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1.- INTRODUCTION

Euclidean Distance Matrices (EDM s) have been studied lately not only for their in-
trinsic interest, but also because of their important applications in statistics and molecular
conformations in Chemistry among others.

Many important result have been established about the structure of the cone of
EDMs, however some interesting questions have not yet been answered.

In this paper we deal with the relation between EDMs and special elliptic matrices
[HT] [F]. Special elliptic matrices have only one simple positive eigenvalue and zero entries
on the diagonal. In the papers mentioned above it is proved that every EDM is special
elliptic.

For every EDM D, Dx = e always has a solution as happen for most of the special
elliptic matrices, the parameter e’z, where z is a solution of this system, plays an important
role in the results obtained. This parameter allows us to say whether or not a special
elliptic matrix is EDM. This same parameter was studied in [THW] to characterize Circum-
Euclidean Distance Matrices.

The border of EDMs is characterized in terms of the maximum Rayleigh quotient on
the subspace M (the orthogonal complement to the subspace generated by the vector of
all ones).

We also study the eigenvalue eigenvector structure determined by the rank deficient
matrices in the border of the the cone of EDMs as well as properties of the borders of both
sets.

The organization of the paper is as follows: In section 2 we present basic results and
definitions. Results about eigenvalue-eigenvector structure are in section 3 and properties
of the border of EDMs in the next section. In section 5 we present a characterization of
EDMs and we also characterize the border of this cone. In the last section we look at some

simple but interesting examples.

2.- PRELIMINARIES

The set of symmetric matrices of order n will be denoted by 5,,. In this space we will
consider special subsets that we now describe. First of all, H,, will denote the matrices in
Sp such that the diagonal entries are zero (hollow matrices). We will denote by €, the
set of symmetric positive semidefinite matrices. A matrix D is elliptic if it has a simple

positive eigenvalue and the other n — 1 are nonpositive; it is special elliptic if it is elliptic
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and hollow. We are interested in most of this paper in the nonnegative special elliptic
matrices that we will denote by £, i.e., the nonnegative special elliptic matrices.
A matrix D is called a Euclidean Distance Matrix if there are n points z1,...,x, € R"

such that

dij = ||z — 2513

Observe that the entries of D are square distances. The set of all EDMs of order n form
a convex cone that we denote by A,,.

There are well known relations between the sets €2,,, A, and Sj that we have introduced.
The EDMs are the image under a linear transformation of the cone @, [G] [JT]. Given

B € Q,, we define the linear transformation
k(B) = be' + eb! — 2B

where e is the vector of all ones with appropriate dimension and b is a vector with the
diagonal entries of B.
It is well known that D = x(B) € A, if B € Q,,, moreover, every EDM can be obtained in

this way. If k is restricted to faces of £2,,, then
Qn(s) ={X €Q,/Xs =0}
with s'e = 1, the function & is one to one and the inverse transformation is given by
1 t t
7s(D) = —5(1 —es')D(I — se")

(for more details see section 2 of [JT]).
Schoemberg proved in [S] that D is EDM if and only if D is negative semidefinite on
M = {z/x'e = 0}, the orthogonal complement of the subspace generated by e. The linear

transformation 7, given above is strongly related to this result (see also [G]).

On the other hand, it has been pointed out that every EDM is special elliptic [HT] [F], in
other words
An CEF

It is also known that special elliptic matrices can be generated as the image of €2, using a
nonlinear function. In Theorem 2.2 of [F], Fiedler proved that all special elliptic matrices
can be generated as follows: Given A, B € 2, and B with rank one satisfying diag(A) =
diag(B), then

C=B-A



is in &, (if different from zero). The converse is also true.

A small modification generates the set £ in a similar way. We will replace B by the

matrix aa‘, where a = (\/a11,...,/ann)". Then
X=aa"— A

is a continuous function of A from Q,, to £F. Because of convexity of 2,, and the continuity

of this function, £ is a connected set.

3.- EIGENVALUE-EIGENVECTOR STRUCTURE

In this section we want to point out some properties concerning the structure of
eigenvalues and eigenvectors of EDMs. The first result is a consequence of the spectral

structure of the matrix E = ee’ — I, the center direction of the EDM cone.

Lemma 3.1: Given D € 'H,, for every eigenvector x of D with eigenvalue A such that

z'e = 0, z is an eigenvector of the family

D(t)=tD+(1-t)E teR

with eigenvalue t(\ + 1) — 1.

Proof: Suppose that Dz = Az and z'e = 0, then

=tz + (1 — t)(eet — Dz
=t — (1 —t)x
=[tA—(1—-1t)]=

Remark: First of all observe that e is an eigenvector of E. Also it is easy to see that D(t)

is singular for ¢t = )\L Finally Lemma 3.1 holds for any matrix D € S,, but because of

1
our interest the lemma is stated only for hollow matrices.

Theorem 3.1: If D € A,, and is rank deficient, then every vector in the null space of D

is an eigenvector of D(t). Moreover the corresponding eigenvalue is A = ¢ — 1.

Proof: Because D(t) is an symmetric matrix, the range and the null space are orthogonal,

and for EDMs e always belongs to the range of the matrix [THW]. m
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Remark: The result is true for any matrix that has e in its range. This is the case for

almost all hollow matrices.

Lemma 3.2: Given D € H,,, then De = \e if and only if the eigenvectors of D(t) are the

same for every t.

Proof: The condition is necessary because the eigenvectors of D different from e are also
eigenvectors of E (they are orthogonal to e). It is also sufficient because D(0) = E and

then e is an eigenvector of the family which implies that it is an eigenvector of D = D(1).
This special class of EDMs was studied by Hayden and Tarazaga in [HT].

Because of the conic structure of A,,, D(t) exits the cone at some positive ¢ (also at some
negative ¢) under certain conditions, for example ||D||r = ||E||r and D # E. We can

propose now a kind of converse result for our last theorem.

Theorem 3.2: Let D € A, (D # E) with rank n and ||D||r = ||E||r and suppose
that span(zq,...,2x) is the maximal invariant subspace associated with A, the minimum

eigenvalue in absolute value, and e'z; = 0¢ =1,...,k. Then there exists a t > 1 such that

span(xy,...,xr) C N(D(t)). Moreover if D(t) € Ay, then span(zy,...,zr) = N(D(t)).

Proof: By Theorem 3.1, z;,1 = 1,...,k, are eigenvectors of D(t) with eigenvalue t\—(1—t)

and clearly this value vanishes for ¢t = AL—H But |A| < 1 since ||D||r = ||E||r and if A is

negative, then ¢ = AL—H > 1.

Clearly span(zy,...,zr) € N(D(t)). Now assuming D(t) € A,, suppose there exists a
y & span(x1,...,xr) such that

D(t)yy=0

We can generate the family D(s) = sD(¢) + (1 — s)E and we obtain that

1
D(s) = D l1—- —)FE 1—-3s)E
()= sy D+ (L= 7BV + (19
S SA
= D E+(1-3s)E
e e LR G
S A4+1—35
= D
I R Wi
Now )
D(})= D@+ =D.
which implies that
1
Dz; =(1 — ;)”El = \z; i=1,...,k
1
Dy =(1 - <)y =\y.



In the last equality we use the fact that y'e = 0 since y € N(D(t)) and D(t) € A,,. This

is a clear contradiction to the maximality property of span(zy,...,z¢). =

We want to point out that if D(#) is rank deficient, then a matrix D(t) in the interior of A,
has the structure of the null space of the matrix D(¢) that intersects with the boundary
of A,,. It is interesting to note that this is a well known and simple property of the cone
of positive semidefinite matrices £2,,. No similar relations can be established between the

range of D and the range of the family D(¢).

4.- PROPERETIES OF THE BORDER OF A,,.

It is known that A, is a subset of the set of nonnegative special elliptic matrices &,
as shown in [HT] and [F]. In this section to investigate more about the relation between
these two sets to determine if they share part of their borders. The border of A, has
been studied in [THW] and [HWLT], and clearly rank deficient matrices form the border
of special elliptic matrices. Our first result is related to matrices in the border of A, with

rank less than or equal to n — 2.

Theorem 4.1: Give D € A,, with rank(D) < n — 2 and D in the interior of A, then the
matrices

D(t)=tD+(1-t)D
have at least two positive eigenvalues for ¢ > 1 and arbitrarily close to 1.

Proof: Since D is in the interior of A,,, rank(D) = n and D = DT+ D~ with 1‘ank(D+) =1
and rank(D~) =n — 1 (DT and —D~ belongs to ;)

If \y > Ny > ...\, are the eigenvalue of D, then tA\; > thy > ... > t\, are the eigenvalue
of tD for t € R. Note that at least Ay = A\3 = 0 since rank(D) < n — 2.

Now consider the matrices

D(t)=tD+ (1 —t)D~

and

~

D(t)=D+ (1 —t)D*

for values of t > 1. If we order the eigenvalues of D in the same way and consider that
(1 —t)D~ is positive definite on M and the null space of D is included in M, then using
Corollary 4.3.3 of [HJ] we have

A(D(t) < \e(tD + (1 —)D7) = \e(D(2))
which implies that D has three eigenvalues greater than zero.
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Now using the fact that (1 —¢)DT has rank one and is negative semidefinite for ¢ > 1, and
Theorem 4.3.4 of [HJ] we have

Nir1(D(t)) < Ak(D(t) + (1= 1)D) = \e(D(1))

which implies, using £k = 1 and k& = 2, that ﬁ(t) = D(t) has at least two positive eigenval-
ues. m

We will look now at the case in which D has rank n — 1.

Theorem 4.2: Suppose D € A,, has rank(D) = n — 1 and that Dz = 0. If D is in the
interior of A,, and x is an eigenvector of D with eigenvalue A, then all matrices of the
family

D(t)=tD+(1—-t)D

have at least two positive eigenvalues for ¢ > 1 and arbitrarily close to 1.

Proof: Using the same argument as in Lemma 3.1, we have that = is an eigenvector of the
family
D(t)=tD+(1-t)D

with eigenvalue (1 —¢)A. But A is negative since x is not the Peron-Frobenius eigenvector
of D. Hence this eigenvalue is positive for ¢+ > 1 and distinct from the Perron-Frobenius

eigenvalue. m

We do not know of an example that would show that the hypothesis that D be in the
interior of A,, is necessary.

Up to now in this section we have proved that part of the frontier of A,, is the same for
ET and it is a natural frontier, in the sense that at least one eigenvalue vanishes when we
exit the cone.

We now want to look for properties on the boundary of A, when the border elements are

full rank matrices. But in this case we need an indicator different from zero eigenvalues.
In [THW], Tarazaga, Hayden and Wells proved that if D € A,,, then the linear system

Dz =ce¢

always has a solution and morever the parameter z'e discriminates between spheric (zfe >
0) and nonspheric (z'e = 0) matrices. Gower [G] also introduced a related result. Our

next result explores the behavior of this parameter for the family
D(t)=Dt+(1—t)D
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where D is a full rank matrix in the border and D is in the interior of A,,. Observe that

D is not spheric.

We will consider the function
f(t) =¢e'D(t) e = etxD(t).

For simplicity we will not write the subindex of x. From [THW] we know that f(¢) > 0
for 0 <t < land f(1) =0.
Lemma 4.1: f'(1) < 0.

Proof: Let us compute the derivate,
Flt+1) = f(t) = L (D7 (¢ + ) — D7 (D).
Using the identity A=! — B~ = B7!(B — A)A™! we obtain

f(t+h) = f(t) = ' D7 (t)[D(t) — D(t + 1) | D7 (t + h)e
=e'D7'(t)[Dt+ (1 —t)D — (D(t+h) + [1 — (t + h)]D] D' (t + h)e
=¢'D7'(t)[R(D — D)| D' (t + h)e

Dividing by A and taking the limit as A — 0 we obtain
f'(1)=¢e'D"! [D — D]D_le
=¢'D'DD e —¢'D7 e

=z'Dz < 0.nm

Theorem 4.3: Given D on the border of A,, with rank n and D in the interior, we have

the following for the family of matrices

D(t)=tD+(1-t)D

a) f(t)>0,for 0 <t <1
b) f(1) =0
¢) f(t) <0 for ¢t > 1 and arbitrarily close to 1.

Proof: a) and b) are consequence of Theorem 3.4 of [THW] . Part ¢) is a consequence of

Lemma 4.1. =



5.- CHARACTERIZATION OF A,, AND THE RELATION WITH ELLIPTIC
MATRICES.

In this section we obtain a characterization of EDMs and we describe the border of

A,
Lemma 5.1: If D is special elliptic satisfying Dz = ¢ and z'e > 0, then D is in A,,.
Moreover D is spheric.

Proof: Because of the characterization mentioned in section 2 [S] we must prove that for
ye M,
y'Dy <0.

Suppose that there exist y € M (y'e = 0) such that
y'Dy > 0.

Then for any vector z = ax + fy with a and (3 real,

2'Dz = (ax + By)D(az + By)
= a?z' Dz + 2a8z' Dy + 3*y' Dy
= o’2'Dx 4 2a3(Dzx)'y + 3*y' Dy

Since Dz = ¢, the second term is zero and since z'Dx = 2'e > 0, the first is greater than
zero, which implies

2'Dz >0

when = # 0 ((a, 8) # (0,0))
But this implies that D is positive definite in the plane generated by z and y, which

contradicts the fact that D is special elliptic. m
A different technique is needed for the case in which the solution of Dx = e satisfies
zle = 0.

Given a matrix D (elliptic for our purposes) we consider the matrix

~ 0 €
D=
It is clear that for any vector x such that Dz = e and z'e = 0, the vector (—1,)" is in

the null space of D. Also if Dz = 0, then (0,2)! is in the null space of D.

Lemma 5.2: Suppose D is elliptic and Dz = ¢ with 2'¢ = 0. Then D is in A, and

moreover is on the boundary.



Proof: Suppose \; < Ay < ... < A,—1 <0 < A, are the ordered eigenvalues of D. By the
eigenvalues interlacing theorem
/\n—l S :\\n S /\n

But (—1,2) is in the null space of D. Thus A\, = 0 which implies that D is elliptic. Using
[HW], D is EDM, but according to [THW], D is not spheric which implies it is on the
boundary of A,,.

These two preliminaries results allow us to state the following.

Theorem 5.1: If D is special elliptic satisfying Dx = e, then D is EDM if and only if
zle > 0.

Proof: The sufficiency of z'e > 0 is a consequence of the previous lemmas. The condition
is necessary from [THW]. =
Note that for some matrices D on the boundary of £, the system Dz = e has no

solution. Matrices such as

D =

o = O

1
0
0

o OO

are on the boundary of S; and Dz = e has no solution.

Finally, we wish to observe the behavior of the maximum of the Rayleigh quotient of
EDMs on the subspace M. First, consider the interior of A,,.
Lemma 5.3: If D is in the interior of A,,, then

Dz
max

ceM gl
xz#0

< 0.

Proof: The minimal embedding dimension of D, a distance matrix in the interior of A,
is n — 1. Then using Corollary 3.1 of [THW], there exists A such that

1
— §D + Aee!
which is positive definite, and hence full rank.

On the other hand, we know that since D is negative semidefinite on M,

Dz
<0.

zle —

Now suppose that there exists * € M such that
z'Dz

t

=0.

Ttr
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Then

z(—1D + Neel)z 12!Dzx M 'z
—— =—=——+
Tiz 2 iz Tz
which contradict the fact that —%D + Xeel is full rank. =

Now let us look at the boundary of A, to see what happens.
Lemma 5.4: If D is in the border of A,,, then
' Dz
max

ceM glg
r#o

= 0.

Proof: If D is rank deficient, then there exist x(# 0) € N(D) C M such that Dz = 0

which implies that
2'Dax

zlz

= 0.

Suppose now that rank(D) = n and D is on the boundary. This implies that D is not
spheric and by Theorem 3.4 of [THW] there exists & such that

Dz = e
with 3 > 0 and e’z = 0. But now
z'Dz = z'(Be) = Bale =0

and so the result holds. =

We can now state the following result.

Theorem 5.2: Given D € A,,, the Rayleigh quotient satisfies

Dz
max < 0.
ceM gl
z#o

Moreover, D is on the boundary of A,, if and only if

Dz
max = 0.
ceM gl
r#o

Proof: The condition is necessary because of Lemma 5.4 and it is sufficient because of
Lemma 5.3. =

We close this section by pointing out that this characterization of the border of A,, is com-
pletely equivalent to the characterization of the border of the cone of positive semidefinite

matrices if we use the minimum Rayleigh quotient for the whole space.
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6.- SOME EXAMPLES

Let us look at some examples in low dimension. We will see what nice geometry we
have for n = 3 and how complicated it turns out to be for larger dimension.

Casen=3

Let us consider the typical nonnegative hollow matrix

0 a [
A=1la 0 ¥~
B v O

with o, 5,y > 0.

If we define E;; to be the matrix with 1 in positions (7,7) and (j,¢) and zeros in all

remaining positions, then we have
A=aFE 2+ Ei3 +vEs3

We can consider (o, 3,7)" as a vector in R3. Each of the extremal directions correspond
to the canonical vector in this space R® and the matrix E corresponds to the vector e.

It is easy to compute the determinant of A
det(A) = 2a8~y > 0

Thus if A is nonsingular, it has to have two negative eigenvalues. Also if A # 0 and A
is singular, then it has one positive and one negative eigenvalue, equal in absolute value

since the trace of A is 0. This allows us to establish the following results.
Theorem 6.1: Every nonnegative hollow matrix in R3*3 is special elliptic.
Corollary 6.1: & is a convex cone.

Proof: & is an orthant.

Also A3 has a special structure. First, observe that the boundary of Az consists of matrices
with embedding dimension one. If D € A3 and has embedding dimension one, then using

Theorem 3.3 of [HWLT] we have that

2
cos(D,E) = \/;,

which means that A,, is a circular cone.
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The cone A3 is as wide as possible, touching the faces of the orthant with the distance

matrices
0 1 1 0 1 0 0 0 1
1 0 0], 1 0 1 and 0 0 1
1 00 0 1 0 1 1 0
These matrices correspond to three point configurations where two of them collapse.

For this particular example, cos(X, E) decides whether or not X, a nonnegative special

elliptic matrix, is a distance matrix:

3

X is EDM if and only if cos(X, E) > \/E

This nice relation is similar to the one that characterizes the positive semidefinite matrices
of order 2. When we increase the dimension all of this simple structure deteriorates as we

show next.

Casen=4

In this case convex combinations of the extreme direction F;; j > ¢ which generate the two
dimensional faces of the orthant, show different behavior. For example, tE15 + (1 — ¢)Eq3

for 0 <t < 1 generates the matrices

0
t
1—-t¢
0

c oo
oo o |
cooo

with rank two and which thus belong to S:' for 0 <t < 1.

However, a completely different situation arises when we consider matrices t E13+(1—1)E3q

for 0 <t < 1 which generate

0 ¢ 0 0
t 0 0 0
0 0 0 1—1t
0 0 I-—-1¢ 0

Here we have two positive eigenvalues for each matrix with 0 <t < 1.

Now since E is the central direction of A,, C 5;1', we want to investigate the behavior of

the family
X(t) = tEi]‘ + (1 — t)E

for any extreme matrix Ej;.
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Since every E;; can be obtained from E;, using the appropriate permutation P,
E” - PtE12P
we will look at the case
X(t) =tE12+ (1 -t)E.
The determinant of X (¢) is
0 1 1—¢t 1-—t¢
1 0 1—t 1-—t

1—¢t 1-—t¢ 0 1-—1¢
1—t 1—¢t 1—1¢ 0

det(X(t)) = det = (1 —t)*(4t — 3)

The first observation is that the matrix is singular only for t =1 or ¢t = % in the interval
[0,1]. Second we have that X(t) is elliptic for ¢ € [0,2] because X(0) is elliptic and
det(X(t)) # 0 does not allow eigenvalues to change sign. It is also elliptic for ¢ = 1. But
for t € (%, 1) X(¢) has a positive determinant and at least one positive eigenvalue, the
Perron-Frobenius one. Also since X (t) is not singular, it has two positive eigenvalues and

hence X (¢) is not elliptic in (%, 1).

Finally, we consider the polyhedral cone generated by E, E;; and the following matrices

g0 1 1 1

1 1 1 1 (3) 8 8

X = §E12 + §E13 + §E14 = % 00 0
s 0 0 0

0 5 0 0

1 1 1 1L g 1 1

Y = §E12 + §E23 + §E24 = 8 % 8 8
0 5 0 0

It is easy to see that X and Y are distance matrices corresponding to the configuration in

which three points collapse.

Now the four two dimensional faces of the polyhedral cone generated by E, Ey2, X, and Y

consist of elliptic matrices. The faces generated by
aFEs + X a,3>0

and

aBy + BY a,32>0
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are elliptic since the matrices have rank 2 and are hollow. The faces
aX + BE a,B >0

and

oY + BE a,f>0
are included in Ay (XY, E € Ay).

However, the matrices

X(t) = tEp + (1 — t)E,

te (%, 1), are not elliptic, but they are contained in the polyhedral cone. In other words,
the polyhedral cone generated by Ei2, E, X and Y has an elliptic boundary but there is a
hole of nonelliptic matrices inside.

These computations show that the structure of £ inside the nonnegative orthant is
highly complicated.

The structure of A4 is also more complex. Matrices with embedding rank one do not

form a constant angle with E. From [HWLT] we know that if D has embedding dimension

2 1
—>cos(D,E) > —
\/g_ ( )_\@

even though the cone is convex and is included in ;. In other words the more complicated

one, then

shape of S:' takes place outside of Ay.
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