approximation
- - - - Gegenbauer

10
05

0.0 -

Real(f(x))
Real(f(x))

05

Figure 4: Approximation of f(z) = €™ using the Gegenbauer method for (a) N = 8 and
(b) N = 32.

For simplicity we fix A = 5, although this is not optimal, and choose m, the number of
Gegenbauer polynomials, to minimize the error at the boundaries. We assume knowledge
of the Fourier coefficients in the sub-domains [—1,0] and [0, 1] for both of the examples in
Section 2.2.

Figure 4(a) clearly shows that the Gegenbauer approximation of Example 2.1 is not well

enough resolved for N = 8. as is particularly evident at + = +1 and x = 0. However,



smooth results are obtained in figure 4(b) employing the Gegenbauer method with N = 32.
The logarithmic values of the pointwise errors for Example 2.1 when N = 8,16, 32,64 is
shown in figure 5, and the errors for Example 2.2 when N = 32,64, 128 and 256 are in figure

6. Clearly we cannot resolve the boundaries in Example 2.2 when N < 128.

Log(Error)

Figure 5: Pointwise error convergence using the Gegenbauer Method for Example 2.1 with
respect to NV for N = 8,16, 32, 64.

3.3 The Gegenbauer-Bernoulli Method

The Gegenbauer-Bernoulli Method developed here is a hybrid method combining the Gegen-
bauer and Bernoulli methods. As observed in [15], the Gegenbauer method suffers from
round-off error for a large number of Gegenbauer polynomials, m, particularly when using
the pseudo-spectral Fourier coefficients. We would like to counteract this error by resolving
the function with m as small as possible. The hybrid method suggested here involves first
pre-processing the truncated Fourier sum with the Bernoulli method, and then determining
the Gegenbauer coefficients, and finally expanding these pre-processed Gegenbauer coeffi-

cients in terms of the Gegenbauer polynomials. Again we note that the method is applied
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Figure 6: Pointwise error convergence applying the Gegenbauer Method to Example 2.2 for
N = 32,64,128 and 256.

to different sub-domains and then the results are “glued” together to approximate f(z) in

the general domain.
We rewrite f(z) as

Q
f(z) =w(z) + Z A Vi(z),

n=0
and approximate f(z) by fy(z) in the following way:

1. Solve the system of equations for the jump coefficients A,

Q . .
Z An(Vn)k = f(k)

n=0

2. Determine the coefficients w(k),



4. Compute fy(x) as

Q
fn(z) = wn(z) + D AV (2).

n=0

5. Using the Bernoulli method approximation as the pre-processed Fourier sum, we can

approximate the Gegenbauer coefficients by

-1

1 1
9 = hi? / (1 —2*)*2C)z) fn (2)dz.

6. The Gegenbauer coefficients obtained are then used in the partial Gegenbauer sum to

approximate the original function f(z).

fa(z) =2 5'Ci'(x).

NE

l

Il
)

3.4 Numerical Results of the Gegenbauer-Bernoulli method

Figure 7(a) shows the convergence rate of the Gegenbauer-Bernoulli method with respect to
@, the highest order of Bernoulli polynomials used in the approximation, for Example 2.1,
while figure 7(b) shows the convergence rate for Example 2.2. A clear improvement is made
by the Bernoulli pre-processing, although the function is still not resolved for N < 128. In
7(b), we note that the approximation does not improve after ) = 5.

Table 1 compares the numerical errors of Example 2.1 for the Bernoulli and Gegenbauer-
Bernoulli method with respect to @ and N. (The Gegenbauer method is equivalent to the
Gegenbauer-Bernoulli method with @ = 0.) To obtain an accuracy of the order 1072, we
can choose either the Bernoulli method with NV = 8 and () = 2 or the Gegenbauer-Bernoulli
method with N = 16 and Q = 1. The Bernoulli method yields an accuracy of 10=* with
N = 8, while the Gegenbauer-Bernoulli method requires N = 16. To obtain an accuracy of
1078, both methods require N > 32, while only the Gegenbauer-Bernoulli method is able
to produce an accuracy better than 107® and requires N = 64. Thus we see that if less
accuracy is required, the Bernoulli method works better with fewer points, but for greater

accuracy, we need the Gegenbauer-Bernoulli method with more points.
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Figure 7: Logarithmic pointwise errors employing the Gegenbauer-Bernoulli method for (a)
ei3.8mz

f(z) = €™ with N = 32 and (b) f(z) = <57 + €25 with N = 256. In both cases,
A=5and Q <6.

Table 2 corresponds to the convergence rate using the Bernoulli and Gegenbauer-Bernoulli
methods for Example 2.2. An accuracy of 10~* can be obtained by the Bernoulli method
for N > 32 and for N > 64, the Bernoulli method achieves an accuracy of 10~7. Clearly the
Gegenbauer-Bernoulli method does not converge for N < 128.

This table does not reflect the results for larger N, but experiments indicate that the
Gegenbauer method will suffer from round-off error for very large N due to the regulartization
error (see Section 3).

Figures 8 and 9 correspond to table 2. Figure 8 compares the maximum error convergence

rate of the Bernoulli method and the Gegenbauer-Bernoulli method with respect to () and

13



Table 1: Absolute maximum error for f(z) =e

il.47wx

(B) and the Gegenbauer-Bernoulli method (GB) with N = 16, 32, and 64

, € [—1,1], using the Bernoulli method

Q| B—8 | GB—8 | B—16 | GB—16 | B—32 | GB—32 | B—64 | GB—64
0 .81 .46 .81 14 .81 1.8E-3 .81 4.5E-4
1 | 99E-2 | 4.2E-2 | 4.5E-2 | 1.2E-2 | 2.2E-3 | 1.8E-4 | 2.1E-2 | 5.1E-6
2 | 1.6E-2 | 6.3E-2 | 3.1E-3 | 4.7E-3 | 6.9E-4 | 2.7TE-5 | 1.7E-4 | 9.8E-8
3 | 3.2E-3 | 49E-2 | 2.3E-4 | 4.5E-4 | 24E-5 | 2.1E-6 | 2.7E-6 | 2.0E-9
4 | 8.3E-4 | 5.3E-2 | 2.0E-5 | 1.5E-4 | 8.7E-7 | 3.0E-7 | 5.1E-8 | 5.2E-11
5 | 3.0E-4 | 5.2E-2 | 1.8E-6 | 5.4E-5 | 3.3E-8 | 2.0E-8 | 2.0E-7 | 1.9E-10
6 | 1.8E-4 | 5.2E-2 | 1.8E-7 | 6.1E-5 | 3.8E-8 | 3.6E-8 | 5.9E-6 | 6.6E-9

Table 2: Maximum error for Example 2.2 in the full domain [—1,1] using the Bernoulli
method (B) and the Gegenbauer-Bernoulli method with A = 5(GB) where N = 64, 128, and
256.

Q| B—32 | GB—32 | B—64 | GB—64 | B—128 | GB—128 | B—256 | GB—256
0| 9.7E-2 52 9.7E-2 | 31.7 9.7E-2 .85 9.7E-2 3.1E-3
1 | 1.3E-2 52 5.9E-3 | 31.7 2.9E-3 .85 1.4e-3 1.6E-4
2 | 3.9E-3 52 7.3E-4 | 31.7 1.6E-4 .85 3.9e-5 6.4E-6
3 | 1.8E-3 52 1.3E-4 | 31.7 1.3E-5 .85 1.5e-6 3.4E-7
4 | 9.6E-4 52 2.9E-5 | 31.7 1.3E-6 .85 4.1e-7 9.6E-8
5 | 5.7TE-4 52 6.6E-6 | 31.7 6.1E-7 .85 4.9e-5 1.3E-5
6 | 3.6E-4 52 9.0E-7 | 31.7 3.1E-5 .85 5.1e-3 1.1E-2

N, while figure 9 depicts the maximum errors convergence with respect to @) for each method

when N = 128 and N = 256.

3.5 Operational Order Comparison

Implementation costs of the Bernoulli and the Gegenbauer methods indicate that while the
Gegenbauer method is quite expensive, the Bernoulli method is trivial to compute.
Basically, the cost of the Bernoulli method is only in computing the system (2.14), which
is a @ X @ matrix solving the 2NV + 1 equations for w(k) in equation (2.12), and then finding
the Fourier partial sum for wy(z) in equation (2.15). This can be solved using the Fast

Fourier Transform (FFT) algorithm.
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Figure 8: Logarithmic maximum errors for Example 2.2 and = € [—1,1] employing (a)
Gegenbauer-Bernoulli with A = 5 and (b) Bernoulli method for N = 32,64, 128,256 and
Q@ <6.

On the other hand, the Gegenbauer method is rather expensive, where the big expense

is incurred when computing the Gegenbauer coefficients g;,

i = g3 [ (1= PO ()

This involves solving an integral for each 0 < I < m. Gauss-Labotto quadrature is necessary

in solving this integral with sufficient accuracy [6]. The Gauss-Labotto formula is given by

[ =y
where ¢ =cy =2and¢j=1for j=1,...,N—1and z; = cos(N) We therefore solve
fn(z) in equation (3.2) on the Gauss-Labotto points, and hence cannot employ the FFT.

The other minor expenses are in solving the sum (3.3)
PP
= Z 9:C (z)
1=0
and in computing the Gegenbauer polynomials C(z), which satisfy the recursive relation-

ship,
1+ 1)C’l);1(x) =2+ 1)(2)CMz) — @A+ 1= 1)C) ().

15



Bernoulli Method ® Bernoulli Method e

Gegenbauer-Bernoulli Method B Gegenbauer-Bernoulli Method B
Ry - Al
n [ ] [ ] [ ] [ ]
2+
2 ° °
= g . =
g o -3F °
w £
=3
E ° £ °
E 3} K .
3 = 4
3 g
[=2
k| ° - 4
s
4
°
N=128 ° N=256 °
-6 -
| | | | * | | | | | ® |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Order of Bernoulli Polynomial Q Order of Bernoulli Polynomial Q

Figure 9: Logarithmic maximum errors for Example 2.2, z € [—1, 1], using the Gegenbauer-
Bernoulli with A = 5 (circles) and Bernoulli method (squares) for (a) N = 128 and (b)
N = 256 for Q <6.

4 Discussion of the results for the one-dimensional “spliced”
functions

Our studies, thus far, point to some interesting observations about approximating one-
dimensional smooth functions that have been “spliced” into non-intersecting sub-domains.
It appears that the Bernoulli method yields more satisfactory results than the Gegenbauer-
Bernoulli method for these particular examples. The Bernoulli method is easier to employ
and significantly less costly than the Gegenbauer method. It also requires far fewer points
to resolve the function. It remains to be seen how much further the Bernoulli method may
still be improved, particularly for solving the system (2.14). In [8], the Q x @ system is
solved for k = N,N —1,...,N — @ + 1 and for an over-determined 2() x (Q system for
k=NN-1,...,N —2Q + 1. Much work was done in order to avoid the inevitable
ill-conditioning of the matrix in (2.14). It has been suggested in [15] (in regards to an-
other Gegenbauer-type hybrid approximation method) to use the Gegenbauer method to

obtain the jump coefficients. This will eliminate the ill-conditioning of the system (2.14)
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at the cost of requiring more points to resolve the function. In our examples we used
k=N,5,2, ..., W and obtained very good results.

Although we have discussed only simple problems, there is already a noticeable trend of
deteriorating accuracy in the Bernoulli method when both the number of Fourier coefficients
and the order of Bernoulli polynomials is increased. (See tables 1 and 2.) It is also apparent
in both Examples 2.1 and 2.2 that this deterioration happens even when the ezact jump
coefficients are explicitly known. Thus it is not only the ill-conditioning of system (2.14)
that causes inaccuracy. This may severely impact the Bernoulli method’s effectiveness when
large N and () are needed theoretically to resolve the function, and must be investigated
further.

Another consideration is that we have assumed knowledge of the jump discontinuity
locations. The Bernoulli method has been developed to locate jump discontinuities, but not
without affecting the accuracy of the approximation [7]. This is still being investigated for
the Gegenbauer method, although it has been shown in [13] that the method works well as we
approach the discontinuity. This is promising in the sense that even if only an approximate
location of the discontinuity is known, accurate (even spectral) results using the Gegenbauer
method can still be obtained.

The Gegenbauer method has another promising feature, which is the tolerance of per-
turbations in input data. Numerical experiments suggest that the Gegenbauer method still
retains high accuracy when recovering functions from noisy data. Unfortunately the Bernoulli
method does not yield such good results.

The biggest challenge facing the Gegenbauer and hybrid Gegenbauer-Bernoulli methods
is the cost and severe resolution restrictions. By “splicing” the picture into different non-
intersecting sub-domains, we can data-parallelize and solve for each “spliced” function with
smaller N, and thus the Gegenbauer method becomes quite reasonable to compute. This
parallelization will be the topic of a future paper.

Still, of course, is the imminent discussion of higher dimensions. It is clear that the

17



Bernoulli method will be more difficult in higher dimensions since we are no longer computing
the jump coefficients of single points, but rather of functions. These are only algebraic
approzimations of the Fourier coefficients, so the one-dimensional theory in [7] does not
apply.

More specifically, given fAk,l, the two-dimensional Fourier coefficients, we write the double

partial Fourier sum fy(z,y) as

N N
In(@y)= > D fege et
k

=—NI=—N

Upon defining
N ~ .
ay = Z flc,lezmya
I=—N
we can write fy(x,y) as
N .
fn(zy) = Y axe™™.
k=—N

Unfortunately since f(z,y) is not periodic in y, these a serve as a poor approximation to the
analytic one-dimensional Fourier coefficients, as they already have the Gibbs phenomenon
built in. Thus we cannot apply integration by parts to a; which is critical to the Bernoulli
method (section 2).

However, the Gegenbauer method extends quite easily into two dimensions, as is shown

in the following two sections. The numerical results are shown in section 7.

5 Truncation Error for two-dimensional functions

We now discuss the “spliced” function in two dimensions. We assume that for a smooth
function f(z,y) defined on —1 <z <1 and —1 <y < 1, we have the Fourier coefficients for
the quadrants: —1 <2 <0,-1<y<0;-1<2z<0,0<y<1;0<z<1,-1<y<0;
and 0 <z < 1,0 <y <1. We prove our results in the following two sections for the interval

xz € [-1,1] and y € [—1, 1] and note that the proofs are valid for any general interval.
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Assume that f(z,y) is an analytic but non-periodic function defined for z € [—1, 1] and

y € [—1,1]. Also assume that the Fourier coefficients of f(z,y),

1 1 gt . .
) = Z/ / f(x,y)e_lk”e_””ydxdy, (5.1)
1/

are given.

The Fourier partial sum is therefore also known,

N N

fnle,y)= > 3 apie™™et™. (5.2)

k=—NIl=—N

Recall that f(z,y) must be periodic in both z or y to ensure rapid convergence of the
partial sum fy(z,y).

The Fourier coefficients ay,; satisfy
Assumption 5.1 |d;;| < A independent of k, 1,

where A is independent of k¥ and [. This is true for any f(z,y) € L.

The goal is to recover f(z,y) for x € [—1,1] and y € [—1, 1] using the two-dimensional
Gegenbauer coefficients and Gegenbauer partial sum. We note here that any piecewise
analytic function f(z,y) can be recovered in an interval for which the function is analytic, as
our examples will show in Section 7. For simplicity of notations, we will prove exponential
accuracy only for functions that are analytic for z € [—1,1] and y € [—1, 1], although the

proofs can be easily extended for any general interval.

Definition 5.1 The two-dimensional Gegenbauer partial sum approximating f(x,y) is de-

fined by
fryms (2, ) Z Z ;1\11’2220)\1 C/\z( ), (5.3)
p1=0 p2=0

£A1,X2
Hi,p2 7

where the first m;m; coefficients f;) based upon the Gegenbauer polynomials C) () with

weight function (1 — 22)2(1 — y2)* 2 for any constants A, Ay > 0, are defined by

futs = ,Mh / / =272 (1= )220 (2)C)2 (y) /() dady, (5.4)

M1t T2
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where 0 < py < mq,0 < py < mg, z € [—1,1], y € [-1, 1], and the Gegenbauer polynomials
A
C2 (&) are defined by (A.1).

The Gegenbauer expansion of f(z,y) for —1 <z <1 and —1 <y <1 is given as

Z Z faimCon (@)C2 () (5.5)

#1=0 p2=0
where the coeflicients f’\l’)"" are defined in (5.4).

Of course, f! ’\1’>‘2 is not known, but rather an approximation based on the Fourier partial

sum, fy(z,y), as defined in 5.2. This approximation, gﬁi;};’ is defined by

Gt = e [ =P - ) O @R ) il )dady. (5.6)

1’ pa

Definition 5.2 The truncation error is defined by

TE()‘I: )‘2: my, ma, N) = ‘ Z Z 3111,11\22 g;}i,ﬁz)oﬁll (‘,‘E)C;;\; (y) |? (57)
- = u1=0 p2=0
71 <y< 1

AAL,A2

where fA1r2 oL

it are defined in equations (5.4) and (5.6). The truncation error describes

and g

AAL,A2

how well the coefficients g;,!»2

approximate the actual Gegenbauer coefficients fﬁ‘ll e

In the next two theorems we bound the truncation error in terms of N, m, mo, A; and
A2. N corresponds to the number of given Fourier coefficients ay,;, while m; and mqy are the
number of Gegenbauer polynomials given in the double sum Gegenbauer expansion. A; and
Ay are the orders of the Gegenbauer polynomials. Since the theorems are a direct extension

of the one-dimensional case, we will simply sketch the proofs and refer readers to [12] for

details.

Theorem 5.1 If f(x,y) is an Ly function for —1 < z < 1 and —1 < y < 1, then there
erists a constant A, independent of A\, Ao, m1, ma, and N, such that the truncation error

defined in (5.7) satisfies the following estimate:

E()\la)‘27m15m27N) S A

(my + A1) (mg + A2)T(my + 201)T(mg + 2X) (AT (Ng) f 2 \MHre2
(m1 = Dl(ma — 1)IT(2M)1(2Xs) (Tzv) (5.8)
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Proof
Consider a special function f(z,y) = €™ ™2™ with |n,|, |ny| > N. In this particular case,

fn(z,y) = 0 causing

£A1,\2 ~AA1,A2 C)\l 1 0)\2 1 _ 07);;1 (1) . 1 2 )\1—% inﬂrzc)\l d
( Ui, g,u,l,p,z) n1 ( ) u2 ( ) - Tiﬂ 71( -z ) € )75 (‘/E) &L
Cre (1)

1
2\A2— 3 Jinamy YA
b L0y lemmenady. (59

The explicit expression given in [3] for the one-dimensional integral in equation (5.9) is

= [ a—er-iemeies = 1) (3) (14 \) T (1), (5.10)

h J—1 ™
where J,(£) is the Bessel function. Since |J,(§)| < 1 for all £ and v > 0, each integral in
equation (5.9) can be estimated by

Ca(1)
hy

(m+)\)F(m+2)\)F()\)< 2 )A’ (511)

1
_ e2\A—1 inmg oA
[ (1= temtei(e)ds < G

m|n|
where 0 < pu < m. The estimate (5.11) is obtained first by using the inequality (A.4) on
C}(€) and then noting that WLM is an increasing function of u.

Applying the results of the estimate (5.11) to the two-dimensional special case function

f(z,y) = ™™™ with |ny|, |no| > N, we see that

(Fs - e mes ) <

sz Jui,ps

(m1 + M)T(my + 20)T (M) ( 9 )Al

mq!T(2A1) m|ny|
(M2 4+ A)T(ma + 2X)T (o) {2\
o T (20) (mm) - (512)

Returning to the general function f(z,y), we have

f@y) = fn(zy) = Y Y apge™™e™, (5.13)
|[k|>N |l|>N
and thus
TEQw doymma N) < max - max (R - giCON @CK0)

0<p2<my —-1<y<1
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< mymg  max |(fide - ghAn O (1)C2 (1)
0<p1 <ma

(m1 + AT (m1 +2A)T' (A1)
(my — 1)IT(2)\)
(s + Ao)T(ma + 20)T () / 2 \M+h-2
(my — 1)I0(2),) (W—N) ’

where in the second step we used the fact that C)(§) < Cj(1) for all =1 < ¢ <1 [2], and in

< A

the third step we applied the estimates (5.12) and (5.13).
O

The results of Theorem 5.1 leads directly to the exponential convergence of the truncation

error.

Theorem 5.2 Assume that f(z,y) is an Ly function with known Fourier coefficients ax,
where —N < k, I < N. Let Ay = a1 N, Ay = avsN, my = N, and my = [N where

aq, ag, B, B2 are positive constants. Then the truncation error defined in (5.7) satisfies
TE(M, Ay, my, mg, N) < AN*¢NglY, (5.14)

where

(ﬂl + 2a1)ﬂ1+2a1

q =

(2me)eraf By
+ Q0 P2 202
q2 (ﬂ2 2)042 B2 (515)
(2me)*ay” B
In particular, if op = 0y = g = o = 3—7; ~ i, then
2
G=¢=c7x08<1 (5.16)

Proof
The proof is attained simply by applying Stirling formula (A.7) and some straight-forward

algebra to the estimate (5.8).
O

We should note that the choices here for the parameters oy, ay, 81, 32 are made to simplify

the proof of exponential convergence of the truncation error, but they are not optimal.
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6 Regularization Error

As shown in [12] for the one dimensional case, the second part of the Gegenbauer approx-
imation error, called the regularization error, is caused by the Gegenbauer partial sum ap-
proximation to the analytic function f(x,y). The regularization error is estimated in the

maximum norm.

Definition 6.1 The reqularization error is defined by

RE()\la)\QamlamQ) = max Z Z 211,2220)\1 CA2( )| (61)
S T s

The exponential convergence of the regularization error has already been proved for the one
dimensional case in [12], and here we just extend the results into two-dimensions. We start

by stating the following assumption and lemma.

Assumption 6.1 Let f(x,y) be an analytic function for —1 < z < 1 and —1 < y < 1.

Then there ezists constants p1 > 1, po > 1, C(p1, p2) such that, for every p, s > 0,

dm +u2 f
dxtdyr2

(ﬂfay)‘ 0(01,02):51 1,1:32 (6.2)

max
—1<$<1 1 2
<1

This is a standard assumption for analytic functions [14].

Lemma 6.1 The Gegenbauer coefficient f)‘l”\2

212 as defined in equation (5.4) of an analytic

function satisfying Assumption 6.1 is bounded by

LA + 3)T (1 +2M1) Do + 302 + 2)0)
BT (2p1)M T (2A0)T (1 + Ay 4 1) 1 (202)#2T (200)T (2 + Ao + 1)
(6.3)

|f;\11,i‘22 < AC(p1, p2)

Proof

Applying Rodrigues’ formula (A.1) and equation (A.2) to the definition of flf‘llli‘j in (5.4)

and performing integration by parts p; + o times yields

G()\l /1,1 )\2 ,U,Q du1+u2 +A—1 41
FALA2 ’ ’ 2 \M1TA1— g 2 \M2tA2—3
Futis = 2pmthz o\ B e / /1 d_rljlildyllz z,y)(1 — o) 1=y dzdy.
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Assumption 6.1, equations (A.5) and (A.6), and the fact that C}§(£) = 1 lead to the result

k) < G (M, 11)G (A2, p2)C(p1, p2)aT (1 + A1+ 5)T (12 + A2 + 3) ‘
HEH2 L= At o Qa2 oy i o2 (11 + Ay ) (p + A2)T (1 + AT (p2 + As)

Substituting in the value for I'(z + A) we obtain equation (6.3).

O

We use Lemma 6.1 and Assumption 6.1 to establish an estimate for the regularization

error in the maximum norm.

Theorem 6.1 If f(z,y) is an analytic function defined above satisfying Assumption 6.1,

then the reqularization error defined in equation (6.1) can be bounded by

C(pl, pg)F(Al + %)F(AQ =+ %))F(ml + 2)\1 + l)F(m2 + 2A2 + 1)

RE(A, A < . (6.4
(oA 0 T08) S e T AT A s + A +2g) )
Proof
Using the estimate (A.8) and equation (6.3) we obtain
C T+ 3T+ 3T 2)\)0 2\
li\ll,;\ﬂc)\l( )0)\2( ) A (plap2) ( 1+ ) ( 2 + ) (/’L1+ 1) (/’L2+ 2) (65)

VAV A2(201)1 (2p2)12T (200)T (222) T (11 + AT (p2 + o)

Let us define

C(AT(\+ PI(p+2))
A .
VA2p)EFT (2T (1 + )

Then by applying the bound (6.5) and the using fact that |Cﬁ‘(§)\ < Cﬁ‘(l) forall -1 < ¢ <1,

B(p) =

we obtain

RE(Ai, Ao, my,mg) = max Z Z f,i‘f’,l\sc)‘l( )C[}j(y)

-1<z<1
>4 =m 1 =m 1
1<y<1 M1 1+1 p2=mo+

S S B(u)B(w)

pr=mi+1 pa=ma+1

B(mqy +1)B(my + 1)

VAN

4(m1 + /\1)(m2 + )\2)
C(p1,p2)T( M 4+ 5)0 (Ao + %I)FQ(/« +200)T (p2 + 2)9)
VAV A2(201)#1 (2p2)#2 T (2A1)T (222) T (11 + M)T (2 + Ao)

IN

IN
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O

We now prove that the regularization error defined in (6.1) is ezponentially small when

A1 and Ay grow linearly with m; and msy respectively.

Theorem 6.2 If \; = yvymy and Ay = yoms where v, and 7y are positive constant, then the

regularization error defined in (6.1) satisfies
RE()\l, )\2, my, mg) S Aq{rnq;nz (66)

where q; for i =1,2 is given by

(1 + 27,2
q; =

= : , 6.7
P (LT 7 o

which s always less than 1. In particular, if v; = 1 and m; = B;N where 3; is a positive

constant, then

RE(M, Ao, i, ma) < Agy gy (6.8)
with N
G (322;) ; (6.9)
Proof

The proof follows from the application of Stirling’s formula (A.7) to the bound proved in
Theorem 6.1. Some algebra leads to equations (6.6) and (6.7), where A involves contributions
from p;, where i = 1,2. The value ¢; defined in equation (6.7) is a strictly increasing function

1 1

of v;. As 7; — oo, we have ¢; — . < 1. Hence ¢; < . < 1 for all 4; > 0. Now, by

substituting in the value v; = 1 and m; = ;N we obtain the estimates in (6.8) and (6.9).

O

Summarizing the theorems proved thus far in this section, the following theorem states

the exponential decay of the regularization error.
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Theorem 6.3 Assume that f(z,y) is an analytic function for —1 <z <1 and -1 <y <1

that satisfies Assumption 6.1. Let f:‘l’;}; be the Gegenbauer coefficients defined in equation

(5.4) for 0 < py < my and 0 < ps < my. For simplicity let \y = my and Ay = my. Then

)\1,)\2 /\1 A2
_ max E E Fa2 O (z)Co2 (y)] < Agl gy (6.10)
1<z<1
- = p#1=0 pu2=0
—1<y<1

where ¢;, i = 1,2 is defined in equation (6.9).
The proof is simply a combination of all the previous results.
O

We can now combine the results we obtain from Section 5 and Section 6 to establish
an exponentially convergent approximation to a piecewise analytic and non-periodic two-
dimensional function in the maximum norm with information of the first (2N + 1)? Fourier
coefficients. (We did not actually examine piecewise analytic functions here, but the theory
is just a generalization of the results established here.) In Section 5 we established that the
Gegenbauer coefficients can be effectively (with exponential convergence) approximated using
the information provided by the Fourier coefficients, and in Section 6 we showed that the
Gegenbauer partial sum converges exponentially to f(z,y). Combining these two pertinent

results we state the following theorem.

Theorem 6.4 Consider and analytic and non-periodic function f(x,y) where —1 < z <1

and —1 < y <1 that satisfies Assumption 6.1. Assume we are given the Fourier coefficients

1 1 1 . .
=7 [ [ F@ye e sy

for =N < k,l < N. Then for \{ = my = BN and Ay = my = N, we have

max |f(z Z Z () (y)| < ANl ¢ + AR ()N (&)Y, (6.11)
P 1=012=0

where g and q3 are defined in equation (5.15) and qF and ¢ are defined in equation (6.9),

and By = B2 < Z=.
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Proof

The total error of the partial Gegenbauer expansion approximation, ghi”2 (z,y), to the

function f(z,y), is defined as

B, doymuymo) = max - |f(@,y) = gnliin, ()]
— ")\1,)\2 )\1 )\2
l<y<1 p1=0 pp=

Thus the total error is bounded by the sum of the reqularization error and the truncation

error, i.e.,
E(/\l,/\g,ml,mQ) S max Z Z IQ\IIZ\;C/\I C)‘Q( )‘
“lsasl p1=0 p2=0
-1<y<1
B 5 5 pereone - 3 5 aa@os
—1Zy21 #1=0 u2=0 u1=0 p2=0

where the first term is estimated by Theorem 6.3 and the second by Theorem 5.2. This

concludes the proof.

7 Numerical results for the two-dimensional problem

We consider a simple example that clearly shows how effective the Gegenbauer method is in

two dimensions.

Example 7.1

f(.T) — €i2.37r$+i1.27ry’

where we are given the first 2NV 4+ 1 Fourier coefficients of the “spliced” function in each
quadrant: —1 <2z <0,-1<y<0; -1<z<0,0<y<1;0<z<1,-1<y<0and

0<z<1,0<y<1
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Figure 10: Approximation of f(z) = €23 +1-21y for N = 32 using the Fourier partial sum
in each sub-domain.

Figure 10 shows the contour plot of Example 7.1 using the Fourier partial sum for N = 32.
Notice how the Gibbs’ phenomenon affects the boundaries of each quadrant. The Gegenbauer
method completely eliminates this phenomenon for N = 32, as shown in figure 11. We see
a more colorful representation of this improvement in figures 12 and 13.

In fact, there is a dramatic improvement of the Gegenbauer method over the Fourier
partial sum for N = 8 and N = 16, as shown in figure 14.

Table 3 shows the convergence of the Gegenbauer method as applied to each sub-domain

in the maximum norm. The maximum error using the Fourier partial sum is 1.077.

8 Conclusion

Our results in this paper show that the Gibbs phenomenon can be eliminated for “spliced”
functions in one and two dimensions, as long as the first 2N + 1 Fourier coefficients of each

sub-domain function are known. The impact of these results can be considered in two ways.
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Figure 11: Approximation of f(z) = 237 +il-2m for N = 32 using the Gegenbauer method

in each sub-domain.

Firstly, we can consider a smooth but non-periodic function on a general domain [a, b] that is

too “rough” to be resolved using any approximation method over the entire domain. Now we

are able to split the function into different pieces and solve for the “smoother” parts of the

function in smaller sub-domains. This question was also addressed in [15], but the approach

was different than ours. Secondly, we can assume that we only have access to the Fourier

coefficients of a function in various sub-domains, and hence our method is directly applicable.

In any case, parallelization can obviously be applied to this type of approach, cutting costs

Table 3: Absolute maximum error of f(x) = e">3™+1-2m ysing the the Gegenbauer method
for N = 8,16, 32, and 64 in each sub-domain.

N | max error
8 12
16 4.1E-2
32 3.0E-3
64 2.0E-5
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Figure 12: Approximation of f(z) = €23 +1-21y for N = 32 using the Fourier partial sum
in each sub-domain.

significantly. Although we did not prove results for the pseudospectral Fourier coefficients,
our results indicate that they will also suffice in the Gegenbauer, Bernoulli, and Gegenbauer-
Bernoulli methods. Furthermore, the Gegenbauer method will tolerate perturbations in the
pseudospectral Fourier coefficients.

This paper did not address a few things that will be discussed in future papers.

1. The parameters A and m have not been optimized in the two-dimensional Gegen-

bauer method.

2. In [15] the Gegenbauer method is used to find the jump coefficients. It may be
possible to use this approach in creating a hybrid method combining the Gegen-

bauer and Bernoulli methods in two dimensions.

3. We are assuming explicit knowledge of the points of discontinuity. When this in-
formation is not available, methods for locating discontinuities must be employed,

such as [7] or [9], which will affect the overall convergence.
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Figure 13: Approximation of f(z) = ¢2-37*+i-2m for N = 32 using the Gegenbauer method
in each sub-domain.

Exact Solution

Exact - Gegenbauer Method

Method

Figure 14: Approximation of f(z) = ¢2372+-2m for (3) N =8 and -1 <2 <0,-1<y <0
(b)y N =16 and —1 < z < 0,0 < y < 1 using the Gegenbauer method in different sub-
domains.
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A Gegenbauer polynomials

In this section some useful results are collected about the Gegenbauer polynomials, to be
used in later sections. The standardization in Bateman [3] is heavily used.

Definition A.1 The Gegenbauer polynomial C)z), for A > 0, is defined by

dTL

(1—22)*"2C)Nz) = G(\,n) o

[(1 = a?)mH3], (A1)
where G(A\,n) is given by

(=1)"T(A + )T(n+2))

An) = . A2
G n) 222N (n+ A + 3) (A42)

Formula (A.1) is also called the Rodrigues’ formula [2, page 175].

Under this definition, for A > 0,
['(n+2X)
Ay =2~ A.
Gl = @) (A-3)
and

CMx)| < CM1), —1<z<1. (A.4)

The Gegenbauer polynomials are orthogonal under the weight function (1 — xQ))"%, thus

1 1
[ (1 =22P R @)Ch@)dr = by, (A.5)
where, for A > 0,
. LA+ 3)
A_ i 2
h, =m Cn(l)F()\)(nA—)\)' (A.6)

The approximation of the Gegenbauer polynomials for large n and ) is dependent upon
the well-known Stirling’s formula for I'(x) given by

1

2m)7z"t e < T(z + 1) < (2m)7a" ie e, x> 1. (A.7)
Lemma A.1 There exists a constant A independent of A and n such that

Dt \ Ao

The proof follows from (A.6) and the Stirling’s formula (A.7).

The following lemma to be used later is easily obtained from the Rodrigues’ formula (A.1).
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Lemma A.2 For any A > 1

d 2\A-1 _ G(A,n) 2\A—3 ~A-1
el (CRE 2Cn(x)]—G()\_1,n+1)(1—x) Cal(@). (A.9)

The proof follows from taking the derivative on both sides of the Rodrigues’ formula
(A.1), and then using it again on the right hand side.

O
The following formula [1, page 176] will also be needed:
C3a) = gt (o [Cha ) — Oy (@) (A10)
" 2(n + \) dx L™ -l ’

which is true for all A > 0.
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