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1. Introduction. The solution of the nonlinear system of equations
(1) F(u)=0,

where F': 2 C IR™ — IR", is cornerstone in many scientific and engineering applica-
tions. In not rare cases, the number of variables involved in this problem surpasses
the computing capabilities today. Therefore, it is necessary not only to come up with
strategies to exploit the mathematical and physical structure of the problem but also
to create algorithms that resuse as much as possible the inherent information produced
towrd the solution of the problem.

Among several methods, Newton’s method and Broyden’s method have been two
of the main choices to solve (1) [12, 28, 34, 35]. The former is very popular due to its
robustness and well known g-quadratic local convergence. The latter is an alternative
to the former when the computation of the Jacobian matrix is highly expensive or
infeasible to obtain. Broyden’s method is an iterative procedure based on Jacobian
approximations (through rank-one updates) that obey a secant condition. In general,
secant methods (those based on a secant condition) have play an important role in
linear and nonlinear programming.

Traditionally, Broyden’s method has been considered impractical as a linear solver
and consequently, almost forgotten throughout the iterative algorithms literature.
Firola and Nevanlinna [19] revitalized the interest on secant methods for solving itera-
tively nonsymmetric systems with an algorithm that provides variable approximation
to the linear system matrix via rank-one updates which incidentally, it is competi-
tive with the GMRES Krylov iterative solver. This procedure is better known as the
EN algorithm and has been subject of theoretical study and implementation enhance-
ments by several authors [18, 19, 43, 45, 7, 47]. These recent developments have shed
light on new connections between secant methods and other well established iterative
methods.

Yang in her doctoral thesis [47] provides an interpretation of the EN algorithm
for solving nonlinear systems of equations which converge twice as fast as Broyden’s
method (this result also holds in the linear case). In our particular context, we are
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interested in providing and efficient implementation of an inexact version to the non-
linear EN algorithm (NEN) for large scale settings. The inexactness arises as con-
sequence of solving the linear Jacobian equation by an iterative procedure (such as
GMRES) to a specified tolerance. Hence, our development falls into the theory of
Dembo, Eisenstat and Steihaug [11] which, was later extended in [21, 41, 17, 16] for
secant methods.

We propose to update the Arnoldi decomposition on which GMRES is based in
order to perform two minimal residual approximation solutions per GMRES call. In
this way, we are able to come up with an improved nonlinear step at each nonlinear
cycle. These updates lead to implicit Krylov-Broyden updates (i.e., Broyden updates
restricted to the underlying Krylov subspace) of the current Jacobian approximation.
We name this new approach as the nonlinear Krylov-FEirola-Nevanlinna (KEN) algo-
rithm. The idea can be easily taylored to the inexact Newton method in the form of
a higher order procedure: the HOKN algorithm.

Approaches that seek to combine both secant and inexact nonlinear methods has
been matter of interest to some researchers [4, 32, 33, 29]. A more recent approach
based on the combination of limited memory BFGS and truncated Newton methods is
reported by Byrd, Nocedal and Zhu [8] in the context of unconstrained optimization.
The Krylov-Broyden update to be described in this paper has been also instrumentary
in generating hybrid Krylov-secant methods for solving systems of nonlinear equations.
The idea is to replace GMRES calls by cheaper Richardson iterations in the computa-
tion of descent directions for ||F'|| [?]. However, the question of producing faster local
methods is addressed here for first time.

The paper is organized as follows. The discussion sets out with Broyden’s method
and the nonlinear EN algorithm and the subject inexactness. This encompasses Sec-
tion 2. In Section 3 we suggest a way to perform rank-one updates of the Hessenberg
matrix resulting from the Arnoldi factorization and motivate the philosophy behind
Krylov-Broyden updates. In Section 4, we describe how the previous development
allow us to reuse the Krylov information and devise the KEN and HOKN algorithms.
Numerical experiments are in order in Section 5. In Section 6 we give conclusions and
further direction of work.

2. Secant methods. Our goal in this section is to introduce Broyden’s method
and the nonlinear EN algorithm. The evolutionary path leading to the current nonlin-
ear EN algorithm requires that some of the developments in the linear case be covered
first. However, this should serve as further motivation of the ideas in this chapter.
We emphasize the essence of the EN algorithm, which incidentally presents a close
affinity to higher-order methods derived from Newton’s method and already known
for around thirty years. The key result is that inexactness can be introduced into
these rank-one methods without loosing much of their local rapid convergence.

AssumpTiON 2.1. (Standard assumptions). Consider a nonlinear function £ :
Q CIR™ — IR for which we seek to solve (1).

e The equation above has a solution at u*,
o F':QCR"—-R"™" € L,(9Q),

o [ (u*) is invertible.
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2.1. Broyden’s method. Given u ~ v* and M = J (u), we can find an approx-
imate new Newton step, ut, by

(2) ut =u— M7'F(u).

Broyden’s method computes a new M by means of the following rank-one update

[F* (u) = F(u) - Ms]g!
g's

which, whenever the approximated Jacobian equation is solved exactly, i.e. Ms =
—F (u), it reduces to

(3) Mt =M +

bl

F* (u)g*

MT =M+ -
gS

?
for g's # 0. The vector g can be chosen in several ways. For instance, when g = s, we
obtain the “good Broyden’s update” and when g = M![F* (u) — F (u)], we have the
“bad Broyden’s update” [12] .

Applying the Sherman-Morrison-Woodbury formula (??) we obtain the corre-
sponding inverse form of (3)

(s —M~'y) f*
Ity ’
where y = F* (u) — F(u), ft = ¢! M~! and provided that f'y # 0.
In particular, if F'(u) = Az — b = 0is a linear function, then it is not hard to see
that (2) represents the instance of a stationary iterative method with preconditioner
M. In such case, we have the following formula to update M ~! at the ith iteration

(Pi - Mflqz’) /;
fla ’

with ¢; = r;41 — i, flgi # 0. Here, r;, denotes the ith residual of the linear iteration.
As in the nonlinear case, there are several possible choices for f;. Yang cites a com-
prehensive list of choices for which we refer the interested reader to [47]. In summary,
she suggests the “good Broyden’s update” f; = M/!p; as the best option. Deuflhard,
Freund and Walter [18] incorporate a line-search strategy to refine the proper step
length for updating intermediate residuals and solutions. This feature was absent in
Broyden’s former algorithm [6], making the method to terminate within at most 2n

(4) (M)~ =M 4

(5) M =M1+

steps [24]. However, Broyden’s update with projected updates can converge within at
most n steps. (See [25, 47] for a detailed discussion on this.) Deuflhard, Freund and
Walter found the best choice for this step length is

o — fhrs
T
which turns out to give a competitive procedure with GMRES in terms of convergence

and floating point operations. Broyden’s method for the linear case looks as follows
ALGORITHM 2.1. (Linear Broyden iterative solver)

! Throughout this paper, we restrict the attention to the “good” versions of Broyden’s update and
since it has been observed to be the most effective in practice and it does not introduce a loss of
generality to our discussion.



4 RAME, KLIE AND WHEELER

1. Give an initial guess g and inverse preconditioner jwo_l.
2. Compute 1o = b — Axg.
3. For : =0,1,... until convergence do

3.1 p; = IVIZ»_ITZ'.

3.2 ¢; = Ap;.

Mg )t
3.3 qu_ll =M+ w. Provided that ffg; # 0.

3.4 a; = ;:Z;: Provided that ffg; # 0.
3.5 rip1 =1 — 0;¢;.
3.6 x,41 = z; + o;p;.
Note that except for the update in step 3.3 and defining f; = ¢;, forallz =0,1,...,
this algorithm is a general form of a descent method for linear systems. Eisenstat, Fl-

man and Schultz [20] use this presentation to derive the generalized conjugate residual
method (GCR) and other three closely related methods.

Given a Jacobian approximation A* at the kth nonlinear iteration, the nonlinear
EN algorithm generates an intermediate descent direction by solving

(6) AW g0 = _ k)

and constructing a new secant update

Broyden’s method for the nonlinear case relies on equations (2) and (3) above.
Assuming that A is the Jacobian approximation at the current nonlinear iteration, one
of the major virtue of the method consist of finding the minimal solution in Frobenius
norm ( i.e., ||[AT — A||z) over all matrices satisfying the secant equation

(7) Ats=y=Ft - F.

Broyden’s algorithm can be depicted as follows:
ALGORITHM 2.2. (Nonlinear Broyden)

0)

1. Give an initial guess u(® and Jacobian approximation Mj.

2. For £ =0,1,...until convergence do

2.1 Solve M) (k) = _ (k)

2.2 Update solution ulF+1) = (%) + s(k),

2.3 ¢¥) = plet1) _ pk),

gB) — M(B) s(R))(5(R))E

9.4 MK — k) 4 ( - t5<k)>( )

It has be shown (see e.g., [12, 28]) that Broyden’s method iterates converge
g-superlinearly to F* = F(u*) = 0 under standard assumptions and given that
limy_ oo u® = w*, u®) # u* if and only if

MF) — g=) s(k)
® JEEO)( ||s(k)||) |

=0.

Condition (8) is better known as the Dennis-Moré characterization and it is cor-
nerstone in proving local g-superlinear convergence for general secant updates in op-
timization (see e.g., [12, 13]).

2.2. The nonlinear EN algorithm. provides a new direction based on gener-
ating new directions based on a approximation M;y; rather than on M; at a given ith
step. More precisely, the EN algorithm looks one step forward to generarte compared
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to Broyden’s method. Hence, the computational complexity of the EN algorithm ap-
proximately doubles both Broyden’s and the GMRES algorithm [18, 47]. However,
the it is about twice faster than the other two. Careful implementations in terms
of memory management and computation (through restarts, truncation and implicit
updates) give apparently slight advantage to the EN algorithm [47].
AvLGoriTHM 2.3. (Nonlinear EN)
1. Give an initial guess u(® and Jacobian approximation Mj.
2. For £ =0,1,...until convergence do
2.1 Solve MK (k) = _ p(k),
2.2 ¢b) = plet1) _ pk),
q(F) — A (F) s(R) ) (5(F) ¢
23 M+ = 40 4 L ) ts<k)>( :
2.4 Solve M+t = _ p(k),
2.5 Update solution u(k+1) = (k) 4 3(k)
Notice that the direction computed by the nonlinear EN algorithm is a linear
combination of the direction delivered by Broyden’s method and an extra direction
coming from step 2.4. In fact, it can be shown after some algebraic manipulation that

W) = () 4 5(R)

© (k) 1 &) k) 5k
=u"" 4+ s —I—H()s(),

where

and

gy L
) (s(k:))tgm ’
N (M) s(®)

provided that (s(k))t s(k) # 0. Furthermore,

(10) ) = () [ g g0 () ()7 P9

for k=0,1,...

The last expression clearly exhibits that the updated solution is formed by com-
bining a Broyden’s step and the damped step of a chord method. The chord step
is defined by fixing the Jacobian (its approximation in this case) for some iterations.
Incidentally, Kelley presents an updated analysis of this method in [28].

Since the angle between the two directions s(¥) and (%) is defined by

(5<k))t 5(k)
[[sE)[ s |”

cos p =
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the damping parameter #%) can be reformulated as

[ECI /RN

This clearly shows that for mutually orthogonal directions s*) and 3), a full
chord step is performed. On the other hand, if both entities are identical in direction
and magnitude, then the chord step contribution vanishes.

If M®) = J*) and 8%) = 1 for k = 0, 1,... then (10) becomes

(11) WEHD) = (B (J<k>)‘1 [F<k> P (uuc) _ (J(k))‘l F(k))] 7

for k=0,1,...

This recurrence represents a higher-order modification of Newton’s method. Iter-
ates generated by (11) converge g-superlinearly with q-order 3 [36]. These methods
were studied by Shamanskii [40] and Traub [42]. They pointed out that even higher-
order methods can be built out of a longer sequence of chord steps alternated with
regular Newton steps. In a more recent treatment, Kelley names those methods af-
ter Shamanskii and compares the particular case (11) numerically against Newton’s
method [28]. Here, we rather adopt the term composite Newton’s method for referring
to the recurrence (11).

Along the lines of Gay’s local convergence analysis for Broyden’s method, Yang
was able to show that the nonlinear EN algorithm converges n-step g-quadratically
for n-dimensional problems [47]. Therefore, as in the linear case, the nonlinear EN
method converges twice as fast as Broyden’s method.

Hence, the nonlinear EN algorithm converges q-quadratically as Newton’s method
in the one-dimensional case. Note that the method reduces to a forward finite differ-
ence method in 1-D [47] which is sometimes referred to as Steffensen’s method [36].
In such case, the above equations give rise to the following recurrence

) _ )

SO
” oy _ (9 07) - it
a = ,

s(k)

(k)
k k
wFFL) — (k) _ G

The first equality provides a systematic way to adjust the step length within the
forward finite difference scheme as the iteration progresses. The steeper the slope alk)
the shorter the step s(¥) and, vice versa. Moreover, current derivatives are estimated
in terms of the previous derivative rather than two consecutive function values as it
occurs with the secant method. It has been proven that the secant method for one-
dimensional problem converges 2-step q-quadratically [24]. In terms of complexity,
we can easily determine that the EN-algorithm requires one extra function evaluation
and two extra floating point operations compared to Broyden’s method.

A key point can be made. Broyden’s method is to Newton’s method what the
nonlinear EN method is to composite Newton’s method. Hence, it is possible (in fact,
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not rare in practice) that the nonlinear EN method produces faster converging iterates
than those of Newton’s method, specially, when M (©) and «(%) are sufficiently good.

For small and moderate problem sizes, the composite Newton’s method and the
nonlinear EN method can be efficiently implemented using the LU decomposition of
the Jacobian (or its approximation). Note that the underlying LU factorization can
be reused to solve two linear systems with different right hand sides. This implies
significant savings in pivoting operations whereas the total number of functions evalu-
ations and rank-one updates are reduced due to the higher-order convergence induced
by both methods. Kelley observes that this alternation of chord steps and Newton’s
steps are potentially attractive for large scale problems where the cost of building
the Jacobian is computationally expensive compare to function evaluations [28]. The
reader can infer that in the setting of large algebraic systems arising from transient
problems (i.e., implicit formulation of parabolic equations) it is not unusual to have
nearby initial Newton iterates to the root. Here, chord steps may be a plausible and
an effective option. In particular, in simulations approaching the steady state (see
e.g., [23]).

However, in large scale implementations where iterative methods are virtually a
must choice, the efficiency line described by the composite Newton’s method and the
nonlinear EN method seems to appear as a blur. The problem is that most itera-
tive methods (including almost all known Krylov subspace methods) do not preserve
a reusable form in the advent of linear system changes. In other words, the itera-
tive method starts from scratch every time a new Jacobian (or approximation to it)
arises. In general, this makes a possible inexact step of the nonlinear EN algorithm
as computationally expensive as two steps of an inexact Broyden’s method.

Fortunately, as we saw in §§2.2 the GMRES algorithm preserves Krylov informa-
tion delivered by its intrinsic Arnoldi factorization. However, until now, this informa-
tion has been restricted to build preconditioners in subsequent utilizations of GMRES
within the inexact Newton’s method. We show that chord steps can be still performed
upon the current underlying Krylov basis. In this way, we are able to preserve much
of the integrity of an inexact nonlinear EN algorithm and recover the efficiency that
it promises compared to Newton’s and Broyden’s method.

2.3. Inexactness in secant methods. Theissue of inexactness in quasi-Newton
methods has been examined in [21, 41]. Reference [21] is of particular interest since
in there it shows the local g-superlinear rate of convergence is still attained for the
inexact Broyden’s method. In fact, those results are a generalization of the work
previously developed by Dembo, Eisenstat and Steihaug in [11].

Since the same conditions stated in [21] can be also imposed upon the inexact
nonlinear EN algorithm, it is straightforward to show that it produces g-superlinearly
convergent iterates. These conditions are given by

‘ Wwwgwy+Fww
B EO

=0,

and

; HM(k)S(k) 1+ pk) _ F(k+1)H
11m

i Bl =0
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Fig. 1. Convergenge comparison of Newton’s method (dash-dotted line), Broyden’s method (dotted
line), the composite Newton’s method (dashed line) and the nonlinear EN algorithm (solid line) in
their inexact versions.

Clearly, the first condition follows if the forcing terms converge to zero as k — oo.
The second one suggests that the residual should look like the value of the function
at the new point with a discrepancy size converging faster to zero than the size of the
direction produced for k¥ — oco. Eisensat and Steihaug show that whenever both of
these conditions hold and u*) — u*, it follows that the sequence {u(k)} converges in
a g-superlinear way.

Rather than going over the lengthy details of this proof, we consider it more
illuminating to present the convergence results for the cases exposed in Example 77
with GMRES solving the Jacobian equations.

0JO: CORREGIR The following example corroborates the previous observation.
The cases shown there will be frequently brought up as the ideas are developed
throughout the present and next chapter. We momentarily look at convergence in
terms of nonlinear iterations and leave the discussion on computational cost (i.e., in
terms of floating point operations) to Chapter 5.

ExaMmpPLe 2.1. XXXXXXXXXXXXXXXXXXXXXXXXX We consider the ez-
tended versions of the Rosenbrock funclion and Powell function described in Appendiz
B of [12] with initial guesses u(®) = (0,1,0,1,...,0,1) andu® = (0,-1,0,1,...,0,-1,0,1)",
respectively. We also consider two variants of a more physical sound problem which
arises in radiative heal transfer applicalions and modeled by the so-called Chandrasekhar
H-equation (see [9, 28]):

with u € [0, 1].

There are two solutions known for a ¢ € (0,1) and, as this value approaches one,
the problem becomes harder to solve. Here, we closely follow the specifications given
in [28]; that is, H (u) = u, u® = (0,0,0,...,0,0)" and the composite midpoint rule to
discretize the integral. The two variants of the H-equation are determined by setting
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c=.9 and ¢ = .999999. For all four different cases we specify 100 unknown variables.
Figure 7?7 shows the relative nonlinear residual norms (NRNR) against the number
of nonlinear ilerations for Broyden’s method (dotted line), Newton’s method (dash-
dotted line), the composite Newton’s method (dashed line) and the EN method (solid
line). For the first and last method the initial Jacobian approzimation MO = j©)
was defined. The backtracking line-search method was utilized in all methods.

In the case of the Rosenbrock function, both Broyden’s method and the EN method
were unable to generate a descent direction for || F|| at the first few steps of the process.
In such case il was required to reevaluate the Jacobian by the finite difference approzi-
mation. However, in all cases we can see that the nonlinear EN method takes roughly
half number the iterations employed by Broyden’s method. This reduction surpasses in
50% the reduction in iteralions showed by the composite Newton’s method over New-
ton’s method. The nonlinear EN method appears to converge faster than Newton’s
method except in the Rosenbrock case atl relative small nonlinear residual norms. In
the remaining cases, the nonlinear EN method appears converging superlinearly with a
g-order belween 2 and 3. Again, this trend breaks down in the Rosenbrock case, where
also Broyden’s method has serious difficulties and seems to have a g-order close to
unity. XXXXXXXXXXXXXXXXXXXXXXXXX

Figure 1 presents the convergence history when GMRES was used as inexact solver
of the Jacobian equation. We follow the backiracking line-search stralegy and the
forcing term selection discussed in Chapler ??. The GMRES restart parameter was
chosen to be 30, nmax = .1 and no precondilioning was specified. As Figure 1 shows
there is no apparent change in the convergence of the composite Newton’s method and
Newton’s method. The secant methods instead, show a slight increase in the number
of iterations but without altering the convergence margin that both have between each
other. Rarely enough, the inexaclness and reevaluation of the Jacobian were more
beneficial to the nonlinear EN algorithm in achieving betler convergence rates than
Newton’s method itself for the Rosenbrock function. Table 1 and Table 2 complement
these results by illustrating the number of GMRES ilerations and values of i along the
iterations for the particular case of the Chandrasekhar H-equation with ¢ = .999999.

3. Exploiting Krylov basis information. The previous discussion motivates
us to take advantage of the Krylov information associated with J®) or its approxima-
tion in a different way. Rather than building preconditioners, we restrict the generation
of successive descent directions for ||F|| to the current Krylov basis. This implies to
perform rank-one updates in the Hessenberg matrix resulting from the Arnoldi factor-
ization (??) and implicitly reproduce an approximation of Broyden’s update of the
Jacobian matrix. Hence, the main objective here is to minimize the direct manipula-
tion of the Jacobian matrix and the use of GMRES as much as possible in the process
of converging to the root of F. Note that in contrast to Martinez’s approach, we do
not perform Jacobian evaluations and secant updates at the same time.

Consider A a an approximation to the current Jacobian matrix J. We are inter-
ested in looking at a minimum change to A consistent with ATs = F'* — F’ restricted to
the underlying Krylov subspace. A basis for this subspace arises as result of using an
iterative linear solver such as GMRES for solving the approximated Jacobian system
with A.

We quote however, that the present development is not only valid for the GMRES
algorithm. The Full Orthogonalization Method (FOM) also known as the Arnoldi
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TaBLE 1
Comparison of Broyden’s method and Newton’s method for solving the the Chandrasekhar H-equation
with ¢ = .999999.

Broyden Newton
k| RNR | g |[LI| RNR | LI
1 | 2.24e-01 1.00e-01 2 | 2.24e-01 1.00e-01 2
2 | 8.45e-02 1.00e-01 1 | 4.98e-02 1.00e-01 1
3 | 3.47e-02 1.00e-01 1 | 1.44e-02 1.00e-01 2
4 ] 1.15e-02 1.00e-01 2 | 3.40e-03 1.00e-01 2
5 | 3.96e-03 1.00e-01 2 | 8.25e-04 1.00e-01 2
6 1.51e-03 1.00e-01 2 | 2.28e-04 1.00e-01 2
7 16.25e-04 1.00e-01 2 | 5.49e-05 1.00e-01 3
8 | 2.21e-04 1.00e-01 2 | 1.29e-05 1.00e-01 3
9 1.10e-04 1.00e-01 3 | 2.53e-06 1.00e-01 3
10 | 3.13e-05 1.00e-01 3 | 2.65e-07 1.00e-01 3
11 | 9.05e-06 1.00e-01 3 | 4.74e-09 1.65e-02 3
12 | 3.25e-06 1.00e-01 3 | 4.54e-11 2.72e-03 4
13 | 9.98e-07 1.00e-01 3 | 1.29e-15
14 | 1.55e-07 1.00e-01 3
15 | 5.12e-09 2.88e-02 3
16 | 2.53e-10 2.73e-02 3
17 | 4.39e-12

TABLE 2

Comparison of the nonlinear EN and the composite Newton’s method for solving the the Chandrasekhar
H-equation with ¢ = .999999.

Nonlinear EN Comp. Newton
k| RNR T LI| RNR | g LI
1 19.16e-02 1.00e-01 2 | 1.04e-01 1.00e-01 1
2 | 1.60e-02 8.80e-02 2 | 1.46e-02 1.00e-01 2
3 | 2.66e-03 1.00e-01 2 | 2.03e-03 1.00e-01 2
4 | 4.08e-04 1.00e-01 2 | 3.14e-04 1.00e-01 2
5 |9.69e-05 1.00e-01 3 | 4.36e-05 1.00e-01 3
6 | 3.17e-06 1.00e-01 3 | 5.20e-06 1.00e-01 3
7 | 6.68e-07 2.66e-02 3 | 2.50e-07 1.00e-01 3
8 | 2.82e-08 4.0le-02 3 | 2.23e-10 1.93e-02 4
9 | 6.24e-10 1.45e-02 4 | 1.05e-15
10 | 2.23e-11  3.57e-02 3
11 | 2.90e-14
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iterative method [39] can be employed for the purposes underlined here. It is important
to remark, however, that the GMRES algorithm is still more robust an efficient than
this approach [2].

3.1. Updating the Arnoldi factorization. In Section § 2.2 we discussed the
role that the Arnoldi process plays in GMRES. It is basically the vehicle to express
the minimal residual approximation (??) in a more manageable way. The Arnoldi
factorization provides valuable information that should not be discarded at all every
time a GMRES solution starts over. We now show how to reflect secant updates on the
Jacobian matrix without altering the current Krylov basis. For the sake of simplicity,
let us omit the sources of inexactness induced by the use of GMRES whose relative
residuals are ought to converge at a predefined tolerance (i.e., to a prescribed forcing
term value).

Consider the solution to the following approximated Jacobian equation at the kth
nonlinear iteration

(13) AR 0 — _ k),

with m steps of the GMRES algorithm. This linear solution can be regarded as em-
bedded in an inexact Broyden’s method. Let sgf) = sék) + V(k)y(k) be the solution ob-
tained. The associated Krylov subspace for this problem is given by ICgf) (A(k), T(()k)) .

Now, we wish to use the information gathered during the solution of (13) to provide
an approximation to the system

(14) Al (k1) — _ plkt1),
(k)

with corresponding Krylov basis Ky, (A(k"'l), T(()k+1)). Clearly, in general we can not
guarantee that ICng)(A(kH),'rékH)) = ICgf)(A(k),rék)). However, rank-one updates
onto the corresponding Arnoldi factorization of (13) can be done without destroying
the Krylov basis. That is,

(15) (A(k) 4 V)t (V(k))t) vk — k) (Hf?f) + zwt) n hgr]le—l,mvir]f-)l—lefvw
or equivalently,
(16) <V(k))t [A(k) + V) 2yt (V(k))t] Vv = gR) 4t

(k)

for any vectors z,w € IR™. Expression (16) suggests a clearer way to update Hy,
rather than A(¥), Note that the current Jacobian approximation appears to be updated
(k) (A(k) r(k))
m ' 0 .

by a rank-one matrix whose range lies on K
Before proceeding, it would be convenient to express the secant equation

(17) A ) plk1) _ k).

in terms of a solution lying strictly on the Krylov subspace. Otherwise, this would
introduce an implicit secant equation in terms of A*+1). To remove the shift from the
origin, we reformulate (13) as

(18) AR G — k) g0 ) _ k),
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and redefine the final solution as 52’5) = V®)y®) that is, as if the initial guess were
zero. Obviously, the associated Krylov basis is the same depicted above. Therefore,
the secant equation (17) becomes

(19) A0 pler) o6

¢
for s)) = V(K)y(®)  Multiplying both sides by (V(k)) it readily follows that H7(T]f+1)
should satisfy the following secant equation

m

(20) H{FD 4R = (V(’“))tF(k“) + Ber,

where [ = Hrék) H Hence, the Krylov subspace projected version of the secant equation

(17) can be written as

((v®) P 4 5 — 1Py o) (40)'
(21) HED) = g 4
" " (y®8)! y(®)

REMARK 3.1. The form (15) has been previously used in the conlext of partial
pole assignment problems in control theory. The idea is to replace a few eigenvalues
conforming the spectrum of a matrix A by another set of eigenvalues representing more
stable modes within the system. This lechnique is applied once the Arnoldi process have
delivered K., (A,v) as a small invariant subspace under A for a given vector v. Further
details and pointers to this problem can be seen in [38].

The following theorem states that update (21) yields a modified version of Broy-
den’s update for A®*):

THEOREM 3.1. Let (21) be the rank-one update of Hf(r]f), then the corresponding
update of A®) according to (15) is given by

A+ _ 4 (F) [P PG 1) (P60 AR pE) sB)] (s
= A" +

(st 5(k)
FU+D) _ pR) _ A0 6(0)] (o0’
2 =40+ | () 5(8) L) *
(1= PW)) (PU+D 4 ABs0)) — AR5 P] (s’
- (s0)" s(k) ’

where P = V(#) (wk))t
Proof. For notational convenience, let us drop the superscripts k£ and replace the
superscripts k + 1 by the symbol 4. Thus, in view of (15) choose

2=VF* + 8e; — H,y=V'F* + Be; — H, Vs,

and

gy yViVy  sls
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Therefore,

(VVIFt 4 rg— VH,,Vis) s

sts

AT = A4+ VeulVi= A+

bl

since VBe; = fBvy = 19 and, s'VVE = ¢tVIVVE = 4Vt = (Vy)' = si. Using the
Arnoldi factorization we substitute H,, = V'AV into the above expression.

Thus

(VVIF* 41— VVIAVVS) o

sts

(23) At = A+

bl

which can be split up in the desired form (22). Notice that PE k) = () gince
sk e K, (A(k),'r(()k)) . [ |
We refer to the update (22) as the Krylov-Broyden update. Note that the operator
P®) is an orthogonal projector onto the Krylov subspace K, (A(k), T(()k)) . That is,
2

. (P(k)) = P (Idempotency).

. (P(k))t = P (Symmetry).

¢ Range (P(k)) =K, (A(k),r(()k)) .

The update of H#f) reflects an update of A®) on a lower dimensional space. The
larger the value of m the closer both updates (22) and (24) are to Broyden’s update.
The following observation provides us with further insights.

REMARK 3.2. If sék) =0 then
(V(’“))tAg“’l) _ (V(k))tA(k+1);
furthermore,

(wk))’f AFFDY®) )

where Agcﬂ) s the Jacobian operator resulting from Broyden’s update. This stems
from the fact that the third term of (22) is orthogonal to IC%C) (A(k),r(()k)) .
A little algebra leads to the following alternative form of (22)

ARFL) — A (k) 4

(s(k))t s(k)
(24) (k) (k) t
[(I - P(k)) F+D) L AR) 507 Pypi g Umt1 (vfns(k))] (s(k))
(st 5() ’
Assuming sék) = 0, the above expression tells us that the departure of (24) from

Broyden’s update does not only depend on the acute angle between F+1) and the
underlying Krylov subspace but also on how nearly the columns of V() span an
invariant subspace of A%,
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Clearly, H7(T]f+1) is not necessarily an upper Hessenberg matrix. However, we quote
that expression (21) can be efficiently performed by updating a given QR form of

H#f) (see e.g., [12, 27]). This form is not readily available, instead most standard

implementations of GMRES progressively compute a QR factorization of Ff: ) as every

new column enters the Arnoldi process (recall discussion in §§ ??). Fortunately, there
are efficient ways to perform the QR factorization of HT(,?) by just deleting the last row

of F;’i) already factorized in QR form. This requires O (m?) floating point operations
(see [27, pp. 596-597]). An even more efficient way to obtain this factorization consists

(k)

m

of keeping an immediate copy of the QR factorization of H, ' before applying all
previous Givens rotations to the new entering column. In other words, if

F’E?]”f)_l = Qm—lRm—l = Qm—l ( R’n(;_l )

is the QR factorization of the augmented Hessenberg at the (m — 1)th GMRES step
and r! = ( oy 7o ) , with » € IR™"! is the entering column, then the QR factor-

ization of Hr(r]f) at the mth GMRES step is given by

(k): Qm—l 0 Rm—l 7t
- (% ) (5 7).

In both cases, it is necessary to use O (m?) memory locations for storing the factor
Q to keep update (21) within a cost of O (m?) floating point operations.

3.2. On the Krylov-Broyden update. Expression (22) is the solution to the
problem

P B - AW HF subject to (P(k)BP(’“)) sB) = ph) ple+1) |0,
In fact,
HA(k-}—l) _ A(k)H _ [(p(k)BP(k)) s(k) _ (P(k)A(k)p(k)) S(k)] (S(k))t
" (stk)) s(8)

F

t

(26) < pk) (B _A(k)) P(k)H m

F | (s(k)" s(k)

<||B - AUOHF,

due to the consistency property of the Frobenius norm and to the fact that the
lo—norm of an orthogonal projector is bounded above by 1. Uniqueness of the so-

lution follows from the convexity of the functional HB — AW) HF over all B satisfying
(p(k)Bp(k)) stk = pk) ple+1) 4 (F),

On the other hand, it similarly follows that expression (21) is the solution to the
problem

. r]gin HG - HT(f)HF subject to Gy = (V(k))tF(k) + Beq.
cRmxm



TWO-STAGE PRECONDITIONERS 15

Theorem 3.1 establishes the equivalence between these two minimization problems.
However, other view of update (22) can be stated as follows. Consider Q, the set of
matrix quotients of y = F(-+1) — p(k) by s = ¢k+1) — (%) defined by

(27) Q={BeR"™"|Bs =y},

and X', the set of matrices generating the same Krylov subspace K,,, = K., (A(k), 'r(()k)) .
That is,

(28) X ={B e R™ | Kn(B,r%) = K,.}.

The resulting matrix A¥+1) in (22) can be thought as the nearest to A®*) of all
matrices in X to Q. Furthermore, if the intersection of these two sets is not empty,
then A%+ ¢ x n Q. This observation is key in the construction of least—change
secant updates consistent with operators satisfying the standard secant condition and
other property prescribed by a given affine subspace (e.g., sparsity pattern, positive
definiteness) in R™*" (see [14, 15]).

The vectors z and w in (15) are arbitrary in IR™. However, since by assumption,
the solution to (13)lies on the Krylov subspace we could pick V*)w = Vy(F) /(y(F))ty(k)) =
s /((s*))t (k). On the other hand, finding 7 = V(¥ consistent with the secant
equation (19) and having A® in ¥ amounts to solving the following minimization
problem

ok k
(29) min [[VOz = (y - 4Ps)].

Since the solution of (29) is given by z, = (VE){(y — A®)s), then the update
implying the nearest A+ 6 10 A of all matrices in X to Q is given by (22). This
interpretation is nothing more than a particular case of the general result established
by Dennis and Schnabel in [14].

Rosenbrock o Powell
10 10
1072 1072
= —4 = —4
Z 10 £ 10
& 10-° E 10°
py 10 = 10
=, -8 =408
810 810
10—10 L 10—10
—12 —12
10 10
o 5 10 15 o 5 10 15 20
Iteration Iteration
Chandrasekhar [c=.9 Chandrasekhar [c=.999999
o o
10 10
1072 1072
= —4 = -4
&£ 10 Z 10
= =
& 10°° & 10°°
(=) o
= -8 = -8
810 810
10710 10710
10712 10712
o 2 4 6 8 o 5 10 15
Iteration Iteration

FiGg. 2. Convergence comparison between Broyden’s method (dotted line) and the Krylov-Broyden
method (solid line).

Exhaustive experimentation reveals that the last term on the right side of the
equality of (24) is “harmless” in the sense that this update produces almost the
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same convergence behavior as Broyden’s method. In fact, theoretical tools already
developed for convergence of Broyden’s method in its exact and inexact implementa-
tions can be extended to show g-superlinear convergence of update (22) with a few
adaptations. The bounded deterioration property for update (24) or (22) holds as a
consequence of the bounded deterioration of (21). In the same way the Dennis-Moré
characterization can be verified.

ExamprLe 3.1. In this example, il is compared the convergence behavior of Broy-
den’s method (dotted line) and of the Krylov-Broyden method (solid line) for the same
four cases presented previously. Among all of them, the more noticeable differences
are detected in the case of the Rosenbrock function and the Chandrasekhar equation
for ¢ =.9. In the former one, although the Krylov-Broyden method gels stuck within
a given region, al some point it starts delivering more rapidly converging iterates and
eventually surpasses (not shown) the performance of Broyden’s method at relative non-
linear residual norms approaching 1.0 x 10710, In the easy case of the Chandrasekhar
equation, the crossing between both methods performance does not happen but again the
Krylov-Broyden method produces faster iterates than Broyden’s method does at some
points. In the more difficult version of the problem, both curves look alike but with sev-
eral crossing points. The case of the extended Powell function illustrates a case were
the Krylov-Broyden method and Broyden’s method perform identically. In this situa-
tion, an invariant subspace were generated by the columns of V) after four GMRES
iterations (i.e., a happy breakdown was reached). As it can be observed, nothing can be
asserted about which approach may be better. Nevertheless, broader experimentation
indicates that there is no major difference between both approaches in general.

Note that the last term of (15) is preserved after several secant updates of Y im-
plying that the error size in approximating the eigenvalues of corresponding Jacobian

operators remains constant. Therefore, the smaller the term Hh;ﬂl mvm-HH (i.e., the

closer the columns of V(*) span an invariant subspace for A(k)) the better not only the
approximation to the current Jacobian but also the approximation to the eigenvalues
of subsequent implicit Jacobians with this approach. This is a key observation and its
usefulness shall become more evident in Chapter ??.

4. Nonlinear Krylov-EN methods. In this section we present two algorithms
that make use of the Krylov information generated via GMRES as a device to generate
acceptable directions for decreasing relative nonlinear residuals. The first algorithm
is an extension of the nonlinear EN algorithm for the inexact case and it is based
on only one GMRES solution per iteration. The second algorithm is a high order
version of Newton’s method and amounts to solving several consecutive residual min-
imization problems in IR"™*™ (with m < n) until whether the Krylov basis produced
by GMRES is exhausted and unable to generate a descent direction for |[F|| or a
maximum prespecified user value is exceeded.

4.1. The nonlinear KEN algorithm. We are now in a position to describe an
inexact nonlinear version of the EN algorithm that exploits the information left behind
by the GMRES method. Hence, we introduce the nonlinear Krylov-FEirola-Nevanlinna
(KEN) algorithm as follows.

ALGoORrITHM 4.1. (Nonlinear Krylov-EN)

1. Give an initial guess u(®) and Jacobian approximation A(®.
2. For £ =0,1,...until convergence do
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21 [s0,y®, 1 v 0 6= |r0]] =GMRES (a®), k() 5®))

2.9 q(k) — (Vn(v,k))tF(k—}—l) + ﬁel-

(k) _ g (F) (k) (k)¢
23 H7(7»]f+1) _ Hr(r]f) n (q Hy'y )(Z/ )

() y(k)
2.4 Solve
(k+1)
. 5 (k+1 o1 gkt Hiy
(30) min Hﬁﬁ -|-an )?J) , with an = ( h(k) ot ) :
m+1lm~m

YELm (A(k)ﬂ“gk))

Denote its solution by §(*).
9.5 3k = y,B gk,
2.6 Perform

t

[P () AW 0)] (50)
(st s()

A1) — 4 4 p®)

bl

with PO = v ()",
2.7 ulk1) = 4 (k) 4 3(k),
Some comments are in order.

e The Jacobian could be updated by limited memory formulations (subject to
be addressed in the next chapter). Note also that, for efficiency purposes, the
explicit formulation of P(*) is not required to that end.

e In order to carry out step 2.4 efficiently, we suggest to retrieve the form (25)
from GMRES and work upon the Hessenberg QR factorization. Note that
the rest of the values returned by GMRES are readily available as part of its
machinery and consequently, no extra storage is required.

e We have not included criteria to handle situations where the update in Step
2.6 gives rise to a ill-conditioned system or the update does not generate a
descent direction for || F||. Basically, these situations lead to reset the current
Jacobian approximation and restart the process with a new Jacobian approx-
imation (usually obtained by finite differences). Discussion on this topic for
the particular context of Broyden’s method can be found in [12].

4.2. A higher-order Krylov-Newton algorithm. The higher-order version
of the nonlinear KEN algorithm can be attained by performing rank-one updates of
the Hessenberg matrix as long as possible before making the next GMRES call. The
extend of these updates is determined by the capability the the residual minimization
problem in producing descent directions. In this opportunity, we abandon simulta-
neous Jacobian and Hessenberg updates and check instead if a sufficient amount of
decrease of || F|| is delivered by verifying the condition (?7).

This presentation allows us to illustrate further uses of the Krylov-Broyden update
such as in the context of Newton’s method. We stress that further updates to the
Hessenberg matrix may result in relative less overhead for a higher order version of
the inexact Newton method than a possible higher nonlinear KEN algorithm. The
point is that the latter one requires simultaneous updates of Hy(,f) and A which
may readily increase the total number of updates. Of course, this may be a desirable
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situation in terms of rapid convergence updates but it may turn out to be expensive
in terms of computer memory use.
The algorithm can be outlined as follows.
AvLGoriTHM 4.2. (Higher-Order Krylov-Newton)
1. Give an initial guess u(©) and define lnaz-

2. For £ =0,1,...until convergence do
2.1 [S(k),y(k)7 HT(:;)7 ‘/Tgc% hgf]jl-l,m7 ﬁ = Hr(()k) H] —GMRES (J(k)7 —F(k), S(k)) )
22 1=0.
2.3 Repeat

2.3.1 q(k—l—l) — (‘/Tgak))tF(k—l—H_l) + 561-
(00RO k) 140

(y(B+D) y(k+D)

(k+141)
, with F;IEHH) = ( o ) .

9.3.2 gUTHD — g+l
2.3.3 Solve

min H/@ﬁ + _ﬁf““)y)

Y€K m (A(k)mgk))

(31)
Denote its solution by y(k+i+1),

9.3.4 sk+l+1) = ‘,fék)y(k+l+1)‘
235 1=101+1.
2.4 Until (I = Lpaz) OR s+ is not a decreasing step for || F¢+)]|. % Note,
|FEED ) = || F(u®) 4 sEED)|| for 1=0,1,...
2.5 if s is a decreasing step for || F+9|| then
2.5.1 ukt) = (k) 4 g(k+imaz),
2.6 else
2.6.1 uktl) — (k) 4 g(k+1-1)
3. EndFor
This algorithm can be devised as a variant of the composite Newton’s method that
seek chord directions belonging to the underlying Krylov subspace. A possible higher-
order version of the KEN algorithm can be easily stated from the above presentation
by just including the Krylov-Broyden update of A" within the repeat loop 2.3. This
version should be appealing in situations where Broyden’s method or the nonlinear
EN are effective compared to Newton’s method.

To verify that s**) represents a sufficient decrease for || F(*¥+)|| implies one extra
evaluation of F. However, this computation can be reused by a line-search back-
tracking method following the end of the repeat loop. In general, the failure of this
sufficient decrease can be corrected by shortening the step afterwards or by accepting
the previous acceptable step as suggested in step 2.6.1.

The following example illustrates the performance of the last two algorithms pre-
sented.

Before concluding, a coupled of points need to be addressed. First, how does
one perform line-search globalization strategies and forcing term selection criteria in
this context of Krylov-Broyden updates? We have implicitly commented on their
use throughout the examples without much detailing on their practical implementa-
tion. Secondly, what are the effects, if any, on both algorithms due to the use of
preconditioners for the Jacobian or its approximations? The reader may have already
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F1G. 3. Convergence comparison between the nonlinear KEN algorithm (dotted line) and the HOKN
algorithm (solid line).

TABLE 3
Number of successful Hessenberg updates (NHU) and GMRES iterations (LI) in the HOKN algorithm.

Rosenbrock | Powell | Chand.(c=.9) | Chand.(c=.999999)

k [NHU [ LI [NHU [LI | NHU | LI |NHU | LI

1/ 0o 10| 10 4| 3 2 3 2

20 0 12| 10 4| 3 3 4 3

30 1 12| 10 4| 2 4 10 4

41 1 10| 10 4 6 4

50 1 8 | 10 4 2 4

6 1 6 | 10 4

7| 2 4

8| 2 4




20 RAME, KLIE AND WHEELER

suspected some implications due to preconditioning since it must be somehow con-
sistent with successive Krylov-Broyden updates of the preconditioned Jacobian which
are implicitly carried out by Hessenberg updates. Both questions are to be discussed
in the Chapter ?? in conjunction with three new algorithms based upon the same
Krylov-Broyden update philosophy.
):0.0.0.0.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.¢

4.3. Preconditioning. So far, our algorithms have been described under the
assumption that we have not employed a preconditioner in GMRES. It is not difficult
to realize that, if a preconditioner is used, the update (21) rather than reflecting a
secant update of the Jacobian, reflects a secant update of the Jacobian times the
inverse of its preconditioner (i.e., assuming right preconditioning). In other words,
given M(¥) as the preconditioner, (22) would become

(32) (AM—l)(k“) = AWK (M_l)(k) 4 p)

where

B = k) glk) = (k) (k)

This means that the spectrum information on which the Richardson relaxation
parameters are based corresponds to the form above. Therefore, in order to apply
effectively Algorithm ?? we should ensure that the Jacobian operator J*+1) together
with its preconditioner are somehow consistent with the associated Richardson relax-
ation parameters.

There are three possible ways to overcome this problem. Firstly, we may perform
update (32) and carry out the matrix vector products within the Richardson iteration

in terms of (Ajw_l)(kH) . This certainly makes the relaxation parameters consistent
with the preconditioned Richardson iteration. This approach is equivalent to solving
the following preconditioned Jacobian system by Richardson iteration

Clearly, in order to obtain a meaningful nonlinear step we need to remove the
preconditioning effect embedded in the operator (Aﬂl_l)(k-l_l). Unfortunately, there
is no explicit form of the preconditioner leading to the right unpreconditioned solution.
One possible approximation to the problem is to perform the Krylov-Broyden update

(Al_l)(k) by means of the Sherman-Morrison-Woodbury formula, that is, compute

13
_ (M_l)(k) N [s#) — (ar=1)® ] (s8)" (1)
o ()" (m=1)") g k) )

(3 (M) ()
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and apply it to the preconditioned solution delivered at convergence by the Richardson
iteration. This implies the solution of the linear system

(35) [(AM—l)(kH) M(’CH)] sk+1) — k1)

Note that the solution of this linear system does not necessarily represent that
obtained from a Krylov-Broyden update. Moreover, the operator (AM 1) (k1) gy (k+1)
may introduce a significant overhead in the implementation of a globalization strategy
and in the computation of the future updates where the Jacobian (or an approximation
of it) is required. Consequently, its manipulation may cause misleading situations
where even rapidly convergent Richardson iterants for solving (35) lead to poorly
nonlinear steps (i.e., insufficient in producing a descent direction for || F|).

The following theorem provides an upper bound for this approximation with re-
spect to the Krylov-Broyden update of the Jacobian. For notational simplicity (as in
the proof of Theorem 3.1) we drop the superscript on & and adopt the conventional
+ sign to indicate the operators updated by the Krylov-Broyden update.

THEOREM 4.1. Let the Krylov-Broyden update of AM™' be given by (32). Also,
let the Krylov-Broyden update of both A and M be given by the formula (22), then

|1 —AM~|
]
lg — As||
sl
where ¢ = F* + 1o, 6 (M) = ||M||||[M Y| and, provided that ||s|| # 0.
Proof. A simple algebraic manipulation yields the following expression

1\t
|(an) 2t - a7 < (llg — Asl| + 5 (1) 4] [s])

(36)

+ (L4 {lgll) (M)

_ i _ j t
(AM—1)+M+ Ay ayrpld=Ms e As)(Ms) M

sts (Ms) Ms
(Ms)'y (= As)s' (= As)s'
(Ms) Ms sls sts

In this development we have used the fact that (Ms)* P = (Ms) (i.e., Ms belongs
to the Krylov subspace) in order to split the product of the two rank-one terms in the
last two terms appearing at the right hand side of the above expression. Hence,

+ — As) st
(AM=1)" Mt — 4t = (AM~ - 1) pla= 495
sts
Ms) st Ms)' M
(Ms) Ms s's  (Ms) Ms

t

+AMTIP (AM™Y 1) Ms——.
sts
Taking norm on both sides and noting that ||P|| < 1, we obtain

oyl — As] il | 1M
<l — ang2| le=Asll — As <— )
<| | = o= A0 (55 + 1o

H (AM‘1)+ Mt — At

_ _ M
A | P
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Thus
H (AM—l)+ M* - At g% (Ilg — As{| + | Ane =] [|ps]])
T llg— As] \MWSI!'EJ)!SW‘;EWH sl
S% (llg = As|| + = (M) || Al| [|s]])

lg — As|]
+ T (L+[lall) r (M).
|
REMARK 4.1. Note that the first term at the right hand side of (36) vanishes if
M = A, leaving us with the following upper bound

jreat - ar) < Bl o ey

sl

Moreover, a sharp relative error bound can be easily obtained by working directly with
Krylov-Broyden update of the identity matriz,
[1TAT — AT [[(g = As)]|.
fAa* = sl

This bound arises since It is a rank-one perturbation of the identily matriz which by
itself, perturbs the Krylov-Broyden update of A. In view of this, we conclude that there
s no way to recover the unpreconditioned Krylov-Broyden update exactly.

Although the upper bound (36) is not sharp, it suggests that well conditioned
Jacobian operators with effective preconditioning may help this approach approximate
closely the nonlinear step delivered by the Krylov-Broyden update.

The second approach consists of updating J®) and (Al_l)(k) separately according
to (22) and in that fashion, use them to carry out the Richardson iteration. In other
words, solve

(37) [A(k+1) (M_l)(zm)] (MO 1) ki)

Now, there is no guarantee that the relaxation parameters are necessarily adequate
to the linear system problem. However, in contrast to the previous approach, we are
reproducing and solving a linear system arising from a true Krylov-Broyden update.
Additionally, since the Jacobian is available, clearer and more efficient implementations
of a globalization method and future Krylov-Broyden updates can be carried out. In
the HKS-B and HKS-EN algorithms, recoveries from Richardson iteration failures are
handled by GMRES without strict recomputation of all current operators, whereas
failures in generating a descent direction for ||F|| causes the penalty of reevaluating
the Jacobian plus the cost invested in a useless convergent Richardson iteration (as it
may occur with the first approach).

Note that the discrepancy between (ALM_l)(kH) and A+ (M—l)(k“) is larger
than (ALM_l)(kH) M%) and A®+D In fact, using the notation in Theorem 4.1, it
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follows that

(38) (ap=)" - ()t

< H (Av=)" wt - at

()

Hence, this upper bound magnifies by H (1\/[_1)+ H the upper bound (36). Unfortu-

nately, this adds an extra penalty factor to the reliability of the Richardson relaxation
parameters. Nevertheless, good preconditioning should hopefully attenuate this neg-
ative effect as the Theorem 4.1 itself claims.

In summary, both approaches differ in the following sense. While the first ap-
proach may affect the nonlinear convergence the second one may hurt the linear con-
vergence of Richardson. Generally speaking, both problems result from the fact that
rank-one updates do not distribute with respect matrix products.

The other evident inconvenient is that there is an important cost associated to
updating two operators (i.e., (ALM_l)(k) and (LM_l)(k) or A% and (Al_l)(k)) at every
nonlinear step. It is worth to remark, however, that the explicit form of any of
these operators is not required. We only need the action of the preconditioner onto a
given residual. Hence, for a relatively moderate incremental cost (given by one inner
product and an AXPY) we can carry out the action of both the updated Jacobian and
its updated preconditioner as a function of the oldest one (of course, allowing a linear
growth in memory utilization as directions are to be stored). In the next section we
discuss more in depth this particular topic.

The third approach is basically a simplification of the last two approaches. Up-
date (32) is determined by the term A(*) (LM_l)(k) plus a rank-one matrix whose

column basis is given by a multiple of the vector P(¥) (F(k"'l) + 'rék) — A(k)s(k)) €
K (A(k) (A[_l)(k) ,'r(()k)) . This vector is independent of the preconditioner, so one may

skip the update of the preconditioner for the sake of approximating (Alw_l)(k-H) .In
other words, to implement the HKS-B and the HKS-EN algorithms, we propose to
update the Jacobian via the Krylov-Broyden update (32) and retrieve the unprecondi-
tioned solution without changing the preconditioner operator at all. This implies that
the preconditioner does not have to be rebuilt and updated at every nonlinear step.
Although this may represent substantial savings, we stress that the quality of the pre-
conditioner may deteriorate as the nonlinear procedure advances. The point is that
the preconditioner does not evolve in agreement to the undergoing Krylov-Broyden
updates of each Jacobian matrix.

In view of this approach and the particular case of the nonlinear KEN and
the HOKN algorithm, the incorporation of preconditioning forces us to approximate
(AJVI_I)(]CH) M®) 1t is clear there that the solution of the minimal residual approxi-
mation problems (30) and (31) is referred to the linear system (33), with the exception
that the value of the nonlinear function is taken at exception that the value of the
nonlinear function is taken at the kth step. Although this may imply the adoption
of some of the potential difficulties already discussed in the case of that approach,
fortunately this does not occur here. In order to perform globalization strategies we
do not need the explicit form of the Jacobian matrix, or there is no purpose in either
updating the Jacobian by a Krylov-Broyden update. There is even a much stronger
reason: the failure of the Krylov-Broyden step (i.e., delivered by the least squares
solution of the preconditioned problems (30) and (31)) compromise much less possi-
ble unwasted computation than the HKS-B and the HKS-EN algorithms. The key
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observation stems from the fact that the KEN and HOKN algorithms does not imply
recomputation of the Jacobian and its preconditioner if the computation providing
the higher-order step fails.

Thus, fixing the preconditioner is a suitable approach in the nonlinear KEN and
HOKN algorithms. Obviously, any attempt to update the preconditioner introduces
a relative high overhead to a computation that does not require direct manipulation
with the Jacobian matrix. Furthermore, the following theorem shows that the best
approach is to keep the preconditioner fixed in all Krylov-secant algorithms.
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Fig. 4. Pseudospectra of preconditioned Jacobian matrices for the extended Rosenbrock function.
Upper left corner: AM ™' ; upper right corner: AT M ™' lower left corner A+(M_1)+ and, lower right

corner: (AM™1)T.
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FiGg. 5. Pseudospectra of preconditioned Jacobian matrices for the Powell singular function. Upper left
corner: AM™Y; upper right corner: AT M~ lower left corner A+(ﬂl_l)+ and, lower right corner:
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Fig. 6. Pseudospectra of preconditioned Jacobian matrices for the easy case of the Chandrasekhar
H-equation. Upper left corner: AM™'; upper right corner: AT M ™' lower left corner A+(fl/1_l)+
and, lower right corner: (AM~')T.
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Fig. 7. Pseudospectra of preconditioned Jacobian matrices for the hard case of the Chandrasekhar
H-equation. Upper left corner: AM™'; upper right corner: AT M ™' lower left corner A+(ﬂl_l)+
and, lower right corner: (AM~™')T.
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THEOREM 4.2. Let the Krylov-Broyden update of AM ™! be given by (32). Also,
let M be a preconditioner for A and, let the Krylov-Broyden update of A be given by
the formula (22), then

lg — As]

< =
- sl

(39) H (AM‘1)+ M- At K (M).

where ¢ = F* + 1o, k(M) = || M| | M~ and, provided that ||s|| # 0.
Proof. It easily follows that

1\t + (q - AS) t
(40) (AM™)" M - At = PW(ZWS) M.

Taking the l;-norm on both sides, it results

1] |2

< ”P” Hq - ASH ”MSH HM—1|]

H <AM‘1)+ M- At

lla— 4s]
el

k(M).

|

The result above applies directly to the nonlinear KEN and the HOKN algorithms.

To characterize the difference between the new preconditioned Jacobian matrix and

that implicitly associated to the Richardson relaxation parameters in the HKS-B and
HKS-EN algorithms, we again have that

H (AM‘1)+ _AtM |21

< H (AM‘1)+ M— At

lg — As|

— sl

| a2 s (a1).

The entire discussion boils down to realizing that rather than maintaining (or
enhancing) the quality of the preconditioner, we should better let the preconditioner
change in close correspondence to update (22). Therefore, the performance of pre-
conditioned Krylov-secant methods is dictated by how close the combined updated
Jacobian and its preconditioner are to (AM_l)(k-H) and how this itself, is close to
the identity matrix. Obviously, maintaining this consistency (or resemblance) among
these operators does not prevent the use of the best preconditioning strategy each
time the GMRES iterative solver is required.

The following example illustrates very clearly all the above discussion.

ExamPrLE 4.1. Figures 7-4 show pseudospectra plots of the extended Rosenbrock
Sfunclion, the extended Powell funclion and the two cases of the Chandrasekhar H-
equalion. In every Figure, subplols for AM~', ATM~1, At (jw_1)+ and (AM_l)+
are presented. All plots are generated in terms of the first and second nonlinear iter-
ation. A tridiagonal preconditioner was employed in all cases. The reader can realize
the close pseudospectra similarity shown by the operators ATM ™' and (A]W_l)+ in
all problem cases, which confirms the resull established in Theorem 4.2. The Rosen-
brock function case perfectly illustrates how the Krylov-Broyden updates may cause
certain qualily deterioration of the preconditioned new Jacobian. In this particu-
lar, AT (JV[_I)-I— presents a slightly better condition number than both AT M~ and
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(AJW_1)+. However, this situation does not always hold as the Powell singular func-
tion subplots indicate. Note, that one conjugate eigenvalue pair of AT (JW_1)+ would
be oul of the convex hull (i.e., the GMRES lemniscale) associaled to (AJW_1)+ . This
may negatively affect Richardson’s rate of convergence as it was discussed in §§4.1.3.
The Chandrasekhar H-equalion shows that one may obtain a betler conditioned ma-
triz AT (1W‘1)+ than AM™'. This trend is emphasized from the easiest to the most
difficult case of this nonlinear integral equation.

0JO: CORREIJIR Since the procedure to introduce preconditioning in the HKS
algorithms has been established, it is now convenient to show its performance in
practice.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5. Computational experiments. This chapter encompasses numerical exper-
imentation of both Krylov-secant methods and preconditioners for coupled linear sys-
tems. The first two sections of the chapter are devoted to analyze the performance of
each one separately. The last section introduces ideas from these two approaches in a
parallel black-oil reservoir simulator described by Wheeler and Smith in [46] and later
improved by Dawson et al. in [10].

In this section we present numerical experiments to illustrate the effectiveness
of the algorithms presented here, i.e., the nonlinear KEN and higher order Krylov-
Newton (HOKN).

The discussion begins reviewing the example cases shown throughout Chapter 77
and Chapter ?7: the extended Rosenbrock’s function, the extended singular Powell’s
function and two levels of difficulty of the Chandrasekhar H-equation.

Two additional problems were also chosen for these tests. The first of them is
a nonlinear steady-state equation known as the (modified) Bratu problem. This is a
model for the steady-state temperature distribution in reacting systems in two space
dimensions and is included here because it has been used repeatedly as a test bed for
inexact Newton methods [3, 22, 37].

The second example involves a simplification of Richards’ equation, which is used
to model groundwater transport in the unsaturated zone. This time-dependent model
in two space dimensions serves as a window to observe the Krylov-secant algorithms
in action for underground simulation applications. We believe that this (or a similar)
algorithm should benefit reservoir simulators in use by the petroleum and environmen-
tal industries. This should prepare the ground for the forthcoming experimentation
on a parallel two-phase reservoir simulator in § 3.

All Krylov-secant methods are compared to Newton’s method, the composite
Newton’s method, Broyden’s method and the nonlinear FEirola-Nevanlinna algorithm
throughout this section. All of them are presented in their inexact versions. More
specifically, the Jacobian or Newton equation is solved by GMRES each time in con-
junction with the use of the forcing term criteria and the line-search backtracking
method described in Chapter ??. All numerical experiments were run in this section
on Matlab v4.2c on a Sun workstation SPARC 10.

5.1. Preliminary examples. XXXXXXXXXXXXXXXXXXXXXXXXXXX In
this particular example, we use the line-search backtracking method with the same pa-
rameter specifications of Example 2.1. Figure 3 shows the relative nonlinear residual
history of the nonlinear KEN algorithm (dotted line) and the higher-order imple-
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mentation of Krylov-Newton (solid line). Table 3 supports part of the convergence
behavior of both approaches. In all cases, GMRES was able to converge within a pre-
specified restart value of m = 20, a zero initial guess vector and no preconditioning.
For the higher-order version of the Krylov-Newton algorithm, we set [, = 10. As
was observed before, the Rosenbrock function represents the hardest case. Hence, the
algorithms do not show important improvements compared to their Newton’s method
and Broyden’s method counterparts. The plateau portion exhibited by the KEN algo-
rithm at the first iterations obeys to the difficulties encountered by the Krylov-Broyden
update for the same case (see Figure 1). Not surprisingly, Table 3 confirms the lack
of success of the Krylov-Broyden update for the higher-order version of the Krylov-
Newton algorithm (the zeros denote the occurrence of backtracking steps at the first
to two nonlinear cycles). The Powell function introduces an opposite situation. The
solution to the minimal residual problem resulting from every Hessenberg updates
was always able to generate a decreasing step for ||F||. Consequently, the nonlinear
KEN algorithm reproduces almost exactly the behavior of the nonlinear EN algorithm
and the higher-order Krylov-Newton (HOKN) algorithm dramatically outperforms the
composite Newton’s method (with only one GMRES call per nonlinear cycle). It is
important to remark that GMRES generates an invariant Krylov subspace under the
Jacobian after 4 iterations to the level of double precision roundoff errors (i.e., the
residual term in (15) was of order 1.0 x 107'¢). Note, however, that this does not nec-
essarily imply that the value of the function at the new point belongs to that invariant
subspace as it seems to be the case here. An intermediate behavior is shown by the
Chandrasekhar equation, with a more favorable tendency as the difficulty of the prob-
lem increases, though. In the easy case, the higher-order Krylov-Newton method is
competitive with composite Newton’s method. The nonlinear KEN algorithm outper-
forms Broyden’s method but it is slightly worse than the nonlinear EN algorithm. The
difficult case delivers similar conclusions to the Powell function case. The reader can
verify that each convergence history is qualitative reflecting to that observed in 1. As
a final comment, Table 3 clearly illustrates that the larger the dimension of the Krylov
subspace does not mean a longer chain of decreasing directions for || #'|| in step 2.3 of Al-
gorithm 4.2, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXLXXXXX XXX

We present performance of the examples shown before in terms of floating point
operations. Figures 8, 9 and ?? show the computational work in millions of accumu-
lated floating point operations employed to decrease relative nonlinear residual norms
for each one of the methods discussed in this thesis.

According to their order of appearance, all methods in this subsection have been
classified as Newton-like (those that evaluate the Jacobian at every step), secant-type
(those that provide and approximation to the Jacobian), and the last set of three al-
gorithms based upon the hybrid Krylov-secant idea. In the next subsections, however,
we rather categorized the nine methods in Newton type of methods (Newton’s method,
the composite Newton’s method, the HOKN algorithm and the HKS-N algorithm) and
secant type of methods (Broyden’s method, the NEN algorithm, the nonlinear KEN
algorithm, the HKS-B algorithm and the HKS-EN algorithm).

Comparison of the set of Newton-like methods is given in Figure 8. The extended
Rosenbrock function is definitely the most difficult case. It requires several backtrack-
ing steps before entering to the region of rapid convergence. In this case, the clear
winner is the composite Newton’s method which is incidentally the one that converges
in the fewest number of nonlinear iterations. The Newton’s method and the HOKN al-
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F1G. 8. Performance in millions of floating point operations of Newton’s method (dash-dotted line),
composite Newton’s method (dashed line) and the HOKN algorithm (solid line) for solving the extended
Rosenbrock’s function, the extended Powell’s function and two levels of difficulty of the Chandrasekhar
H-equation.

gorithm spend about the same effort due to the poor Krylov-Broyden steps performed
by the latter. The reader can confirm the same trend on Figures 7?7 and 3.

log10 RNRN

logl0 RNRN

Ext. Rosenbrock

2 a
MFlop

Chandrasekhar [c=.9]

N N
.~ N
~_ Q
=< - \
\
v
\
N
0.5 1 1.5
MFlop

log10 RNRN

logl0 RNRN

Ext. Powell

MFlop

2
MFlop

F1G. 9. Performance in millions of floating point operations of Broyden’s method (dash-dotted line), the
nonlinear Eirola-Nevanlinna algorithm (dashed line) and the nonlinear KEN algorithm (solid line) for
solving the extended Rosenbrock’s function, the extended Powell’s function and two levels of difficulty
of the Chandrasekhar H-equation.

The extended Powell equation case reveals the great potential of the HOKN algo-
rithm. In this case, the four consecutive Krylov-Broyden steps drive nonlinear residual
norms much faster to zero than even the composite Newton’s method, theoretically a
g-cubic local convergent method.

Note that the composite Newton’s method is better than Newton’s method al-
though it requires two GMRES solution per nonlinear iteration. The Chandrasekhar
H-equation reflects the same trend seen before in terms of the nonlinear iteration
count. In this particular case, increasing the nonlinearity of the problem favors the
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HOKN algorithm. This underlines some additional robustness of the algorithm for
certain harder situations. Not accidentally, this favorable circumstance comes to light
also in Figures 9 and ?? when a Krylov-Broyden step is performed.

Figure 9 shows performance for the secant-like group of methods. In general, these
methods perform poorly in handling the extended Rosenbrock function compared with
Newton type of approaches. This explains in part the wasted effort displayed by
the Krylov-Broyden steps in the nonlinear KEN algorithm. The NEN algorithm is
slightly superior than Broyden’s method for small nonlinear tolerances. Once again,
the Krylov-Broyden step is very effective in dealing with the extended Powell function
and therefore, the nonlinear KEN algorithm outperforms the other ones, all of which
converge with a similar computational cost.

In the Chandrasekhar H-equation the convergence behavior of these methods is
not clear for the easier case (i.e., ¢ = .9). The plateau portion of Broyden’s method and
the nonlinear KEN algorithm is due to the difficulty in solving the associated Jacobian
linear systems. However, both methods perform better than the NEN algorithm at
some relatively small nonlinear tolerances. The case with ¢ = .9999999, suggests
the nonlinear KEN algorithm as the best choice. In this case, every linear system
obtained in every method implies about the same amount of work. The additional
saving obtained in the nonlinear KEN algorithm at small tolerances corresponds to a
better Krylov-Newton step towards the nonlinear solution.

The last set of methods, i.e., those alternatively using Richardson iteration, are
depicted in Figure ??. The failure of Broyden and Krylov-Broyden steps to handle
the extended Rosenbrock function produces no clear distinction among the three algo-
rithms. However, the use of a cheaper Richardson iteration explains the slight saving
in million of floating point operations in comparison to a Newton’s method primarily
based on GMRES. An opposite phenomenon was observed in the case of the HKS-N
algorithm for the extended Powell function. In such case, Richardson fails to converge
after every GMRES solution causing the slight increment in computational cost with
respect Newton’s method.

The success of the Richardson iteration at the first steps of HKS-B and HKS-EN
algorithms introduces additional savings with respect the corresponding counterparts
Broyden’s method and the NEN algorithm. However, the KEN algorithm is still
the most eflicient among all. For the Chandrasekhar H-equation, this group of HKS
methods performed modestly well. The reader can observe that the HKS-N algorithm
is hardly more efficient than Newton’s method in the easy case. Additionally, the HKS-
EN is competitive with Broyden’s method, specially in the hardest case. However, the
performance of the HKS-B is disappointing due to an excessive number of iterations
in solving the linear systems with both GMRES and the Richardson iteration.

5.2. The modified Bratu problem. The modified Bratu problem is given by

Vzu—l—ag—Z—l—/\e“:f in

©v=0 on Of.

? The actual Bratu (or Gelfand) problem has o = 0.
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This problem plays an important role in combustion modeling and semiconductor
design and processing and represents a simplified model for nonlinear diffusion phe-
nomena. In the absence of the convection term, this operator is monotone with respect
u and hence it always has a solution for A < 0. When A > 0, there is a threshold
value A, for which the equation has no solution for A > A, and at least one solution
for A < A.. For more details, we refer the reader to [26, 31] and pointers therein.

We solve this problem in the unit square with homogeneous Dirichlet boundary
conditions. See, e.g., Glowinski, Keller and Reinhart proposed problem in [31] for
a detailed description. In this work, the problem is discretized by a block-centered
finite-difference scheme and no upwinding was used for the convective coeflicient. The
linear system generated by the Newton step becomes harder as a and A grow. In this
particular situation, we consider A = 97 and a = 128 as suggested in [37]. A block
Jacobi (with 8 blocks of approximately equal size) preconditioner was used for the
Richardson iteration, except where indicated in the tables. A Newton tolerance of
1 x 1072 was considered for these experiments and the linear solution tolerances were
computed by means of equations (??) and (?7?).

TABLE 4
Total number of linear iterations (LI) and nonlinear iterations (NI) for all methods discussed in this
thesis applied to the modified Bratu problem. The quantities in parentheses indicate the number of
Richardson iterations employed by the HKS algorithms.

10 20 30 40 50
Method LI |NI| LT | NI'| LI | NI| LI | NI| LI | NI
Newton 34 4 |46 4 | 70 4 |98 4 | 125 4
Comp. Newton |43 3 [ 60 3 | 92 3 (131 3 |173 3
HOKN 38 4 (40 3 |61 3 |8 3 108 3
Broyden 67 9 | 74 8 | 113 8 |156 8 | 203 8
NEN 72 5 | 84 4 | 127 4 | 178 4 | 234 4
KEN 70 9 | 102 8 | 135 7 |18 7 (244 7

Table 4 shows the comparison of all nonlinear methods utilized in these tests for
six different problem sizes N. These are indicated on the first row of this table, i.e.,
evenly spaced meshes with 10, 20, 30, 40 and 50 grid blocks, respectively, in each
of the coordinate directions. A tridiagonal preconditioner was used to accelerate the
GMRES convergence. Several interesting points can be made on these results.

The problem size affects in a higher degree the linear iterations than the nonlin-
ear iterations. All HKS methods represent a reduction of about half the number of
GMRES iterations employed by Newton’s method, Broyden’s method and NEN algo-
rithm counterparts. Moreover, adding up the number of Richardson iteration (shown
in parenthesis) we can still appreciate savings in the overall number of linear iterations
employed by the HKS algorithms. Conversely, we can observe a small increment in
the number of nonlinear iterations for these algorithms, though. The bottom line here
is that the Krylov-Broyden updates governing these Krylov-secant algorithms repro-
duce well the convergence properties of Broyden’s method. This last observation is
important because the Hessenberg matrix update, i.e., an operator of much smaller
dimension than the Jacobian matrix, behaves like Broyden’s update of the Jacobian.
Therefore, the HKS methods promise to approximate the convergence quality of Broy-
den’s method with the added savings in floating point operations stemming from the
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fact that updates are performed on a matrix of considerably lower order.

On the other hand, we can observe the savings in accumulated GMRES iterations
by the HOKN algorithm compared with the composite Newton’s method. In addi-
tion, as it has been observed before, the HOKN has the potential to generate better
steps than the composite Newton’s method. Although, both basically spend the same
number of nonlinear iterations, it is important to remark that the norm of the final
nonlinear residual in the HOKN is several orders of magnitude smaller than the one
delivered by the composite Newton’s method (see e.g., Figure 10). The difficulty of
the linear systems in the HOKN was slightly higher than Newton’s method (in terms
of the number of linear iterations employed by GMRES). On this matter it is impor-
tant to remark that the overall number of GMRES iterations may result deceiving
in some situations. In other words, more accumulated GMRES iterations does not
necessarily imply more computational work since the number of floating point opera-
tions grows quadratically with the number of iterations taken in a particular GMRES
solution. Usually, this number of linear iterations is higher as the nonlinear solution is
approached due to the tightening of linear tolerances (i.e., decrease of 7)) prescribed
by the Fisenstat and Walker criteria [22]. This fact shall be important to take into
account for the convergence analysis of the HOKN and the nonlinear KEN in terms of
floating point operations below. Finally, we remark that the nonlinear residuals norms
delivered by the KEN algorithm are also smaller than those produced by Broyden’s
method.

The quadratic growth of the number of floating point operations in GMRES be-
comes more pronounced as the problem size increases. This implies that savings in
operations also grow quadratically even though the table shows almost the same rel-
ative number of linear iterations among all methods.

Modified Bratu Problem
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F1G. 10. Nonlinear iterations vs. Relative Nonlinear Residuals Norms (RNRN) of secant-like methods
for the modified Bratu problem on a 40 x 40 grid.

Figures 10 and 11 show the number of nonlinear iterations taken for all methods
to converge to the solution. As in the example cases, higher-order methods appears
as the best in terms of total number of nonlinear iterations.

We can observe that HOKN takes less nonlinear iterations than Newton’s method
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but more than the composite Newton’s method. The HKS-N algorithm takes the high-
est number nonlinear iterations among all. In a similar fashion, the convergence curve
described by the nonlinear KEN algorithm falls between that of Broyden’s method
and that of the NEN algorithm. Note that the HKS-EN performs similarly to the
nonlinear KEN algorithm, so that one may expect the use of the Richardson itera-
tion will make the HKS-EN algorithm more efficient whenever Richardson succeeds
at every attempt. The HKS-B mimics the behavior of Broyden’s method, so this last
observation applies as well.
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Fi1G. 11. Nonlinear iterations vs. Relative Nonlinear Residuals Norms (RNRN) of Newton-like meth-
ods for the modified Bratu problem on a 40 x 40 grid.

Figure 11 calibrates once more the quality of the Krylov-Broyden update com-
pared to the well known Broyden update. The closeness of curves between the HKS-B
algorithm and Broyden’s method suggests that not much is lost when Broyden’s up-
dates are restricted to the current Krylov basis. Under the same light, we can explain
the intermediate behavior of the nonlinear KEN algorithm between the NEN algorithm
and the HKS-EN algorithm. The nonlinear KEN algorithm alternates Broyden and
Krylov-Broyden updates, the NEN performs only Broyden updates and, the HKS-EN
performs only Krylov-Broyden updates. All three share the feature of being a higher
order version of Broyden’s method.

As before, measuring floating point operations instead of number of number of
nonlinear iterations provides more conclusive insights. Figures 12 and 13 illustrate
the computational efficiency of the new methods.

Figure 12 shows how the HOKN algorithm outperforms the composite Newton’s
method. The penalty introduced in solving two linear systems with GMRES with
the latter method spoils the nice capabilities suggested in Figure 10. The HOKN
provides higher convergence rates without incurring in such penalty. Although, it
may not be as effective as the composite Newton’s method in driving the nonlinear
residual norms down, it saves a sensible amount of computation by taking advantage
of the underlying Krylov information. In this particular case, however, the quality of
the Krylov-Broyden step deteriorates as the solution is approached, making Newton’s
method more efficient for nonlinear tolerances in the order of 1.0 x 1077 which may
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Modified Bratu Problem

10 =——— T T T
107" e 4
-
2 T~
107° N RO E
S N
_3 S
10 E > N . \\ 3
A
10" | N . 1
x N AN
py 10 E N N 3
i N AN
810—6 N N
L N i
X N
— N A
107 ¢ NN ]
F| — — Newton N \
8 [ N N
10 © £| - - - Comp. Newton N N :
E N E
o [|— HOKN SN
10° 1 R ]
HKS_N N
L N
10’10 r r r | | | | | |
o 2 4 6 8 10 12 14 16 18 20
MFlop

FiGg. 12. Performance in millions of floating point operations of Newton’s method, composite Newton’s
method, the HOKN algorithm and the HKS-N algorithm for solving the modified Bratu problem on a
40 x 40 grid.

be considered fairly small in most practical situations. The lack of success of the
final Krylov-Broyden steps explains the poor results of the HKS-EN algorithm. The
Richardson iteration was always able to converge but the nonlinear steps were not as
good as those delivered by GMRES.

Figure 13 shows a much closer resemblance among all secant methods. Firstly,
they were less effective than those methods evaluating the Jacobian at every nonlinear
step in more than 50% of computing work. Secondly, the higher order secant meth-
ods based on Krylov-Broyden methods yield the desired pay-off although Broyden’s
method tends to become more efficient at small relative nonlinear residual norms.
This fact stems from the increasing deterioration of the Krylov-Broyden update, but
primarily, from the increasing difficulty of the linear systems. The significant sav-
ings of GMRES iterations (see Table 4 above) provides a more consistent behavior of
computational effort against relative nonlinear residual norms of the HKS-EN and the
HKS-B algorithms compared to the nonlinear KEN algorithm.

In general, the contrasting picture of the composite Newton’s method and the
NEN algorithm is amazing when one looks at Figures 10-13. From being the methods
converging in the fewest nonlinear steps they go to being almost the most expensive
to use. These two extremes show how a rapid theoretical convergence rate may not
sound as promising in terms of a computer implementation. In this sense, the new
family of Krylov-secant algorithms maintain a balance that make them attractive for
faster nonlinear convergence rates without exceeding the computational cost of the
traditional Newton’s and Broyden’s method.

To end the analysis on the modified Bratu problem, we present how the precondi-
tioner affects the convergence of all methods (see Table 5). In Chapter ?? we devoted
a discussion to the use of preconditioning for all the Krylov-secant methods proposed
in this dissertation. The high degree of difficulty of the associated Jacobian linear
systems makes appropriate an analysis of this kind here.
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Fig. 13. Performance in millions of floating point operations of Broyden’s method, the nonlinear
Eirola-Nevanlinna algorithm, the nonlinear KEN algorithm, the HKS-B algorithm and the HKS-EN
algorithm for solving the modified Bratu problem on a 40 x 40 grid.

TABLE 5
Summary of the total number of linear iterations shown with several preconditioners for all nonlinear
methods. The quantities in parentheses indicate the number of Richardson iterations employed by the
HKS methods. The problem considered is on a 40 x 40 grid.

Method Jacobi | Tridiagonal | BJacobi(8) | BJacobi(4) | ILU(0)
Newton 320 98 44 40 138
Comp. Newton | 407 131 62 58 173
HOKN 359 83 52 47 163
Broyden 441 156 75 66 236
NEN 431 178 78 74 260
KEN 375 186 90 87 269
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We consider a family of standard preconditioners: point Jacobi (i.e., diagonal
scaling), tridiagonal preconditioner, block-Jacobi preconditioners with 8 and 4 blocks
and, ILU(0) (i.e, incomplete LU with no infill inside the matrix bandwidth).

Both block-Jacobi preconditioners appear to achieve the lowest number of total
linear iterations for all methods. They also produce the lowest accumulated number of
GMRES and Richardson (in the HKS algorithms) iterations. Note that the ILU(0) is
quite poor in this case, due to the strong convective part that makes the inverse of the
preconditioner operator not positive stable. (Consequently, some eigenvalues of the
preconditioned matrix lie on the left side of the complex plane and the preconditioned
system inherits some indefiniteness.)

The main point of Table 5 is to show the stability of the methods for different pre-
conditioners. Recall that Krylov-Broyden updates are applied to the preconditioned
system solved by GMRES and that there is no way to reflect (at least in terms of
computational cost) the updated and preconditioned system. A large inconsistency
between this system and the fixed preconditioner (recall discussion in §§4.2.2) may
result in failure in reducing effectively [|F|| as the nonlinear process advances. The
table shows that linear iterations reduce consistently according to the quality of the
preconditioner. It is worth to add that there were no differences in the total number of
nonlinear iterations (which are summarized in Table 4 for this problem size of 40 x 40.)

5.3. Richards’ equation. This example problem models the infiltration of the
near-surface underground zone in a vertical cross-section. This is a case of unsaturated
flow that takes place in the region between the ground surface and the water table, i.e.,
the so called vadose zone. The flow is driven by gravity and the transport coefficients
are modeled by empirical nonlinear functions of the moisture content below saturation
conditions. The model equation for this two-dimensional flow is given by

%—V-[D(c)-Vc]—ag—ic):O,
where ¢ is the underground moisture content, D(c) is the dispersivity coefficient and
K (c¢)is the hydraulic conductivity. This equation is nothing more than a simplification
of the well known Richards’ equation which also presents nonlinearities in the transient
term.

The boundary conditions for this model are of Dirichlet type at the surface, where
a constant water content of unity is kept at all times, and of Neumann -no flow- type
on the remaining three sides of the model. These conditions are given by

c=c¢5, at z=0, O<y<l1,

%:0, at z2=1, O<y<l,

dc
%:O, at y=0 and y=1, 0<z<1,

for ¢ > 0. Here, z represents the vertical direction and y represents the chosen hor-
izontal direction for the cross section. The surface water content is represented by
cs = 1.
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FiG. 14. Water content distribution at 15% and 1000%" time steps.
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F1G. 15. Dispersivity at 1°* and 1000*" time steps.
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F1G. 16. Hydraulic Conductivity coefficients at 1°* and 1000%" time steps.
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It would be appropriate to say that the same hydraulic conductivity plays a role
in both the diffusive and the convective terms, because this model is just the conti-
nuity equation for the moisture content, where Darcy’s law (with a moisture content
dependent hydraulic conductivity) has been replaced for the superficial velocity. In
fact, D(c) is often referred to as the capillary diffusivity and is given by

K
D(c) = (), with ¢:_£7
p

where p and p are the groundwater capillary head and density, respectively. However,
different functional forms are often used to describe the dependence of both coefficients
on the subsurface water content. For this example, our choices of dispersivity and
hydraulic conductivity are, respectively,

1 172 1
D(c) = Koc2 [1 - (1 - cg) 2] , and K(c)= Kocé,

with

c— Co

Ce = >

Cs — Cp

where ¢ is the irreducible underground water content and the tensor Ky is a position
dependent coeflicient that we have chosen according to

Ko(i,7) = ﬁ, for 1<9,5<5.

where N is the number of gridblocks. This choice of Kg, although contrived, is some-
times found in underground formations and, represents a narrow channel of permeable
rock where the moisture is allowed to move. The hydraulic conductivity at saturation
is proportional to the rock permeability, which has been shown to change over a few
orders of magnitude within relatively short distances in underground formations. In
our computational experiments we take cg = 0.25, which represents a typical value of
the irreducible water content. See [1] for a comprehensive discussion of this model.

Figure 14 shows the solution for the moisture content distribution over the two-
dimensional domain for a mesh of 16 x 16 at the 1°* and 1000%" time steps of simulation.
The solution shows the effect of the heterogeneity in the resulting subsurface water
content.

A constant time step was used for these simulations, which was chosen small
enough to allow the inexact Newton method to converge within 40 nonlinear iterations
and given by

At= 1p2,
16
This small time step was required in order to use the solution of the previous time
level as an acceptable initial guess for the nonlinear iteration.
Figures 15 show the dispersivity coefficient, D(c), over the two-dimensional do-
main, for the same discretization mesh as in Figure 14, at the 1% and 1000** time
steps. Figure 16 shows the distribution of the transport coefficient, K(c), instead.



500

450

400

350

300

250

MFlop

200

150

100

50

TWO-STAGE PRECONDITIONERS

Richards‘ equation

39

T T 7
/

/
7
7
Y
V2
;7
7
7
7
/”
Va4

V; 7
7

N

4
Va
ya

—-— Newton
— — - Comp. Newton
— HOKN

HKS_N

30 40 50

60

70 80 90

Time step

100

Fig. 17. Performance in accumulated millions of floating point operations of Newton’s method, com-
posite Newton’s method, the HOKN algorithm and the HKS-N algorithm for solving Richards’ equation.

500

450

400

350

300

250

MFlop

200

150

— — - NEN
100 — KEN —
HKS_B
50 + HKS_EN
o | | | T T
(e} 30 40 50 60 70 80 90

Richards‘ equation

— — Broyden

Time step

100

Fig. 18. Performance in accumulated millions of floating point operations of Broyden’s method, the
nonlinear Eirola-Nevanlinna algorithm, the nonlinear KEN algorithm, the HKS-B algorithm and the
HKS-EN algorithm for solving Richards’ equation.



40 RAME, KLIE AND WHEELER

Both figures are intended to give the reader a feel for the combined effect of hetero-
geneity and nonlinearities of the model. The coeflicients are shown to vary within the
interval (0,5) as a result of having scaled both K(c) and D(c) by Ko paz. This scaling
is hidden in the scaling of the spatial coordinates.

Figure 17 and 18 show the accumulated (million) floating point operations for
all the nonlinear methods as the simulation progresses up to 100 time steps, for a
discretization mesh of 32 x 32. No preconditioning was used. The curve clearly
exhibits the computational cost trend of all nonlinear methods.

The HOKN algorithm shows a significant saving in computational cost from start
to end of this short simulation (see Figure 17). The increasing difficulty of the non-
linear problems as simulation advances produces a superlinear growth in the number
of floating point operations. This growth is not only due to the complexity of the
nonlinear problems but also to that of the linear problem. This is an example where
the region of rapid convergence is far from the initial guess given at every time step,
causing unexpected difficulties to Newton’s method before reaching that region. Ad-
ditionally, since derivatives of D(¢) and K (c¢) are approximated by finite differences,
ideal conditions for Newton to achieve rapid convergence are violated. (This situation
is practically unavoidable in many problems of this type, where coefficients are subject
to experimental observation.) On the other hand, as it can be observed in Figure 18,
secant methods produce more efficient steps toward the solution, making them more
preferable than Newton type of approaches.

The HOKN algorithm delivers between one and two successful Krylov-Broyden
steps per nonlinear iteration for this problem case. Note, however, that the HKS-EN
algorithm is more efficient than this algorithm during the first 30 time steps. Through-
out the whole simulation, the HKS-EN algorithms turns out to be more efficient than
Newton’s method and the composite Newton’s method owing to the substitution of
GMRES by Richardson iterations. However, in the absence of that beneficial secant
step it shows a similar order cost to that of the other two nonlinear methods.

Figure 18 shows again that the nonlinear KEN algorithm and the HKS-EN are
close competitors, perhaps with a marginal advantage for the latter. In this case,
the HKS-B performs badly as result of a sequence of poor Krylov-Broyden steps that
somehow are corrected in the HKS-EN algorithm. Also, there does not seem to be
a clear winner between Broyden and the NEN algorithm (as it also occurs between
Newton’s method and the composite Newton’s method) but, both the nonlinear KEN
and the HKS-EN algorithms perform better yet.

TABLE 6
Total nonlinear iterations (NI), GMRES iterations (GI) and (when applicable) Richardson iterations
(Rich) for inexact versions of several nonlinear solvers. The problem size considered is of size 16 x 16
gridblocks after 100 time steps of simulation.

Method NI GI Rich. Backs.
Newton 1627 11890 0 0
Comp. Newton | 835 12186 0 0
HOKN 391 2673 0 0
Broyden 631 4046 0 0
NEN 347 4400 0 0
KEN 422 2757 0 0
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Table 6 summarizes convergence of the previous plots. The table confirms the
excessive work (in terms of nonlinear iterations) carried out by Newton’s method,
the composite Newton’s method and the HKS-N algorithms compared to the HOKN
algorithm and all secant methods. The composite Newton’s method halves the number
of nonlinear iterations of Newton’s method but both spend about the same total
number of linear iterations. The figures for the HOKN algorithm perfectly justify
what is observed in Figure 17. It reduces in half the number of nonlinear iterations
taken by the composite Newton’s method and, besides, it reduces by an almost 4-fold
the total number of linear iterations with respect this higher order method. Hence,
the HOKN algorithm not only tackles efficiently the nonlinearities but also leads to
much easier linear problems.

The NEN algorithm also halves the number of nonlinear iterations shown by Broy-
den’s method but the number of linear iterations accounts for the similar computa-
tional efficiency of both. The KEN algorithm takes an intermediate number of nonlin-
ear iterations between these two algorithms but its efficiency is marked by the fewer
number of linear iterations displaid. Note that the HKS-EN algorithm converges in
a few more nonlinear iterations than the nonlinear KEN algorithm but reduces in
roughly 42 % the total number of GMRES iterations. In this particular situation the
savings obtained via Richardson iterations compensate the additional work induced
by extra nonlinear iterations. The table clearly exhibits the relative high cost of the
HKS-B algorithm compared to Broyden’s method: more nonlinear iterations and an
overwork of Richardson iterations that did not alleviate the cost of merely relying on
GMRES iterations.

One of the other highlights of this table is the reduction in the number of GMRES
iterations displayed by the HKS-N and HKS-EN algorithms. These results appear to
corroborate those of last section in that the combined number of linear iterations of
HKS algorithms is approximately equal to the number of GMRES iterations in the
Newton’s and Broyden’s methods.

6. Evaluating parallel Krylov-secant methods and two-stage precondi-
tioners for systems of coupled nonlinear equations. In this section we experi-
mentally combine and verify two of the main results of this dissertation. That is, the
use of the HOKN algorithm together with the 25GS preconditioner. We begin intro-
ducing some features of the simulator and the data model to be analyzed. We then
proceed to describe some technicalities that need to be sorted out for the joint imple-
mentation of these two ideas. Once this introductory background has been exposed,
parallel numerical experiments are presented.

6.1. Brief description of the model. We have chosen the parallel two-phase
black-oil reservoir simulator RPARSIM as the common application to evaluate the
HOKN method and the 25GS preconditioner. This not only serves to test both ideas
on an real application but also to measure their scalability on a parallel platform. To
that end, we perform numerical experiments on an Intel Paragon and an IBM SP2
parallel machines. Both of them are located at the University of Texas, Austin.

The Paragon machine consists of 64 Mbytes of RAM memory plus 16 Kbytes
of data cache per node. This specific configuration has 42 nodes arranged in a 2-D
mesh topology fashion. Each node can achieve a peak performance of 80 Mflops and
a communication speed of 40 Mbytes/s. The SP2 machine consists of 16 nodes, each
with 128 Mbytes of RAM. Each node is capable of providing a peak computation



42 RAME, KLIE AND WHEELER

performance of 260 MFlops and a bidirectional communication rate of 50 MBytes/s.

We use MPICH (a public version of MPI developed by Argonne National Lab
and Mississippi State University) as the message passing system library. This allows
portability of the simulator on different distributed memory architectures.

Most numerical experiments compare the performance of the current inexact New-
ton solver with the 25Comb preconditioner with the new approach. Details on the
performance of this nonlinear solver are given in ([10]). Some of their basic features
can be synthesized as follows:

o Inexact Newton method based on the optional choice of GMRES and BiCGSTAB
iterative solvers.

¢ Both GMRES and BiCGSTAB are preconditioned with a two-stage combina-
tive approach (i.e., the 25Comb preconditioner) that uses line correction to
solve the partially decoupled pressure system and a tridiagonal preconditioner
as M (refer to the notation given in Chapter ?7).

e Line-search backtracking globalization and forcing term criteria based on the
work of Fisenstat and Walker.

e The solver is developed to handle a fully-implicit three-dimensional formula-
tion with capabilities to handle a full permeability tensor and general bound-
ary conditions. This implies the manipulation of Jacobian matrices with 64
pressure and concentration coefficient arrays.

TABLE 7
Physical input data.

Initial nonwetting phase pressure at 49 ft 300ps2

Initial wetting saturation at 49 ft D

Nonwetting phase density 4816/ ft3
Nonwetting phase compressibility 4.2 x 10 %psi~!
Wetting phase compressibility 3.3 x 10~ %psi~!
Nonwetting phase viscosity 1.6¢p

Wetting phase viscosity 0.23¢p

Areal permeability 150md

Permeability along 1st and 2nd half of vertical gridblocks 10md and 30md

Additionally, the data are decomposed in an areal sense (i.e., each processors
holds the same original number of gridblocks along the depth direction). This is due
to the fact that in most reservoir domains the vertical direction is relatively much
smaller than the horizontal plane. where the phases flow. The effective manipulation
of a full permeability tensor induces a 19-point stencil discretization for the pressures
and concentrations of the linearized wetting phase equation and, a 19-point stencil for
pressures and a 7-point stencil for concentrations of the linearized non-wetting phase
equation (this gives rise to the 64 coefficient arrays accompanying each gridblock
unknown). Therefore, matrix-vector products involves data communication of each
node with its four lateral and four corner neighbors (refer to [10] for further details).

In our particular implementation, the 25GS preconditioner comprises the GMRES
solution of each individual block of pressures and concentrations (i.e., the product of
densities and saturations of a particular phase). A tridiagonal preconditioner is used
to accelerate the convergence rate of this inner GMRES.
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Table 7 summarizes the physical parameters for this problem, and Figure ??
shows the associated relative permeability and capillary pressure functions used. The
model consist of a water injection well (with bottomhole pressure specified) located
at the coordinate (1,1) of the plane and, a production well (with bottomhole pressure
specified) at the opposite corner of the plane.

6.2. Considerations for implementing the HOKN algorithm with the
2GSS preconditioner. Before presenting the numerical results, it is important to
establish some special considerations arising from the joint implementation of the 2SGS
preconditioner and the HOKN nonlinear solver. Since the 25GS demands previous
decoupling of the linear system, the secant equation on which the Krylov-Broyden
update is based, is of the form

) (D<k>)‘1 Ak+D) (Mm)‘

P E) — pler) )

for a given kth nonlinear iteration and a GMRES solution sk) = Sék) + V(k)y(k).
Here, M(¥) represents the inexact block Gauss-Seidel preconditioner acting upon the

-1
decoupled matrix (D(k)) A®) This decoupled matrix expressed as 2 x 2 blocks has

a similar presentation depicted in (?7?).
Using the associated Arnoldi factorization

( D(k))‘l A®) (M<k>)‘1 v =y F®,

m

to the Jacobian system
(D<k))‘1 Ak) (M<k>)‘1 MWk = pk1)
one determines that the secant equation for the Hessenberg matrix is given by
AW = (V0 (D®) 7 () 4 )
Therefore, Broyden’s update of the Hessenberg matrix is given by

[(V(’“))t (D<’f>)_1 FO+) 4 gy — H#’f)y““)] (s)'
HE+) — k) 4
" " (y8))* y(*)

bl

with 8 = H (D(k)) - T(()k+1)

Hence, the value of the function at the new point needs to be decoupled before

being projected onto the underlying Krylov subspace. Technically, the Krylov-Broyden
update and consequently, the whole HOKN implementation can be carried out in terms
of the decoupled linear system.

An efficient implementation is accomplished by carrying out the decoupling op-
eration in place over all arrays holding the matrix coefficients. In order to restore
the original Jacobian coeflicients, five arrays are employed to hold the main diagonals
entries of each block and the vector entries of A. This allows to maintain the same
standard Euclidean norm in the line-search backtracking strategy, forcing term selec-
tion and in the nonlinear stopping criteria. The coeflicients values are restored after
all Krylov-Broyden steps in the HOKN algorithm have been completed.
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As explained in Chapter 7?7, there is no need to explicitly form the Jacobian
Krylov-Broyden update for the implementation of the HOKN algorithm. All opera-
tions can be done in terms of the updated Hessenberg matrix, the orthogonal matrix
Vint1 and the minimal residual approximation solution y®) ¢ R™. Additionally, the
preconditioner M (*) is kept fixed to retrieve the unpreconditioned nonlinear direction,
sk,

We remark that the HOKN algorithm can be easily changed to the standard
inexact Newton method with a single flag inhibiting the computation of the Krylov-
Broyden steps.

6.3. Numerical results. We compare the effect of the 25Comb and the 25GS
preconditioning on GMRES and BiCGSTAB for two different values of AT. This is
shown in Table 8.

The table shows that both GMRES and BiCGSTAB algorithms perform similarly
for a problem of modest difficulty (i.e., for AT = .05). Notice that BiCGSTAB
employs almost half of the total number of iterations of GMRES but on the other hand,
BiCGSTAB doubles the number of matrix-vector multiplications and preconditioner
calls made by GMRES at each linear iteration (cf. Algorithm ?? and Algorithm ?7).
The cost associated to the matrix-vector multiplication and the application of any of
the two-stage preconditioners makes the performance times comparable between these
two linear solvers. In simple problems, Bi-CGSTAB tends to outperform GMRES,
whereas in more complex problems the latter method tends to be more robust and
efficient as the simulation for AT = .5 reveals.

Also remarkable is the performance of both linear solvers with the 25GS precon-
ditioner in relation to the 2SComb preconditioner. For this particular problem, the
25GS preconditioner reduces by more than a 10-fold the total number of linear itera-
tions. Since the number of nonlinear iterations is practically unchanged, we improve
the computer times by almost 10 times (recall discussion on cost of both schemes).
This result corroborates the observations made in the previous section for sample
matrices extracted from this physical model.

TABLE 8
Summary of linear iterations (L), nonlinear iterations (NI), number of backtracks (NB) and execution
times of GMRES and Bi-CGSTAB with the use of the 25Comb and the 25GS preconditioners. The
semulation covers 20 time steps with AT = .05 and AT = .5 for a problem of size 8 x 24 x 24 gridblocks
on a mesh of 4 X 4 nodes of the Intel Paragon. (*): Backtracking method failed after the 17th time
step; (**): AT was halved after the 16th time step.

AT | Linear solver/Prec. LI NI  NB Time(Hrs.)
GMRES/2SComb 1450 45 0 1.10

.05 | GMRES/2SGS 102 49 0 0.11
Bi-CGSTAB/2SComb 855 45 0 1.19
Bi-CGSTAB/25GS 66 4 0 0.07
GMRES/2S5Comb 6745 100 O 6.37

.5 GMRES/25GS 538 107 O 0.51
Bi-CGSTAB/2SComb(*) | 2808 190 41  5.62
Bi-CGSTAB/2SGS (**) | 493 102 12 0.70

BiCGSTARB fails twice for different reasons. For At = .5, the 25GS preconditioner
forces a reduction of the time step due to the high changes of pressures and concen-
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trations within the time step. In many reservoir simulation codes it is customary to
regulate the next time step according to a maximum allowable change of pressures and
saturations within the current time step. This prevents possible loss of material bal-
ance due to the deterioration or eventual failure of the nonlinear solution. Shortening
the time step increases the chances of convergence for the nonlinear method.

The failure with the 25Comb preconditioner is more serious. The line-search failed
because the linear solver was unable to converge at the maximum tolerance allowed
(0.1, in our case). Therefore, BICGSTAB could not provide an acceptable direction
for decreasing || F'||. Note that, before breakdown, this execution had undergone a high
number of backtracks and nonlinear steps.

—— HOKN/2SGS
— — - Newton/2SGS
Newton/2SComb

RNRN

.
50 100 150
GMRES iter.

Fig. 19. Number of accumulated GMRES iterations vs Relative nonlinear residual norms (NRNR)
using the HOKN/25GS, Newton/25GS and Newton/25Comb solvers on 12 nodes of the IBM SP2 for
a problem size of 16 x 48 x 48 at the third time step.

Figure 19 illustrates the relatively strong impact that both HOKN /2SGS and New-
ton/2SGS solvers have in the simulation. For a moderate problem size, GMRES with
2SComb preconditioning takes above 10 times more linear iterations than with 25SGS
preconditioning. The Krylov-Broyden steps in the HOKN method reduce slightly
more this number of accumulated iterations. This is accomplished by a more rapid
nonlinear convergence.

Figure 20 expresses GMRES iteration effort in terms of computer time. The
difference is now less prominent between the 25Comb and 25GS preconditioning. The
line correction in the 25Comb preconditioner contributes to reducing the cost for
solving the pressure system. This method was not introduced in the 25GS in order to
preserve the highest possible robustness. The line correction method in the 25GS has
some difficulties due to the lack of diagonal dominance of the pressure block matrix
(i.e., this situation does not happen for concentrations coefficients where, contrarily,
the system is really easy to solve). This loss of diagonal dominance is observed when
there are relative small capillary pressure gradients compared to permeability gradients
of the wetting phase at large time steps, violating then the conditions of Theorem ?7.
Since the line-search backtracking method allows to handle far guesses to the nonlinear
solution, it is preferred to reinforce the robustness of the preconditioner by GMRES
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Fig. 20. CPU time vs Relative nonlinear residual norms (NRNR) using the HOKN/25GS, New-
ton/25GS and Newton/25Comb solvers on 12 nodes of the IBM SP2 for a problem size of 16 x 48 x 48
at the third time step.

in order to be able to take larger time steps. We remark that the line-correction
method still works fine in the 25GS preconditioner for small time steps but with
greater restriction than in the 25Comb approach, where the decoupling is partial and
more of the elliptic properties of pressures coefficients are preserved.

Despite of this, the HOKN/2SGS solver still outperforms by almost a three-fold
the timings of the inexact Newton/2SComb solver.

The previous analysis for a particular time step explains clearly the saving of
GMRES iterations for a moderately long simulation. Figure 21 shows that the new
HOKN/2SGS spends a considerably smaller amount of GMRES iterations compared
to the Newton/2SComb solver.

As before, since one GMRES iteration is more expensive with the 25GS precon-
ditioner than with the 25Comb preconditioner the Figure 22 exhibits a fairer reality.
Nevertheless, the timings of the simulations are reduced in more than a third with the
new solver.

Figure 23 shows that not only linear iterations but also nonlinear iterations are
reduced. This figure illustrates the effect of using only one Krylov-Broyden step per
nonlinear iteration. Although, the HOKN does not imply a noticeable speedup over
the inexact Newton method (due in great to its limited parallel capabilities and the
ill-conditioning of the Jacobian matrix) its use is still advisable for achieving better
material balance. In most cases, relative nonlinear residuals are driven closer to the
solution than in those cases where the Krylov-Broyden step was disable. We also,
believe that the HOKN effectiveness is attenuated due to the decoupling operation
that acts as a left preconditioner of the system. This introduces further concerns
in the approximation of the Krylov-Broyden update for simultaneous left and right
preconditioning of the Jacobian matrix.
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nodes.
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Fi1G. 22. Performance in accumulated CPU time of the HOKN/25GS and Newton/25Comb solvers
after 100 time steps of simulation with AT = .05 of a 16 x 48 x 48 problem size on 16 SP2 nodes.
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F1G. 23. Performance in accumulated nonlinear iterations of HOKN/25GS, Newton/25GS and New-
ton/25Comb solvers after 100 time steps of simulation with AT = .05 of a 16 x 48 x 48 problem size
on 16 SP2 nodes.
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