A Parallel Three-dimensional

Electromagnetic Particle-in-Cell
Code for Non-Orthogonal Meshes

S.R. Karmeswin, P.C. Liewer, and J.
Wang

CRPC-TR96731
September 1996

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1997

A Parallel Three-dimensional Electromagnetic
Particle-in-Cell Code for Non-Orthogonal Meshes

S. R. Karmesin *
California Institute of Technology, Pasadena CA 91125
P. C. Liewer and J. Wang
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena CA 91109

September 26, 1996

Abstract

We describe a new parallel three dimensional electromagnetic particle-in-cell code
that uses body fitted curvilinear coordinates for modeling plasma and beam devices.
Cells in the structure grid are deformable hexahedra in physical space and are mapped
to unit cubes in logical space for particle interpolations. The algorithms conserve
particle charge and current, and update the electromagnetic fields in a divergence
preserving manner. The code is modular and portable, and we present numerical
results of convergence rates and benchmarks on serial, vector and parallel computers
for the components separately and together.

1 Introduction

An electromagnetic particle-in-cell (EMPIC) code seeks to simulate a plasma or charged
particle beam through a direct simulation of the evolution of the electromagnetic fields and
the charged particle positions and velocities. The overall accuracy of the code depends on
(1) how well it models the geometry of the problem, (2) the algorithms it uses to update the
quantities, and (3) how many grid-points and particles it can manage.

In this paper we describe how we are pulling together techniques to construct a code that
addresses these three questions in order to model high power microwave devices. We have
constructed a code which runs EMPIC simulations on serial and massively parallel computers
and allows studies of the accuracy and efficiency of the various techniques to be explored.

*Now at K2 Research Inc., Pasadena, CA 91101

We have not yet addressed such issues as grid generation, data visualization, error-checking
and user interface that would be required for a real engineering tool.

Because the goal is to simulate devices with curved surfaces, we use body-fitted coordi-
nates in three dimensions, and because we wish to model them accurately we use smoothly
varying curvilinear coordinates. This avoids the Cartesian grid problem of having the grid
stair-step along curved surfaces, reducing the number of grid points necessary for a given level
of accuracy. And because complex microwave devices can have several connected cavities
and regions, we organize the grid in patches, connected by appropriate boundary conditions.

The algorithm we use to update the electromagnetic field quantities E and B is due
to Gedney and Lansing [1]. This algorithm is an extension to non-uniform meshes of the
classical staggered mesh Finite-difference time-domain (FDTD) algorithm and is similar to
that of Madsen [2]. We also extend the method of Villasenor and Buneman [3] to non-uniform
meshes in order to calculate the current J on the grid from the particles while preserving to
machine precision the divergence condition on E. We present here convergence studies for
these methods.

Because high resolution simulations in three dimensions are very resource intensive, we
have built the code from the beginning to scale up to massively parallel computers while
allowing it to be used on serial computers for test problems and for development. We present
benchmarks and scaling studies to show that it scales efficiently from personal computers to
massively parallel supercomputers. The parallel decomposition used is a domain decompo-
sition as used in the parallel three-dimensional Cartesian grid electromagnetic PIC code of
Wang et. al[4] and the reader is referred to this paper for more background on parallel 3D
EMPIC codes. Eastwood et. al [5] have also developed a sophisticated parallel 3D EMPIC
code which uses body-fitted coordinates.

2 Physics Model

The electromagnetic fields satisfy Maxwell’s equations with the current derived from the
motion of charged particles. In differential form the curl and divergence constraint equations
are

0B = —cV xE

OGE = ¢VxB+J
V.-B =0 (1)
V-E = p

op = —V-J

For numerical solution on non-orthogonal grids, the curl equations are recast in integral form
by integrating curl equations over a surface S,

8t/sB-ds - —CjéE-dl 2)

N
Y
7

e
XS

=X

Z>
e
117/

M
1 7
77717

o
—
7
i

SN
/775
,ll-
R

]
LK

&

=
/4

Figure 1: Cylindrical domain with cross section broken into five logically Cartesian patches to
avoid the coordinate singularity at the cylinder access. The domain can also be divided along the
axis. Each patch is logically Cartesian and there is a one-to-one mapping of faces and vertices
across patch boundaries.

8t/E-ds _ cny-dH/J-ds
s l s

and the the divergence equations and the conservation of charge equation over a volume V,
E-ds = / pdv
v

B-ds = (3)

0
8t/p-dv - /J-ds

In the usual PIC approximation, the particles in the simulation represent many electrons
or ions, and these ”"macroparticles” obey the same equations of motion as a single charged
particle with charge q and relativistic mass ym(y = (1 — v?/c?)~'/?) in an electromagnetic
field,

dyymv = q(E+ (v/c) x B) (4)

dx = Vv

3 Numerics Description

The electromagnetic field portion of our code is based on the algorithm of Gedney and Lans-
ing [1], specialized to the case of a structured grid of hexahedral cells. This is a discrete
volume generalization of the standard FDTD algorithm and reduces identically to this al-
gorithm if the grid is Cartesian. The particle update uses the current deposit formulation

3

Figure 2: Each hexahedral cell in configuration space is mapped to a unit cube in logical space. A
simple tri-linear interpolation maps the logical coordinates to the physical coordinates.

of Villasenor and Buneman [3] generalized to non-orthogonal meshes, and the usual electro-
magnetic leap frog time step described in, for example, Birdsall and Langdon [6] and Wang
et. al [4].

3.1 Code Geometry and Grid

We denote by €2 the domain on which the equations of motion of the fields and particles shall
be computed. We then break €2 down into a set of nonoverlapping patches (2, such that each
patch can be represented with three dimensional Cartesian curvilinear coordinates. We call
these logical coordinates and denote them with the variables r = (71,79, 73), and we define a
mapping from r to the usual physical space coordinates x = (z,y, z). We allow the domain
to be broken into several patches before laying down logical coordinates in order to allow
domains like Fig. 1 to be represented without coordinate singularities. The patches are sewn
together numerically by specifying internal boundary condition on the faces of €,,.

Each patch is discretized into a structured grid of hexahedral cells along the three coor-
dinate directions. Since each patch is logically Cartesian, neighbors can be found by simply
incrementing indices and the complications of indirect addressing of unstructured grids are
avoided. We require that the discretization of the patches be conforming in that the faces
and vertices of cells on the boundaries between patches must match one-to-one. We are
free to choose the units in logical coordinates, and it is convenient to make the logical grid
spacing unity. (In the remainder we shall consider a single patch unless specifically noted
otherwise.) The vertices of these cells are then at the locations where the logical coordinates
r are all integers. A simple tri-linear interpolation is used to map the logical coordinates to
the physical coordinates. The mapping of cells from physical to logical space is illustrated
in Fig. 2. These cells form what we call the primary or B grid because we will locate the
magnetic field on its faces. We also define a dual or staggered grid (the secondary or E grid)
to be the one with vertices where r are all half integers. The edges of the E grid go through
the faces of the B grid, and visa versa. We will locate E on the faces of this grid. (It is

Figure 3: Location of electromagnetic field variables on the non-orthogonal mesh. The B - ds are
located on the faces of the B grid and the E-ds are located on the faces of the E grid. The discrete
line integral B - dl is located on edges of the E grid.

possible, however, that for extremely non-orthogonal grids, the edge will not pass through
the face and this should be avoided [2].

3.2 Electromagnetic Field Update

The fundamental variables that our electromagnetic simulation code calculates are B - ds
(on each face of B grid cells) and E - ds (on each face of E cells). These are the quantities
that have time derivatives specified on the left hand side of Egs. 2 and they appear in the
constraint equations Eqgs. 3. The integrals in Eqgs. 2 are taken to be over a single face of
a B or E cell, and in Egs. 3 is taken to be an integral over all six faces of a B or E cell.
The current J - ds will be co-located with E - ds; we consider the current to be zero for this
section.

The right hand sides of Eqs. 2 involve fields dotted with line segments (dl) rather than
face normals (parallel to dS). We locate B - dl on the edges of the E grid and they pass
through faces of the B grid. We locate E-dl on the edges of the B grid and they pass through
the faces of the E grid. The placement of these quantities is shown in Fig. 3 . When the
grid is Cartesian, the edges and the face normals are colinear; in the general case, they are
not colinear as illustrated in Fig. 3. These locations reduce to the familiar grid staggering
of the Yee lattice for Cartesian FDTD codes [7].

To give unique labels to the various grid quantities, we label each with the logical coor-
dinates of its center, e.g. a cell is labeled by the coordinates of its center and a B - ds by
the coordinates of the face center. Vertices of the B grid and cells of the E grid are integer
triplets (since we chose to have unit spacing in logical space) and all other quantities have 1,
2 or 3 half integer coordinates. Faces and face variables must have a subscript 1, 2 or 3 for
the logical coordinate direction of the normal (replacing the x,y, z subscripts in a Cartesian
grid). Likewise, edges have a subscript of 1, 2, or 3 for the logical coordinate direction of
the edge vector. Thus the B - ds component in direction 1 located on the face whose center
isat r = (i, +1/2,k +1/2) is labeled B - dsy; j11/2k+1/2-

5

To map these quantities to array locations we simply drop any half integers in the coor-
dinates. For simplicity, below we suppress the subscript on quantities that are at location
(1,7,k), and for quantities at nearby gridpoints we include only the coordinates that are
offset. For example we write E - dl3; ;111 as E - dl3 ;1. With this notation, the spatially
discretized Maxwell’s equations are then:

dB-ds; = E- d12,k+1 —E-dh+E-dl; -E- d13,j+1

4B-ds, = E-dly;,y —E-dls+E-dl, —E-dl
dB-ds; = E-dl;,,—~E-d, +E-dl— E-dl;;, (5)
dE-ds; = B-dl, ;—B-dl,+B-dl;—B-dls,
dE-ds, = B-dly;, —B-dl3+B-dl, —B-dl,_,

th . ng = B- dll’j,1 —B- dll +B- d12 —B- dll’ifl.

Note that this set of equation in not complete until until we specify how the edge quantities,
the E - dl and the B - dl, are determined from the E - ds and the B - ds respectively.
The spatially discretized constraint equations are

0 = B- d51 -B- dS1,i+1 +B- d52 -B- dSQ,j+1 +B- dS3 —B- dS3,k+1 (6)
0 = E- dSl —E- dSl,i—l +E- dSQ —-E- dSQ’j_l +E- dS3 —-E- ds3,lc—1

If we substitute the discretized Maxwell’s equations into these equations we find that they
hold automatically, and this is the reason for staggering the E and B grids. If the initial
condition satisfies the constraints, the evolved solution will also.

Note that the constraints hold no matter how edge values (E-dl and B-dl) are calculated
from face values (E-ds and B -ds). Various choices are possible for moving quantities from
faces to edges. The accuracy of the computation is undoubtedly very sensitive to the choices
here. We plan to investigate other choices in the future.

The system is then time discretized by staggering E and B by dt/2 and leapfrogging E
and B over each other with time step dt (as in the standard FDTD scheme), which clearly
preserves the constraint relations. (Specifically, we define the electric field and current on
whole time steps and the magnetic field on the half time steps.) Leapfrog time discretization
is used for second order convergence in time.

3.3 Obtaining B -dl from B - ds

To close the field equations we must define how to calculate B - dl from B - ds. Calculating
E - dl from E - ds done in exactly the same way, so the discussion will focus on B. For a
uniform orthogonal grid, ds and dl are parallel and we can calculate B-dl = B-ds|dl|/|ds|,
making Egs. 2 a closed system. This forms the same expressions as discretizing Eqgs. 1 with
centered differences, as in the FDTD algorithm, and in this limit, the method gives second
order accuracy in space. There is no real distinction between face and edge quantities.

For nonorthogonal coordinates, dl is not parallel to ds, and converting face to edge
quantities is more involved. In our code, we have used the technique due to Gedney and

6

Figure 4: The steps to find B - dl from B - ds. First, the vertex vector B!?3 is obtained from the
B - ds of the faces labeled 1, 2 and 3 by the method described in the text and similarly for the other
vertices of the face. In the second step, the B - dl for the line segment from face 2 to the center of
the cell is obtained from the vectors associated with the four vertices of face 2.

Lansing [1] specialized to the case of hexahedral cells. This technique is similar, but not
identical, to the Discrete Surface Integral method of Madsen [2].

Figure 4 shows the two steps in obtaining a single B - dl from a cell center to a cell face
from the B - ds for that face and 4 others in the same cell. (In the figure, the quantities are
labeled by cell face, not logical coordinate.) The first step in obtaining a B - dl for a face is
to find vertex values for B for the four vertices of this face. A cell vertex value is obtained
from the 3 cell faces sharing this vertex by solving a set of 3 coupled equations. In the figure
B!2 the cell vertex value at the vertex shared by faces 1, 2 and 3, is found by solving

B123 ‘n; = B- d51
B'%.n, = B-ds, (7)
B'?.n; = B-ds;

where n; is the unit normal to face 7. Once these cell vertex values are found, there are
many choices of how to proceed to obtain the dual edge quantity B -dl. We choose to follow
Gedney and Lansing [1] and this is illustrated in the second step in Figure 4. After the above
computation is done for all vertices of the cell, we average four vertex values to give a B at
the face center using a volume weighted average and this value is dotted with the dual edge
vector from the face center to the cell center (dl, for face 2),

B.-dl = B123w123 . dlg + B234w234 . d12 + B125w125 . d12 + B245U)245 . d12 (8)

The weights are calculated from the volume associated with each corner (calculated from
the cross product of the edge vectors). Note that B - ds from 5 faces of the cell were used
to compute one B - dl. At this stage, we have only the portion of the path integral B - dl
from the cell center to the face center. We now add to this the B - dl computed from the
neighboring cell on the other side of this face (from the face center to the cell center of the
neighboring cell). This sum of the B - dl along the two line segments from cell center to cell

7

face is an approximation to a B - dl computed along the E grid edge connecting the two
cells centers. By computing it in this way, the E - dl can be computed for each cell locally
and no interprocessor communication is necessary. Alternatives to this approximation will
be investigated in the future.

In practice, the calculation of the B - dl’s is done in the code by precalculating the
coefficients that connect all the B -ds values with each B -dl (9 faces in 3D) and performing
a single sparse matrix vector product to obtain all the B - dl’s from the B - ds’s.

This update is formally only first order because information from different face locations
has been combined to obtain a single vertex value and convergence tests presented below
indicate this. Since the algorithm is known to be second order accurate on an orthogonal
grid, it is important to minimize the regions of the grid that are strongly nonorthogonal.

3.4 Conducting Boundary conditions

In the interior of the simulation the B and E grids are dual to each other. We choose to align
them so that the faces of the B grid lie on the boundaries of 2 to simplify the boundary
conditions. The conditions at the surface of a perfect conductor are that B-n = 0 and
E x n = 0. The first is easily applied by simply setting B - ds = 0 for faces on a conductor,
and the second by setting E - dl = 0 for the edges on the conductor. If the E grid is
orthogonal at the boundary this may be accomplished by setting E - ds = 0 for the E faces
that penetrate the conductor. If the grid is not orthogonal at the boundary, it is generally
necessary to solve a matrix equation over the boundary surface to determine the set of E-ds
that will give E - d1 = 0.

3.5 Currents

Currents can be included in the discretization by including the current on the right hand
side of Egs. 5 to give a modified update for the E field:

dE-ds; = B-dl;_1—B-dlhb+B-dlz-B-dl;;_; +J-ds;
th . dS2 = B- dl3’i_1 -B- dl3 +B- dll -B- dll,k—l +J- dSQ (9)
th . ng = B- dll,j—l -B- d11 + B. d12 -B- dll,z’—l + J- ng.
The discretized constraint equation on J is
dtpdV =J- dSl -J- dSl,H_l +J- dS2 -J- dSQ’j+1 +J- ng -J- dS3’k+1. (10)

Here pdV is the total charge in a single cell of the E grid and J - ds is the current crossing
a face of the E grid. As long as J - ds and pdV are related in this way we will maintain the
discrete version of the divergence equation for the electric field

pdV =E- d51 —E- dSl,i+1 +E- dSQ —E- dSQ,j+1 +E- d53 —E- dS3,j_|_1 (11)

For our EMPIC simulations, p is defined by the locations of the particles, and the current J
is calculated from the particle motion.

3.6 Particle Update for Non-Orthogonal Grid

Particles moving through a non-uniform grid are handled similarly to particles in a uniform
grid — they move according to Eq. 4 and they deposit current onto the faces of the E grid in
such a way as to maintain Eq. 3. We briefly describe here the particle time step, elaborating
on the parts that pertain to non-uniform geometries. The method is an extension of the
scheme used in the Cartesian 3D EMPIC code of Wang et. al [4] and a more detailed
treatment can be found there.

In the code, the trajectory of each particle is integrated using a standard time-centering
scheme discussed in Birdsall and Langdon [6] and as used in [4] with the particle position
defined on integer time steps and the velocity defined on half integer time steps. However, in
our non-orthogonal grid code, the particle position is kept in logical space while the velocity
is kept in physical space. Setting the particles’ fundamental shape and position in logical
space simplifies both the force interpolation and the current deposit because the interpolation
weights are simple linear functions of each logical coordinate. If the physical location of the
particle is required it is easily calculated using the geometry information for each cell. We
keep the particle velocity in physical space because it is needed for use in the calculation
of the Lorentz force and the current deposit, and this requires a modification to the simple
Cartesian leapfrog update of x and v.

To update the velocity, we solve

n+1/2 _ . n—1/2

u

u _(En . lun+1/2 + un—1/2

q
B" 12
At m c 2y x B (12)

where u = yv.

Note that the primary variables in the field computation (Egs. 5 and 9) are B - ds and
E - ds, whereas we need vector values for E and B, interpolated to the particle positions,
for updating the particle velocities (Eq. 12). In a flat grid EMPIC simulation, the E and B
fields are averaged from their positions on faces to the vertices of the B grid. In a distorted
grid, this is done by using Eqgs. 7 for calculating a cell’s B at a vertex from B - ds and then
computing an averaged B from averaging the vertex B’s from all cells sharing this vertex.
E on the vertices of the E mesh is similarly calculated from E - ds and then averaged to the
vertices of the B mesh. The values of B and E are then interpolated to particle positions in
logical space using linear interpolation.

To update the logical particle positions, we introduce the transformation matrix M(r) =
dr/dx(r), where r is the logical position of a particle and x is its physical position, and it is
evaluated at r. We then update r with predictor corrector scheme

T2 = M(x") - vAL/2 (13)
't o= " M(evTY?) VAL
There are several possible ways to calculate M. In our code, M is calculated at each vertex

of the B grid once at the start of the computation. It is then interpolated to the particle
position in the particle update using linear interpolation in logical space.

An alternative technique would be to calculate dr/dx directly at the particle position
when needed, but special processing is required for particles that cross a cell boundary
during a time step. This method would be significantly more accurate for nonsmooth grids,
but those sorts of grids are not our present focus. The tests of particle motion below use
the interpolation technique. Presently, the accuracy of the EMPIC code is limited by the
accuracy of the EM field algorithm.

3.7 Current Deposit

The last ingredient in the particle time step is a technique for depositing the current. Here,
we use the method of Villasenor and Buneman [3] extended to non-orthogonal grids. The
current deposit is done by calculating for each particle how much charge crosses each face of
the E grid as described in [3], which we briefly summarize here. In our non-orthogonal grid
code, exactly the same calculation is done, but it is now in logical space using the cells of
the E grid.

We make the current deposit tractable by defining each particle to be a cube with uniform
charge distribution and unit edge length in logical space. The current is deposited to the
same location as the E field, the centers of E grid faces. We deposit the physical current, but
do the interpolations in logical space. In a time step, a particle will deposit current to any
face which its shape function moves across. It is obvious that a particle “cube” can touch
up to eight E cells at any given time. Following Villasenor and Buneman([3], if during a time
step a particle stays within the same B cell, then the same eight E cells will be occupied
by the particle and the particle will deposit current to the twelve faces that separate those
eight E cells. If during a time step a particle crosses from one B cell to another the path
is broken into segments each of which is entirely within a single B cell, and the current is
deposited in each one. Below we describe the deposit procedure in each B cell. Having the
time step broken in this manner allows this method to be used without modification when
particle are being injected and absorbed at boundaries.

The particle is taken to move uniformly from the logical position r° to r! along the path
r = %+ (r! — %) (¢ — t°)/dt. Since the particle is within a single cell we may take each
component of r° and r! to be in [0,1), and because the motion is linear in ¢ the average
current crossing each face can be found from the currents at ¢t = t° + dt/2. The current
deposited is then found from the particle position r = (r® 4+ r')/2.

4 Parallel Implementation and Performance

The issues involved with parallelizing an EMPIC code are similar to those involved with any
PIC code. Our algorithms are primarily designed for distributed memory parallel machines
in which each processor has memory that it can access much faster than any other processor
can.

The particles and the grid have to be distributed around the processors so that the
computational load is approximately balanced, and the communication between processors

10

Particle and Field Update Times
100

10

3=

0.1
10000 100000 1le+06
Number of particles, cells

Figure 5: Times in microseconds for field and particle updates for various computers. The field
update is per cell, and the particle update is per particle. The horizontal scale is the total number
of cells in the simulation, and each run was done with eight particles per cell. Times on the T3D
include time for communication between processors. The linear relationship between the time and
the number of processors on the T3D shows the code’s high parallel efficiency.

is minimized. We distribute the particles and the grid using a domain decomposition of both
grid and particles in much the same way as Liewer and Decyk [8] and as used by Wang et.
al [4]. The patches of the grid described above are distributed onto the processors and the
particles are distributed to be with the section of grid that they will reference. All of the
memory references and calculations in the inner loops are then the same as they would be on
a serial computer and no interprocessor communication is needed for the particle updates.
Between time steps the guard cells of the grids on each processor are exchanged and particles
that have moved from the domain of one processor to another are exchanged.

In Fig. 5 we present results from running this code on a variety of machines from a work-
station to a massively parallel supercomputer. The figure shows the times in microseconds
for field and particle updates for several computers: Silicon Graphics Indy, Silicon Graphics
Onyx, Cray YMP, and Cray T3D using 1, 8, 64 and 256 processors. The problem size was
chosen to be the largest problem that would run with eight particles per cell in that system.
The size of the system run is chosen to scale up with the computer in order to compare
vastly different systems.

This problem scales very well on parallel architectures like the T3D, where communication
to update guard cells and swap particles between processors required only about 3% of the
time for a time step. From the fact that the T3D speed decreases linearly as the number of
processors increases, we can see that the parallel efficiency is very high (about 97%). Here,
the domain was partitioned with equal numbers of grid points in each processor domain.
The parallel efficiency is this high because the particles are uniformly distributed and thus
both the particle computation and the field computation are load balanced. Other schemes
better suited to highly non-uniform particle distributions are discussed in the proposed work
section.

For microprocessor based computers the time per cell and the time per particle are nearly

11

Figure 6: Smoothly and randomly distorted meshes for testing the convergence of the numerical
techniques. The distortions are exaggerated here to be more easily visible.

the same. Because the field update vectorizes while the particle update does not, the particle
update is much slower on the Cray YMP than the field update (Fig. 5). Because runs are
typically done with eight or more particles per cell, the total time is dominated by the
particle update.

4.1 Convergence Tests of the Numerical Algorithms

We describe here tests of the convergence rate of the electromagnetic discretization and the
particle time step. On a uniform mesh the field and particle updates are well known to
converge with second order accuracy. We consider here how they converge for non-uniform
meshes.

To test the convergence of the electromagnetic update and particle motion on non-uniform
grids we consider the grids shown in Figure 6. The physical size of the domain is of length
L, =10, and is of unit length and periodic in y and z. For each test we consider a series of
runs with increasing resolution (increasing number of grid points with system size fixed).

We consider two kinds of distortions to the uniform grid.

e Smooth distortion. Each component of the physical space coordinate x is moved by an
amount 6 = « sin(27x) sin(27y)sin(27z) for a = 0.025. For this grid, the distortion is
fixed at a constant physical space length scale as the resolution increases.

¢ Random distortion. Each grid point is moved a random distance ¢ in each dimension
given by 6 = ad(2r — 1) where d is the grid spacing, r is a random number uniformly
distributed between 0 and 1, and o = 0.1. The distortion is constant in logical space,
but not physical space.

Each distortion is then localized to a region in the x direction about a position zy with a
gaussian factor exp(—(z — z0)?) where 20 = 0.4. Electromagnetic waves and test particles
are injected at x = 0, well outside of the distorted region, allowed to propagate through it
and then sampled well outside of it on the other side.

12

Particle Bunch Spreading

Random;
Random,rms +
maoth, max

of
Smooth, rms x

0.001

Bunch Width
*

0.0001 - T -

20 30 40 50
Gridpoints

Figure 7: Convergence plots for pushing particles through distorted meshes. 10,000 particles were
injected in a plane on the left hand side, and we plot the rms and maximum width of the bunch
after passing through smoothly and randomly distorted meshes as a function of the number of grid
point N = L,/Az. The data points are shown with lines of slope N =2 for the smooth distortions
and with lines of slope N=/2 for the random distortions.

4.2 Particle Update Convergence Rate

We examine the convergence of the predictor corrector algorithm in Eqgs. 13 for the same
grids by moving particles through the grids with no electromagnetic fields. We inject 10,000
particles in a plane at x=0 and allow them to propagate through the distorted region and into
the flat region on the right, where we examine the spread of the particle bunch (how much
they deviate from the expected straight line orbits). The spreading (bunch width) is plotted
in Fig. 7 vs. the number of grid points in the fixed length system. The curves labeled “max”
plot the maximum deviation or spreading and the “rms” curves plot the root-mean-square
deviation.

In the smoothly distorted grid, in which increasing the number of grid points N better
resolves the distortion (Az = L,/N), the convergence is seen to be with the second power
of the grid spacing and thus the algorithm is 2nd order (error o< Az?).

For the random grid, increasing the grid points does not better resolve the distortion and
here convergence is with the square root (error o v/Az). The square root convergence for
the randomly distorted grid results from the particles receiving a random “kick” from each
distorted cell (ox N) ; the total deviation is the random walk error oc vVN/N = 1/v/N
VAz.

4.3 Electromagnetic Field Convergence Rate

To test the convergence of the electromagnetic update we inject plane polarized electro-
magnetic waves at x = 0 and allow them to pass through the distorted region centered at
x = 0.4 in grids with resolution from Az = 1/8 through Az = 1/800. In Figure 8 we plot the
maximum difference between the signal propagated through an undistorted and a distorted

13

C Rates for EM

Maximum error
&

0.001

20 40 60 80 100
Grid points per wavelength

Figure 8: Convergence plots for propagating electromagnetic fields through the smooth and random
grids. Plane polarized waves are injected at the left edge, passed through the distorted region, and
sampled in the smooth region on the right. Both converge roughly with the first power of the mesh
spacing.

mesh in the region 7 < x < 9. The maximum is the maximum error in any of the 6 field
components.

We note that for both cases the convergence is roughly with the first power of the grid
spacing (error < Az), confirming the first order accuracy of the spatial discretization dis-
cussed in Sec. II.A.1. This limitation of the algorithm is discussed in the proposed work
section.

5 Future Directions

In this paper, we have presented the algorithm used in our three-dimensional non-orthogonal
grid relativistic electromagnetic particle-in-cell code. The code has been tested by compari-
son with results from our Cartesian grid 3D EMPIC code for an electron two-stream insta-
bility test case. The electromagnetic field portion has been tested on both orthogonal and
non-orthogonal grids using rectangular wave guides test cases with good results. A primary
outstanding area of research is in improving the accuracy of the discretization of the elec-
tromagnetic update on distorted meshes. At present with first order accuracy, regions of
distortion should be minimized to improve the overall accuracy of a simulation. Relaxing
that constraint will greatly ease simulations of complex geometries.

6 Acknowledgements
We would like to acknowledge many useful conversations with J. U. Brackbill, LANL and

Viktor Decyk, UCLA. We would also like to thank Edith Huang, JPL and Prof. D. Meiron,
Caltech for their help and support. This work was supported by the AFOSR Computational

14

Mathematics Program under Grant #F49620-94-1-0336 to the California Institute of Tech-
nology. A portion of this work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA. The JPL/Caltech Cray YMP and
T3D used in this investigation was supported by NASA. Visualization support was provided
by the JPL Supercomputing Project.

7 References

1. S.D. Gedney and F. Lansing, A generalized Yee-algorithm for the analysis of microwave
circuit devices, IEEE Trans. Microwave Theory and Techniques, (submitted for publi-
cation, 1995).

. N. K. Madsen, Divergence preserving discrete surface integral methods for Maxwell’s curl
equations using non-orthogonal unstructured grids, J. Comput. Phys., 119, 34 (1995).

3. J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic
field solves, Comput. Phys. Comm. 69, 306 (1992).

. J. Wang, P. Liewer, V. Decyk, 3D electromagnetic plasma particle simulations on a MIMD
parallel computer, Comput. Phys. Comm. 87, 35 (1995).

5. J. W. Eastwood, W. Arter, N. J. Brealey, R. W. Hockney, Body-fitted electromagnetic
PIC software for use on parallel computers, Comput. Phys. Comm. 87, 155 (1995).

. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-
Hill, New York, 1985).

7. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media, IEEE Trans. Antennas Propagat. AP-14(3), 302 (1966).

8. P. C. Liewer and V. K. Decyk, A general concurrent algorithm for plasma particle-in-cell

simulations codes, J. Comput. Phys. 85, 302 (1989).

[\l

1N

=2}

15

