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Abstract. We consider mixed finite element methods for second order elliptic equations on
non-matching multiblock grids. A mortar finite element space is introduced on the non-matching
interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly
a continuity of flux condition. A standard mixed finite element method is used within the blocks.
Optimal order convergence is shown for both the solution and its flux. Moreover, at certain dis-
crete points, superconvergence is obtained for the solution, and also for the flux in special cases.
Computational results using an efficient parallel domain decomposition algorithm are presented in
confirmation of the theory.
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1. Introduction. Mixed finite element methods have become popular due to
their local (mass) conservation property and good approximation of the flux variable.
In many applications the complexity of the geometry or the behavior of the solution
may warrant using a multiblock domain structure, wherein the domain is decomposed
into non-overlapping blocks or subdomains with grids defined independently on each
block. Typical examples include modeling faults and wells in subsurface applications.
Faults are natural discontinuities in material properties. Locally refined grids are
needed for accurate approximation of high gradients around wells.

In this work we consider second order linear elliptic equations that in porous
medium applications model single phase Darcy flow. We solve for the pressure p and
the velocity u satisfying

u=—-KVp in Q, (1.1)
Veu=f in Q, (1.2)
p=g on 0, (1.3)
where Q@ C R? d = 2 or 3, is a multiblock domain and K is a symmetric, uni-

formly positive definite tensor with L>(£) components representing the permeability
divided by the viscosity. The Dirichlet boundary conditions are considered merely for
simplicity.
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A number of papers deal with the analysis and the implementation of the mixed
methods applied to the above problem on conforming grids (see, e.g., [25, 23, 22, 7,
5, 6,9, 12,21, 26, 13, 15, 2, 1] and [24, §]). Mixed methods on nested locally refined
grids are considered in [14, 16]. These works apply the notion of “slave” or “worker”
nodes to force continuity of fluxes across the interfaces. The results rely heavily on
the fact that the grids are nested and cannot be extended to non-matching grids.

In the present work we employ a partially hybridized form [3, 8] of the mixed
method to obtain accurate approximations on non-matching grids. We assume that
Q is a union of non-overlapping polygonal blocks, each covered by a conforming,
affine finite element partition. Lagrange multiplier pressures are introduced on the
interblock boundaries [3, 8, 17]. Since the grids are different on the two sides of
the interface, the Lagrange multiplier space can no longer be the normal trace of
the velocity space. A different boundary space is needed, which we call a mortar
finite element space, using terminology from previous works on Galerkin and spectral
methods (see [4] and references therein). As we show later in the analysis, the method
is optimally convergent if the boundary space has one order higher approximability
than the normal trace of the velocity space. Moreover, superconvergence for the
pressure and, in the case of rectangular grids, for the velocity is obtained at certain
discrete points.

We allow the mortar space to consist of either continuous or discontinuous piece-
wise polynomials and obtain the same order of convergence in both cases. The method
using discontinuous mortars provides better local mass conservation across the inter-
faces, but numerical observations suggest that this may lead to slightly bigger numer-
ical error.

The method presented here has also been considered in [27] in the case of the
lowest order Raviart-Thomas spaces [23, 22]. Here we take a somewhat different
approach in the analysis, which allows us to relax a condition on the mortar grids
needed to obtain optimal convergence and superconvergence. The relaxed condition
is easily satisfied in practice.

An attractive feature of the scheme is that it can be implemented efficiently in
parallel using non-overlapping domain decomposition algorithms. In particular, we
modify the Glowinski-Wheeler algorithm [17, 11] to handle non-matching grids. Since
this algorithm uses Lagrange multipliers on the interface, the only additional cost is
computing projections of the mortar space onto the normal trace of the local velocity
spaces and vice-versa.

The rest of the paper is organized as follows. The mixed finite element method
with mortar elements is presented in the next section. In Section 3 we construct a
projection operator onto the space of weakly continuous (with respect to the mortars)
velocities and analyze its approximation properties. Sections 4 and 5 are devoted
to the error analysis of the velocity and the pressure, respectively. In Section 6 the
method is reformulated as an interface problem. A substructuring domain decompo-
sition algorithm for the solution of the interface problem is discussed in Section 7.
Numerical results confirming the theory are presented in Section 8.

2. Formulation of the method. A weak solution of (1.1)—(1.3) is a pair u €
H(div;Q), p € L*(Q) such that

(K™'w,v) = (p,V-v) = (9,v-v)aq, v E H(div;Q), (2.1)
(V-u,w) = (f,w), w e L*(Q), (2.2)
It is well known (see, e.g., [8, 24]) that (2.1)—(2.2) has an unique solution.
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Let Q = U ,Q; be decomposed into non overlapping subdomains ;, and let

Pi’]‘ = 0Q; N aQ]‘, r=u? Fi,jv and I'; =00, NT = 891\89 Let

7,7=1
V= H(div;Q;), V= év
=1
and
W; = L*(Q,), W= é W; = L*(Q).
=1

If the solution (u, p) of (2.1)—(2.2) belongs to H(div; Q) x H'(Q), it is easy to see that
it satisfies, for 1 <1 < n,
(IX’_IU,V)Qi = (p,VV)QZ - <p,V‘7/i>I‘i - <97V'Vi>aQi\Fa vV E Vi7 (23)
(V " u, w)Qz = (f7 w)Qm w e Wi, (24)
where v; is the outer unit normal to 0f2;.
Let T,; be a conforming, quasi-uniform finite element partition of ;, 1 <1 < n,

allowing for the possibility that 75 ; and 7 ; need not align on I'; ;. Let T = Ul Th .
Let

V’Li X Whﬂ‘ CV; xW,

be any of the usual mixed finite element spaces, (i.e., the RTN spaces [25, 23, 22];
BDM spaces [7]; BDEM spaces [6]; BDDF spaces [5], or CD spaces [9]). We assume

that the order of the spaces is the same on every subdomain. Let

Vi = @Vh,i, Wy = @ Whi.
=1 =1
Recall that
V Vi =Wh,,

and that there exists a projection II; onto Vy, ;, satisfying amongst other properties
that for any q € (H'/?T¢(Q;))* N V;,

(V ’ (qu - Q),’LU)QZ =0, w e Wh,i (25)
((@—ILiq) - vi,v-vi)ag, =0, v €V, (2.6)

Note that, since q € (H'/?%(,)), q - v|. € Hé(e) for any element face (edge) e;
therefore II;q is well defined.

Let Ty, ; be a quasi-uniform finite element partition of I'; ;. Denote by Ay ; ; C
L*(T; ;) the space of either continuous or discontinuous piecewise polynomials of de-
gree k41 on Tp ; ;, where k is associated with the degree of the polynomials in V, - v.
More precisely, if d = 3, on any boundary element K, Ap, ; j|x = Pr41(K), if K is a
triangle, and Ay ; j|k = Qr41(K), if K is a rectangle. Let

A= B Anij.

1<:i<j<n
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In the following we treat any function p € A, as extended by zero on 0. An
additional assumption on the space A and hence 7 ; ; will be made below in (2.11)
and (3.18). We remark that 7}, ; ; need not be conforming if a discontinuous space is
used.

In the mixed finite element approximation of (2.1)—(2.2), we seek uy € Vi, py €
Wi, A € Ay, such that, for 1 <1 < n,

(K™ "ap, V), = (ph: V- V)a, — (M, Ve vi)r, — (9, V- Vi)sanr, V € Vi, (2.7)

(V *Up, w)Qi = (fa w)Qm w e Whﬂ‘, (2.8)
> (an - vi e, =0, pe Ny (29)
i=1

For each subdomain €;, define a projection Qj, ; : L*(T';) = V4 - v
for any ¢ € L*(T;),

r; such that,

(6= Qnid, v -vi)r, =0, vEVy, (2.10)

Let, for ¢ € LZ(F), Qro = @?:1 Qh’igﬁ.
LEMMA 2.1. Assume that for any ¢ € Ay,

Qri¢ =0, 1<1<n, implies that ¢ = 0. (2.11)

Then there exists a unique solution of (2.7)—(2.9).

Proof. Since (2.7)—(2.9) is a square system, it is enough to show uniqueness. Let
f=0,g=0. Setting v = up, w = pp, and g = —\, adding (2.7)—(2.9) together,
and summing over 1 < < n, implies that u, = 0. Denote, for 1 <1 < n,

1 1

Phi = / phde, Qhidp = QhiAn ds,
and consider the auxiliary problem
—V-I&'—Vg@i:ph—m n Qi,

— KVgi-v=—(Qnil — Qn,irr) on 08,

where A\, = 0 on 02 N 91;. Note that the problem is well posed and regular with ¢;
determined up to a constant. Setting v = —II; KV, in (2.7), we have

(Phoph — Phia)e; + (Qh,idn, Qh,idn — Qh,i/\h>am =0,
implying
Q; =Dhis Lhirh = Qi n.

Phr

Since now (2.7) is

2. (1, V-v)q, — Qpidn(l,v-v)aa, =0,

the divergence theorem implies pylo;, = Qp,iAn-
Since A\, = 0 on 09Q, ppla; = Qn,iAn = 0 for those domains ¢ with 9€; N 9Q # 0.
For any j such that 0Q; N 0Y; =T, ; # 0, (2.10) implies that

Phr

T ;1

We conclude that Qp ;A = 0 for all 1 <1 < n; hence, p, = 0 and A\, = 0 by the
hypothesis of the lemma. [0

1
0= Qpirnlr;; = Lujrnlr; = / Ap ds.
i
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3. The space of weakly continuous velocities. We first introduce some pro-
jection operators needed in the analysis. Let P, be the L%*(T') projection onto Ap
satisfying for any ¢ € L*(T),

<77Z} — ,Phd}"uh‘ =0, pe Ap.
For any ¢ € L%(Q), let » € W}, be its L*(Q) projection satisfying
(p —¢,w) =0, weW,.

These operators and the projections II and Qp ; defined earlier have the following
approximation properties, wherein [ is associated with the degree of the polynomials

in Wh:

|t = Prtd]|—s,0 < Cll¢o|lrrh™*, 0<r<k+2, 0<s<k+2, (3.1)

le = ¢llo < Cllell-h", 0<r<Il+1, (3.2)

la — iqllo.0; < Cliqllre:h" 1<r<k+1, (3.3)

IV (q-1Lq)|oe; <C|V-q|rah", 1<r<I+1, (3.4)

1 — Qn,ithl| =50 < Cllblrr A7, 0<r<k+1,0<s<k+1, (3.5)

(g = TLiq) - vil|l—s,r: <Cllallrr: 2™, 0<r<k+1,0<s<k+1, (3.6)

where || - ||, is the H"-norm and || - || —s is the norm of H ~*, the dual of H*. Moreover,
V.-I,q=V -q, (3.7)

(IL;iq) - vi = Qr,i(q - vy). (3.8)

Let

7

Vh,O = {V €EVy: Z<V

=1

Q; 'VialLL>Fi =0V pu EAh}

be the space of weakly continuous velocities, with respect to the mortar space. Then
the mixed method (2.7)—(2.9) can be rewritten in the following way. Find u, € Vj g,
pr € Wy such that

7

(I{_luhav) = Z(ph7 V- V)Qi - <97V . 7/>897 v E Vh,07 (39)
=1

D (V-up,w)e, = (f,w), w € Wy, (3.10)

=1

Our goal for the rest of this section is to construct a projection operator Iy onto
V.0 with optimal approximation properties such that, for any q € (H'(Q))¢,

(V- (Ilpq — q),w)o =0, w e W,. (3.11)
By an abuse of notation, define

Vi v ={(¢1,¢2) € L*(T) x L*(T) : ¢4 r:; € Vp,i-v; and
¢2Fi,j € Vy,-v; v 1§z<]§n}
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and

Vio-v={(¢1,02) € LZ(F) X LZ(T) : 3v € Vo such that
¢1|Fi,j_ i Vi and¢2|Fi,j:V|Qj'Vj v 1§Z<]§n}

Henceforth, for any ¢ € (L*(T))?, we write @|r, ; = (¢i,¢;), 1 <i < j < n. Define a
projection Qp o : (L*(T'))? — V), o - v such that, for any ¢ € (L*(T))?,

Z — (Qn08)i;Eir, =0, £E€Vho- v (3.12)

i=1

LEMMA 3.1. Assume that (2.11) holds. For any ¢ € (L*(T))?, there emists
Ab € Ay such that on T ;, 1 <1< j <mn,

Qh,izh = Qh.iti — (Qhr,09)is (3.13)
Qn,jAn = Qh,;0; — (Qro9d);, (3.14)
(An,)r,; = %<¢z + o5, D1, ;. (3.15)

Proof. Consider the following auxiliary problem. Given ¢ € (L*(T))?, find ¢y, €
Vi, -vand A\, € Ay, such that

7

> (i — tni = Anbi)r: =0, EEVy-w, (3.16)
=1
> (Wni,pr; =0, i€ Ap. (3.17)
=1

To show existence and uniqueness of a solution of (3.16)—(3.17), take ¢ = 0, £ = ¢y,
and p = A to conclude that ¢, = 0. Now (3.16) and (2.11) imply that A\, = 0.
With £ € V0 - v in (3.16) we have

7

S (i — i, E)r, = 0.

=1

Also, from (3.17), ¢, € V}, o - v. Therefore ¢, = Qp 0¢. Equation (3.16) now implies
(3.13) and (3.14). Since any constant function is in Vy, ; - v, Vi, j - v, and Ay ; 5, we
have

20, D)1y, = (Lhidn, L), + (Qr,iAn, D1y

= (Qn,i®i — (2r00)i- 1)r;; +(Qn,iP5 — (Lr09)5, )T,
= (Qn,ii, 1)ri ; +(Qnjdj, Dy

< +9§jv >Fi,ja

and (3.15) follows. O
The next lemma shows that, under a relatively mild assumption on the mortar
space Ay, Qp 0 has optimal approximation properties for normal traces:

96:(u-yi,u-z/j):(u-yi,—u-yi).
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LEMMA 3.2. Assume that there exists a constant C, independent of h, such that

HMHQFi,j < C(HQh,i:uHQFi,j + HQhJ:u”OIi,j)v VM €Ap, 1<i<y<n. (3'18)

Then, for any ¢ such that ¢|r,; = (bi, —¢i), there exists a constant C, independent
of h, such that

=1

0<r<k+1,0<s<k+1. (3.19)

n 1/2 n
(Z 1Qnh,idi — (Qh,0¢)i!\33,ri) <CY il hT,
=1

Proof. By Lemma 3.1, there is a A\, € Aj, such that
Qh,irdh = Qn,iti — (Qh,00);- (3.20)
Since E?:1<(Qh,0¢)i, )\h>F,» = E?:1<¢i7 )‘h>Fi =0,

7

Z 1Qn,iMnllgr, = Z<Qh,i/\h, AR)T;
i=1

=1

= Z(Qh,i¢i — i, AR)T;
i=1

n /2 , . 1/2
< (Z 1Qn,idi — ¢iH3,pi> (Z Il)‘hllg,Fi>
=1

1=1
n 1/2 n 1/2
<C (Z 1Qn,idi — QbiH(Q),F,») (Z I\Qh,i/\hllg,n) :
=1 =1

by (3.18), and (3.19) with s = 0 follows from (3.20) and (3.5).
On any interface I'; ; take any ¢ € H*(I'; ;), 0 < s < k4 1, and write

<Qh,i/\ha 90>Fi,j = </\h7 Qh,i‘? - 99>Fi,j + <>‘h7 99>Fi,j
< C”AhHO,F,’,j hs”%‘o ‘87Fi,j + </\h7 99>Fi,j' (3'21)

The last term is

(As@)ri; = (Mne — 3(Qniv + Qh o)1,
+%</\ha Qh,iS‘Q + Qh7j99>Fi,j (3'22)
< Ol Awllor;; Rollellsri; + 5 (A s Qhie + Qn je)r,; ;-

Using Lemma 3.1, for the last term in (3.22) we have

(Any Qi + P je)T:
= (Qn,i M, Qr,iv)r;; + (Qn,jAn, Qhjo)T:
= (¢i — (2n,09)i, Lhi0)T:; + (05 — (Lr09)j, Ch,j)T:
= (¢i — (2n,09)i, Lhiv — Pro)r,; + (05 — (2r,090)5, Qn,j9 — Prp)r;
< CR'|illrr:  Polllspe;y 0 <r <k+1. (3.23)
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Combining (3.21)—(3.23) with (3.18), we obtain (3.19). O
We are now ready to construct our projection. For any q € (H1/2+€(Qi))d NV;
define

Moqle, = O;(q + dq;),

where dq; solves

Sqi = —Vm, in Q;, (3.24)
V. bq; =0 in O, (3.25)
0q; - vi = —Qniq-vi + (Qroq - V)i on I';, (3.26)
Sai - vi = 0 on 9% N 0, (3.27)

wherein, on any I'; ;, q - v|r;; = (q- v, q-v;). Note that the Neumann problems

(3.25)—(3.27) are well posed, since (3.15) and (3.13) imply that
(Qh,iq-vi — (Qnroq-v)i, L)r, =0.

Also, note that the piece-wise constant Neumann data is in H1/2_8(5’Qi), so dq; €
(H'72(£2;))¢ and II; can be applied to dq;.
We first notice that by (3.8),

n n

> ((Moq) - wiy i, = Y ((Quoa- v)isp)r; =0, V€ Ap;

=1 =1
therefore Iloq € V3 0. Also, by (3.7),
(V- -Ilpq,w)e, = (V- -ILiq,w)e, + (V- -I;dq,w)e, = (V- -q,w)g,, Ywe Wj,.
It remains to estimate the approximability of IIy. Since on €,
Iloq — q = II;q — q + IL;éq;,

with (3.3) we need only bound the correction II;0q;. By elliptic regularity [18, 19],
for any s > 0

[0aill1/2—5,0; < ClQn,ia-vi — (Lo V)ill-s1,- (3.28)
We now have
LS00, < ||Tidd; — ddillo,e; + [|daillo,o;
< Ch'Y2)|8qill /2.0, + ll9dillo.a.
0 I‘.hl/Z

< C{|Qn,ia-vi — (Qhroq - v)illo,r;
+11Qn,ii - vi — (Lrod - V)ill=1/2,1: ) (3.29)

using an estimate by Mathew [20] for any divergence free vector ¢

Tt —llo.q; < CRE||¢]lcq;, 0<e<l.

Note that the result in [20] is for Raviart-Thomas spaces, but can be trivially extended
to any of the mixed spaces under consideration. Together with Lemma 3.2, (3.29) gives

IToq — Mallo < C Y llallrp1/20.hF % 0<r<k+1, (3.30)

=1
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and, with (3.3),

IToq —allo < C D lq|

=1

ra kT, 1<r<k+1. (3.31)

4. Error estimates for the velocity. We start this section with a lemma
needed later in the analysis.
LEMMA 4.1. For any function v € Vy ;,

Iv - 0,00, < Ch™2|v]l0...

Proof. All spaces under consideration admit nodal bases that include the degrees
of freedom of the normal traces on the element boundaries. Since for any element E
and any of its faces (edges) e, |e] < Ch™!|E|, the lemma follows. O

4.1. Optimal convergence. Subtracting (3.9)—(3.10) from (2.3)—(2.4) gives the
error equations

7

(K (= w)ov) = Y ((p=pis V- V)a, = 0V v)r) vE Vo, (41)

=1
Y (V- (u—up),w)g, =0, we Wy  (42)
=1
We first notice that (4.2) implies that
V- (Ilpu—up) =V - (Ilu —u;) =0. (4.3)

We now take v = IIgu — u; to get

(K™ (TTpu — uy), Mou — uy)

= (Pup—p,(Hou—uy) - vi)r, + (K~ (Tlou — u), Mou — uy)

i=1
<Y I1Psp = pllor:l(Mou = ws) - villo.r; + (K~ (Tlou — u), Tou — uy)
i=1
<C (Z HpHr—i—l,Qihr—i—l/zHHOU — llleo,sL»h_l/2 + Z [ullr.o2"|[ou — uhHO) )
i=1 i=1

1<r<k+1, (4.4)

where we used (3.1), Lemma 4.1, and (3.31) for the last inequality. With (4.3)—(4.4),
(3.4), and (3.31) we have shown the following theorem.

THEOREM 4.2. For the velocity uy of the mized method (2.7)—(2.9), if (2.11)
holds, then there exists a positive constant C independent of h such that

IV (u=wp)llo <CY |V ulloh”, 1<r<I+1.

=1

Moreover, if (3.18) holds,

lu—willo < €S Ulpllsra, + )™, 1<r<k+1

=1
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4.2. Superconvergence. In this subsection we restrict to the case of diagonal
tensor K and RTN spaces on rectangular type grids. In this case superconvergence
of the velocity is attained at certain discrete points. To show this we modify the last
inequality in (4.4). In particular, (3.1) gives, for 1 <r <k +1,

k13 k13
> NPap = pllor |(Mou = wr) - willor: < C Y [Iplrysjzel™ [Mou — upllo 0. ™"/2,

and (3.30) gives, for 1 <r <k +1,

(K~ (Tou — Tu), Tou — ws) < C Y [[ulla1/2.0,5™ /% | Tou — wy o

=1
which, combined with and an estimate by Durdn ([13], Theorem 3.1)
(K~ (I;u — u),TMou — up)g, < Cllullr1,0.k 1 |Hou — wpllog,, 0<r<k+1,

implies

IMow — willo < €3 (lpllrajzg + lulisrje)h™2 1<r<k+l  (45)

=1

This estimate implies superconvergence along the Gaussian lines. Consider (for d = 3)
an element F = [ay,b1] X [az,bs] X [a3,b3]. Denote by g{,...,g,i+1, 1 = 1,2,3, the
Gaussian points on [a;, b;], i.e., the roots of the Legendre polynomials of degree k + 1
on [a;,b;]. Asin [15, 13], for a vector q = (¢1,¢2,¢g3) define

k+1 k+1 by
Nalllf o= Ap(bs —as) Y Ay (bs — GS)/ q1(z1,93,.95,)| dei,
J2=1 Ja=1 @1
k+1 k+1 by
g3, e = > Aj (bt —ar) Y Ajy(bs — GB)/ 9295, %2, 95,)° dza,
=1 Ja=1 @2
k+1 k+1 bs
Nasll e =Y Aji(br —ar) Y Aja(bs — Gz)/ |45(95, - 95, x3)[* das,
=1 J2=1 @3
where Aj;, i = 1,...,k + 1 are the coefficients of Gaussian quadrature in [—1,1].
Define
3
Nalll> =" > gl &
i=1 E€T;,

Note that, for q € Vy,, |||q]|| is equal to the L*-norm of q.

THEOREM 4.3. Assume that the tensor K s diagonal and the mized finite element
spaces are RTN on rectangular type grids. For the velocity uy of the mized method
(2.7)-(2.9), of (3.18) holds, then there exists a positive constant C independent of h
such that

lla—willl <O (lpllr+s/2.0: + ulrgrjp0)p™ 2 1<r <k+1.

=1
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Proof. By the triangle inequality,
[Iu = ws [[| < |[[u— T[] + [[[TTu — Toul[| + [[[Tou — usl]]
The theorem follows from (3.30), (4.5), and the bound (see [13])

|||u_Hu||Qi SCHUHT’-Flﬂihr—i—lv 1<r<k+1

5. Error estimates for the pressure. In this section we use a duality argu-
ment to derive a superconvergence estimate for p — pj. Let ¢ be the solution of

~V-KVe=—(h—pi) inL,
=0 on 09).

By elliptic regularity,
lellz < Cllp — pallo- (5.1)

Take v = [Ig KV in (4.1) to get

7

15— pulld = (5~ pr, V- K Ve)q,

=1

=Y (K" (u—wp), oK Vo, + (p— Pap, o K Ve - wi)r,). (5.2)

=1
The first term on the right can be manipulated as

» (K7 (u—uy), MK Ve)g,
=1

=Y (K™ (u=up), oK Ve — KVg)o, + (u—us, Vi)a,)

= Z (K~ (u —up), My KVy — KV)g,
+(V-(u—up),p—Pla, — (u—up) - vi,p = Pro)r;) (5.3)

<CY (= unllogh+ V- (u =)o+ [[(w— ) villorn*?) el
=1

using (3.31), (3.2), and (3.1) for the last inequality with C' = C(max; || K||1,00,0;)-
The last term on the right is

(0 — ) - willo.r 52

< (Jl(u = yu) - villo,r, + [|(Tiu — wg) - villo,r, ) 2*/
< C(h"|ullvr, + 272 Mu — up o0, )R
= C(|ullrr, A3 + |iw — wplloe,h), 0<r<k+1, (5.4)
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using (3.6) and Lemma 4.1.
For the second term on the right in (5.2) we have

(p— Prp, IIoKV ¢ - vi)r,
=(p—Pup,(IIoKVyp —II;KVp)-v; + (II; KVp — KV¢)-v; + KV¢ - v)r,
< llp = Prpllor:(16(KEVe)i - villor; + [(ILiEVe — KV¢) - villor,)
+||p — PhPH—1/2,Fi KV - Vz‘H1/2,F,»-

With (3.1), (3.26), (3.19), and (3.6) we have

lp — Prpllor; < CHPHr+1/2,Fihr+l/2, 0<r<k+1,
Il — Prpll=1/2,0; < CHPH,-.}.1/27FZ.}ZT+1’ 0<r<k+1,
IS(KVe); - villor; < Cllelza.h'/?,

I(ILKVe — KVe) - villor, < Cllell2ah'?;

therefore,

(p — Pup, oKV - vi)r, < CR™plliga,r,

¢z, 0<r<k+1 (5.5)

A combination of (5.1)—(5.5), Theorem 4.2, and (3.3) gives the following theorem.
THEOREM 5.1. For the pressure py of the mized method (2.7)—(2.9), f (3.18)
holds, then there exists a positive constant C| independent of h, such that

n
15 = pallo < €Y _(lpllr+1.0. + lullne, + IV - ullna)R™,

=1

n
lp = pallo < €Y (Ipllv1.0: + lullrg, + IV - ulla )R,

=1
where 1 <r <min(k + 1,1+ 1).

6. An interface operator. In this section we introduce a reduced problem
involving only the mortar pressure. This reduced problem arose naturally in the work
of Glowinski and Wheeler [17] on substructuring domain decomposition methods for
mixed finite elements and is closely related to the inter-element multiplier formulation
of Arnold and Brezzi [3]. The reason to consider the interface operator is twofold.
First, we use it to derive a bound on the error in the mortar space. Second, it is the
basis for our parallel domain decomposition implementation.

6.1. The reduced problem. Define a bilinear form d : L*(T') x L*(T) — R
by

7

dn(A, p) = Zdh,i(%w == (up(\) - vi, ),

=1
where for A € L*(T), (u}(\),p;(\)) € Vi, x W}, solve, for 1 <1 < n,

(I{_IUZ(/\)vv)Qi = (Pr(A), V- v)g, = (A, v-vir,, VE Vi, (6.1)
(V- ui (N, w)e, =0, w e Wy ;. (6.2)

z
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Define a linear functional g5, : L*(T) — R by

n n

gn(p) =Y gnilp) =Y (W - vi, p)r,,

i=1 i=1
where (up,pp) € Vi x Wy, solve, for 1 <i < n,
(I{_lﬁhvv)ﬂi - (ﬁhav . V)Q,’ - <g,V ) Vi>aQi\F7 \ALS Vh,i7 (63)
(V . ﬁh,’U))Qi = (f, ’UJ)Q“ w € Whﬂ‘. (64)

It is straightforward to show (see [17]) that the solution (up,pn,An) of (2.7)—(2.9)
satisfies

dn(Any 1) = gn(p),  p € A, (6.5)
with
up = uy(An) + s, pr = pi(An) + P (6.6)

LEMMA 6.1. The interface bilinear form dp(-,-) is symmetric and positive semi-
definite on L*(T'). If (2.11) holds, then dy(-,-) is positive definite on Ay,.
Proof. With v = u}(p) in (6.1) for some p € L*(T'), we have

dn,i(p \) = =N i (p) - viyr, = (K7 ug (M), wj (1)es = dii(A p), (6.7)
which shows that dj(-,-) is symmetric and
dn,i(p, 1) = (K~ g (i), g (p))a, > 0. (6.8)

For p € Ap, if (2.11) holds, the argument from Lemma 2.1 shows that dp(u, ) =0
implies ¢ = 0. O

6.2. Error estimates for the mortar pressure. Denote by || - | 4, the semi-
norm induced by dj(-,-) on L*(T), i.e.,

Il a, = dn(p, 0)'?, € L*(T).

THEOREM 6.2. For the mortar pressure A\, of the mized method (2.7)—(2.9), if
(3.18) holds, then there exists a positive constant C, independent of h, such that

lp = Millan < C Y (lpllrt1g + ul

=1

T’Qi)hr, 1<r<Ek+1, (69)

1Pup = Anlla, < C Y (Ipllr+1.0: + ullna ), 1<r<k+1  (6.10)

=1
In the case of diagonal tensor K and RTN spaces on rectangular type grids,
Hp - /\thh < CZ(HPHH-WZQ@' + "u"r+1/279i)hr+1/27 1<r<k+1, (6'11)
=1

1Pep = Malla, < C (Ipllrtssze; + lulliprj20)0 ™2, 1<r <k+1(6.12)

=1
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Proof. With (6.8) we have

I = Arllan < Cllug(p) — ug (Ao, (6.13)
using that u}(-) depends linearly on its argument. Define, for u € L*(T),
up(p) = wp(p) +an,  palp) = pi(p) + po,
and note that (up(p),pr(p)) € Vi x Wy, satisty, for 1 <1 <n,
(K~ an(p), V)a, = (pr(p), V- V), — (v - v)r,
— {9,V - V)aar; veEVi, (6.14)
(V- up(p), w)e, = (f,w)a;, w € Wi (6.15)

We now have

[ (p) — wi(An)lo = [lun(p) — un(An)llo
= |lun(p) — unllo
< [lun(p) — ullo + [Ju — o (6.16)
Bound (6.9) now follows from (6.13), (6.16), Theorem 4.2, and the standard mixed

method estimate for (2.3)—(2.4) and (6.14)—(6.15) [25, 23, 12]
lun(p) — ullo,0; < C(pllrt1.0: + lullre)h”, 1<r <k+1.
To show (6.11), we modify (6.16) as
lun(p) = wnllo < [[un(p) — Mullo + |[TTu — Iouljo + [[Tlou — up o (6.17)

Bound (6.11) now follows from (6.13), (6.17), (3.30), (4.5), and a superconvergence
estimate for the standard mixed method [13] (see also [21, 15])

[us(p) — ol o, < Cllullosn ™, 1<r <kl
To prove (6.10) and (6.12), note that, by (6.1),

(K~ 'a} (Prp — p),ul(Pop — p))a: = —(Pup — p,u}(Prp — p) - 1)1,
»(Prp—p) - vor;
w0 g (Prp = p)llo,o,h 72, 0<r <k+2,

using (3.1) and Lemma 4.1 for the last inequality. Therefore, with (6.8),

IPup = plla, < C Y lpllrrajza ™2, 0<r <kl (6.18)
=1
Bounds (6.10) and (6.12) follow from (6.9) and (6.11), respectively, using the triangle
inequality and (6.18). O
REMARK 6.1. In the case of the lowest order RTN spaces, it is proven in [10]
that, for any ¢ € Ay, dp (¢, @) is equivalent to |IaQiQh7i¢|1/27aQi7 where 79 is
an interpolation operator onto the space of continuous piece-wise linears on 0f;.
Therefore || - ||4, can be characterized as a certain discrete H'/?-norm on T' (see [27]).
This is also in accordance with the numerically observed O(h?) convergence for the
mortars in a discrete L2-norm (see Section 8).



MIXED METHODS ON NON-MATCHING GRIDS 15

7. A substructuring domain decomposition algorithm. In this section we
discuss the implementation of a parallel domain decomposition algorithm for solving
the resulting linear system. We apply the substructuring algorithm by Glowinski
and Wheeler [17] to the lowest order RTN discretization on non-matching multiblock
rectangular type grids.

The original method for matching grids solves an interface problem in the space
consisting of the normal traces of the velocity. In our case we solve an interface
problem in the space of the mortar pressures. We use the conjugate gradient method
to solve the interface problem (6.5). Note that Lemma 6.1 guarantees convergence of
the iterative procedure in Ap.

Every iteration of the conjugate gradient requires an evaluation of the bilinear
form dj(-,-), and therefore, solving subdomain problems (6.1)-(6.2) with a given
Dirichlet data in the mortar space Ap. Because of the property

din (A ) = dpi(Qn i, Qnift),

the subdomain solves only use projections of the mortar data onto the local spaces.
Therefore, no change in the local solvers is needed for the implementation. Moreover,
the conjugate gradient is performed in the space

{(h1,¢2) € (L*(T))* : ¢n

The conjugate gradient residual is the jump in the fluxes across subdomain boundaries.
The jump is computed after projecting the local boundary fluxes onto the mortar
space, as indicated by

r;; € Qn,il\p and ¢

r.; € QnilAn, 1 <0<y <n}

n n

dh(/\mu) = - Z<HZ(A) ) Via:LL>Fi = - Z<7Dhu2(/\) ) Viv:LL>Fi7 A pr € Ap.

Therefore the only additional computational cost compared to the case of matching
grids is computing the projections Qp ; : A = Vi ;- v; and Pyt Vi ;- v — Ay,

8. Numerical results. In this section we present some numerical tests con-
firming the theoretical convergence rates. All examples are on the unit square and
consider only the lowest order RTN spaces on rectangles. In the first example we solve
a problem with known analytic solution

p(z,y) = 2°y* + 2% + sin(zy)cos(y)

and tensor coefficient

K- ( (14" <a:+01>2 )

The boundary conditions are Dirichlet on the left and right edge and Neumann on
the rest of the boundary. The domain is divided into four subdomains with interfaces
along the + = 1/2 and y = 1/2 lines. The initial non-matching grids are shown in
Figure 8.1. We test both continuous and discontinuous mortars. The initial mortar
grids on all interfaces have 4 elements with 5 degrees of freedom in the continuous
case and 2 elements with 4 degrees of freedom in the discontinuous case, therefore
satisfying the solvability condition (2.11). Convergence rates for the test case are
given in Table 8.1. Here || - ||m is the discrete L?-norm induced by the midpoint rule
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Fig. 8.1. Initial non-matching grids.

Continuous mortars Discontinuous mortars
1/h | E(p) E(u) E(\) E(p) E(u) E(}\)

8 9.62E-03 | 2.95E-02 | 1.31E-02 | 9.52E-03 | 4.12E-02 | 1.36E-02
16 | 2.41E-03 | 8.54E-03 | 3.31E-03 | 2.40E-03 | 1.36E-02 | 3.45E-03
32 | 6.04E-04 | 2.42E-03 | 8.30E-04 | 6.03E-04 | 4.55E-03 | 8.68E-04
64 1.51E-04 | 6.66E-04 | 2.08E-04 | 1.51E-04 | 1.54E-03 | 2.19E-04
128 | 3.91E-05 | 1.88E-04 | 5.39E-05 | 3.75E-05 | 5.29E-04 | 5.35E-05

rate O(h1.99) O(h1'83) O(hl'gg) O(h2.00) O(h1.57) O(h2'00)
TABLE 8.1

Discrete norm errors and convergence rates, where E(p) = ||p—pnllm, F(u) = ||Jlu—upl||, and

EA) =[x =QxrAnllm-

on Ty (or the trace of Tj on I'). The rates were established by running the test case
and 4 levels of grid refinement (we halve the element diameters for each refinement)
and computing a least squares fit to the error. We observe numerically convergence
rates corresponding to those predicted by the theory. The computed pressure and
velocity with continuous and discontinuous mortars on the first level of refinement
are shown in Figure 8.2. Although both solutions look the same, Table 8.1 indicates
that they differ. This can also be seen in Figure 8.3, where the magnified numerical
error is shown. The error in the continuous mortar case is concentrated at the cross-
points, where the only discontinuities in the mortar space occur. The error in the
discontinuous mortar case is distributed along the interfaces and is somewhat larger.
We have to point out however, that the discontinuous mortars provide flux continuity
in a more local sense, as indicated by the flux matching condition (2.9).

In the next example we test a problem with a discontinuous coefficient. We choose
K=Ifor0<z<1/2and K =10%1 for 1/2 < 2 < 1. The solution

(o) = | DY+ coszy), 0<z<1/2
plr,y) = (2%‘9)2y3—|—cos(%y), 1/2<2 <1,

is chosen to be continuous and have continuous normal flux at z = 1/2. The domain
is divided into two subdomains with an interface along = 1/2. The initial grids are
4 x 8 on the left and 4 x 11 on the right. Continuous mortars on a grid of 7 elements
with 8 degrees of freedom or discontinuous mortars on a grid of 4 elements with 8
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FiG. 8.3. Pressure and velocity error.

degrees of freedom are introduced on the interface. Convergence rates for the test
case are given in Table 8.2.

In the last example we would like to compare the mortar element mixed method on
locally refined grids to the more common “slave” or “worker” nodes local refinement
technique [14, 16]. In the latter, the fine grid interface fluxes within a coarse cell are
forced to be equal to the coarse grid flux. We note that this scheme can be recovered
as a special case of the mortar element method with discontinuous mortars, if the
trace of the fine grid is a refinement by two of the interface grid. Indeed, in this case
the flux matching condition (2.9) becomes a local condition over two (four if d = 3)
fine grid boundary elements and forces all fine grid fluxes to be equal to the coarse
grid flux. Our theory also recovers the convergence and superconvergence results
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Continuous mortars Discontinuous mortars
U | E() | Ew | EXN | E@ | Ew | EM
8 3.20E-04 | 1.60E-02 | 3.32E-04 | 3.38E-04 | 3.27E-02 | 1.22E-03
16 | 8.38E-05 | 4.27E-03 | 8.18E-05 | 8.55E-05 | 1.13E-02 | 3.17E-04
32 | 2.12E-05 | 1.18E-03 | 2.01E-05 | 2.14E-05 | 3.93E-03 | 8.01E-05
64 | 5.35E-06 | 3.41E-04 | 4.89E-06 | 5.34E-06 | 1.37E-03 | 2.01E-05
128 | 1.38E-06 | 1.05E-04 | 1.15E-06 | 1.35E-06 | 4.82E-04 | 5.02E-06
rate O(hl.Q’T) O(hl.Sl) O(h2'04) O(hl.gg) O(h1'52) O(h1.98)
TABLE 8.2

Discrete norm errors and convergence rates for the example with a discontinuous coefficient,
where E(p) = [lp — pallv, E(w) = [l[u—upll], and EQ\) = ||\ — QaAnl.

derived by Ewing and Wang [16]. In the mortar method however, the flux continuity
condition can be relaxed by choosing a coarser mortar space. In this case the fine grid
fluxes are not forced to be equal and approximate the solution better. Our numerical
experience shows that this may reduce the flux error on the interface by up to a factor
of two.

We solve a problem with a solution

p(z,y) = 2*y* + sin(zy)

and a coefficient

- { 10+ 5cos(zy) O

K = ( 0 1 ) .
on locally refined grids. The domain is divided into four subdomains with interfaces
along the + = 1/2 and y = 1/2 lines. The domains are numbered starting from the
lower left corner and first increasing x. The initial grids are 4 x 4 on ;-3 and
16 x 16 on £2y. We use discontinuous piece-wise linear mortars on the non-matching
interface. We report the numerical error on the grid and three levels of refinement for
two cases. If the coarse grid is n x n, we take a mortar grid with n — 1 elements in
the first case and 2n elements in the second case, which is equivalent to the “slave”
nodes method. The results are summarized in Table 8.3. The pressure and velocity
error on the first level of refinement are shown in Figure 8.4.

Discontinuous mortars “Slave” nodes

1/h | E(p) E(u) E()) E(p) E(u) E())

8 1.12E-3 6.70E-2 3.80E-3 1.30E-3 1.45E-1 5.74E-3

16 2.67E-4 2.48E-2 1.03E-3 2.90E-4 5.00E-2 1.39E-3

32 6.57E-5 9.77E-3 2.72E-4 6.86E-5 1.74E-2 3.41E-4

64 1.64E-5 3.62E-3 6.93E-5 1.66E-5 6.09E-3 8.42E-5
rate O(h2'03) O(h1'40) O(h1.93) O(hZ.OQ) O(h1'52) O(h2'03)

TABLE 8.3
Discrete norm errors and convergence rates on locally refined grids, where E(p) = ||p — pnllm,

E(u) = |[la —uull], and E(A) = ||A = QnAnllm-

Acknowledgments. The authors thank Prof. Raytcho Lazarov for useful com-
ments and discussions with the fourth author.
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0 N 1 1

A. Discontinuous mortars. B. “Slave” nodes.

Fig. 8.4. Pressure and velocity error on locally refined grids.
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