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Abstract

The coupling mechanism for an existing viscous-inviscid-interaction (VII) code, devel-
oped for the analysis of two-dimensional, turbulent, attached flow around airfoils, is en-
hanced using the parallel direct search (PDS) optimization algorithm. It is demonstrated
that this parallel processing implemented optimization scheme leads to faster convergence
of the VII code, and therefore requires less computational time when the number of opti-
mization (or design) variables is low, and a moderate number of processors are available.
As the number of design variables increases more processors are required to maintain this
advantage. Results are presented for the NACA-0012 and the RAE-2822 airfoils. The
quality of the results obtained is satisfactory and confirms that the enhanced VII code can

be an acceptable alternative to reduced Navier-Stokes solvers as an airfoil analysis tool.
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1 Introduction

The numerical simulation of a transonic flowfield for transonic airfoil design is considered
a challenging task because it can involve the simultaneous modelling of subsonic and su-
personic flow, shock waves, turbulence, turbulent transition, and flow separation. Two
approaches exist in transonic airfoil flow analysis: one can either solve some form of the
Navier-Stokes equations over the entire flow field or, alternatively, one can solve the bound-
ary layer equations in the shear layer region of the flow, with either the potential or the
Euler equations in the region of the flow approximated as inviscid. Both method have their
advantages and disadvantages.

In the first approach, the direct numerical simulation (DNS) of the Navier-Stokes equa-
tions, which does not require a turbulence model, would be the ideal choice since it is
arguably the most accurate existing method. Unfortunately, DNS solvers are in general
impractical because of difficulties at high Reynolds numbers and large computational time

and memory requirements [1]. Codes that solve high-fidelity solvable forms of the Navier-
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Stokes equations (which include artificial turbulence models) have been developed and are
continually improving in accuracy and speed at high Reynolds numbers. Navier-Stokes
solver are especially advantageous when the flowfield experiences flow separation about the
airfoil, which is likely to occur at off-design conditions. The second approach requires an
interaction scheme between a viscous and inviscid solver so that smooth transition from one
region of the flow to the other is guaranteed. These viscous-inviscid-interaction (VII) codes
have the main advantage of providing accurate results for certain aerodynamic problems in
less computational time than the high-fidelity Navier-Stokes methods [2], [3]. The primary
disadvantage of VII codes is that they cannot model conditions with extensive flow sepa-
ration. However, since on-design conditions usually include the reduction or elimination of
flow separation, VII codes are especially useful in analyses near the final airfoil design.
While the continual progress and rapid growth of supercomputer speed, as well as
the development of parallel processing technology, motivate research on full Navier-Stokes
methods [4], [5], there is no indication that these same technological advances could not
be implemented in an existing VII code. In this paper it will be shown that rather than
directly applying parallel processing methods to the boundary layer and Euler codes, a
parallel optimization technique known as the parallel direct search (PDS) algorithm [6]
can be used to enhance the functionality of the interaction scheme. The speed up of this
enhanced code combination can be controlled by the number of processors and design

variables without adversely affecting the accuracy of the results.

2 VII Code
The original VII code consisted of:

o atwo-dimensional Euler code, known as GAUSS2, that utilized a floating shock fitting
technique, combined with an implicit upwind numerical scheme that allows accurate

calculations on nonadaptive grids [7], [8], and



e a code for the solution of the two-dimensional, steady, compressible turbulent boundary-

layer equations that utilizes the semi-discrete Galerkin method [9] - [11].

The classical interaction approach is to 1) obtain a solution to the inviscid flow ap-
proximation, 2) extract velocity and pressure from the inviscid solution and use them as
external conditions in the viscous layer approximation, 3) extract displacement thickness
from the viscous solution, and 4) use the displacement thickness to modify the original
body geometry and obtain another estimate of the inviscid flow. These iterative cycles,
depicted in Fig. 1, continue until the inviscid and viscous solutions are converged and
compatible.

An alternative to adding the displacement thickness distribution to the original body
thickness is to impose a transpiration velocity boundary condition at the body surface,
also shown in Fig. 1. The transpiration velocity is an inviscid normal-velocity boundary
condition which is imposed at the body surface to simulate the displacement of the inviscid
flow by the viscous flow momentum defect [12]. Specifically, the transpiration velocity is a
scalar quantity that is considered positive if injecting fluid into the airfoil flow or negative if
removing fluid. An expression for the transpiration velocity can be obtained by integrating
the difference between the inviscid and viscous continuity equations across the boundary
layer while applying the Prandtl boundary-layer and uniform inviscid-flow assumptions
[13]. The transpiration velocity distribution should result in an inviscid streamline that
is coincident with the height of the effective body obtained by the displacement thickness
approach. The advantages of the transpiration velocity approach are that the inviscid grid
need not be regenerated after each viscous iteration and that the interaction always allows

a smooth transition to separation [14].

3 The Coupling Mechanism

Clearly, the functionality of the coupling mechanism is very important to the overall per-

formance of the code, i.e. its efficiency, accuracy and stability [3], [13]. As mentioned



previously, the coupling mechanism between the viscous and the inviscid regions of the
flow is based on the introduction of the transpiration velocity concept. The interested
reader will find various VII combinations and/or different interaction mechanisms in refer-
ences [15] and [16].

Though the transpiration velocity is a scalar quantity, its spatial distribution along the
surface of the airfoil and wake can be formatted as a single column matrix or numerical
vector. For the remainder of this paper the numerical vector constructed from the spatial
distribution will be known as the transpiration distribution vector or transpiration vector.
For our code the transpiration distribution vector, whose components are equal to the
values of the transpiration velocity at the grid points on the airfoil and its wake, imposes
a boundary condition on the Euler solver and is assumed to be initially zero. The first
transpiration distribution vector with nonzero entries is obtained from the first execution of
the boundary layer code. In the original version of the VII code, all subsequent transpiration
distribution vectors undergo a strong under-relaxation (typically w = 0.1) according to the
formula

Vere = Vi 4 (1 — w)v! (1)

where vy and vy represent the transpiration velocity and relaxed transpiration velocity,
respectively. The variable w is the relaxation parameter, and the superscripts indicate k-th
and (k — 1)-th VII global iteration *, respectively. Relaxation [17] is necessary, since in
our case the direct use of the calculated transpiration velocity is a source of numerical
instability that can prevent the convergence of the VII code.

Since the transpiration velocity in nonadaptive grid methods is analogous to the effective
body in adaptive grid methods, convergence of the transpiration velocity corresponds to
convergence of the effective body to its final geometric shape, and therefore yields smooth
transition between the two different regions of the flow. Knowing that the coupling mecha-

nism strongly affects the number of global VII iterations that are necessary for convergence,

tFor the sake of simplicity, the serial execution of the Euler and the boundary layer codes will be referred

as a “VII global iteration” or a “black-box run”.



our objective is the fast convergence of the transpiration velocity. The obvious aim is there-
fore to minimize the difference between the transpiration velocity of two consecutive VII

global iterations, and to avoid relaxation.

3.1 Parallel Direct Search

PDS (Parallel Direct Search) is an algorithm for the solution of nonlinear optimization
problems using direct search methods [18]. Direct search methods have the advantage
of using only information from the Cy-continuous objective function and not requiring

derivative calculations. The objective function in our case is given by

f — (Voutput . Vinput)T(Voutput . Vinput) (2)

where v is the transpiration distribution vector, consisting of P components, and the su-
perscripts indicate the input and output transpiration vectors in a VII global iteration.
The complexity of the transpiration velocity, which depends on a number of dependent
and independent variables, encourages the use of PDS as a derivative-free optimization
method. Furthermore, and most importantly, the required function evaluations are cal-
culated in parallel with an almost linear speed-up [18], which means that the decrease of
execution time is linearly proportional to the number of processors added. The numerical
tests presented in this paper were executed on the Rice-CRPC-IBM/SP2, where PDS is
executed in parallel by means of the Message Passing Interface (MPI) environment [19].
The strategy of applying PDS to the coupling mechanism is as follows: as with the
original VII code, a zero transpiration vector is assumed in the first execution of the Euler
and the boundary layer codes. The nonzero transpiration distribution vector obtained
is relaxed with a coefficient of w = 0.1, and this relaxed transpiration vector forms the
initial guess for the optimization problem to be solved by PDS. The PDS then creates a
number of perturbed transpiration vectors [18], which in turn form the Euler code boundary
conditions. The black-box code is executed for all of the resulting transpiration distribution

vectors. The objective function is then evaluated, i.e. the difference between every input



transpiration vector and its corresponding output vector. Finally, the input transpiration
vector which provided the smallest difference is chosen as the starting vector for the next
PDS iteration. Figure 2 illustrates the PDS iteration scheme; on the left side of each PDS
iteration box is a transpiration distribution vector, in the box are m objective function
evaluations for the perturbed transpiration distribution vectors, and on the right side of
each box is the chosen transpiration vector, which now is the starting vector for the next
PDS iteration.

There were 147 airfoil and wake grid points in the numerical tests presented in this paper
resulting in a 147 component transpiration velocity distribution vector. Although the PDS
algorithm performs best for a small number of design variables (less than 10), preliminary
numerical tests showed the potential of the method, even for the 147 components. However,
PDS requires at least 2N function evaluations per iteration, where N is the number of design
variables. It was concluded that even advanced parallel machines with a large number of
available processors would not be capable of achieving convergence in less CPU time than
the original code. This conclusion holds true unless the number of components are reduced
to a reasonable quantity without the loss of overall accuracy. As a result, the number of

design variables were reduced by function approximation.

3.2 Reduction of Variables By Function Approximation

A one-dimensional, finite-element subroutine based on the least-squares method was de-
veloped, in order to represent the function defined by the components of the transpiration

distribution vector.

v(z) =) (x)c (3)

N

i=1
Here, v(z) is the original transpiration distribution vector of length P, N is the number of
coefficients used to approximate the transpiration distribution vector, ®;(z) are quadratic

interpolation functions, and ¢; are the respective transpiration velocity coefficients. Clearly

we would like N < P. The number of coefficients used to approximate the transpiration



velocity is chosen by the user.

For both the NACA-0012 and the RAE-2822 airfoils, there are 74 transpiration velocity
grid points per airfoil side; 66 along the airfoil (0 < 2 < 1) and 7 within the wake (1 <
x < 2.2). There is one common grid point for both sides at @ = 0. Numerical tests were
performed with 5 and 9 transpiration velocity coefficients per airfoil side, respectively.

The 5 coefficient version approximated the transpiration velocity distribution in the
range 0 < z < 1, and the 9 coefficient version those in the range 0 < z < 2.2. The results
obtained from the two different approximation orders are discussed in the following section.
Having 10 (5 for each side) or 18 (9 for each side) design variables resulted in at least 20
and 36 function evaluations, respectively, per PDS iteration. Note that parallel machines
with a number of available processors equal to or greater than the number of the required
function evaluations, achieve convergence in a computational time much shorter than the

one needed by the original serial code.

3.3 Convergence Criterion

Another important issue considered was the selection of the convergence criterion. In the
original code, the global convergence criterion was the change in value of the aerodynamic
coefficients before and after a global iteration, i.e. a black-box code execution. However,
the convergence criterion of the PDS algorithm is based on the relative change of the
design variables in every PDS iteration, not the aerodynamic coefficients. In addition,
numerical instabilities in the Euler code were encountered during various numerical tests
which primarily affected the values of the lift coefficient and the pressure contribution of
the drag coefficient®. Fortunately, the viscous contribution to the drag coefficient (obtained
from the boundary layer code) was found to be consistently stable. As a result, two
convergence criteria were used for each test case: the evolution of the viscous contribution

to the drag coefficient and/or the change of the objective function used by PDS.

§This phenomenon was also observed in the original version of the code, where it caused the values of

the aerodynamic coefficients to oscillate and slowed convergence.



4 Results and Discussion

Two-dimensional, transonic, turbulent, and attached flows about a NACA-0012 airfoil and
a supercritical RAE-2822 airfoil were simulated. Both airfoils have been previously studied
numerically and experimentally. In each of the cases, a 161 x 33 C-grid was used by the
Euler code. The grids for the NACA and RAE airfoils are illustrated in Fig. 3. The
test cases were selected for comparison with results from references [20] and [21] and are
presented in Table 1. The symbol «,,,.,, represents the numerical angle of attack, a.,, the
corresponding experimental angle of attack, M, the freestream Mach number, Re the chord
based Reynolds number, z /¢ the location of the numerically tripped transition to turbulence
(activation of numerical turbulence modelling), and w represents the relaxation parameter
in the original version of the code. The turbulence model utilized by the boundary layer
code is the same described in reference [22] and applied in references [2] and [9]. The
aerodynamic coefficients were calculated by means of the pressure coefficient distribution
obtained from the Fuler-solver and the friction coefficient distribution obtained from the

boundary-layer solver.

4.1 NACA-0012 Airfoil

At first, 18 coefficients were used to approximate and reconstruct the 147 component tran-
spiration distribution vector in a range containing both the airfoil and its wake. FEvolution
of the aerodynamic coefficients and objective function values is presented in Table 2. It can
be seen that convergence based on the change of the objective function is achieved after
4 PDS iterations, satisfying a tolerance of 1 x 10™* in absolute difference. The pressure
contribution to the drag coefficient Cp,, the friction contribution to the drag coeflicient
Cp,, and their sum the total drag coefficient C'p are given in counts, where 1 count equals
1 x 107*. The aerodynamic coeflicients strongly oscillate but converge after 10 PDS it-
erations. Due to the repeatedly observed numerical instabilities in the Euler code, and

their influence on the aerodynamic coefficients for this case, we relied on the PDS objective



function variation as the convergence criterion.

For the sake of comparison, and in order to draw conclusions about the effect of the
wake transpiration velocity on the coupling mechanism, 10 coefficients were also used to
approximate and reconstruct the transpiration distribution vector in a range containing
only the airfoil. Convergence, again based on the change of the objective function, was
achieved after 5 PDS iterations. The aerodynamic coefficients and objective function values
after 5 and 10 PDS iterations are tabulated in Table 3. An overestimation of the lift
coefficient is observed. However, the drag coefficient is closer to the experimental value,
and the objective function values are an order of magnitude smaller, than those from the
approximation using 18 coefficients.

In Fig. 4, the surface C, distribution using 18 and 10 coefficients, respectively, are
compared to those obtained from the original code and experimental data. The match
is satisfactory, and the small scatter near the trailing edge of the airfoil when using 10
coefficients to approximate the transpiration velocity function has also been observed in
reference [2]. One possible explanation for this phenomenon is the displacement action of
the boundary layer [23]. Figure 5 illustrates the Mach isolines about the airfoil obtained
from the original code (left) and the enhanced code when using 18 coefficients (right). This
match is also satisfactory.

As shown, for the NACA-0012 airfoil test case convergence is achieved after 4 and 5
PDS iterations when using 10 and 18 coefficients, respectively. Keeping in mind that one
PDS iteration using N coefficients will require at least 2/V function evaluations, the number
of processors available will determine whether or not the enhanced code will be faster than
the original. The original code with the relaxation scheme required 10 global iterations for
convergence, it is concluded then that a parallel machine, where the number of processors
is at least as high as the number of the required function evaluations, will execute the
enhanced code in half the time needed by the original code. Table 4 summarizes the above

conclusion for all of the test cases and confirms the success of the enhanced code. The



formula used to calculate the maximum speed-up is

10R
S = T)irns (4)
where S is the speed-up, function Z truncates the argument to the higher integer value
(Z(2N/p) > 0), ior is the number of global VII iterations required for convergence by
the original code, ippg is the number of PDS iterations required for convergence by the
enhanced code, N is the number of coefficients in the transpiration velocity approximation,

and p is the number of processors available. It is clear that the ratio 2N /p is of primary

importance in the speed-up.

4.2 RAE-2822 Airfoil

The RAE-2822 airfoil is a supercritical airfoil with a moderate amount of aft camber which
can pose difficulties in achieving VII convergence. In addition, the test cases (summarized
in Table 1) simulate critical transonic flow conditions. Therefore, these cases constitute a
challenging validation criterion for the enhanced code.

For Case 2 of Table 1 convergence of the aerodynamic coefficients (with a tolerance of
0.001 in absolute difference) has been achieved after 5 PDS iterations using 18 coefficients
and after 6 PDS iterations using 10 transpiration coefficients (once again neglecting wake
effects), while the original code required 41 global iterations. As can be seen in Table 5,
the aerodynamic coefficients are in satisfactory agreement with experimental values using
18 coefficients, while they diverge from the experimental values when using 10 coefficients.
The conclusion drawn from this observation, is that the transpiration velocity values in
the wake are nonnegligible for the supercritical airfoil in transonic flow conditions. In
addition, it should be noted that Cp,, especially when using 10 coefficients, is the primary
contributor to errors in the aerodynamic coefficients.

It is interesting to observe, as Fig. 6 indicates, that while the aerodynamic coefficients
do not match the experimental values exactly, the C, distributions for 18 transpiration

coefficients are in satisfactory agreement. The reason for the aerodynamic coefficient mis-

10



match probably lies in the method utilized in their calculation; as mentioned previously,
aerodynamic coefficients are calculated based on the pressure and friction coefficient dis-
tributions without taking full account of the wake effects. The effect of the wake is clearly
nonnegligible for this test case, as illustrated in Fig. 6 for the calculation with 10 tran-
spiration coefficients, which completely ignores the existence of the wake. The accuracy of
this run is insufficient, especially around the suction peak.

The original code required 42 global iterations to achieve convergence for Case 3 of Table
1. The enhanced code required only 5 PDS iterations when using 18 coefficients and 6 PDS
iterations when using 10 coefficients to approximate the transpiration velocity function.
Table 6 summarizes the evolution of aerodynamic coefficient and objective function values
to illustrate the previous statement.

In Fig. 7, the surface pressure coefficient distribution obtained from the enhanced code
are compared to experimental values and those obtained from the original code (left) for
Case 3. The match is satisfactory with the exception of the prediction on shock wave
location. Figure 7 (right) presents results [2] taken at an angle of attack (anum = 2.92)
slightly different from Case 3. The results of reference [2] are included to illustrate that in
general, VII codes tend to underpredict the location of the shock wave while Navier-Stokes

solvers tend to overpredict its location.

5 Conclusions

An existing VII code has been enhanced by optimizing the functionality of its coupling
mechanism. The VII coupling mechanism, which is based on the concept of transpiration
velocity, was optimized using the PDS algorithm, which offers the considerable advantage
of parallel function evaluations without requiring information on derivatives. It has been
shown that the enhanced code achieves convergence in less computational time than the
original code. However, a strong dependency on the number of available processors exists;

the ratio of function evaluations required to number of processors available has to be as

11



small as possible for maximal speed-up. The quality of the results obtained from the
enhanced code was maintained at the same level with the quality of the results from the
original code. It was observed that for the NACA-0012 airfoil the speed-up was moderate
compared to that of the two RAE-2822 airfoil test cases. Computational time has been
kept low by reducing the design variables of the optimization problem by means of function
approximation. It must be noted that the effects of the wake are not taken into account in
the calculation of aerodynamic coefficients resulting in mismatches with the experimental
values. However, considering the fidelity of the VII fluid model and the simplicity of
the enhanced optimization algorithm, the results obtained can be characterized as highly

satisfactory.
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Table 1: Test cases.

Case airfoil Cnum | Cezp | Moo Re z/e | w ‘

1 NACA-0012 | 1.37 | 1.86 | 0.700 | 9 x10° | 0.00 | 0.1
2 RAE-2822 | 1.90 | 2.40 | 0.676 | 5.7 x10° | 0.11 | 0.05
3 RAE-2822 | 2.10 | 2.55 | 0.725 | 6.5 x10° | 0.03 | 0.05

Table 2: Evolution of aerodynamic coefficients and objective function values for Case 1,
using 18 coefficients in the approximation.

No. of PDS | Cp | Cp | Cp, | Cp, | Obj. function
iterations value

1 0.247 | 59 | -5 64 0.0055

2 0.263 | 61 | -3 64 0.0033

3 0.272 | 62 | -1 63 0.0024

4 0.251 | 88 | 25 | 63 0.0023

10 0.246 | 84 | 21 63 0.0019

Table 3: Aerodynamic coefficients and objective function values for Case 1, using 10
coefficients in the approximation.

No. of PDS Cr | Cp | Obj. function

iterations value
5 0.250 | 72 0.00099
10 0.259 | 70 0.00083

Experiment | 0.241 | 77
Original code | 0.239 | 64
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Table 4: Speed-up comparisons

Case | No. of coefficients Original PDS Speed-up with p processors
in the approximation | iterations | iterations | 4 8 16 32 64
required | required

1 18 10 4 028 1 0.5 | 0.83 | 1.25 | 2.5
1 10 10 5 0.4 10.67] 1.0 | 2.0 | 2.0
2 18 11 5 091 ] 1.64 | 2.73 | 4.1 | 8.2
2 10 41 6 1.36 | 2.27 | 3.41 | 6.83 | 6.83
3 18 42 5 093168 | 28 | 4.2 | 8.4
3 10 42 6 14 1233 35 | 7.0 | 7.0

Table 5: Aerodynamic coefficients and objective function values for Case 2.

No. of coeflicients No. of PDS | Cp | Cp | Obj. function
in the approximation | iterations value
18 5 0.577 | 54 0.00012
10 0.634 | 16 0.00009
Experiment 0.566 | 85
Original code 0.554 | 72
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Table 6: Evolution of aerodynamic coefficients and objective function values for Case 3.

No. of coeflicients No. of PDS | (Cf, Cp | Cp, | Cp, | Obj. function
in the approximation | iterations value

18 2 0.724 | 76 | 12 | 64 0.00032
18 3 0.723 | 80 | 17 | 63 0.00026
18 4 0.722 | 75 | 12 | 63 0.00015
18 5 0.720 | 76 | 13 | 63 0.00014
10 1 0.726 | 77 | 14 | 63 0.00024
10 2 0.731 | 76 | 13 | 63 0.00017
10 3 0.743 | 74 | 11 63 0.00013
10 4 0.738 | 73 | 10 | 63 0.00011
10 5 0.740 | 74 | 11 63 0.000109
10 6 0.742 | 75 | 12 | 63 0.000107

Experiment 0.658 | 107

Original code 0.657 | 80
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Figure 1: The VII global iteration scheme using either the displacement thickness (6*) or

the transpiration velocity (v¢) approach.

function evaluation = one VI global iteration
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Figure 2: The PDS iteration scheme.
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Figure 3: The NACA-0012 (left) and RAE-2822 (right) airfoil grids.
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Figure 4: Surface pressure coefficient distribution over the NACA-0012 airfoil at «,y,, =
1.37, My, = 0.700 and Re = 9 x10° (Case 1). Results obtained from the optimized (opt.)

code using 18 (left) and 10 (right) transpiration velocity coeflicients and the original (or.)
code, compared to experimental data (exp.).
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Figure 5: The Mach isolines about the NACA-0012 airfoil obtained from the original code
(left) and the enhanced code (right) using 18 transpiration velocity coefficients.
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Figure 6: Surface pressure coefficient distribution about the RAE-2822 airfoil at a,y,, =
1.90, M., = 0.676 and Re = 5.7 x10° (Case 2). Results obtained from the optimized (opt.)
code using 18 (left) and 10 (right) transpiration velocity coeflicients and the original (or.)

code, compared to experimental data (exp.).
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Figure 7: Surface pressure coefficient distribution about the RAE-2822 airtoil at «,y,, =
2.10, M., = 0.725 and Re = 6.5 x 10° (Case 3). Results (left) obtained from the optimized
(opt.) code using 18 and 10 transpiration velocity coefficients and the original (or.) code,
compared to experimental data (exp.). Results for a,um = 2.92, M, = 0.725 and Re =
6.5 x 10° (right) taken from Holst [2].
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