A Test Matrix Collection for Non-Hermitian Eigenvalue Problems (Release 1.0)

Zhaojun Bai, David Day, James Demmel, and Jack Dongarra

CRPC-TR96715
October 1996

Center for Research on Parallel Computation
Rice University
6100 South Main Street
CRPC - MS 41
Houston, TX 77005

Submitted in November 1997; Also available as University of Tennessee at Knoxville Technical Report CS-97-355
A Test Matrix Collection for Non-Hermitian Eigenvalue Problems*
(Release 1.0)

Zhaojun Bai† and David Day‡ and James Demmel§ and Jack Dongarra¶

October 6, 1996

1 Introduction

The primary purpose of this collection is to provide a testbed for the development of numerical algorithms for solving nonsymmetric eigenvalue problems. In addition, as with many other existing collections of test matrices, our goal includes providing an easy access to “practical” eigenproblems for researchers, educators and students in the community who are interested in the origins of large scale nonsymmetric eigenvalue problems, and in the development and testing of numerical algorithms for solving challenging non-Hermitian eigenvalue problems in real applications.

In this document, we describe the mechanism for obtaining a copy of the matrices and for using the collection. All test matrices currently included in the collection are documented in Appendices.

2 Organziation of the collection

There are four directories in the collection:

- document/ contains the postscript file of this report and the postscript files of pictures included in the document.

- utility/ contains the utility routines in FORTRAN, C and Matlab M-files for basic manipulations and computations of the matrices included in this collection, such as read or write a sparse matrix in the HB format, matrix-vector multiplication etc.

- data/ contains the data files of test matrices which are presented in the standard Harwell-Boeing format.

*This work was supported in part by NSF grant ASC-9313958 and in part by DOE grant DE-FG03-94ER25219.

†Department of Mathematics, University of Kentucky, Lexington, KY 40506.
‡MS 1110, Sandia National Laboratories PO Box 5800, Albuquerque, NM 87185.
§Computer Science Division and Mathematics Department, University of California, Berkeley, CA 94720.
¶Department of Computer Science, University of Tennessee, Knoxville, TN 37996 and Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
• matsrc/ contains the test matrices which are presented in the matrix-vector product format or in the subroutine format.

3 How to obtain the collection

The entire collection (document, software and data) is available through direct electronic transfer on the MatrixMarket, a web resource for test matrix collections. The URL of the MatrixMarket is http://math.nist.gov/MatrixMarket.

4 Matrix Formats and Usage

There are three formats in which to represent the sparse matrices in the collection, namely the standard Harwell-Boeing (HB) sparse matrix format, the matrix-vector multiplication format, and the subroutine format.

4.1 HB Sparse compressed column format

The matrices stored in data files are stored in sparse column format (i.e., standard Harwell-Boeing format). Utility routines dreadm.f and dpfmt.m can be used for reading or writing a real sparse matrix in this format in FORTRAN. zreadm.f and zpfmt.m are complex versions. dreadhb.c is the C version. Matlab M-files dm2hb.m and zm2hb.m can be used to write a real and complex sparse matrices in MATLAB to the HB format, respectively.

The following is a brief summary of the compressed column storage scheme. For more details, see the User’s Guide for the Harwell-Boeing Sparse Matrix Collection.

In any sparse matrix format only the non-zero entries of a matrix are stored. An entry is specified by its row index, column index, and value. In sparse column format a single integer array and a single floating point array are used to store the row indices and the values, respectively, for all columns. The data for each column are stored in consecutive locations, the columns are stored in order, and there is no space between columns. An other integer array points to the first entry in each column.

The sparse matrix A of order n and with nnz non-zero entries is represented by a floating point array $a(1:nnz)$ that stores the values, an integer array $ia(1:nnz)$ that stores the row indices, and an integer array $ja(1:n+1)$ with the property that $ja(k+1) - 1$ points to the last element in column k.

4.2 Matrix-vector multiplication format

Some of test matrices in this collection are presented in a different format than the standard Harwell-Boeing format. Instead of storing the matrix in a data file, the matrix is represented as a subroutine that computes the matrix-vector multiplications AX and/or A^TX for a given X, where X is a single vector or a block vector (matrix). These matrices are of variable size, and often depend on parameters that influence the eigenvalues.

4.3 Subroutine format

In subroutine format the user generates a matrix of specified order (and parameter values if applicable) represented in compressed column or compressed row format. The matrix is stored in two integer arrays and one real array. Routines for performing matrix-vector products etc. are available in the utilities directory of the collection.

5 Acknoledgement and contributing to the collection

This work is in fact a compilation of efforts of many people. Their names will be acknowledged with the associated matrices in the collection. We will keep updating the collection as new test problems become available. At a proper time, we plan to record performance data of different numerical methods and challenges associated with these test problems.

Your comments and contributions are welcomed. Please contact Bai by sending electronic mail to bai@ms.uky.edu or by writing to: Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA.

Appendix A: Matrices in Standard HB Sparse Matrix Format

Appendix B: Matrices in Matrix-Vector Product Format

Appendix C: Matrices in Subroutine Format

Appendix D: List of Utility Routines
Appendix A

Matrices in Standard HB Sparse Matrix Format

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Matrix Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrical engineering</td>
<td></td>
</tr>
<tr>
<td>quantum chemistry</td>
<td></td>
</tr>
<tr>
<td>material science</td>
<td></td>
</tr>
<tr>
<td>plasma physics</td>
<td></td>
</tr>
<tr>
<td>computer science</td>
<td></td>
</tr>
<tr>
<td>robotic control</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

The following data files are also available, but the corresponding matrices are described in Appendices B and C.

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Matrix Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroelasticity</td>
<td></td>
</tr>
<tr>
<td>computational mathematics</td>
<td></td>
</tr>
<tr>
<td>Markov chain modeling</td>
<td></td>
</tr>
</tbody>
</table>
Title: Transient Stability Analysis of Navier-Stokes Solver

Source: A. Mahajan, NASA Lewis Research Center

Discipline: Computational fluid dynamics

Further details: This test matrix is from transient stability analysis of Navier-Stokes solvers. The order of the test matrix is 23560. The eigenvalues and eigenvectors are associated with small perturbation analysis of a finite difference representation of the Navier-Stokes equations for flows over airfoils. Such eigensystem information is central to stability analysis of Navier-Stokes solvers, for determining the modal behavior of fluid in a fluid-structure interaction problem and for development of reduced order models based on variational principles for Navier-Stokes solvers. A representative eigenvalue constellation is reported in the following reference, where the Lanczos procedure with no rebiorthogonalization is used. The number of Lanczos iteration performed required for convergence was between 1000 to 1200 for convergence.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF23560</td>
<td>23560</td>
<td>484256</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Bounded Finline Dielectric Waveguide

Source: B. Shultz and S. Gedney, University of Kentucky

Discipline: Electrical engineering

Further details: Millimeter wave technology has been applied in radar, communication, radiometry and instruments. The finline waveguide is an example of a bounded waveguide which operates extremely well in the millimeter wave spectrum. This generalized eigenvalue problem

\[Az = \lambda Bz \]

studied in [Shultz] arises in the finite element analysis of the Maxwell’s equation (see [Fernandez and Lu] and [Jin]) for finding the propagating modes and magnetic field profiles of a rectangular waveguide filled with dielectric and PEC structures. The eigenvalues and corresponding eigenvectors of interest are the ones with positive real parts, which correspond to the propagation modes of a waveguide. The matrix \(A \) is non-symmetric and \(B \) is symmetric positive definite. Though real data is collected here, in applications, complex matrices may be involved.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFW62A</td>
<td>62</td>
<td>450</td>
<td>real</td>
</tr>
<tr>
<td>BFW62B</td>
<td>62</td>
<td>342</td>
<td>real</td>
</tr>
<tr>
<td>BFW398A</td>
<td>398</td>
<td>3678</td>
<td>real</td>
</tr>
<tr>
<td>BFW398B</td>
<td>398</td>
<td>2910</td>
<td>real</td>
</tr>
<tr>
<td>BFW782A</td>
<td>782</td>
<td>7514</td>
<td>real</td>
</tr>
<tr>
<td>BFW782B</td>
<td>782</td>
<td>5982</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Chuck Matrices

Source: J. Cullum, IBM T. J. Watson Research Center

Discipline: unknown

Further details: According to the reference, this set of test matrices is supplied by Chuck Siewert of North Carolina State. The application background of these matrices is not clear. The objective is to compute those eigenvalues with magnitudes greater than 1. The matrices have several multiple eigenvalues and clustered. The eigenvalues occur in clusters of order 4; each cluster consists of two pairs of very nearly multiple eigenvalues.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK104</td>
<td>104</td>
<td>992</td>
<td>real</td>
</tr>
<tr>
<td>CK400</td>
<td>400</td>
<td>2860</td>
<td>real</td>
</tr>
<tr>
<td>CK656</td>
<td>656</td>
<td>3884</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Model H_2^+ in an Electromagnetic Field

Source: S. I. Chu, University of Kansas

Discipline: Quantum chemistry

Further details: The physical problem is to determine the laser-induced molecular resonance states of H_2^+ in an electro-magnetic field. The complex-scaling technique applied to the self-adjoint Hamiltonian from quantum mechanics yields a complex symmetric eigenvalue problem $Ax = \lambda x$. To determine the stability of the state, Floquet exponents are computed by the standard Fourier-grid method.

The computational task is to determine the eigenvalues nearest to or above the real axis. The figure displays the eigenvalues computed by the QR algorithm for the matrix QC2534.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC324</td>
<td>324</td>
<td>26730</td>
<td>complex</td>
</tr>
<tr>
<td>QC2534</td>
<td>2534</td>
<td>463360</td>
<td>complex</td>
</tr>
</tbody>
</table>

References:

Title: Diffusion Model Study for Crystal Growth Simulation

Source: C. Yang, Rice University

Discipline: Material Science

Further details This is a large nonsymmetric standard eigenvalue problem that arises from the stability analysis of a crystal growth problem. To determine the stability of the interfacial crystallization of a piece of solid crystal solidifying into some undercooled melt, solutions of the following equations are sought.

\[
\frac{1}{\eta^2 + \xi^2} \left[\frac{\partial^2 U}{\partial \eta^2} + \frac{\partial^2 U}{\partial \xi^2} + 2P \left(\frac{\eta}{\partial \eta} \frac{\partial U}{\partial \eta} - \xi \frac{\partial U}{\partial \xi} \right) \right] = \lambda U, \\
\frac{-1}{1 + \xi^2} \left[\frac{\partial U}{\partial \eta} + 4P^2 N + 2P (N + \xi \frac{\partial N}{\partial \xi}) \right] = \lambda N, \\
U = 2PN \text{ at } \eta = 1.
\]

Zero Dirichlet boundary condition is imposed at infinity. The variable \(U \) in the above equations represents the temperature perturbation of the liquid, and \(N \) describes the interface perturbation in a transformed (parabolic) coordinate system. The constant \(P \) is the Peclet number. The second equation is satisfied only at the interface \(\eta = 1 \). Eigenvalues with largest real parts are of interest. They indicate the growth or decay of the initial disturbance at the solid-liquid interface. A change of variable is used to map the partial differential equation from an infinite domain to a finite box \([0, 1] \times [1, 2] \). The matrix eigenvalue problem follows from discretization using the standard second order finite difference formulae. The Peclet number used here is \(P = 0.05 \).

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYG2500</td>
<td>2500</td>
<td>12349</td>
<td>real</td>
</tr>
<tr>
<td>CRYG10000</td>
<td>10000</td>
<td>49699</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Square Dielectric Waveguide

Source: H. Dong, University of Minnesota

Discipline: Electrical engineering

Further details: Dielectric channel waveguide problems arise in many integrated circuit applications. Finite difference discretization of the governing Helmholtz equation for the magnetic field H,

$$
\nabla^2 H_x + k^2 n^2(x,y) H_x = \beta^2 H_x,
\nabla^2 H_y + k^2 n^2(x,y) H_y = \beta^2 H_y,
$$

leads to the nonsymmetric eigenvalue problem of the form

$$
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\begin{pmatrix}
H_x \\
H_y
\end{pmatrix} = \beta^2
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\begin{pmatrix}
H_x \\
H_y
\end{pmatrix}
$$

where C_{11} and C_{22} are five- or tri-diagonal matrices, C_{12} and C_{21} are (tri-) diagonal matrices, and B_{11} and B_{22} are nonsingular diagonal matrices. This generalized eigenvalue problem is reduced to a standard eigenvalue problem $Ax = x\lambda$, where $A = B^{-1}C$, since B is diagonal.

The computational task is to determine the right most eigenvalues and their corresponding eigenvectors. In some cases, there are eigenvalues with negative real part several orders of magnitude larger than the desired eigenvalues with positive real part. This problem presents a challenge to existing numerical methods.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWA512</td>
<td>512</td>
<td>2480</td>
<td>real</td>
</tr>
<tr>
<td>DWB512</td>
<td>512</td>
<td>2500</td>
<td>real</td>
</tr>
<tr>
<td>DW2048</td>
<td>2048</td>
<td>10114</td>
<td>real</td>
</tr>
<tr>
<td>DW8192</td>
<td>8192</td>
<td>41746</td>
<td>real</td>
</tr>
</tbody>
</table>

Note that DWA512 and DWB512 are the matrices of same order which correspond to different parameter values.

References:

H. Dong, A. Chronopoulos, J. Zou and A. Gopinath, Vectorial integrated finite-difference analysis of dielectric waveguides, private communication, 1993

Title: Dispersive Waveguide Structures

Source: S. Gedney and U. D. Navsariwala, University of Kentucky

Discipline: Electrical engineering

Further details: This is a complex symmetric eigenvalue problem $Ax = \lambda Bx$, where both A and B are complex and symmetric, but not Hermitian. Moreover, the matrices A and B are of the forms

$$
\begin{pmatrix}
A_{11} & 0 \\
0 & 0
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix},
$$

respectively. In the work of Tan and Pan, it is shown that the eigenvalue problem is derived from using the edge element method to solve the waveguide problem of conductors with finite conductivity and cross section in a lossy dielectric media. The matrix size can easily reach a few thousands.

The subblock matrix A_{11} is 705 by 705, and banded. The computational task is to find the eigenvalues with the smallest positive real parts.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWG961A</td>
<td>961</td>
<td>3405</td>
<td>complex</td>
</tr>
<tr>
<td>DWG961B</td>
<td>961</td>
<td>10591</td>
<td>complex</td>
</tr>
</tbody>
</table>

References:

S. Gedney and U. D. Navsariwala, personal communication, 1996
Title: Alfven Spectra in Magnetohydrodynamics

Source: [A. Booten] M. N. Kooper, H. A. van der Vorst, S. Poedts and J. P. Goedbloed, University of Utrecht, the Netherlands.

Discipline: Plasma Physics

Further details Large nonsymmetric generalized matrix eigenvalue problems \((Ax = \lambda Bx)\) arise in the modal analysis of dissipative magnetohydrodynamics (MHD). The MHD system combines Maxwell’s and fluid flow equations. The physical objective of these MHD systems is to derive nuclear energy from the fusion of light nuclei. The plasmas generated exhibit both the characteristics of an ordinary fluid and special features caused by the magnetic field. The study of linearised motion in MHD has contributed significantly to the understanding of resistive and nonadiabatic MHD plasma phenomena such as plasma stability, wave propagation and heating.

The MHD equations are solved by applying a Galerkin finite element method, which leads to the generalized eigenvalue problem. The spectrum ranges over several orders of magnitude (see figures below) corresponding to the time scales of different aspects of nuclear fusion reactions. Details are given in the literature.

Kerner reports difficulties in numerically computing the eigenvalues of the Alfven wave operator. The spectrum of this operator consists of three branches. More precisely, it is reported that the eigenvalues at the intersection of the branches are problematic.

The left figure below displays the spectrum of the \(1280 \times 1280\) MHD matrix computed by the QR algorithm. The right figure focuses on the intersection of the three branches (Alfven spectra).

The test matrix data was made available to us by Dr. Albert Booten, less than a month before his unexpected death by heart failure during a sports event in November 12, 1995. Albert was an able young scientist and a very friendly person and we will miss him very much.
Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHD416A</td>
<td>416</td>
<td>8562</td>
<td>real</td>
</tr>
<tr>
<td>MHD416B</td>
<td>416</td>
<td>2312</td>
<td>real</td>
</tr>
<tr>
<td>MHD1280A</td>
<td>1280</td>
<td>47906</td>
<td>complex</td>
</tr>
<tr>
<td>MHD1280B</td>
<td>1280</td>
<td>22778</td>
<td>complex</td>
</tr>
<tr>
<td>MHD3200A</td>
<td>3200</td>
<td>68026</td>
<td>real</td>
</tr>
<tr>
<td>MHD3200B</td>
<td>3200</td>
<td>18316</td>
<td>real</td>
</tr>
<tr>
<td>MHD4800A</td>
<td>4800</td>
<td>102252</td>
<td>real</td>
</tr>
<tr>
<td>MHD4800B</td>
<td>4800</td>
<td>27520</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Quebec Hydroelectric Power System
Key: QH882

Source: Deo Ndereyimana, Quebec, Canada

Discipline: Power systems simulations

Further details: This set of matrices is from the application of the Hydro-Quebec power systems' small-signal model. In the application, one wants to compute all eigenvalues $a + ib$ in a box of the complex plane. Specifically, $a_{\text{min}} < a < a_{\text{max}}$ and in general, $a_{\text{min}} = -300$ and $a_{\text{max}} = 300$. $b_{\text{min}} < b < b_{\text{max}}$ and in general, $b_{\text{min}} = 0$ and $b_{\text{max}} = 2 \times 60\pi$. Note that the matrices are highly unbalanced.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>QH768</td>
<td>768</td>
<td>2934</td>
<td>real</td>
</tr>
<tr>
<td>QH882</td>
<td>882</td>
<td>3354</td>
<td>real</td>
</tr>
<tr>
<td>QH1484</td>
<td>1484</td>
<td>6110</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Deo Ndereyimana, personal communication, 1994
Title: LOPSI Stochastic Test Matrix

Source: W. J. Stewart, North Carolina State University and A. Jennings, Queen’s University, Belfast, North Ireland.

Discipline: Analysis and evaluation of computer systems

Further details: This stochastic matrix is derived from the application of Markov modeling techniques to the analysis and evaluation of computer systems. The matrix is a 163 by 163 stochastic matrix with 935 nonzero entries. The object is to compute a few dominant eigenvalues and their corresponding eigenvectors. The following left figure shows the sparsity structure of the 163 by 163 stochastic matrix, and the right figure shows the eigenvalue distribution.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOP163</td>
<td>163</td>
<td>936</td>
<td>real</td>
</tr>
</tbody>
</table>

We note that the number of nonzero entries in our count is 936, however, the recorded count shown in the paper of Stewart and Jennings is 1207. The 15 dominant eigenvalues computed from the resulting matrix agree, however, with the results in the paper of Stewart and Jennings.

References:

Title: Forward Kinematics for the Stewart platform of Robotics

Source: H. Ren, University of California at Berkeley

Discipline: Robotic Control

Further details: The Stewart platform, also called left hand, is a parallel manipulator with six prismatic joints connecting two rigid bodies, or platforms. The base platform is considered fixed while the top platform, or end-effector, is moving in 3-dimensional space, controlled by the lengths of joints. Parallel robots are especially useful when high stiffness and position precision are predominant requirements. The platform has one degree of freedom per joint; the position and orientation of the top platform is specified by six parameters, namely three for the orientation and three for the position in 3D space. The forward kinematics assumes that the leg lengths are known and the displacement of the top platform is to be found. The algorithmic problem reduces to the solution of a well-constrained system of polynomial equations. By using (sparse) resultant method, solving the system of polynomial equations reduces to solving the generalized eigenproblem $Ax = \lambda Bx$. The computational task is to compute the real eigenvalues and the corresponding eigenvectors (most of the eigenvalues are complex). Though the given model problem is of order 480, eigenvalue problems with thousands of unknowns commonly arise in this field.

It is requested to compute the real eigenvalues and the corresponding eigenvectors, although most of the eigenvalues are complex. It is desired to solve such matrix eigenvalue problem of order a few thousands.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBS480A</td>
<td>480</td>
<td>17088</td>
<td>real</td>
</tr>
<tr>
<td>RBS480B</td>
<td>480</td>
<td>17088</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

D. Manocha and J. Canny, MultiPolynomial Resultant Algorithms, Computer Science Division Report, University of California, Berkeley, 1993

Title: Tubular Reactor Model

Source: K. Meerbergen and D. Roose, Katholieke Universiteit Leuven, Belgium

Discipline: computational fluid dynamics

Further details: The conservation of reactant and energy in a homogeneous tube of length L in dimensionless form is modeled by

$$\frac{L dy}{v \, dt} = -\frac{1}{Pe_m} \frac{\partial^2 y}{\partial X^2} + \frac{\partial y}{\partial X} + Dy \exp(\gamma - \gamma T^{-1}),$$

$$\frac{L dT}{v \, dt} = -\frac{1}{Pe_h} \frac{\partial^2 T}{\partial X^2} + \frac{\partial T}{\partial X} + \beta(T - T_0) - BDy \exp(\gamma - \gamma T^{-1}),$$

where y and T represent concentration and temperature and $0 \leq X \leq 1$ denote the spatial coordinate. The boundary conditions are $y'(0) = Pe_m y(0), T'(0) = Pe_h T(0), y'(1) = 0$ and $T'(1) = 0$. Central differences are used to discretize in space. For $x^T = [y_1, T_1, y_2, T_2, \ldots, y_{N/2}, T_{N/2}]$, the equations can be written as $\dot{x} = f(x)$. The parameters in the differential equation are set to $Pe_m = Pe_h = 5, B = 0.5, \gamma = 25, \beta = 3.5$ and $D = 0.2662$. One seeks the rightmost eigenvalues of the Jacobi matrix $A = \partial f/\partial x$. A is a banded matrix with bandwidth 5.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUB100</td>
<td>100</td>
<td>396</td>
<td>real</td>
</tr>
<tr>
<td>TUB1000</td>
<td>1000</td>
<td>3996</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: The Olmstead model

Source: K. Meerbergen, Katholieke Universiteit Leuven, Belgium

Discipline: Hydrodynamics

Further details: The Olmstead model represents the flow of a layer of viscoelastic fluid heated from below. The equations are

\[
\frac{\partial u}{\partial t} = (1 - C) \frac{\partial^2 v}{\partial X^2} + C \frac{\partial^2 u}{\partial X^2} + R u - u^3 \\
B \frac{\partial v}{\partial t} = u - v
\]

with boundary conditions \(u(0) = u(1) = 0 \) and \(v(0) = v(1) = 0 \). \(u \) represents the speed of the fluid and \(v \) is related to viscoelastic forces. The equation was discretised with central differences with grid size \(h = 1/(N/2) \). After discretization the equation can be written as \(\dot{x} = f(x) \) with \(x^T = [u_1, v_1, u_2, v_2, \ldots, u_{N/2}, v_{N/2}] \). One seeks the rightmost eigenvalues of the Jacobi matrix \(A = \partial f/\partial x \) with parameters \(B = 2 \), \(C = 0.1 \) and \(R = 4.7 \).

Subroutine: FORTRAN calling sequences for forming matrix-vector \(Jx \) and \(J^T x \)

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLM100</td>
<td>100</td>
<td>396</td>
<td>real</td>
</tr>
<tr>
<td>OLM500</td>
<td>500</td>
<td>1996</td>
<td>real</td>
</tr>
<tr>
<td>OLM1000</td>
<td>1000</td>
<td>3996</td>
<td>real</td>
</tr>
<tr>
<td>OLM2000</td>
<td>2000</td>
<td>7996</td>
<td>real</td>
</tr>
<tr>
<td>OLM5000</td>
<td>5000</td>
<td>19996</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

K. Meerbergen and A. Spence, A spectral transformation for finding complex eigenvalues of large sparse nonsymmetric matrices, Report TW 219, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1994

Title: Reaction-diffusion Brusselator Model

Source: K. Meerbergen, Katholieke Universiteit Leuven, Belgium and A. Spence, University of Bath, UK.

Discipline: Chemical engineering

Further details: The equations

\[
\frac{\partial u}{\partial t} = \frac{D_u}{L^2} \left(\frac{\partial^2 u}{\partial X^2} + \frac{\partial^2 u}{\partial Y^2} \right) - (B + 1)u + u^2v + C
\]

\[
\frac{\partial v}{\partial t} = \frac{D_v}{L^2} \left(\frac{\partial^2 v}{\partial X^2} + \frac{\partial^2 v}{\partial Y^2} \right) - u^2v + Bu
\]

for \(u \) and \(v \in (0,1) \times (0,1) \) with homogeneous Dirichlet boundary conditions form a 2D reaction-diffusion model where \(u \) and \(v \) represent the concentrations of two reactions. The equations are discretized with central differences with grid size \(h_u = h_v = 1/(n + 1) \) with \(n = (N/2)^{1/2} \). For \(x^T = [u_{1,1}, v_{1,1}, u_{1,2}, v_{1,2}, \ldots, u_{n,n}, v_{n,n}] \), the discretized equations can be written as \(\dot{x} = f(x) \). One wants to compute the rightmost eigenvalues of the Jacobi matrix \(A = \partial f/\partial x \). Where the parameters \(B = 5.45, C = 2, D_u = 0.004, D_v = 0.008 \). The parameter \(L \) is chosen different.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDB200</td>
<td>200</td>
<td>1120</td>
<td>real</td>
<td>0.5</td>
</tr>
<tr>
<td>RDB450</td>
<td>450</td>
<td>2580</td>
<td>real</td>
<td>0.5</td>
</tr>
<tr>
<td>RDB1250</td>
<td>1250</td>
<td>7300</td>
<td>real</td>
<td>0.5</td>
</tr>
<tr>
<td>RDB2048</td>
<td>2048</td>
<td>12032</td>
<td>real</td>
<td>0.5</td>
</tr>
<tr>
<td>RDB200L</td>
<td>200</td>
<td>1120</td>
<td>real</td>
<td>1.0</td>
</tr>
<tr>
<td>RDB450L</td>
<td>450</td>
<td>2580</td>
<td>real</td>
<td>1.0</td>
</tr>
<tr>
<td>RDB800L</td>
<td>800</td>
<td>4640</td>
<td>real</td>
<td>1.0</td>
</tr>
<tr>
<td>RDB1250L</td>
<td>1250</td>
<td>7300</td>
<td>real</td>
<td>1.0</td>
</tr>
<tr>
<td>RDB2048L</td>
<td>2048</td>
<td>12032</td>
<td>real</td>
<td>1.0</td>
</tr>
<tr>
<td>RDB3200L</td>
<td>3200</td>
<td>18880</td>
<td>real</td>
<td>1.0</td>
</tr>
</tbody>
</table>

References:

K. Meerbergen and A. Spence, A spectral transformation for finding complex eigenvalues of large sparse nonsymmetric matrices, Report TW 219, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1994
Appendix B

Matrices in Matrix-Vector Multiplication Format

<table>
<thead>
<tr>
<th>Title</th>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brusselator wave model in chemical reaction</td>
<td>MVMBWM</td>
</tr>
<tr>
<td>Model 2-D convection-diffusion differential operator</td>
<td>MVMMCD</td>
</tr>
<tr>
<td>Grcar matrix</td>
<td>MVMGRC</td>
</tr>
<tr>
<td>Ising model of ferromagnetic materials</td>
<td>MVMISG</td>
</tr>
<tr>
<td>Model eigenvalue problem of ODE</td>
<td>MVMODE</td>
</tr>
<tr>
<td>Markov chain modeling (random walk)</td>
<td>MVMRWK</td>
</tr>
<tr>
<td>Tolosa matrix</td>
<td>MVMTLS</td>
</tr>
</tbody>
</table>
Title: Brusselator wave model in chemical reaction
Subroutine name: MVMBWBM

Source: Y. Saad, University of Minnesota

Discipline: Chemical engineering

Further details: This problem models the concentration waves for reaction and transport interaction of chemical solutions in a tubular reactor. The concentrations \(x(t,z) \) and \(y(t,z) \) of two reacting and diffusing components are modeled by the system

\[
\begin{align*}
\frac{\partial x}{\partial t} &= \frac{\delta_1}{L^2} \frac{\partial^2 x}{\partial z^2} + f(x,y), \\
\frac{\partial y}{\partial t} &= \frac{\delta_2}{L^2} \frac{\partial^2 y}{\partial z^2} + g(x,y),
\end{align*}
\]

with the initial conditions \(x(0,z) = x_0(z) \), \(y(0,z) = y_0(z) \) and the Dirichlet boundary conditions \(x(t,0) = x(t,1) = x^* \), \(y(t,0) = y(t,1) = y^* \), where \(0 \leq z \leq 1 \) is the space coordinate along the tube, and \(t \) is time. Raschman et al considered in particular the so-called Brusselator wave model in which

\[
f(x,y) = \alpha - (\beta + 1)x + x^2y, \quad g(x,y) = \beta x - x^2y.
\]

Then, the above system admits the trivial stationary solution \(x^* = \alpha, \ y^* = \beta/\alpha \). In this problem one is primarily interested in the existence of stable periodic solutions to the system as the bifurcation parameter \(L \) varies. This occurs when the eigenvalues of largest real parts of the Jacobian of the right hand side of (1) and (2), evaluated at the steady station solution, is purely imaginary. For the purpose of verifying this fact numerically, one first needs to discretize the equations with respect to the variable \(z \) and compute the eigenvalues with largest real parts of the resulting discrete Jacobian.

If we discretize the interval \([0,1]\) using \(n \) interior points with the mesh size \(h = 1/(m+1) \). Then the discretized Jacobian of the system is a \(2 \times 2 \) block matrix of the form

\[
A = \begin{pmatrix}
\tau_1 T + (\beta - 1)I & \alpha^2 I \\
-\beta I & \tau_2 T - \alpha^2 I
\end{pmatrix}
\]

where \(T = \text{tridiag}\{1,-2,1\} \), \(\tau_1 = \frac{1}{h^2} \), and \(\tau_2 = \frac{1}{h^2} \).

The exact eigenvalues of \(J \) are known since there exists a quadratic relation between the eigenvalues of the matrix \(A \) and those of the classical difference matrix \(T = \text{tridiag}\{1,-2,1\} \). The following segment is the Matlab M-file for computing the \(2m \) eigenvalues of \(A \):

```matlab
h = 1/(m+1); tau1 = delta1/(h*L)^2; tau2 = delta2/(h*L)^2;
for j=1:m,
    eigofT(j) = -2*(1 - cos(pi*j*h)); \% eigenvalues of T
end;
for j=1:m,
    coeff(1) = 1;
    coeff(2) = alpha^2 - (beta - 1) - (tau1+tau2)*eigofT(j);
```
\[
\text{coeff}(3) = \beta \alpha^2 + \tau_1 \tau_2 \text{eigof}(j)^2 + \ldots \\
\tau_2 (\beta - 1) \text{eigof}(j) - \ldots \\
\alpha^2 \tau_1 \text{eigof}(j) - \alpha^2 (\beta - 1); \\
d = \text{roots(coeff);} \\
\text{Aeig}(j) = d(1); \text{Aeig}(m+j) = d(2); \text{eigenvalues of } A \\
\text{end;}
\]

The following figure shows the 32 rightmost eigenvalue distribution of 200 by 200 of the matrix \(A \) \((m = 100)\) corresponding to the set of parameters \(\delta_1 = 0.008, \delta_2 = \frac{1}{2} \delta_1 = 0.004, \alpha = 2, \beta = 5.45, L = 0.51302 \) as used in Saad's book.

\[
\text{The 32 Rightmost Eigenvalues of 200 x 200 Brusselator Matrix}
\]

Subroutine: FORTRAN calling sequence for forming matrix-vector \(AX \) or \(A^T X \) is

\[
\text{SUBROUTINE MVMBWM(TRANS, N, M, X, LDX, Y, LDY)}
\]

with

- **TRANS** (input) INTEGER
 - if \(\text{TRANS} = 0 \), computes the product \(AX \),
 - if \(\text{TRANS} = 1 \), computes the product \(A^T X \),

- **N** (input) INTEGER
 - The order of matrix \(A \). \(N \) has to be an even number.

- **M** (input) INTEGER
 - The number of columns of \(X \).

- **X** (input) DOUBLE PRECISION array, dimension \((\text{LDX, M}) \)
 - contains the vector \(X \).

- **LDX** (input) INTEGER
 - The leading dimension of the array \(X \), \(\text{LDX} \geq \text{max(1, N)} \).

- **Y** (output) DOUBLE PRECISION array, dimension \((\text{LDY, M}) \)
 - contains the product \(AX \) or \(A^T X \).

- **LDY** (input) INTEGER
 - The leading dimension of the array \(Y \), \(\text{LDY} \geq \text{max(1, N)} \).

In addition, the parameters \(\delta_1, \delta_2, L, \alpha \) and \(\beta \) are set as internal parameters.
Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW200</td>
<td>200</td>
<td>796</td>
<td>real</td>
</tr>
<tr>
<td>BW2000</td>
<td>2000</td>
<td>7996</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Model 2-D Convection Diffusion Operator
Subroutine name: MVMMCD

Source: unclear

Discipline: computational fluid dynamics

Further details: This test matrix is from the following constant-coefficient convection diffusion equation which is widely used for testing and analyzing numerical methods for the solution of linear system of equations,

\[-\Delta u + 2p_1 u_x + 2p_2 u_y - p_3 u = f \quad \text{in} \quad [0,1]^2 \]
\[u = g \quad \text{on} \quad \partial [0,1]^2\]

where \(p_1, p_2\) and \(p_3\) are positive constants. Discretization by the finite difference scheme with a 5-point stencil on a uniform \(m \times m\) grid gives rise to a sparse linear system of equations

\[Au = b\]

where \(A\) is of order \(m^2\) and \(u\) and \(b\) are now vectors of size \(m^2\). Centered differences are used for the first derivatives. If the grid points are numbered using the rowwise natural ordering, then \(A\) is a block tridiagonal matrix of the form

\[A = \begin{pmatrix}
T & (\beta - 1)I & & \\
-(\beta + 1)I & T & (\beta - 1)I & \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & (\beta - 1)I \\
& & & -(\beta + 1)I & T
\end{pmatrix}
\]

with

\[T = \begin{pmatrix}
4 - \sigma & \gamma - 1 & & \\
-\gamma - 1 & 4 - \sigma & \gamma - 1 & \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \gamma - 1 \\
& & & -\gamma - 1 & 4 - \sigma
\end{pmatrix},
\]

where \(\beta = p_1 h, \gamma = p_2 h, \sigma = p_3 h^2\) and \(h = 1/(m + 1)\).

The spectral decomposition of the convection diffusion matrix is known. For \(1 \leq i, j \leq m\), if \(\Delta\) is a diagonal matrix with \(((i - 1)m + j)\)th diagonal entry

\[
\left(\frac{1 + \beta}{1 - \beta} \right)^{\frac{i-1}{2}} \left(\frac{1 + \gamma}{1 - \gamma} \right)^{\frac{j-1}{2}},
\]

then \(\Delta^{-1} A \Delta\) is symmetric. For \(1 \leq k, l \leq m\), let \((k, l)\) denote \((k - 1)m + l\). Then the \((k, l)\)th unnormalized eigenvector of \(\Delta^{-1} A \Delta\) has \((i, j)\)th entry

\[\sin(ikh\pi) \sin(jlh\pi).\]
The reader may now verify that the \((k,l)\)th eigenvalue of \(A\) is
\[
\lambda_{(k,l)} = 4 - \sigma + 2(1 - \beta^2)^{1/2} \cos(kh\pi) + 2(1 - \gamma^2)^{1/2} \cos(lh\pi)
\]

The following figure shows the eigenvalue distribution of 961 by 961 convection diffusion matrix with \(p_1 = 25, p_2 = 50\) and \(p_3 = 250\).

Since the normalized eigenvectors of a symmetric matrix are orthogonal, the eigenvectors of \(A\) are graded like the diagonal of \(\Delta\) and the condition number of the eigenvalue problem for \(A\) is
\[
\text{cond}(\Delta) = \left(\frac{(1 + \beta)(1 + \gamma)}{(1 - \beta)(1 - \gamma)} \right)^{\frac{m-1}{2}}.
\]

We note that, in practice, the choice of the mesh size \(h\) and the coefficients \(p_1, p_2\) and \(p_3\) have to satisfy certain conditions for the discretization to be stable. We refer the reader to the references for the discussion of this issue.

Subroutine: FORTRAN calling sequence for forming matrix-vector \(AX\) or \(A^T X\) is

```
SUBROUTINE MVPMD(C TRANS, N, M, X, LDX, Y, LDY )
```

with

- **TRANS** (input) INTEGER

 if TRANS = 0, computes the product \(AX\),

 if TRANS = 1, computes the product \(A^T X\),

- **N** (input) INTEGER

 The order of the matrix \(A\). \(N\) has to be the square of an integer number.

- **M** (input) INTEGER

 The number of columns of \(X\).

- **X** (input) DOUBLE PRECISION array, dimension (LDX, M)

 contains the vector \(X\).

- **LDX** (input) INTEGER

 The leading dimension of the array \(X\), \(LDX \geq \max(1, N)\).
Y (output) DOUBLE PRECISION array, dimension (LDY, M)
contains the product AX or \(A^T X \).

LDY (input) INTEGER
The leading dimension of the array Y, LDY \(\geq \) max(1, N).

In addition, \(p_1, p_2 \) and \(p_3 \) are set as internal parameters.

Data files:

Elman and Streit tested preconditioners for linear systems on six convection-diffusion
matrices arising on a 31 by 31 grid. Note that when \(p_1 \) and \(p_2 \) are large compared to
the grid size, the local error in the discretization is significant. Also note that when
\(p_1 \) and \(p_2 \) are large the solution, \(u \), forms boundary layers which are not practical to
resolve using regular grids. The matrices correspond to the following choices of \(p_1, p_2 \)
and \(p_3 \).

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
<th>(p_1, p_2, p_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDDE1</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(1,2,30)</td>
</tr>
<tr>
<td>CDDE2</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(25,50,30)</td>
</tr>
<tr>
<td>CDDE3</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(1,2,80)</td>
</tr>
<tr>
<td>CDDE4</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(25,50,80)</td>
</tr>
<tr>
<td>CDDE5</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(1,2,250)</td>
</tr>
<tr>
<td>CDDE6</td>
<td>961</td>
<td>4681</td>
<td>real</td>
<td>(25,50,250)</td>
</tr>
</tbody>
</table>

References:

H. C. Elman and R. L Streit, Polynomial iteration for nonsymmetric indefinite linear
Proceedings, Guamajato, Mexico, Springe Verlag, 1984.

Y. Saad, Variations on Arnoldi's method for computing eigenelements of large unsym-

Z. Bai and G. W. Stewart, SRRIT – A FORTRAN subroutine to calculator the domi-
TR-2908, Univ. of Maryland, MD, April 1992, (submitted to ACM TOMS).

Z. Jia, Some numerical methods for large unsymmetric eigenproblems, Ph.D. thesis,
The faculty of Mathematics, University of Bielefeld, Germany, Feb. 1994.

R. B. Lehoucq, Analysis and implementation of an implicitly Restarted Arnoldi It-
eration, Ph.D thesis, Department of Computational and Applied Mathematics, Rice
University, TR95-13, May 1995.
Title: Grcar Matrix
Subroutine name: MVMGRC

Source: J. Grcar, Sandia National Lab.

Discipline: numerical linear algebra

Further details: An $n \times n$ Grcar matrix is a nonsymmetric Toeplitz matrix:

$$
A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
& & \ddots & \ddots \\
& & & -1 & 1 & 1 \\
& & & & & -1 & 1 \\
& & & & & & -1 \\
& & & & & & & -1 & 1 \\
& & & & & & & & & -1 & 1
\end{pmatrix}
$$

The matrix has sensitive eigenvalues. The following figures are the eigenvalue distribution of 100 by 100 Grcar matrix A and A^T, computed by QR algorithm in Matlab.

Subroutine: FORTRAN calling sequence for forming matrix-vector AX or $A^T X$ is

```
SUBROUTINE MVMGRC( TRANS, N, M, X, LDX, Y, LDY )
```

with

TRANS (input) INTEGER
if TRANS = 0, computes the product AX,
if TRANS = 1, computes the product $A^T X$,

N (input) INTEGER
The order of the matrix A.

M (input) INTEGER
The number of columns of X.

X (input) DOUBLE PRECISION array, dimension (LDX, M)
contains the vector X.

27
LDX (input) INTEGER
The leading dimension of the array X, LDX \geq \max(1, N).

Y (output) DOUBLE PRECISION array, dimension (LDY, M)
contains the product AX or A^T X.

LDY (input) INTEGER
The leading dimension of the array Y, LDY \geq \max(1, N).

References:

Title: Ising model for ferromagnetic materials
Subroutine name: MVMISG

Source: B. Friedman

Discipline: Material science

Further details: This test matrix is from the analysis of the Ising model for ferromagnetic materials. The matrix \(A \) is the product of the two 2\(m \) by 2\(m \) matrices \(K \) and \(L \),

\[
A = KL
\]

where

\[
K = \begin{pmatrix}
E & & & \\
& E & & \\
& & \ddots & \\
& & & E
\end{pmatrix}, \quad L = \begin{pmatrix}
\cos \beta & & & -\sin \beta \\
& F & & \\
& & \ddots & \\
\sin \beta & & & \cos \beta
\end{pmatrix}
\]

\[
E = \begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}, \quad F = \begin{pmatrix}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{pmatrix}
\]

It can be shown that the eigenvalues of \(A \) are the 2\(m \) numbers that are obtained by computing the eigenvalues of the \(m \) 2 by 2 matrices

\[
\begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix} \begin{pmatrix}
\cos \beta & -\theta^k \sin \beta \\
\theta^m \sin \beta & \cos \beta
\end{pmatrix}
\]

for \(k = 1, 2, \ldots, m \), where \(\theta = e^{2\pi i/m} \). The following figure shows the eigenvalue distribution of 100 by 100 Ising matrix with \(\alpha = \pi/4 \) and \(\beta = \pi/4 \)

Subroutine: FORTRAN calling sequence for forming matrix-vector \(AX \) or \(A^T X \) is

```
SUBROUTINE MVMISG( TRANS, N, M, X, LDX, Y, LDY )
```

29
with

\begin{verbatim}
TRANS (input) INTEGER
if TRANS = 0, computes the product AX,
if TRANS = 1, computes the product A^T X,

N (input) INTEGER
The order of the matrix A. N has to be an even number.

M (input) INTEGER
The number of columns of X.

X (input) DOUBLE PRECISION array, dimension (LDX, M)
contains the vector X.

LDX (input) INTEGER
The leading dimension of the array X, LDX \geq \text{max}(1, N).

Y (output) DOUBLE PRECISION array, dimension (LDY, M)
contains the product AX or A^T X.

LDY (input) INTEGER
The leading dimension of the array Y, LDY \geq \text{max}(1, N).
\end{verbatim}

In addition, \alpha and \beta are set as internal parameters.

References:

Afternotes:

This Ising model was proposed to explain properties of ferromagnets but since then it has found application to topics in chemistry and biology as well as physics. For any reader unfamiliar with the model an excellent introduction is [B. A. Cipra, An Introduction to the Ising Model, American Mathematical Monthly, 94:937–959, 1987].

We plan to include the transfer matrix in the future version of this collection.
Title: Model Eigenvalue Problem of ODE
Subroutine name: MVMODE

Source: G. W. Stewart, University of Maryland

Discipline: Model eigenvalue problem of ordinary differential equation.

Further details: Consider the following eigenvalue problem of an ordinary differential equation

\[y'' + \mu^2 y = 0 \quad (3) \]

with the boundary conditions

\[y(0) = 0 \quad \text{and} \quad y'(0) + \gamma y'(1) = 0, \quad 0 < \gamma < 1. \]

It can be shown that the eigenvalues \(\mu \) are given by

\[\mu = i \cosh^{-1}(-\gamma^{-1}), \]

which are complex. The solutions of this equation are of the form

\[\mu^2 = ((2k + 1)^2 \pi^2 - \ln^2 \sigma) - i(2(2k + 1) \pi \ln \sigma), \]

for \(k = 0, \pm 1, \pm 2, \ldots \), where \(\sigma = 1/\gamma \pm \sqrt{1/\gamma^2 - 1} \).

The eigenproblem of (3) can be approximated by finite differences as follows. Let \(y_i \) denote the approximate solution at the point \(x_i = i/(n + 1) \) \((i = 0, 1, \ldots, n) \). Replacing the second derivatives in (3) with a centered difference operators to obtain the generalized matrix eigenvalue problem

\[Ay = -\mu^2 By, \quad (4) \]

for \(y = (y_1, y_2, \ldots, y_{n+1})^T \), where

\[
A = \begin{pmatrix}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
 & 1 & -2 & 1 & \\
& & \ddots & \ddots & \ddots \\
 & & & 1 & -2 & 1 \\
4 & -1 & \cdots & \gamma & -4\gamma & 3\gamma \\
\end{pmatrix}
\]

and \(B = h^2 \text{diag}(1, 1, \ldots, 1, 0) \). Problem (4) can be recast as the standard eigenvalue problem

\[Cy = -\frac{1}{\mu^2} y, \]

where \(C = A^{-1} B \).

Subroutine: The matrix-vector products \(Y = CX \) can be formed by solving the linear system \(AY = BX \) for \(Y \) using the banded Gaussian elimination.

FORTRAN calling sequence for forming matrix-vector product \(Y = CX \) is
SUBROUTINE MVMODE(N, M, X, LDX, Y, LDY)

with

N (input) INTEGER
 The order of the matrix C.

M (input) INTEGER
 The number of columns of X.

X (input) DOUBLE PRECISION array, dimension (LDX, M)
 contains the vector X.

LDX (input) INTEGER
 The leading dimension of the array X, LDX ≥ max(1, N).

Y (output) DOUBLE PRECISION array, dimension (LDY, M)
 contains the product CX.

LDY (input) INTEGER
 The leading dimension of the array Y, LDY ≥ max(1, N).

In addition, γ is set as an internal parameters.

2N workspace is required for the banded Gaussian elimination. As a default value, 3*2001 workspace is set internally. As a result, N should be less and equal to 2001. Otherwise, user should set a larger workspace.

Data files: In the data files, γ = 1/100.

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODEP400A</td>
<td>400</td>
<td>1201</td>
<td>real</td>
</tr>
<tr>
<td>ODEP400B</td>
<td>400</td>
<td>399</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Title: Markov Chain Transition Matrix
Subroutine name: MVMRWK

Source: G. W. Stewart, University of Maryland

Discipline: Probability theory and its applications

Further details: Consider a random walk on an \((m+1)\times(m+1)\) triangular grid, illustrated below for \(m = 6\).

```
  6 •
  5 • •
  4 • • •
  3 • • •
  2 • • •
  1 • • •
  0 • • •
  j/i  0  1  2  3  4  5  6
```

The points of the grid are labeled \((j, i), (i = 0, \ldots, m, j = 0, \ldots, m-i)\). From the point \((j, i)\), a transition may take place to one of the four adjacent points \((j + 1, i), (j, i + 1), (j - 1, i), (j, i - 1)\). The probability of jumping to either of the nodes \((j - 1, i)\) or \((j, i - 1)\) is

\[
p_d(j, i) = \frac{j + i}{m}
\]

with the probability being split equally between the two nodes when both nodes are on the grid. The probability of jumping to either of the nodes \((j + 1, i)\) or \((j, i + 1)\) is

\[
p_u(j, i) = 1 - p_d(j, i).
\]

with the probability again being split when both nodes are on the grid.

If the \((m + 1)(m + 2)/2\) nodes \((j, i)\) are numbered 1, 2, \ldots, \((m + 1)(m + 2)/2\) in some fashion, then the random walk can be expressed as a finite Markov chain with transition matrix \(A\) of order \(n = (m + 1)(m + 2)/2\) consisting of the probabilities \(a_{kl}\) of jumping from node \(l\) to node \(k\) \((A\) is actually the transpose of the usual transition matrix; see [Feller]).

We are primarily interested in the steady state probabilities of the chain, which is ordinarily the appropriately scaled eigenvector corresponding to the eigenvalue unity.

The following plot shows the sparsity pattern of the resulted random walk matrix of order 136 (i.e. \(m = 15\)).
Subroutine: To calculate the ith element of the vector Ax one need only regard the components of q as the average number of individuals at the nodes of the grid and use the probabilities (5) and (6) to calculate how many individuals will be at node i after the next transition.

FORTRAN calling sequence for forming matrix-vector product $Y = AX$ is

\[
\text{SUBROUTINE MVMRWK(N, M, X, LDX, Y, LDY)}
\]

with

- N (input) INTEGER
 The order of the matrix A. N has to be equal to $(m + 1)(m + 2)/2$ for some integer $m \geq 0$.
- M (input) INTEGER
 The number of columns of X.
- X (input) DOUBLE PRECISION array, dimension (LDX, M)
 contains the vector X.
- LDX (input) INTEGER
 The leading dimension of the array X, $LDX \geq \text{max}(1, N)$.
- Y (output) DOUBLE PRECISION array, dimension (LDY, M)
 contains the product AX.
- LDY (input) INTEGER
 The leading dimension of the array Y, $LDY \geq \text{max}(1, N)$.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW136</td>
<td>136</td>
<td>479</td>
<td>real</td>
</tr>
<tr>
<td>RW496</td>
<td>496</td>
<td>1859</td>
<td>real</td>
</tr>
<tr>
<td>RW5151</td>
<td>5151</td>
<td>20199</td>
<td>real</td>
</tr>
</tbody>
</table>
References:

Title: Tolosa Matrix
Subroutine name: MVMTLS

Source: S. Godet-Thobie, CERFACS and C. Bès, Aerospatiale, France

Discipline: Aeroelasticity

Future details: The Tolosa matrix arises in the stability analysis of a model of an airplane in flight. The interesting modes of this system are described by complex eigenvalues whose imaginary parts lie in a prescribed frequency range. The task is to compute the eigenvalues with largest imaginary parts. The problem has been analyzed at CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique) in cooperation with the Aerospatiale Aircraft Division\(^3\).

The matrix is a sparse 5×5 block matrix of order $n = 90 + 5k$ for an integer $k \geq 0$. When $n = 90$, each block is of dimension 18×18 and

$$A = \begin{pmatrix}
0 & I & 0 & 0 & 0 \\
X_1 & X_2 & X_3 & X_4 & X_5 \\
0 & I & L_1 & 0 & 0 \\
0 & I & 0 & L_2 & 0 \\
0 & I & 0 & 0 & L_3
\end{pmatrix}$$

where $L_i = \beta_i I$, $i = 1, 2, 3$, and X_i and β_i are given data. When $n > 90$,

$$A = \begin{pmatrix}
0 & I & 0 & 0 & 0 \\
Y_1 & Y_2 & Y_3 & Y_4 & Y_5 \\
0 & I & L_1 & 0 & 0 \\
0 & I & 0 & L_2 & 0 \\
0 & I & 0 & 0 & L_3
\end{pmatrix}$$

where

\[
Y_1 = \begin{pmatrix} X_1 & 0 \\ 0 & \text{diag}(x_i) \end{pmatrix}, \quad x_i = -\omega_i^2, \quad i = 1, \ldots, m - 18,
\]

\[
Y_2 = \begin{pmatrix} X_2 & 0 \\ 0 & \text{diag}(y_i) \end{pmatrix}, \quad y_i = -2\alpha_i \omega_i, \quad i = 1, \ldots, m - 18,
\]

\[
Y_i = \begin{pmatrix} X_i & 0 \\ 0 & 0 \end{pmatrix}, \quad i = 3, 4, 5,
\]

and

$$\omega_i = 150 + 6i, \quad \alpha_i = c_1 i + c_2, \quad c_1 = \frac{.299}{n/5 - 18}, \quad c_2 = 0.001 - c_1.$$

The following figures show the eigenvalue distribution of Tolosa matrices of orders 90 and 340.

Subroutine: FORTRAN calling sequence for forming matrix-vector AX or $A^T X$ is

\(^3\)Tolosa is the latin name of Toulouse, France, the location of CERFACS.
Figure 1: Eigenvalue distribution of 90 by 90 and 340 by 340 Tolosa matrices

SUBROUTINE MVMTLS(TRANS, N, M, X, LDX, Y, LDY)

with

TRANS (input) INTEGER
if TRANS = 0, computes the product AX,
if TRANS = 1, computes the product A^TX,

N (input) INTEGER
The order of the matrix A. N has to be 90+5*K for a negative integer K.

M (input) INTEGER
The number of columns of X.

X (input) DOUBLE PRECISION array, dimension (LDX, M)
contains the vector X.

LDX (input) INTEGER
The leading dimension of the array X, LDX ≥ max(1, N).

Y (output) DOUBLE PRECISION array, dimension (LDY, M)
contains the product AX or A^TX.

LDY (input) INTEGER
The leading dimension of the array Y, LDY ≥ max(1, N).

It is required to read a data file in the main program to initialize the data structure
and pass it as a common block to the subroutine MVMTLS. The data file is block.
readb.f is the FORTRAN subroutine for reading the data file. The following is a
short demonstration program in FORTRAN:

.
.

PROGRAM TEST
INTEGER N, I, LDX, LDY
PARAMETER (LDX = 500, LDY = LDX)
DOUBLE PRECISION X(LDX), Y(LDY)

37
* DOUBLE PRECISION ONE
 PARAMETER (ONE = 1.0D+0)
*
* DOUBLE PRECISION BLK(18,90)
* COMMON BLK(18,90)
*
* Read matrix size
* READ(*,*)N
*
* Data check
*
IF(N.LT.90 .OR. MOD(N-90,5).NE.0)THEN
 WRITE(*,111)
 GO TO 20
ELSE IF(N.GT.LDX)THEN
 WRITE(*,112)
 GO TO 20
END IF
*
* Read in data
* CALL READTL(BLK)
*
* Set an input vector X
*
DO 10 I = 1, N
 X(I) = ONE
10 CONTINUE
*
* Compute Y = A*X
*
CALL MVMTLS(0, N, 1, X, LDX, Y, LDY)
*
20 CONTINUE
*
111 FORMAT('Error: N must be 90 + 5K')
112 FORMAT('Error: N must not be larger than LDA')
*
STOP
END

38
Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLS90</td>
<td>90</td>
<td>1746</td>
<td>real</td>
</tr>
<tr>
<td>TOLS340</td>
<td>340</td>
<td>2196</td>
<td>real</td>
</tr>
<tr>
<td>TOLS1090</td>
<td>1090</td>
<td>3546</td>
<td>real</td>
</tr>
<tr>
<td>TOLS2000</td>
<td>2000</td>
<td>5184</td>
<td>real</td>
</tr>
<tr>
<td>TOLS4000</td>
<td>4000</td>
<td>8784</td>
<td>real</td>
</tr>
</tbody>
</table>

Appendix C

Matrices in Subroutine Format

<table>
<thead>
<tr>
<th>Title</th>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Sparse Matrix Model elliptic Partial Differential Equation</td>
<td>MATRAN</td>
</tr>
<tr>
<td></td>
<td>MATPDE</td>
</tr>
</tbody>
</table>
Title: Random Sparse Matrix
Subroutine name: MVMRAN

Source: authors

Discipline: numerical linear algebra

Further details: Random matrices are always the favorite test matrices in an algorithm test suit. We provide a subroutine which generates a random sparse matrix. Users can specify the matrix size, the number of nonzero entries in each column. The random numbers are from the uniform distribution on (-1,1). The generated matrix is stored in compressed column format. Utility routine dsmcv.f can be used for computing the matrix-vector products \(Ax \) and \(A^T x \).

The following figure shows an example of the sparsity pattern of a random 100 by 100 matrix with 10 nonzero entries in each column.

Subroutine: FORTRAN calling sequences for generating a random sparse matrices with NZR nonzero elements per column is

```
SUBROUTINE MATRAN( N, NZR, ISEED, A, COLPRT, ROWIND )
```

with

- \(N \) (input) INTEGER
 The order of the matrix \(A \).

- \(NZR \) (input) INTEGER
 The number of nonzero entries per column.

- \(ISEED \) (input/output) INTEGER array, dimension(4) on entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated.

- \(A \) (output) DOUBLE PRECISION array, dimension (\(N*NZR \))
 the numerical values of the generated matrix.

- \(COLPTR \) (output) INTEGER array, dimension (\(N+1 \))
 the column start pointers.
ROWIND (output) INTEGER array, dimension (N*NZ)
The row indices.

References:
LAPACK random number generator DLARAN is used to generate random numbers.
Title: Partial differential equation
Subroutine name: MVMPDE

Source: H. Elman, University of Maryland

Discipline: partial differential equation

Further details: This test matrix is obtained from the finite difference discretization of the following two-dimensional partial differential operator

\[
L_u = -\frac{\partial}{\partial x} \left(e^{x y} \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(e^{x y} \frac{\partial u}{\partial y} \right) + \beta (x + y) \frac{\partial u}{\partial x} + \beta \frac{\partial}{\partial x} ((x + y) u) + \\
\gamma (x + y) \frac{\partial u}{\partial y} + \gamma \frac{\partial}{\partial y} ((x + y) u) + \frac{1}{1 + x + y} u
\]

on the unit square \((0, 1) \times (0, 1)\) with Dirichlet boundary conditions, where \(\beta, \gamma \in \mathbb{R}\) are parameters used to control the degree of nonnormality of the matrices generated. We discretize the operator using central differences on an \(m \times m\) grid with mesh size \(h = 1/(m + 1)\). This leads to a nonsymmetric matrix \(A\) of order \(n = m^2\). It is suggested to use values of \(\beta\) and \(\gamma\) between 0 and 250. The object is to estimate those eigenvalues with the largest real parts and to determine whether or not there are significant gaps in the spectrum.

The following figure shows the eigenvalue distribution for orders 225 (\(m = 15\)) and 400 (\(m = 20\)) of the matrix with \(\beta = 20\) and \(\gamma = 0\).

![Eigenvalue Distribution of 225 x 225 Model PDE Matrix](image1)

![Eigenvalue Distribution of 400 x 400 Model PDE Matrix](image2)

Subroutine: FORTRAN calling sequences for generating a matrix \(A\) (which is stored in compressed row format) is

```fortran
SUBROUTINE MATRAN( N, NZR, ISEED, A, ROWPRT, COLIND )
```

with

\[
N \quad \text{(output) INTEGER}
\]

The order of the matrix \(A\). \(N = NX*NY\).
NX (input) INTEGER
The number of mesh points in the X-axis

NY (input) INTEGER
The number of mesh points in the Y-axis

A (output) DOUBLE PRECISION array, dimension (NZ)
the numerical values of the generated matrix, where the number of
nonzero elements NZ = NX*NY + (NX-1)*NY+2 + NX*(NY-1)*2.

ROWPTR (output) INTEGER array, dimension (N+1)
the row start pointers.

COLIND (output) INTEGER array, dimension (N*NZR)
The column indices.

RHS (output) DOUBLE PRECISION array, dimension (N)
The right hand side of the linear system of equation Ax = f.

In addition, β and γ are set as internal parameters, which may be altered.

The utility routine dspmvr.f can be used for computing the matrix-vector products
Ax and A²x.

Data files:

<table>
<thead>
<tr>
<th>Filename/Key</th>
<th>Order</th>
<th>Number of nonzeros</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE225</td>
<td>225</td>
<td>1065</td>
<td>real</td>
</tr>
<tr>
<td>PDE900</td>
<td>900</td>
<td>4380</td>
<td>real</td>
</tr>
<tr>
<td>PDE2961</td>
<td>2961</td>
<td>14585</td>
<td>real</td>
</tr>
</tbody>
</table>

References:

Appendix C: List of Utility Routines

dprtm.f FORTRAN subroutine for writing a real sparse matrix in the standard HB sparse format. It is assumed that the matrix is stored in the compressed column format.

zprtm.f complex version of dprtm.f.

dreadm.f FORTRAN subroutine for reading a real sparse matrix which is in standard HB sparse format.

zreadm.f complex version of dreadm.f.

dreadhb.c C subroutine for reading a real sparse matrix which is in standard HB sparse format.

dm2hb.m Matlab M-file for writing a real sparse matrix in the standard HB sparse format.

zm2hb.m complex version of dm2hb.m.

dspmvc.f FORTRAN subroutine for computing the matrix-vector product Ax or A^Tx, it is assumed that A is stored in compressed column format.

zspmvc.f complex version of spmvc.f.

dspmv.f FORTRAN subroutine for computing the matrix-vector product Ax or A^Tx, it is assumed that A is stored in compressed row format.

zspmv.f complex version of spmv.f.

mvm2hb.f FORTRAN program to illustrate that if one has a matrix-vector product subroutine, how to write it in the standard HB sparse matrix format.

In addition, file hb2matlabinfo provides information how to get software from MathWork to read a HB sparse matrix format into Matlab.

45