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ABSTRACT. In this paper we prove that an operator which projects weak so-
lutions of the two- or three-dimensional Navier-Stokes equations onto a finite-
dimensional space is determining if it annihilates the difference of two “nearby”
weak solutions asymptotically, and if it satisfies a single appoximation inequal-
ity. We then apply this result to show that the long-time behavior of weak
solutions to the Navier-Stokes equations, in both two- and three-dimensions, is
determined by the long-time behavior of a finite set of bounded linear function-
als. These functionals are constructed by local surface averages of solutions
over certain simplex volume elements, and are therefore well-defined for weak
solutions. Moreover, these functionals define a projection operator which satis-
fies the necessary approximation inequality for our theory. We use the general
theory to establish lower bounds on the simplex diameters in both two- and
three-dimensions. Furthermore, in the three dimensional case we make a con-
nection between their diameters and the Kolmogoroff dissipation small scale
in turbulent flows.

1. Introduction

Consider a viscous incompressible fluid in © C R?, where € is an open bounded
domain with Lipschitz continuous boundary, and where d = 2 or d = 3. Given the
kinematic viscosity v > 0, and the vector volume force function f(z,t) for each
x € Q and t € (0,00), the governing Navier-Stokes equations for the fluid velocity
vector u = u(z,t) and the scalar pressure field p = p(z,t) are:

Oou

(1.1) E—VAu+(u-V)u+Vp=f in Q x (0,00),

(1.2) V-u=0 in Qx(0,00).

Also provided are initial conditions u(0) = wug, as well as appropriate boundary
conditions on 90 x (0, 00).
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The notion of determining modes for the Navier-Stokes equations was first
introduced in [FP67] as an attempt to identify and estimate the number of degrees
of freedom in turbulent flows (cf. [CFMT85] for a thorough discussion of the role
of determining sets in turbulence theory). This concept later led to the notion of
Inertial Manifolds [FST88]. An estimate of the number of determining modes was
given in [FMTT83] and later improved in [JTi93]. The notion of determining
nodes, and other more general determining concepts, were introduced in [FT83].
In [FT84] the notion of determining nodes was discussed in detail, and estimates for
their number were reported in [JTi92b], and later improved in [JTi93]. In [FTi91]
(see also [JTi92a]) the concept of determining volume elements was presented,
and a connection was established between this concept and Inertial Manifolds. A
generalized and unified theory of all of the above was recently presented in [CJTi95,
CJTi97].

Bounds on the number of determining modes, nodes, and volumes are usually
phrased in terms of a generalized Grashof number, which is defined for the two-
dimensional Navier-Stokes equations as:

p’F F
Gr = v2 A2’
where \; is the smallest eigenvalue of the Stokes operator and p = /)] is the related
(best) Poincaré constant. Here, F = limsup,_, ([, |f(z,t)[*)!/? if f € L*(Q) for
almost every t, or F' = limsup,_, ., VA1l fllg-1(q) if f € H~'(Q) for almost every ¢.

The best known estimate for the determining set size for the two-dimensional
Navier-Stokes equations with periodic boundary conditions and H?2-regular solu-
tions is of order Gr [JTi93]. In obtaining their estimate, the authors relied on
the fact that the domain had no physical boundaries to shed vorticity, which made
available some convenient properties of H?-regular solutions. However, in the two-
dimensional case with no-slip boundary conditions, to our knowledge the best es-
timate on the cardinal of any determining set (modes, nodes, or volumes) that can
be obtained is of order Gr?, even for H?-regular solutions.

Due to the Sobolev Imbedding Theorem H? — C° (which holds in dimensions
1, 2, and 3), or rather due to the failure of the imbedding H' < C? in dimensions 2
and 3, determining node analysis is necessarily restricted to H?2-regular solutions to
make sense of point-wise values. However, when talking about determining modes
or volume elements, it is sufficient for functions to be H'-regular, so that these
concepts also make sense for weaker solutions. To construct a general analysis
framework for the case of weak H' solutions, we can begin by defining notions
of determining projections and determining functionals for weak solutions. (The
standard spaces H, V, and V' are reviewed fully in §2.)

DEFINITION 1.1. Let f(t),g(t) € V' be any two forcing functions satisfying
(1.3 T 176) = g(®llv: =0,

and let u,v € V be corresponding weak solutions to (1.1)-(1.2). The projection
operator Ry : V = Vy C L?(Q), N = dim(Vy) < oo, is called a determining
projection for weak solutions of the d-dimensional Navier-Stokes equations if

(1.4) Jim (| Ry (u(t) — v(0)) | 22y = 0,
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implies that
(1) i [ut) = o(®) s = 0.

Given a basis {¢;}}¥, for the finite-dimensional space Vi, and a set of bounded
linear functionals {/;}¥, from V', we can construct a projection operator as:

N
(1.6) Ryu = Zl,(u)q&,

The assumption (1.4) is then implied by:
(1.7) 1ﬁl_i)m [li(u() —v(®)| =0, i=1,...,N

so that we can ask equivalently whether the set {l;}}¥, forms a set of determining
functionals (see [CITi95, CJTi97]). The analysis of whether Ry or {l;}¥, are
determining can be reduced to an analysis of the approximation properties of Ry.
Note that in this construction, the basis {¢;}&¥; need not span a subspace of the
solution space V, so that the functions ¢; need not be divergence-free for example.
Note that Definition 1.1 encompasses each of the notions of determining modes,
nodes, and volumes by making particular choices for the sets of functions {¢;}~ ,
and {l;}¥, (see [JTi92a, JTi92b]).

In this paper, we will employ Definition 1.1 to extend the results of [CITi95,
CJTi97] to the more general setting of H!-regular solutions. In particular, we will
show that if a projection operator Ry : V — Vy C L%(Q), N = dim(Vy) < oo,
satisfies an approximation inequality for v > 0 of the form,

(1.8) lu — Bnullp2@) < CiN 77 ||ull g1 (q),

then the operator Ry is a determining projection in the sense of Definition 1.1,
provided N is large enough. We will also derive explicit bounds on the dimension
N which guarantees that Ry is determining. While we gain generality in our
approach here, we also lose something in the balance: the bounds obtained here
are generally of order Gr?, whereas the bounds in [CJTi95, CJTi97] (requiring
H?2-regularity) are of order Gr.

Outline of the paper. Preliminary material is presented in §2, including some
inequalities for bounding the nonlinear term appearing in weak formulations of the
Navier-Stokes equations. In §3, a finite element interpolant due to Scott and Zhang
is presented, which (unlike nodal interpolation) is well-defined for H!-functions. It
is shown that the interpolant satisfies the approximation assumption (1.8) for H!-
functions on arbitrary polyhedral domains in both two and three dimensions; most
of the details are relegated to the Appendix. In §4, we consider the two-dimensional
Navier-Stokes equations, and derive bounds on the dimension N of the space Vi,
employing only the approximation assumption (1.8). As an application of this gen-
eral result, we employ some standard assumptions about simplex triangulations of
the domain (discussed in §3) and derive lower bounds on the simplex diameters,
sufficient to ensure that the SZ-interpolant is a determining projection (equiva-
lently, that the simplex surface integrals forming SZ-interpolant coefficients are a
determining set of linear functionals). We extend these results to three dimensions
in §5, by requiring (following [CDTi95]) that weak solutions satisfy an additional
technical assumption (due to the lack of appropriate global a priori estimates),
which is related to the natural notion of mean dissipation rate of energy.
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2. Preliminary Material

We briefly review some background material following the notation of [CF88,
Lio69, Tem77, Tem83]. Let & C R? denote an open bounded set. The imbedding
results we will need are known to hold for example if the domain €2 has a locally
Lipschitz boundary, denoted as Q € C%! (cf. [AdaT78]). For example, open bounded
convex sets 2 C R satisfy Q € C%! (Corollary 1.2.2.3 in [Gri85]), so that convex
polyhedral domains (which we consider here) are in C°1.

Let H*(Q) denote the usual Sobolev spaces W*2(Q). Employing multi-index
notation, the distributional partial derivative of order || is denoted D®, so that
the (integer-order) norms and semi-norms in H*(Q) may be denoted

k
ik o .
lullfey = DI lults@)y  lulti@) = Y I1D%ullpz@), 0<j<k,

3=0 |er|=3

where ()| represents the measure of (2. Fractional order Sobolev spaces and norms
may be defined for example through Fourier transform and extension theorems, or
through interpolation. A fundamentally important subspace is the k = 1 case of

HEF(Q) = closure of C$°(Q) in H*(Q),
in which the Poincaré Inequality reduces to: If  is bounded, then
(2.1) lullz2) < p(Q)|ulmr),  Vu € Hg(Q).
The spaces above extend naturally (cf. [Tem77]) to product spaces of vector

functions v = (u1,us,...,uq), which are denoted with the same letters but in

bold-face; for example, HE(Q) = (H(’)“(Q))d. The inner-products and norms in
these product spaces are extended in the natural Euclidean way; the convention
here will be to subscript these extended vector norms the same as the scalar case.

Define now the space V of divergence free C*® vector functions with compact
support as

V={eC&) |V -4=0}.

The following two subspaces of L2(Q2) and H}(f2) are fundamental to the study of
the Navier-Stokes equations.

H = closure of V in L?(1), V = closure of V in Hy(9).

To simplify the notation, it is common (cf. [CF88, Tem77]) to use the following
notation for inner-products and norms in H and V:

22) (wv)=wva, k=ulz, ((wv)= @)y, ul=ulv.
The Navier-stokes equations (1.1)—(1.2) are equivalent to the functional differ-

ential equation:

(2.3) ccll_1: +vAu+ B(u,u) = f,  u(0) = up.

The Stokes operator A and bilinear form B are defined as
Au=—-PAu,  B(u,v) = P[(u-V)v],

where the operator P is the Leray orthogonal projector, P : H} — V and P : L? —
H, respectively.
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Weak formulations, which we consider shortly, will use the bilinear Dirichlet
form ((-,-)) and trilinear form b(-,-,-) as:

((u,v)) = (Vu, Vv), b(u,v,w) = (B(u,v),w) = (P((u-V)v),w).

(u
(Note that thanks to the Poincaré inequality (2.1
inner-product on V, and the induced norm || - || =
equivalent to the H'-norm.)

A priori bounds can be derived for the form b(-,-,-) (cf. [CF88, Lad69,
Tem?77]). In particular, if Q@ C R?, then the trilinear form b(u,v,w) is bounded on
V xV xV as follows:

, the form ((-,-)) is actually an
(-,))*/? is in fact a norm on V,

‘ 1/2 1/2 1/2 1/2
(24) d=2: [b(u,v,w)| < 22 |Jull g lulis g v]a @ 0]l oy 012 0

(25) d=3:  [bu,v,w)| < 2lull g lulilq [Vl @ lwllsg) lwli )

Moreover, from Holder inequalities we have for d = 2 or d = 3:

(2.6) [b(v, u, )| < [IVull L) 0] Z2(0)-

3. Polynomial interpolation in H}(Q)

An example of a projection operator which satisfies the approximation assump-
tion (1.8) is that used for defining determining volumes [JTi92a]; we examine now
powerful alternative operator. Let Q C R? be a d-dimensional polygon, exactly tri-
angulated by (for example) Delaunay triangulation [Ede87], with quasi-uniform,
shape-regular simplices, the vertices of which will form a set of N generalized in-
terpolation points in our analysis. Note that for quasi-uniform, shape-regular tri-
angulations in R? (see [Cia78] for detailed discussions), it holds that

(3.1) ColQh~* < N < CyI2|h~¢,

where h is the maximum of the diameters of the simplices, and where Cy and C}
are universal constants, independent of both N and h. The parameter h will be
referred to as the characteristic parameter, or characteristic length scale, of such a
quasi-uniform shape-regular mesh.

It should be noted that given some initial triangulation satisfying (3.1), re-
peated bi-section [B&n91] or octa-section [Zha88] (quadra-section in 2D) of each
simplex can be performed in such a way as to guarantee non-degeneracy asymptot-
ically, in that the quasi-uniformity and shape-regularity are preserved. Therefore,
inequality (3.1) can be made to hold, for the same universal constants, for finer and
finer meshes in a nested sequence of simplex triangulations.

To properly define a continuous piecewise-linear nodal interpolant of a function
u € H'(Q) based on the nodes of a triangulation of 2, the particular function u must
be bounded point-wise. This will be true if the function v is continuous in 2, hence
uniformly continuous on ). One of the Sobolev imbedding results (cf. [AdaT78])
states that if Q C R? satisfies Q € C%!, then for nonnegative real numbers k and s it
holds that H¥(Q) < C*(Q)), k > s+ 2. This implies that for d = 1, the interpolant
can be correctly defined, since H' () is continuously imbedded in C°(£2). However,
in higher dimensions, H!**(Q2) — C°(Q2) only if @ > 0 when d = 2, or if a > 1/2
when d = 3. While it may be possible to use the nodal interpolant and a regularity
assumption such as u € HT%(Q) for appropriate a > 0, an alternative approach is
taken here.
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The generalized interpolant due to Scott and Zhang [SZ90] can be defined for
H'-functions in both two and three spatial dimensions. The SZ-interpolant I}, is
constructed from a combination linear interpolation and local averaging on faces
and edges of simplices, and has optimal approximation properties even in the case
of H'-functions.

LEMMA 3.1. For the SZ-interpolant of u € H(1)+°‘(Q), a >0, it holds that
||u - Ihu”LQ(Q) < Clh1+a|u|H1+a (-
PROOF. See the appendix for a condensed proof following [BS94, SZ90]. O

Note that both the usual nodal interpolant and the SZ-interpolant Ij, can be
written as a linear combination of linear functionals:

N
Thu(z) = Z ¢i(x)li(u).

In either case, the set of functions {¢;}, is the usual continuous piecewise-
polynomial nodal finite element basis defined over the simplicial mesh, satisfying
the Lagrange property at the vertices of the mesh:

¢i(z;) = bij-

The difference between the two interpolants is simply the choice of the linear func-
tionals: in the case of the nodal interpolant, the functionals are delta functions
centered at the vertices of the mesh; in the case of the SZ-interpolant, they are
defined in terms of a bi-orthogonal dual basis (see the Appendix).

4. The Two-dimensional Navier-Stokes Equations

A general weak formulation of the Navier-Stokes equations (1.1)—(1.2) can be
written as (cf. [CF88, Tem77]):

DEFINITION 4.1. Given f € L?([0,T); V"), a weak solution of the Navier-Stokes
equations satisfies u € L*([0,T]; V)N Cy([0,T); H), du/dt € L, .((0,T}; V'), and

loc

(41) < %,v > +v((u,v)) + b(u,u,v) =< f,v >, YvoeV, for almost every t,

(4.2) u(0) = up.

Here, the space Cy ([0, T]; H) is the subspace of L>([0,T; H) of weakly contin-
uous functions, and < -,- > denotes the duality pairing between V and V', where
H is the Riesz-identified pivot space in the Gelfand triple V. C H = H' C V'. Note
that since the Stokes operator can be uniquely extended to A : V — V', and since
it can be shown that B: V x V — V' (cf. [CF88, Tem83] for both results), the
functional form (2.3) still makes sense for weak solutions, and the total operator
represents a mapping V' +— V.

In the two-dimensional case, for a forcing function f € L% ([0,T]; V"), there
exists a unique weak solution u € L2([0,T]; V)NCy ([0, T]; H) (cf. [CF88, Tem83]).
Consider now two forcing functions f,g € L?([0,00]; V') and corresponding weak
solutions v and v to (2.3) in either the two- or three-dimensional case. Subtracting
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the equations (2.3) for u and v yields an equation for the difference function w =
u — v, namely
dw
(4.3) r + vAw + B(u,u) — B(v,v) = f — g.
Since the residual of equation (4.3) lies in the dual space V', for almost every t,

we can consider the dual pairing of each side (4.3) with a function in V, and in
particular with w € V, which yields

d
< d—qf,w > +vlwl||? + by, u, w) — b(v,v,w) =< f — g,w > for almost every t.
It can be shown (cf. [Tem77], Chapter 3, Lemma 1.2) that
ld wf? = dw
2dt

in the distribution sense. It can also be shown [CF88, TemT77] that b(u,v,w) =
—b(u,w,v), Yu,v,w € V, so that b(w,u,w) = b(u,u, w) — b(v,v,w). Therefore, the
function w = v — v must satisfy
1d
(4.4) sl i’ +bw,u,w) =< f —g,w >
The following generalized Gronwall inequality will be a key tool in the analysis
to follow (see [FMTT83] and [JTi92a]).

LEMMA 4.1. Let T > 0 be fized, and let o(t) and B(t) be locally integrable and

real-valued on (0,00), satisfying:
1 T t+T
lim inf —/ a(t)dr =m >0, lim sup —/ o (r)dr = M < oo,
t—oo T J, t—o0 t
) 1 t+T "
Jm T/, pr(rydr =0,
where = = max{—a,0} and BT = max{3,0}. If y(t) is an absolutely contin-
uwous non-negative function on (0,00), and y(t) satisfies the following differential
inequality:
y'(t) + a()y(t) < B(t), ae.on (0,00),

then lim;_, o, y(t) = 0.

The main two-dimensional results are now given; we assume that Q C R? is an
open bounded domain with Lipschitz continuous boundary.

THEOREM 4.1. Let f(t),g(t) € V' be any two forcing functions satisfying

dim [[£(0) = g(Ollv: =0,
and let u,v € V be the corresponding weak solutions to (1.1)—(1.2) for d = 2. If
there exists a projection operator Ry : V — Vn C L?(Q), N = dim(Vy), satisfying

Jim (| R (u(t) = v(®)ll2(@) = 0,
and satisfying for v > 0 the approximation inequality
lu — Rvullz2@) < CiN 77 ||lullgr(q),
then
lim |u(t) —v(t)| =0

t—o0
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holds if N is such that

2=

1
o>N>C (—2limsup||f(t)||vl> ,
V? t—ooo
where C' is a constant independent of v and f.

ProoF. Using the notation (2.2), we begin with equation (4.4), employing the
inequality (2.4) along with Cauchy-Schwarz and Young’s inequalities to yield

2dthI2 +vllwl® < [lull fwl [lwll + 11 = gllvllwl]

1 1 v .
< ZlullPlwl? « 21 f —ql2, + 2 2
< CllulPlwl” + lIf = gllv: + Slwll

Equivalently, this is
d 2 2
hwf? + vlwl? = Sl < 2)1f - gl

To bound the second term on the left from below, we employ the approximation
assumption on Ry, or rather the following inequality which follows from it:

lw[> < 2N CP|lwl]? + 2| Rywl 2 2(q)
which yields
d vN?Y 2 vN2Y
0P+ (g = 2P ) 1w < 21 =gl + 20" Nl
This is of the form
d
Sl +alul? < 5,
with obvious definition of o and .
The generalized Gronwall Lemma 4.1 can now be applied. Recall that both
I f —gllv: = 0 and [|[Ryw||f2(n) — 0 as t — co by assumption. Since it is assumed

that v and v, and hence w, are in V, so that all other terms appearing in a and
remain bounded, it must hold that

1 T +T
lim — *t(1)dr =0, lim su —/ T)dT < 00.
fmr ) pr(r) m Sup
It remains to verify that for some fixed T > 0,
t+T
lim sup —/ a(t)dr > 0.
t—o00 T t
This means we must verify the following inequality for some fixed T' > 0:

207 LT 2?4 =T
(4.5) N?7> S (hm p—/ el dr VC lim sup—/ ||u||?dr.
¢

t—oo T v

The following a priori bound on any weak solution can be shown to hold (this is a
simple generalization to f € V' of the bound in [CF88] for f € H):

. 1 t+T 2 2 : 2
lim sup lu(r)Pdr < 75 lim sup [L£ (®)IIy,
t oo

t—o0
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for T = p?/v > 0, where p is the best constant from the Poincaré inequality (2.1).
Therefore, if

1 240 (2
(4.6) N?7 > 8C? — limsup || f(t)[lv: ] > —21 — lim sup lf% |,
14 t—00 v v t—o0

implying that (4.5) holds, then by the Gronwall Lemma 4.1, it follows that
Jim fo(e)] = lim [u(t) — o(2)] = 0.
O

Assume now that  C R? is also polyhedral, and can be exactly triangu-
lated with a quasi-uniform, shape-regular set of simplices of maximal diameter
h = O(N—'/?), where N is the number of vertices in the triangulation (see §3).
As an application of the general result above, we establish a lower bound on the
simplex diameters of such a triangulation, which ensures that the SZ-interpolant is
a determining projection (equivalently, that the simplex surface integrals forming
SZ-interpolant coefficients are a determining set of linear functionals).

COROLLARY 4.1. The SZ-interpolant is determining for the two-dimensional
Navier-Stokes equations if the diameter h of the simplices is small enough so that

1 2
©>h2>C (—2 limsup||f(t)||v') :
v t—00

PROOF. Since h = O(N~'/?) for quasi-uniform, shape-regular triangulations
in two dimensions, taking o = 0 in Lemma 3.1 yields

lu — Inull @) < Crhlulm) < CrN"2lul| (o)

Therefore, the SZ-interpolant I, satisfies the approximation inequality (1.8) for
~ = 1/2. The corollary then follows by application of Theorem 4.1. O

REMARK 4.1. If f € H, then we have in fact a strong solution, i.e. u € H2(1Q),
and the interpolation Lemma 3.1 may be applied with @ = 1. This falls into the
theoretical framework of [CJTi95, CJTi97], and in the periodic case they have
shown that N =~ Gr, whereas the above result for the no-slip case states that
N = Gr?. Whether the no-slip case may be improved to N ~ Gr with additional
regularity (f € H) is unclear, due to the lack of an analogous identity to

(B(’U), UJ), A’U)) =0,

which holds for the two-dimensional periodic case. In physical terms, in two di-
mensions this identity illustrates the lack of a boundary vorticity shedding source
when the boundary is absent.

5. The Three-dimensional Navier-Stokes Equations

The lack of appropriate a priori estimates in the three-dimensional case requires
a modification of the approach taken for the two-dimensional case in the previ-
ous section. However, the interpolation results we have employed are dimension-
independent, and by following the analysis approach of [CDTi95] very closely, we
can obtain similar results for the three-dimensional case. Again we require only
that f € V', but we also assume the existence of a unique weak solution to the



10 M. J. HOLST AND E. S. TITI

three-dimensional Navier-Stokes equations. An additional technical assumption is
that some measure of the mean rate of energy dissipation be finite, namely:

y [T
= inf limsup — Vu||eodt < 00.
oo = 120 P /t IVulloodr

This assumption implies that eventually the weak solution for the three-dimensional
Navier-Stokes equations becomes unique, and also in the case f € H the weak
solution eventually becomes strong. But this assumption does not imply anything
about the transients, since the quantity is required to be finite only for large time.
We assume again that Q C R® is an open bounded domain with Lipschitz continuous
boundary.

THEOREM 5.1. Let f(t),g(t) € V' be any two forcing functions satisfying

Jim [[£(6)  g®llv: =0,
and let u,v € V be the corresponding weak solutions to (1.1)—(1.2) for d = 3. If
there exists a projection operator Ry : V = Vy C L?(Q), N = dim(Vy), satisfying

Jim (| R (u(t) — v(®)|z2(@) = 0,
and satisfying for v > 0 the approximation inequality
lu = Rnullr2) < CiN 77 |ull a1 ),
then
lim |u(t) —v(t)| =0

t—o0

holds if N is such that

1 ' 1 [T 25
o>N>C ;%r;fo h?i)sogpf/t IVu(s) || (e)ds ,

where C' is a constant independent of v, f, and u.

PROOF. Beginning with equation (4.4), the inequality (2.6) is employed along
with Cauchy-Schwarz and Young’s inequalities to yield

1d
537wl +vllwl® < [IVulle @) [wl* + [1f = gllv [lw]

. 1 v .
< ||Vullpe|w|® + =|If = glI? + =||w]|?
< IVullz=lwf + o 11f = gl + 2wl
Equivalently,
d, o 2 2 1 2
1wl +vlwl” = [Vull @ lwl* < ZIf = gl
To bound the second term on the left from below, we employ a consequence of the
approximation assumption on Ry, namely the inequality
lw[* < 2N"27CE[lw]|? + 2| Rvwl|72(q)
which yields
d, vN%Y
— |w| —
dt 2C7
This has the form

1 vN2Y
19l ) TP < 315 = gl + 25" Wl

d
Zwl + afwf <6,
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with again obvious definition of a and g.
The analysis now proceeds exactly as in the proof of Theorem 4.1, so that all
that remains is to check again that for some fixed T' > 0,

t—o0

t+T
lim sup —/ a(r)dr > 0.

t
Thus, we must prove our assumption on N guarantees for a fixed T' > 0 that

) 2C12 ) 1 t+T
(5.1) N7 > 711msup T IVl Lo (o)dr.
¢

t—o0

If we select T, > 0 such that

t—o00

1 t+T 1 t+T%
2jnf (tmsup 7 [ IVa(o)lwiads | > limsup [ 19006 ey,

then our assumption gives

ACE 1T
(5.2) N > —L inf limsupT t [IVu(s) || Loo () ds

vV T.>0 t—00 *
which implies (5.1). The theorem then follows by the Gronwall Lemma 4.1. O

Assume now that © C R® is also polyhedral, and can be exactly triangu-
lated with a quasi-uniform, shape-regular set of simplices of maximal diameter
h = O(N~'/3), where N is the number of vertices in the triangulation. As an
application of the general three-dimensional result above, we will establish a lower
bound on the simplex diameters of such a triangulation, which ensures that the
SZ-interpolant is a determining projection (and that the simplex surface integrals
forming SZ-interpolant coefficients are a determining set of linear functionals).

COROLLARY 5.1. The SZ-interpolant is determining for the three-dimensional
Navier-Stokes equations if the diameter h of the simplices is small enough so that

12> ¢ [ L inf diim 1/t+T||V()|| d
o S ot o . WSl (@ @8 ¢ ) -

PROOF. Since h = O(N~'/3) for quasi-uniform, shape-regular triangulations
in three dimensions, taking ¢ = 0 in Lemma 3.1 yields
||w— Ihu”Lz(Q) < Clh|U|H1(Q) < C~'1N71/3||UI|H1(Q).

Therefore, the SZ-interpolant I satisfies the approximation inequality (1.8) for
v =1/3. The corollary then follows by application of Theorem 5.1. O

Appendix: Approximability of the Scott-Zhang Interpolant

We will sketch the proof of the approximability result for the SZ-interpolant
given as Lemma 3.1; we will follow quite closely the proof given in [BS94, SZ90).
As throughout this paper, we assume that Q € C%!, and that the given exact
simplicial triangulation of Q is both shape-regular and quasi-uniform.

The proof of Lemma 3.1 will follow easily from the following result (see the
comments at the end of this appendix).

LEMMA 5.1. For the SZ-interpolant of u € H&Jra(ﬂ), a >0, it holds that

|u — IhU“LQ(Q) < C1h1+a|u|H1+a(Q).
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To prove Lemma 5.1, we will begin by defining carefully the SZ-interpolant.
Let 7, = {7}, be the given quasi-uniform, shape-regular mesh of d-simplices
which exactly triangulate the underlying domain €, and let ), = {z;}¥, be the
set of vertices of these d-simplices. Define

Vi = span{¢;(z)}iL, C H' (),
where {¢;(z)} is the set of standard continuous piecewise linear (nodal) basis func-

tions. The nodal basis satisfies the Lagrange relationship at the vertices (which are
exactly the “nodes” in this setting):
¢i(z;) = bij-

Now, for each vertex xz;, we select (arbitrarily) an associated (d — 1)-simplex o;
from the given simplicial mesh satisfying only:

(1) T; € 0;, and (2) o; C 0N if z; € 09.
In other words, for a given vertex x; we pick an arbitrary (d—1)-simplex from edges
or faces of the d-simplices which contain x; as a vertex. In two-dimensions, we are
picking the edge of one of the triangles that have x; as a vertex; in three-dimensions,
we are picking the face of one of the tetrahedra which have z; as a vertex. The only
restriction on this choice is near the boundary: if z; is on the boundary, then the
(d — 1)-simplex we pick must be one of the edges or faces of the a simplex which
lies exactly on the boundary (such a choice is always possible).

In each (d —1)-simplex o;, we number the generating vertex z; first in the set of
vertices of 0y, denoted {z;;}_,. (Le., we set ;; = x;.) For each 0;, we also have
a (d — 1)-dimensional nodal basis {¢;,;}4_,, where again we set ¢;1 = ¢;. There
exists an associated L?(o;)-dual (bi-orthogonal) basis {¢; ;} satisfying

/ ¢z,](x)¢2,k(m)dx = 6jk7 J;k = ]-a s ad'

Again we take ¢; 1 = 95, Va; € Q. Note that ¢; and ¢; also satisfy a bi-orthogonal
relationship, namely fa, Yipjdx =0, i # j. We define now the SZ-interpolant as

N
I HY Q) = Vi(Q), Twu(z) = Z@(m)li(u), li(u) = /'wi(ﬁ)u(ﬁ)dﬁ-

Thanks to the Trace Theorem [Ada78], the interpolant Ipu(z) is well-defined at
nodal values even for u € H'(f), since H'(Q)) — L?(0;). Almost by construction,
one can show [SZ90] that

o I, : HY(Q) = V4(Q) is a projection

o I, : HE () = Von()
where Vpy, is the subset of V}, having zero trace on the boundary of Q. Thus, I pre-
serves homogeneous Dirichlet boundary conditions. Using homogeneity arguments,
the following stability result for the interpolant is established in [SZ90].

LEMMA 5.2. For any T € Tp, if the support region of T is defined as the set
S; =interior (U{7; | NT #0, 7; € Tp}), then it holds that
l
I null gy < C DR ™ ulmi(s,y, 0<m <1, 1>1/2.
k=0

PROOF. See the proof of Theorem 3.1 in [SZ90]. O
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The proof of the Scott and Zhang [SZ90] approximation result is as follows.

PROOF. (Lemma 5.1) Since I, is a projector from H(Q) onto Vj (), it follows
that on each element, I, is a projector from H'(r) onto Py (7), the space of linear
polynomials over 7. Thus, Iyp = p, Vp € P1(7), and employing also the stability
result in Lemma 5.2 we have that for 0 <m < k < 2,

lw— Tnull g (ry < llu—=pllem(zy + 1n(p — )l am iy < C Y B ™ |lu = pllge(s, ),
k=0
where S, is the element support region surrounding 7 as defined in Lemma 5.2.
Employing the modified Bramble-Hilbert lemma developed in [DS80] to estimate
the terms of the sum gives

inf ||lu— - < ChF™u , 0<m<k<2,
pEP1(7) ” p”H (5-) = | |H’“(ST) > > =

where due to the assumptions about the domain and the mesh, the constant C'
depends only on the spatial dimension d. Together with the equation above this is
lu — Thul|gm ) < Chk_m|u|Hk(Sf) 0<m<k<2.

Since the set

Q = sup {card{T € 771|T NSy # 0}}

TETH
is finite due to the quasi-uniformity and shape-regularity of the mesh, we have
finally that for 0 < m < k < 2, it holds that

lu— Tnulfmy = D lu—Tnullzm )y < CR2F™ [l g -
T€Th

The result for non-integer exponents k and m follows by the usual norm interpola-
tion arguments between L2(2) and H?(12), which completes the proof. O

Lemma 5.1 can be easily extended to the vector case, which provides finally
the proof of Lemma 3.1.

PRrROOF. (Lemma 5.1) For u € Hyt*(Q) = (Hyt*(Q))¢, we have that
d d
lu = Tnulfe = D llui = I willzgay < GO Y il ),
i=1 i=1
where T ,(f) denotes the scalar SZ-interpolant applied to u;. Thus,

||u — Ihu||L2(Q) < Clh1+a|u|H1+a(Q).

([l
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