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Abstract

We discuss two-stage preconditioners for solving systems of coupled nonlinear par-
tial differential equations in the modeling of underground multiphase flow phenom-
ena. The linear systems arising from the discretization and Newton linearization are
nonsymmetric and indefinite but coefficient blocks associated with a particular type
of unknown possess properties that can be exploited to improve the conditioning of
the coupled system. We show through theoretical discussion and numerical experi-
ments that decoupling strategies combined with two-stage preconditioners are more
effective to accelerate Krylov subspace methods such as GMRES and BiCGSTAB
than standard ones which “blindly” precondition the entire coupled linear system.
We also show a distributed memory parallel implementation of some of the iterative
schemes proposed in this work.

1 Introduction

Nowadays, the idea of solving partial differential equations (PDE’s) involving
millions of unknowns is becoming plausible and attractive to the numerical an-
alyst and the application programmer in science and engineering. In particular,
the need for solving such large problems with several unknowns per gridblock
has become one of the main challenges in the reservoir community. Therefore
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the conception of robust and efficient iterative solvers plays an important role
in the oil industry research in connection to solving coupled sets of nonlinear
equations as obtained by a fully implicit discretization of multi-phase models.

In this work we focus our attention on two-stage procedures (also known in
the literature as nested or inner-outer procedures; see e.g., [2,13,17,20]). We
address their use as preconditioners for the several large sparse linear systems
arising from the cell-centered finite difference or, equivalently, lowest-order
mixed finite element discretization (with an appropiate quadrature rule; see
[32]) and the subsequent Newton linearization of the coupled algebraic sys-
tem of nonlinear equations. These linear systems (i.e., instances of Newton
equations) are nonsymmetric and highly indefinite. Not surprisingly, specific
preconditioners for these type of problems are not frequent in the literature
due in part to the complexity suggested by the contrasting physical behav-
ior of the variables involved: pressures (elliptic or parabolic component) and
saturations (hyperbolic or convection-dominated component.)

Despite the difficulty of these linear systems, there are certainly some “nice”
properties associated to the coefficient blocks that affect each family of nodal
unknowns. Under mild conditions regularly met at a modest time step size,
each of these blocks are irreducible and diagonally dominant. Additionally,
the strict diagonal dominance in some of these blocks leads to the M-matrix
property. These algebraic properties can be exploited so that better condition-
ing can be achieved in the entire coupled system. Moreover, devices leading
to this desirable situation help weaken the coupling between the nonlinear
partial differential equations represented by the off-diagonal blocks. We call
these devices decoupling operators and use them as a preprocessing step to
enhance the effectiveness of two-stage preconditioners. These preconditioners
are aimed at adding efficiency and robustness to two well known Krylov sub-
space iterative methods: GMRES and BiCGSTAB. Results of this work are
applicable to hybrid Krylov-secant methods developed by the authors [25] and
also to higher order Krylov-based inexact Newton methods [23].

This paper is organized as follows. Section 2 covers the model equations, their
discretization and linearization by the Newton method. In Section 3, we an-
alyze the structure of the Jacobian linear system. Section 4 focuses the dis-
cussion on two different decoupling operators and their ability to cluster the
eigenvalues of the original coupled system. Section 5 is devoted to discussing
the family of two-stage procedures and to describing those preconditioners
that we consider most appropriate in our context. Technical discussion is sup-
ported by experiments in Section 6. Conclusions are given in Section 7.



2 Description of the Problem

The paper concentrates the analysis on the equations for two-phase black-
oil simulation which constitute the simplest way to realistically model multi-
phase flow and transport in porous underground formations. Extensions to
more unknowns per gridblock are readily evident.

2.1 Diufferential Equations

The basic equations for two-phase black-oil simulation consist of conservation
equations for a wetting (i.e., water) and a non-wetting (i.e., oil) phase, denoted
by subscripts w and n, respectively. A more thorough description of the model
can be found in [3]. The mass conservation of each phase is given by
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where p; is the density, ¢ is the porosity, S; is the saturation, ¢ is time, ¢
is the source term with denotes the production/injection rates at reservoir
conditions, and u; is the phase Darcy velocity which is expressed as
Kk'rl
i
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where K is the absolute permeability tensor, k,; is the relative permeability,
o 1s the viscosity, P, is the pressure, ¢ is the gravity and Z is the depth. The
subscript [ can be either w for the wetting or n for the non-wetting phase.
These equations are coupled through the following extra relations:

— Wetting and non-wetting saturations add up to one: S, + 5, = 1.
— Capillary pressure: P, (S,) = P, — P,.
— Relative permeabilities depend on both location and saturation.

The model also allows for slight compressibility of both phases, i.e., p; (P) =
pore’tt, where pg; and ¢; are given physical constants. Absolute permeability,
porosity, viscosity, capillary pressure and depth depend only on location.

The simulator used in the experiments presented in this work can accommo-
date problems from both the petroleum and the environmental engineering



disciplines for it can specify general boundary conditions given by

ou, -n+vP,=h, and ou, -7 +vP, = h,,

where o and v are spatially varying coefficients, 7 is the outward, unit, normal
vector and h; is a spatially varying function. Initially, P, and S, are specified.
A gravity equilibrium condition is then used to solve for an initial value of
Sp. The primary unknowns in our simulator are P, and ¢, = p,5,, i.e., the
nonwetting phase concentration (or, perhaps, more properly mass per unit
pore volume). All other variables can then be computed explicitly based on
these two.

In the case of slight compressibility, our system in the primary unknowns in-
cludes one nonlinear parabolic equation in terms of pressure and one nonlinear
convection-diffusion equation in terms of concentration [3]. In this model, there
are weak nonlinearities related to those variables that depend upon pressures
of one phase (e.g., densities) and their effect depends on the degree of pressure
change. In contrast, strong nonlinearities are present in variables that depend
on concentrations such as relative permeability and capillary pressure. The
pressure equation degenerates into an elliptic equation when both phases are
incompressible (i.e., ¢, = ¢, = 0). On the other hand, the diffusive term in
the latter equation vanishes in the absence of capillary pressure, giving rise to
a first order quasi-linear hyperbolic equation.

2.2  Discretization

In the context of the two-phase problem being discussed in this work, both
pressure and concentration unknowns (degrees of freedom) occupy the centers
of the discretization blocks and velocities are approximated on the edges or
faces of the discretization blocks. The components of the flow coefficients or
mass mobilities, A\; (I = n,w) between two grid elements are defined as follows

T+1
AT+1 — pz_kz K. .
li+1/2,5k = i+1/2,7ks
Pt/ iv1/2,5.k

where the superscript 7'+ 1 denotes the (7' 4 1)-th approximation of the New-
ton iterates to a value at the (n 4 1)-th time level; the subscripts ¢, and k
indicate the grid block location. The bracketed factor on the right hand side is
approximated through upstream weighting and the permeability is weighted
harmonically in the flow direction to account for variations in grid block sizes.

Discretization of the model equations (1)-(2) is performed by block-centered
finite differences (or, equivalently, by lowest-order mixed finite elements) obey-



ing, for a diagonal premeability tensor, a seven point stencil for pressures and
concentrations of both phases, thus giving rise to 28 coefficients associated
with an internal node. This results in the nonlinear algebraic system
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+ similar terms for the y and z directions,

where Aziy1/9 = (241 —2;)/2, i.e., the cell midpoint along the z direction and
Vijie = Az;Ay;Azp¢ypr, i.e., the pore volume. In a similar way, Ay; 1/, and
Az;yq1y are defined. Dawson et al. [12] extended this to a 19-point stencil in
space and use a full permeability tensor to handle underground heterogeneities.
Numerical experiments in Section 6 are done using this extension.

The extra relations mentioned in the previous subsection and their partial dif-
ferentiation with respect the primary unknowns are used in obtaining the New-
ton linearization of the nonlinear conservation equations. Small compressibility
allows for some simplifications, without affecting the validity of the numerical
approximation. The above procedure follows the description by Wheeler and
Smith [33] on developing a parallel black-oil simulator. Further insights about
discretization of these equations can be found in [3].

2.3 Newton framework

The fully implicit formulation of the two-phase black-oil equations leads to
the solution of (3) for each time step, which can be abstractly represented by
F(u) =0, where F' : IR" — IR". Here, the vector u represents pressure and
concentration unknowns of the non-wetting phase.

The composition of Newton with a Krylov iterative solver with a criterion for
defining linear tolerances dynamically, and a line-search backtracking strategy

(@]



[14] is the basis of our inexact Newton algorithm and is described as follows:
Algorithm 1 (Inexact Newton method)

1. Let u(® be an initial guess.

2. For £ =0,1,2,... until convergence do

2.1 Choose n® € [0,1).

2.2 Using some Krylov iterative method, compute a vector s(¥) satisfying

JB ) = _ps) (k) (4)

r(k)
with 7H I (k)
TeCam)] =7

2.3 Set w1 = (k) 4 \(k) 5(k)

The residual solution, r(¥), represents the amount by which the solution, s,
given by the Krylov iterative solver fails to satisfy the Newton equation (or Ja-
cobian equation), i.e., J® k) = ) The step length A*) is computed by a
line-search backtracking method to ensure a decrease of f (u ) = 1F (u ) F (u).
The solution s*) of (4) should be a descent direction for f(u(*) [14] In prac-
tice, the final residual given by the iterative linear solver is acceptable when-
ever the Dembo-Fisenstat-Steihaug condition is met [13], i.e

[r®[ = F® + BB <ng® PO, 0<n® <ppa <1, (5)

where m indicates the number of linear iterations employed. The linear tol-
erance n*) is known as the forcing term of (5). Heuristics to select linear
tolerances or forcing terms according to the progress of the inexact Newton
method are given in [15,16]. The main goal here is to prevent oversolving of the
equation whenever there is a considerable disagreement between the nonlinear
function F' and its local linear model. Practical experiences on this ideas in
the context of reservoir simulation are reported in [12]. Finally, full description
and several pointers into the literature of Krylov subspace iterative methods
can be found in [5]. Their use as linear solvers within Newton’s method are
detailed for instance, in [10].

3 The algebraic coupled linear system framework

We now provide general description of the linear systems (i.e., Newton equa-
tion) arising in step 2.2 of Algorithm 1. We identify properties associated
with the blocks of the partitioned system and establish some moderate as-
sumptions to facilitate the analysis and the development of the procedures
on which the preconditioners are based. These assumptions are not intended



to give a definitive characterization of real life simulation matrices but are
met when the time step is short enough to ensure convergence of the New-
ton method itselt and, therefore, provide a framework for evaluating the last
advances in preconditioning coupled linear systems in reservoir engineering.

3.1 Structure of Resulting Linear System

Each linear system associated with the two phase model depicted in (1)-(2)
can be partitioned in the following 2 x 2 block form

Y S n
Je—fo [P (7)) (6)

Jcp Jcc & fw

Each block J; ;,2,7 = s,p is of size nb x nb, where nb, is the number of grid
blocks and f, (fw), is the residual vector corresponding to the non-wetting
(wetting) phase coefficients.
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Fig. 1. Matrix structure of linear systems in the Newton iteration.

Each group of unknowns is numbered in a sequential lexicografic fashion: the
pressure unknowns are numbered from one through the total number of grid
blocks (nb) and the concentrations are numbered from nb 4+ 1 through 2nb.

The block J,, has the structure of a purely elliptic problem in the non-wetting
phase pressures. The block J,,. of the Jacobian matrix has a structure similar to
that of a discretized first-order hyperbolic problem in the non-wetting phase
concentrations. J., has the coeflicients of a convection-free parabolic prob-
lem in the non-wetting phase pressure and, finally, J.. represents a parabolic
(convective-diffusive) problem in the oil concentrations. The sparsity pattern
of a given Jacobian matrix is shown in Figure 1. We can observe the effect
of the upstream weighting within the block J,. with no superdiagonal coeffi-
cients, which are added to the main diagonal of that block.



3.2 An algebraic analysis of the coupled Jacobian matriz

The presence of slight compressibility ensures invertibility of the Jacobian
matrix [3]. In general, in system (6), the block coefficients .J,,, J,. and J.,
share the following properties (see e.g., [3] for further physical insights and [2]
for mathematical definitions and related theoretical results):

— Diagonal dominance,

— Positive diagonal entries and negative off-diagonal entries (i.e., they are
Z-matrices), and

— Irreducibility.

Strict diagonal dominance in all rows is only present in J,. and J,, as result
of compressibility and pore volume term contributions to the main diagonal
of these blocks. In consequence, these blocks are nonsingular, positive stable
and M-matrices. Strict diagonal dominance for some of the rows of J,, can be
achieved by the contribution of bottom hole pressures specified as part of the
boundary conditions, making this block irreducible and diagonally dominant.
In addition, under small changes of formation volume factors® and flow rates
between adjacent grid blocks both blocks J,, and J., are nearly symmetric.

The concentration coefficient block —.J.. presents algebraic properties simi-
lar to the other blocks. It has a convection-diffusion flavor characterized by
capillary pressure derivative terms (the diffusive part) and wetting phase rel-
ative permeability derivative terms (the convective part). The diffusive part
becomes dominant over the convective part when capillary pressure gradients
are higher than relative permeability gradients of the wetting phase. This is
likely to occur at the beginning and end of the of the simulation when the
capillary pressure derivative with respect to wetting phase concentration is

highest.

Desirable diagonal dominance in —.J.. can indeed be achieved by shortening
the time step. We have observed that the conditioning of this block has an
immediate incidence on the conditioning of the whole system. Moreover, loss of
diagonal dominance of this block not only affects negatively the linear solver’s
convergence rate but also compromises the Newton convergence even with a
fairly accurate solution of the linear system. Hence, it appears that this block
is crucial in determining the conditioning of the entire system. The reader can
verify the resemblance between the spectrum of J.. and that of the Jacobian
J through inspection of Figure 2 and Figure 3.

® Formation volume factors of each phase are defined as the ratio of the volume
occupied by the phase at reservoir conditions to the volume occupied at stock-tank
or atmospheric conditions.



We should stress that the “degree” of diagonal dominance is proportional to
the pore volume of the grid blocks and inversely proportional to the time
step size (except for J,,, whose diagonal dominance is independent of At). On
the other hand, definition of bottom hole pressures as part of the boundary
conditions enhances the diagonal dominance of the blocks, whereas specified
rates in the source wells do not affect the diagonal dominance in any way.
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Fig. 2. Spectrum of the sample Jacobian matrix to be used throughout the discussion
on two-stage preconditioners.

In this work, we assume the blocks J,, and —J.. are irreducibly diagonally
dominant and the blocks J,. and J,, are diagonally dominant. With the mi-
nus sign in front of J.. all blocks are Z-matrices with positive diagonal entries.
These conditions do not guarantee nice properties on the whole matrix J.
Moreover, the Jacobian matrix is highly non-symmetric and indefinite in prin-
ciple. This is the main argument in favor of decoupling strategies to generate
preconditioners for (6) since better convergence behavior can be obtained by
exploiting the algebraic properties of the Jacobian blocks.
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Fig. 3. Spectra of the blocks composing the sample Jacobian matrix. From top to
bottom, they correspond to J,,, Jpe, Jop and Jo..

In the next section, we progressively illustrate our analysis by looking at spec-
trum changes of a typical Jacobian matrix after applying different operators,
resulting from a small scale reservoir simulation (i.e., a problem with grid size
of 8 x 8 x 4) where the blocks J,,, J,., J., and —.J.. are positive stable, as
clearly depicted in Figure 3. Figure 2 shows that the matrix is indeed highly
indefinite. Note that although the eigenvalues are largely spread along the
negative real axis the Sylvester’s law of inertia ensures that there are at least
nb (i.e., half of the total) eigenvalues with positive real part.



4 Decoupling operators

The idea of decoupling operators has not only been barely stated in the general
literature but also has been treated only in passing for reservoir simulation
linear solvers. Somehow their potential as effective preconditioners for coupled
systems has been underestimated or overlooked, perhaps due to the assump-
tion that pressure based preconditioners account for all the dominant effects
in the system. Unfortunately, this is no longer true under large changes in
concentrations likely occurring at high flow rates or at larger time steps.

Bank et al. [4], with their alternate-block factorization (ABF) method, propose
a simple way to weaken the coupling of drift-diffusion equations that occur
in semiconductor device modeling. They use greatly simplifying assumptions,
however, to analyze the decoupling process for preconditioning linear systems.
Recent experiences with Bank et al. decoupling operator are reported in [19].
Their work has value in the context of multi-phase flow since their decoupling
operator leads to a significant clustering of eigenvalues associated with Jaco-
bian matrices occurring during the simulation process. Moreover, in very rare
cases (detected only after extensive experimentation with random matrices
whose blocks obey our assumptions for the blocks of .J), the resulting decou-
pled system fails to have all eigenvalues lying on the right half of the complex
plane. This suggests the convenience of employing such decoupling operators
for removing a high degree of indefiniteness in the original linear system.

4.1 Block decoupling

Consider the Jacobian system shown in (6) and let us define

Do Dy, Dy, _ drag(Jy,) diag(J,e) | )
D., D.. diag(Jep) diag(Je.)

that is, a matrix of 2 x 2 blocks each of them containing the main diagonal of
the corresponding block of J. It clearly follows that

A_l O Dchpp - Dchcp Dchpc - Dchcc
0 A™! Dppdey — Deopdyy Dppdee — Depdpe

JP=D1J =
(8)

D 7D
Jpp JPC

D 1D
Jcp ‘]cc

10



where A = D,,D.. — D,.D.,, and the superscript D have been introduced for
later notational convenience. All main diagonal entries of the main diagonal
blocks are equal to one and those of the off-diagonal blocks are all equal to zero.
In fact, we can expect that the degree of coupling of the off-diagonal blocks
of J has been reduced to some extent. Bank et. al. [4] observe that this op-
eration weakens the coupling between the partial differential equations. Note
that the operation is simple to carry out and may not imply alterations to
the underlying data structure holding the coefficients (e.g., diagonal matrix
storage). In this case, five diagonals of length nb are enough to go back and
forth between the original system J and the partially decoupled system JP.
In physical terms, the decoupling operator tends to approximate pressure co-
efficients as if concentration derivatives were neglected in the transmissibility
computation. Hence, this is like “time-lagging” or evaluating some transmis-
sibilities explicitly. We prefer the form D=.J over JD™! since the latter may
spoil the inherent diagonal dominance of .J.

The ABF decoupling operator admits another representation, by associating
smaller matrix blocks with unknowns sharing a grid block. This means to per-
mute rows and columns of J, i.e., to number every pressure unknown followed
by the concentration unknown at the same grid block (interleaved numbering).
Let P be the matrix that performs such permutation and define

Jig Jig o Jiw

j_ PJPt . tf?,l j2,2 JZ nb

an,l an,2 e an,nb

where

is the 2 x 2 matrix representing the coupling between unknowns sharing a grid
block. It clearly follows for an invertible D that D! = PD~!P!. Hence, D!

is a block diagonal matrix whose blocks are the inverses of the Jacobian blocks

11



associated to a local problem at each grid block. That is,

Jii 0 0

_ 0 J;! 0

D! = »2 (9)
0 0 Jb

To follow the underlying notation, let us define the alternate decoupled system
as JP = D'J = PD"YJP". This idea appears rather natural. In fact, Behie
and Vinsome [7] comment about the possibility of decoupling more equations
in their method but only with respect pressure coefficients. They did not
foresee the positive effect, as we shall note below, that a full decoupling of the
grid block has in conditioning the system.

The core of the combinative approach is the effective solution of pressure-
based systems, so there is no need to go beyond in the decoupling process
as expressed in (9). The coefficients introducing the coupling with pressures
within the grid block are zeroed out so that corresponding coefficients at
neighboring grid blocks are expected to become small. To be more precise, let

(Wp)1 0 0
Wp _ 0 (Wp)2 0 : (10)
0 0 (W)

where (Wp)i = Lyuxnu — €164 + (€} Jse1) eleijgl, and ¢; = (1,0)t. Therefore,
the operator W, (introduced by Wallis in his IMPES two-stage preconditioner
[31]) is a block diagonal matrix that removes the coupling in each 2x 2 diagonal

block with respect to the pressure unknown, i.e., it readily follows that

W,)iJ: ] 7 5 J).. 0
(Wp)la]m = J” — 6167;(]2'2' —|— (ei‘]iiel) 6163 — ( pp)w

12



We could also define an operator W, with the canonical vector ey = (0, 1)t.

The consecutive counterpart, W, of the alternate operator W, is given by

A'D,, 0 Docdyy — Dyodey Dosle — Dyod
0 ]nbxnb Jcp ‘]CC

JV =W, =
(11)

W, W,
Jpp Jpc

W, W,
Jcp ? Jcc P

Clearly, the lower blocks are unmodified as well as the main diagonal of the

resulting pressure block (i.e., JU» = J,, and JV» = J...)
In order to reduce the already decoupled system to one involving a particular
set of coefficients, say, those associated to pressure unknowns, the operator

R! € R™**® is defined by

(R, = 1 if i=kand j=142(k—-1),
p/ty T

0 otherwise

for k = 1,2,....nb. In this lexicographic alternate unknown numbering, we
could also define j = 242 (k — 1) for R’ to obtain the corresponding concentra-
tion coefficients. This presentation can be easily extended to more unknowns
sharing a given grid point (e.g., three phases and multi-component systems.)

4.2 Properties of the partially decoupled blocks

In general, it is difficult (and in fact, an open problem in many related fields
[1,4,9,18]) to characterize properties for the coupled Jacobian matrix and even
more so if it has been affected by some of the operators described above. This
is one of the reasons that theory concerning existence and applicability of
different linear solvers or preconditioners is based on some specific assumptions
on the matrix J. In our case, there is no theoretical result that determines
when J is positive stable and moreover, when the symmetric part of J could
have only positive eigenvalues although the matrix has some blocks that are
M-matrices and present diagonal dominance.

In the applications of iterative solvers it is fundamental to have an idea of the
spectrum of the operators on which they are applied, for if all eigenvalues fall
on the right half of the complex plane, theoretical convergence of the itera-
tive method is ensured. Also important is to detect a possible clustering of

13



the eigenvalues since this may increase the rate of convergence. Two imme-
diate results can be shown for the individual diagonal blocks of the partially
decoupled Jacobian through the action of D, as indicated in (8).

Theorem 1 Let J,, and —J.. be diagonally irreducibly Z-matrices and let J,,
and J., be M-maltrices in IR™*"™ " then Jgo and JP are M-matrices.
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Fig. 4. Spectra of the partially decoupled forms of the sample Jacobian matrix. The
one above corresponds to D~1.J, and the one below to W.J (or equivalently, W.J.)

The straightforward proof can be found in [23]. It can also be shown that the
diagonal blocks J]go and JL are positive stable [2, Theorem 6.12, page 211].

The effect of these properties can be seen in Figure 4 which shows the spec-
trum of the resulting Jacobian matrix after applying the decoupling operators
D! and W. The Jacobian spectrum has been significantly compressed and
shifted to the right half of the complex plane by the action of D™'. Several
similar experiments indicate that breaking the coupling between unknowns is
more effective at this than trying to preserve some desirable properties of the
individual blocks, as intended by the design of W (see the great resemblance
between the spectra of W.J and J).

x 10 °

Fig. 5. Spectra of each block after decoupling with D. From top to bottom, they
correspond to the (1,1), (1,2), (2,1) and (2,2) blocks
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5 Two-stage preconditioners
5.1 A brief background

Appearence of decoupled preconditioners in reservoir simulation dates back
to the combinative preconditioner of Behie and Vinsome [7], based on the
solution of a reduced pressure system. A modification seeking to include global
information was later proposed by Behie and Forsyth [6] and Wallis [30,31]. On
the other hand, the concatenation or combination of inexact preconditioning
stages has been proposed for general symmetric and non-symmetric problems
[30] but specially in the context of domain decomposition [8,22] for flow in
porous media. These efforts, however, do not address the topic of specialized
preconditioners for coupled equations.

The use of two-stage methods is not new (see e.g., [26] and references cited
there). They are also known as inner-outer or inexact iterations [13,20]. In the
context of preconditioning they have been referred to as nonlinear, variable
or inner-outer preconditioners [2,27]. They have been also subject of study in
parallel computing settings (e.g. see [11] and further references therein.) How-
ever, in the context of large-scale systems of coupled equations they strangely
seem to have been overlooked. The renewed interest in using two-stage meth-
ods is due to recent developments in Krylov-subspace methods that make the
solution of the large inner linear systems affordable. For example, the Uzawa
algorithm has been around for more than 35 years and it was only recently that
some researchers formalized its inexact version (e.g., [17]). In same fashion,
intensive work has been recently devoted to extending current non-symmetric
iterative solvers to accommodate the inexactness or variability of the precon-
ditioner from iteration to iteration; e.g. [2,27,29].

5.2 Combinative two-stage preconditioner

Consider the two-stage preconditioner M expressed as the solution of the
preconditioned residual equation M,v = r. Also, denote J"» = W,J. Then
the action of the preconditioner M, is described by the following steps,

Algorithm 2 (Two-stage Combinative)

. Solve (R;jWPRp) p= R;Wpr and denote its solution by p.
. Obtain expanded solution p = R,p.

1

2 ~
3. Compute new residual 7 =r — Jp.
4 17

. Precondition and correct v = M~'7 4+ p.

15



The action of the whole preconditioner can be compactly written as

v= Mty = N [1 — (J= M) R, (RLTR,) R;Wp] . (12)

The preconditioner M is to be preferably recomputed for each Newton itera-
tion, so it should be easily factored. Solving (R;JWPRP) p= R;Wpr iteratively

gives rise to a nested procedure. Note that A, is an exact left inverse of J on

the subspace spanned by the columns of R,. That is, (Mp_lj) R, = R,.
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Fig. 6. Spectra of the Jacobian preconditioned on the right side by the exact version
of the 25Comb (LEFT), by the 25Add (CENTER) and by the 2SMult precondi-
tioners (RIGHT).

This is the preconditioner as stated by Wallis [31]. In contrast to the com-
binative method of Behie and Vinsome [7], he proposes to solve the pressure
system iteratively and formalizes the form of the operators W, and R,. Al-
though Wallis refers to the preconditioner as two-step IMPES preconditioner,
we consider the term two-stage combinative preconditioner (2SComb) more
appropriate, according to a more accepted terminology for convergent nested
inexact procedures and to the former designation employed by Behie and Vin-
some. Figure 6 (left graph) shows the spectrum of the operator for an exact
solution of the pressure system, where M is the tridiagonal part of J.

5.3  Additive and multiplicative extensions

With the use of D! and incorporating the solution to a reduced concentration
system (in addition to that to the reduced pressure system) we can improve
the quality of the previous preconditioner. We propose to accomplish this
additively or multiplicatively. The preconditioned residual v = M4 in the
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additive combinative two-stage scheme (25SAdd) is obtained by

Algorithm 3 (Two-stage Additive)

Solve (RéjDRp) p= R;E‘lr and denote its solution by p.
Solve (RZJDRC) c= Riﬁ_lr and denote its solution by ¢.
Obtain expanded solutions p = R,p and ¢ = R.c.

Add both approximate solutions y = p + c.

Compute new residual ¥ = r —Ajy.

CU B W N =

Precondition and correct v = M~17 4 y.

Instead, the multiplicative combinative two-stage preconditioner (2SMult)
proposes the sequential treatment of the partially preconditioned residuals

to obtain v = M_! r. In algorithmic terms it is given by

Algorithm 4 (Two-stage Multiplicative)

Solve (R;jDRp) p= R;E‘lr and denote its solution by p.
Obtain expanded solutions p = R, p.
Construct new residuals # = r — Jp.
Solve (RZJDRC) c= Rfjj_lf and denote its solution by s.
Obtain expanded solutions s = R.¢.

Compute new residual w =r — J(s + p).

NS TR

Precondition and correct v = M~1w + s + p.

Assuming that both reduced pressures and concentrations are solved exactly
~ -1 —

and introducing the notation t; = R, (RfJDRl) RID™!, for | = p,s, the

action of these preconditioners can be characterized by

v= Mgy =M"[1—(J=M)t,+1)r, (13)
and
v=Mghr=M"[1—(J=M)(t, +t.—tJt,)| r. (14)

The difference between the two preconditioners resides in the inclusion of the
cross term tcjtp resulting from the computation of a new residual in Step 6
of Algorithm 4. Preliminary computational experiences with these precondi-
tioners were presented in [24]. Figure 6 (center and right graphs) shows their
effectiveness in clustering the spectrum around the point (1,0) of the com-
plex plane. Note that the multiplicative two-stage preconditioner produces
the major clustering of the real parts of the eigenvalues around unity among
the three, although the resulting system has a negative eigenvalue.
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5.4 Consecutive block two-stage preconditioners

In the same way that decoupling operators have interpretation in alternate
block form, we can express the preconditioners described above in consecu-
tive block form. However, in this opportunity we present them in a simpler
form, given that the decoupling operator does a “good” job of clustering the
spectrum of the original coupled system. In other words, we apply the block
versions directly to J” and omit the correcting step via M used in the com-
binative preconditioner and its corresponding additive and multiplicative ex-
tensions, since the overhead introduced by this operation is difficult to justify
considering its limited preconditioning effectivity. For the ease of presentation
we consider the factored form of the block-partitioned system (8),

JD Lpsns Jzﬁ (‘]c’i) B SP 0 Trbxnb 0 (1r)
= , 5
0 Luew 0 2 ) \(U2) I L
so that
-1 D (D) !
JD _1 _ (SD) 0 ]nbxnb _Jpc (Jcc) 7
( ) - (Jclz)_l JL (SD) B (Jclz) - 0 Lbxnb 1o

where SP = J2 — J2 (J2) 7 D

zp> 15 the Schur complement of J D with re-

t
spect to JP, If rP = (TD T‘D) is a given residual, the inexact action of the

nyw

partitioned blocks associated to (16) can be described as follows.
Algorithm 5 (Block solving)

Solve JP¢ = r2 and denote its solution by §.
w = 7“7? — Jﬁ(}.

Solve SPp = w and denote its solution by p.
y = rg — Jgﬁ.

Solve JPs =y and denote its solution by 3.

Return (p, 3).

S TR W N =

If steps 1, 3 and 5 are solved iteratively instead of via a direct method, we
obtain a two-stage method. Obviously, the convergence of the whole procedure
depends heavily upon the convergence of each individual inner solve. Regard-
ing this as a preconditioner, its efficiency is dictated by the way in which
tolerances are chosen and satisfied for every new outer iteration.
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Fig. 7. Spectra of the Jacobian preconditioned on the right side by the exact version
of the 25BJ (LEFT), by the 25GS (CENTER) and by the 2SDP preconditioners
(RIGHT).

Clearly, a preconditioner like this is costly to implement in our context. It de-
mands the solution of three linear systems with S¥ probably dense. However,
under this presentation it is straightforward to devise the steps for carrying
out the action of different approximations to (J?)~!. Discarding the first step
of Algorithm 5 and assuming the blocks .J,. and J., to be zero matrices we ob-
tain the two-stage block Jacobi (2SBJ) preconditioner whereas the two-stage
Gauss-Seidel (25GS) results from neglecting only the block J,.. This reduces
Step 3 of Algorithm 5 for both 2SBJ and 2SGS to the solution of J]f;p =D,

These preconditioners (for exact solution of the block subsystems) yield the
spectra shown in Figure 7 (left and center graphs). The left graph shows
a significant clustering of the eigenvalues around the complex point (1,0)
produced by 2SBJ. Not surprisingly, the 2SGS preconditioner does an even
better job of clustering the eigenvalues except for one that appears separated
from the rest as shown on center graph. Also, its action is similar to that
of the 2SMult although the latter leaves one eigenvalue on the left half of
the complex plane. This fact illustrates the close relationship between these
preconditioners.

A more robust preconditioner can be obtained by means of a better approx-
imation to the Schur complement, S, where all blocks of the original matrix
are involved. In order to do this at reasonable computational costs, it is cus-
tomary to provide a simple approximation to (Jgj)_l. Strategies involving the
Schur complement have been employed in several linear solver variants. In
CFD problems, many segregated-type algorithms work under this concept. A
classical example is the Uzawa algorithm which solves the Schur complement
with respect to velocity coefficients by the Richardson iteration. In contrast
to flow in porous media applications, the global discretized equation is never
assembled and solved in its entirety for fully implicit formulations. Many vari-
ations are possible (see e.g., [21]) ranging from solving separately for each
nodal unknown to solving simultaneously for all the degrees of freedom asso-
ciated with one or some (but not all) of the primary unknowns. Among the
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several variants, we construct a third preconditioner inspired by the discrete
projection method proposed by Turek [28] to solve saddle point formulations
arising from the discretization of Navier-Stokes equations for incompressible
flow. The algorithm departs from an approximation to the Schur complement
with respect pressures and solves iteratively the hyperbolic component given
by the velocities (role represented by concentrations in our case).

Algorithm 6 (Two-stage Discrete Projection)

- Set (J2) 7~ (42,
. Solve [J]g — o () Jg;] v, =2 = 2 (72) 7" 0. Obtain .
. Solve JPy, = rD — J,0p. Obtain o..

. Return (0,,0.)%, i.e., the preconditioned residual corresponding to (r,, 7).

_ww N -

The idea behind this preconditioner is to give a sharper solution to pressures
given some approximation to concentration coefficients. We propose this al-
gorithm based on the Schur complement with respect concentrations since it
is more closely related to the IMPES philosophy than the Schur complement
with respect pressures which would resolve more accurately the concentration
components. Throughout this work, we refer to this preconditioner as discrete
projection two-stage preconditioner (2SDP).

The first step in Algorithm 6 is introduced to avoid an additional and costly
iteration to solve JYq = r as suggested in Step 1 of Algorithm 5. The
operator JZ! is chosen to be computationally cheap. Turek [28] suggests that
JZ! be the inverse of the diagonal part of .J.. (i.e., Jacobi preconditioner) which
clearly reduces to the identity matrix in our case. The eigenvalue spectrum

thus generated is shown in Figure 7 (right graph).

5.5  Relation between alternate and consecutive forms

There is a clear relation between the 2SAdd and the 25BJ preconditioners
and between the 2SMult and the 2SGS preconditioners. In the first step of
Algorithm 3, the solution of the system is equivalent to that we would have
obtained in terms of J]f;. In fact,

(RLJPR,) p=RD™'r & (REPD™JP'R,) p = R.PD™ P'r )
& J]f;p =D

Similarly, we can obtain the same correspondence for the concentrations. Once
a solution for both types of variables is computed, the alternate two-stage
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preconditioners proceed to improve the residuals by a correction with the
preconditioner M.

It follows that the error propagation operator associated to the 25Comb pre-
conditioner is given by

Eeomy = 1 — JM;*
= (1 0 (1= Tr, (BR) " RT,).

In a similar way, we can get expressions for the additive and multiplicative
extensions,

Eaga= (1= JM7) [T =T (t,+1t)],

B = (1= TM™) [T =T (t, + e — tJ1,) ]

By (17) we obtain the 2SBJ and 2SGS error propagation operators as
Epy=1—JMzt=1—J"(t,+1t.),

Eas =1~ JMGs =17 (t, + 1t — t.J1,) .

Note that even if we drop the correction step (given by M ) from the alter-
nate two-stage preconditioners, there is no way to reproduce the same relative
residual convergence history within the iterative solver since the alternate type
acts on the coupled system whereas the consecutive type acts on the already
decoupled system which is expected to be easier to solve.

As shown above, the error propagation associated to M is a factor in the
error propagation associated to the whole two-stage preconditioner. To ensure
convergence, the norm of each error should be bounded above by 1. This
imposes the same restrictions on each of the factors involved in the complete
error propagation operator. Moreover, a high error propagation norm (one
marginally close to 1) should be compensated by a low error propagation
from the other factor in order to get faster convergence rates. It is at this
point that we find a serious limitation, not to say a drawback, in the use of M
to correct residuals. This situation seems to be more severe as the problem size
or inherent complexity of the problem increases. To put things in perspective,
we can mention a couple of facts:

— There is an inherent penalty in introducing the operator M. The compu-
tation of new residuals involves one extra matrix vector multiplication and
an AXPY operation. This can certainly be computationally demanding for
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large scale problems and for iterative solvers that perform more than one
call to the preconditioner per iteration (e.g., BICGSTAB, CGS).

— Decoupling operators are effective in clustering the eigenvalues of the origi-
nal highly indefinite Jacobian. The combinative, additive and multiplicative
reimpose this task on the operator M. For instance, we require

| Baaall < 1= 7 (1, + ¢.)

i <1,

for the two-stage additive error propagation operator. If ¢, + ¢, does a good
job of preconditiong J, M should be formulated to have a better or at least,
a comparable effect. Note that the omission the decoupling operation leaves
one with the difficult task of finding an efficient global preconditioner M
for the original Jacobian matrix, which is additionally expected to elimi-
nate those low error frequencies remaining from pressure and concentration
iterations. Not surprisingly, the spectrum plots for the alternate two-stage
preconditioner are less compact than their consecutive counterparts.

Of course, a more elaborated M may eventually provide the desired effective-
ness but at a significantly higher cost. Although the use of the operator M
seems to be better justified in the original combinative method, it still has to
capture part of the hyperbolic behavior contained in concentrations from a
linear problem whose block algebraic properties make it difficult (recall spec-
trum pictures in Figures 3-6), instead of taking advantage of an easier reduced
concentration problem obtained by a better decoupling strategy.

The last point can be made more precise by looking at the computation of

Eaga= (1= JM™) [T =7 (t,+1.)]
= (1= TM) [1= TP (t, + 1) — (T = J°) (1, +1.)] .

Consequently, by taking norms we obtain

[Eaaall < (I[Epsll + 1), (18)

where 7 = H] - jM‘l)L and n = H (j— jD) (t, + t.)||. Equation (18) shows
the penalty introduced by 7 into the final error estimate as a result of leaving
out the preconditioning effect of the decoupling operator. Additionally, this
variable is unlikely to be smaller than || E'gy||. The variable v has to compensate
this penalty by preconditioning effectively with M the original coupled linear

system and decreasing the overall error propagation factor.

The use of M seems to be only justified in special cases. For example, it can
be used for retrieving part of the global information lost in a line correction
method. Other acceptable form could be a coarse representation of the origi-
nal discretization. However, reliable coarse meshes for hyperbolic problems are
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not easy to obtain creating a problem for enhancing concentration residuals.
In general, it should be designed under simple terms on sequential implemen-
tations and with more relaxed bounds if it is intended for vector and parallel
implementations. We believe that better results at lower computational de-
mands can be obtained by incorporating more information contained in the
decoupled blocks and improving the performance of each subsystem solution.

Finally, we remark that Fan et al. just recently arrived at similar observations
in the context of microelectronic device simulation [19]. They experimentally
observed that further preconditioning after the decoupling stage with the ABF
transformation proposed by Bank et al. resulted in significant improvement
compared to block preconditioning alone.

6 Computational experiments

We include both sequential and parallel implementations. In the first one, we
compare the six preconditioners discussed in this work and three other “clas-
sical” ones which do not use any decoupling strategy. In the parallel imple-
mentation part, we only compare the 2SComb (one of the best preconditioners
known so far in the reservoir community) and 2SGS preconditioners (which
incorporates full decoupling strategy as a preconditioning stage).

6.1 Description of test case

Table 1
Physical input data.

Initial nonwetting phase pressure at 49 ft 300pse

Initial wetting saturation at 49 ft .5

Nonwetting phase density 4816/ ft3
Nonwetting phase compressibility 4.2 x 10 °psi~!
Wetting phase compressibility 3.3 x 107 %psi~!
Nonwetting phase viscosity 1.6¢cp

Wetting phase viscosity 0.23¢cp

Areal permeability 150md

Permeability along 1st and 2nd half of vertical gridblocks 10md and 30md

Table 1 summarizes the physical parameters for this problem, and Figure 8
shows the relative permeability and capillary pressure functions used. The

23



o
©
©

08f kn w7
,

o =) ~
T T T

Relative permeabilities
=
T

CapillaryPressure, Psi

w
T

-7 . . . . . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Wetting phase saturation, Sw Wetting phase saturation, Sw

Fig. 8. Relative permeability of both phases (LEFT) and Capillary pressure function
(RIGHT).

model consists of a water injection well located at the coordinate (1,1) of
the plane and a production well (both vertical and with bottomhole pressure
specified) at the opposite corner of the plane. The permeability is uniform in
the areal sense and 5-15 times higher than that in the vertical direction.

6.2 Sequential implementation case

We use non-uniform grid spacing and two different discretization sizes: 8 x8 x4
and 16 x 16 x 4. We ran both cases with time steps At = 0.1, 1.0 days. The
data for the tests was downloaded from the simulation after 1 time step and
after 3 Newton iterations within the current time level. The code including
all the combinations of linear solver and preconditioner tested was written
in FORTRAN 77 and all of the tests were run on a single node of an IBM
SP1(RS6000, model 370, with a 62.5 MHz clock). These nodes give a peak
performance of 125 MFlops and have 128 MB of RAM.

The tests included runs made with both GMRES and BiCGSTAB precondi-
tioned with each of the schemes analyzed and, additionally, with three pre-
conditioners of common use in reservoir simulation (particularly the last two),
i.e., tridiagonal, ILU(0) (incomplete LU factorization with no infill) and block
Jacobi. Table 2 shows the results for all the preconditioners applied to GMRES
and Table 3 shows the corresponding results for BICGSTAB preconditioned
with each of the schemes. Each of these tables has results for the four pos-
sible combinations of time step size and spatial discretization size. The four
columns of each of these sections on both tables list the number of outer linear
iterations, NV, the total elapsed time for the iteration of the solver, T}, the
elapsed time incurred in setting up the preconditioner, 7,, and the average
number of inner linear iterations per one outer iteration, N;,, respectively
from left to right.
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Table 2

GMRES Results. Preconditioners shown from top to bottom: Tridiagonal, Incom-
plete LU factorization with no infill, Block Jacobi, 25Comb, 25Add, 25Mult, 25BJ,

25GS, 25DP.
Time Step Size — At=.1 At = 1.
Precond. Ny T, T, Niq Ny T, T, Niq
Tridiag,. 782 | 12.16 | 0.26 >1000 - -
Prob. | ILU(0) 859 | 109.01 | 0.37 >1000 - -
Size BJ 363 7.60 | 0.17 358 7.57 | 0.18
4 25Comb. 390 | 227.50 | 0.63 42 | >1000 - -
X 25Add. 42 | 83.38 | 1.00| 121 30 79.00 | 0.88 | 200
8 2SMult. 19| 38.38 | 1.00 | 120 18 47.63 | 0.88 | 195
X 25BJ 32| 19.54 | 0.02 | 123 21 24.41 | 0.02 | 198
8 25GS 16 9.53 | 0.02| 119 13 15.42 | 0.02 | 192
25DP 15| 1580 | 0.03 | 122 11 20.39 | 0.04 | 188
Time Step Size — At=.1 At = 1.
Precond. Ny T T, Niq Ny T T, Niq
Tridiag,. >1000 - - >1000 - -
Prob. | ILU(0) 840 | 141.22 | 5.51 >1000 - -
Size BJ 170 | 152.51 | 37.18 424 | 381.22 | 37.44
4 25Comb. 555 | 527.25 | 9.63 15 | >1000 - -
X 25Add. 237 | 680.00 | 13.50 52 384 | 1678.13 | 13.50 80
16 2SMult. 103 | 305.63 | 13.50 52 90 | 392.75 | 13.50 79
X 25BJ 52 | 58.66 | 0.09 52 37 61.77 | 0.09 80
16 25GS 25| 28.77 | 0.09 52 19 31.68 | 0.09 78
25DP 21| 49.91| 0.13 63 17 52.27 | 0.13 85

All of the linear systems were solved iteratively until a norm reduction of

1 x 107® was achieved, relative to the initial one given by the 2-norm of

the right hand side since zero was used as the initial guess in every case.

GMRES(30), with tridiagonal preconditioning and a linear tolerance equal to
that of the outer solves, was used as the two-stage inner solver.

Some general comments of the results are in order. The traditional precondi-

tioners do not take into account any of the physics of the multi-phase model




Table 3

BiCGSTAB Results. Preconditioners shown from top to bottom: Tridiagonal, In-
complete LU factorization with no infill, Block Jacobi, 25Comb, 25Add, 25Mult,

9SBJ, 2SGS, 2SDP.

Time Step Size — At=.1 At =1.
Precond. Ny T, T, Niq Ny T, T, Niq
Tridiag,. 127 3.42 1 0.26 227 6.20 | 0.27
Prob. | ILU(0) 239 | 57.90 | 0.37 >1000 - -
Size BJ 80 298 | 0.17 75 2.83 | 0.17
4 25Comb. 106 | 113.75 | 0.50 40 125 | 253.50 | 0.50 81
X 25Add. 24 | 88.75| 1.00 | 118 34 | 158.38 | 0.75 | 183
8 2SMult. 13| 61.38 | 1.00 | 115 14| 67.38 | 0.75 | 188
X 25BJ 23 | 24.97| 0.02 | 116 24 | 46.91 | 0.02 | 173
8 25GS 11| 11.91 | 0.02 | 115 12| 24.15 | 0.02 | 177
25DP 10| 20.04 | 0.03 | 118 14| 44.01 | 0.03 | 179
Time Step Size — At=.1 At =1.
Precond. Ny T T, Niq Ny T T, Niq
Tridiag,. 176 | 43.37| 5.54 >1000 - -
Prob. | ILU(0) >1000 - - 424 | 381.22 | 37.44
Size | BJ 57 | 118.53 | 45.99 69 | 115.64 | 37.46
16 25Comb. 170 | 292.50 | 9.75 14 180 | 690.00 | 12.00 25
X 25Add. 68 | 361.75 | 13.38 50 61 | 490.63 | 13.18 77
16 2SMult. 44 | 238.88 | 13.38 49 32 | 255.25 | 13.38 75
X 25BJ 41 | 83.21| 0.09 49 23 | 68.91| 0.09 76
4 25GS 171 3582 0.09 50 11| 33.81| 0.09 76
25DP 13| 56.72 | 0.12 61 10 | 58.62 | 0.12 82

and either fail to converge or are outperformed by some of the more thought-
ful preconditioners, as the trend suggests when the spatial discretization is
refined. Notice that neither of the two problem sizes tested here are anywhere

near the size of numerical models that the reservoir simulation community
wishes to tackle in today’s high performance computing environment. In par-

ticular, ILU(0) fails to resolve the low error frequencies. Moreover, the block
Jacobi preconditioner appears to be the more reliable one of the traditional
kind. However, our implementation of block Jacobi inverts directly four blocks
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of the Jacobian matrix. Such a rich block Jacobi preconditioner may not be
realizable in practice, specially in parallel implementations where each of the
blocks should live in one processor to minimize the communication overhead.

Turning to a more detailed analysis of the results, the timings of BICGSTAB
and GMRES are comparable in spite of the lower number of outer iterations
given by BiCGSTAB. This owes to the fact that BICGSTAB has two matrix-
vector multiplies per iteration instead of the single one needed by GMRES.
Additionally, the convergence of BICGSTARB is erratic, as is well known and
can be appreciated in Figure 10.

Comparison between the results for At = 0.1 and those for At = 1.0 shows
a greater number of outer iterations for the first four preconditioners (with a
few exceptions) for the longer time step. However, all of the two-stage (except
for the 2SComb) preconditioners give a smaller number of outer iterations for
the longer time step. The key in interpreting these results is in the action
of the full-decoupling operator implemented for the two-stage preconditioners
and its own power to precondition the system. We believe that the weight
of the off-diagonal Jacobian blocks after full decoupling is less for the longer
time step than for the shorter one and the preconditioner is more effective
as a result. To this point, notice that the combinative preconditioner, which
only uses partial decoupling shows a greater number of outer iterations for
At = 1.0 than that for the shorter At. The increased difficulty of the problem
with a longer time step is reflected in all cases by the growth in the average
number of inner iterations per unit outer iteration.

The number of inner iterations per step of the outer iteration is comparable
in the results for both iterative solvers, except for minor differences due to
particular convergence history of each case. Notice that in the case of the last
five preconditioners N; , shows the accumulated average of both the pressure
and concentration components whereas 25Comb only solves for pressure com-
ponents and therefore show a lower number of inner iterations. An increase
in the time step size damages the diagonal dominance of the main-diagonal
blocks of the decoupled Jacobian thus producing harder inner solves, as re-
flected by the results on both tables. Somehow surprisingly, a growth in the
size of the linear system decreased 1V, in every case.

As for the question of efficiency, the consecutive-type preconditioners, i.e., the
two-stage block Jacobi, Gauss-Seidel and discrete projection, display the best
elapsed times to converge the linear systems typical in fully implicit black-oil
simulation. As mentioned above, although the problem sizes presented here
are only modest, the consecutive preconditioners appear to have the required
robustness for problems of greater size. The combinative preconditioner, for
example, is not robust enough even for these rather friendly problems.
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Fig. 9. Relative residual norms vs. iterations of preconditioned GMRES. Subplot
(1,1): ILU(0) (dot), Tridiag(dash), block Jacobi (solid). Subplot (1,2): 25SComb
(dot), 25Add (dash), 2SMult (solid). Subplot (2,1): 2SBJ (dot), 25SGS (dash), 25DP
(solid). Subplot (2,2): Block Jacobi (dot), 25Mult (dash), 25DP (solid). Problem
Size: 4 x 8 x 8. At =0.1.

According to the trend suggested by outer iterations, the 2SDP appears as the
best preconditioner (although, 25GS achieves similar results). However, this
appreciation can be misleading when looking at overall timings. Note that
25DJ performs more inner iterations on average than its closer competitor
25GS. The reason is that the Schur complement matrix with respect con-
centrations is more poorly conditioned than the pressure and concentration
blocks resulting from the decoupling process. Although, pressure and concen-
tration blocks are M-matrices (recall Theorem 1) there is no guarantee that
Schur complement systems or approximation to them are well behaved in this
case. In all experiments, we use the identity matrix to approximate J2 in the
construction of the Schur complement with respect to concentrations.

A final word is devoted to the comparison of the alternate with the consecutive
preconditioners. The former family is approximately equivalent to the latter
but with the addition of the global preconditioning step given by M (this
step is absent in the consecutive type). The total elapsed times testify to the
high overhead incurred in the application of the global preconditioner of the
alternate schemes. Moreover, as was mentioned above, M should be at least
as effective as a preconditioner as are the individual decoupled pressure and
concentration blocks. However, Mis a preconditioner for the full Jacobian,
which throws us back to beginning of the path, or worse. We are now looking
for a preconditioner for .J that has to beat the action of the decoupled blocks.
These experiments show clearly that this is a loosing proposition and therefore,
the application of M results in wasted time by the iterative solver. It should
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be mentioned that M was chosen as an LU factorization of J with complete
infill inside a bandwidth of 19. The number of bands was chosen so that the
coupling of nearest-neighbor layers was always retained (notice that all cases
have 4 grid blocks in the z-direction, which is most rapidly increasing in the
numbering scheme of the grid blocks). In spite of the assumed robustness of
this global preconditioner, its main effect seems to be the posting of greater
elapsed times T with no reduction in the number of linear iterations.
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Fig. 10. Relative residual norms vs. iterations of preconditioned BiCGSTAB. Sub-
plot (1,1):ILU(0) (dot), Tridiag(dash), block Jacobi (solid). Subplot (1,2): 25Comb
(dot), 25Add (dash), 2SMult (solid). Subplot (2,1): 2SBJ (dot), 25SGS (dash), 25DP
(solid). Subplot (2,2): Block Jacobi (dot), 25Mult (dash), 25DP (solid). Problem
Size: 4 x 8 x 8. At =0.1.

We mentioned in the algebraic analysis of the Jacobian matrix blocks that the
properties we require from the individual blocks are met for reasonable time
step sizes, i.e., clearly our assumptions will not be all valid for At beyond a
given threshold value. We also remarked that the two-stage combinative pre-
conditioner was expected to deteriorate as the time step size increases because
the pressure components (which it is based on) are no longer dominant. The
results of these experiments show that this is the case while not noticeably
affecting any of the other two-stage schemes. In view of these results we be-
lieve there is still considerable room in choosing a At which will guarantee
convergence of the Newton method itself without substantially damaging the
performance of any of the five newly proposed two-stage schemes.

Figure 9 summarizes the convergence behavior of GMRES for the discretiza-
tion size of 8 x 8 x 4 and At = 0.1. On the upper left corner, the plot shows
the results for the three standard preconditioners. The plot on the upper right
shows the convergence of the alternate preconditioners and the one on the
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lower left corner shows the results for the consecutive schemes. The remaining
plot on the lower right corner shows the best results out of each of the other
three plots. Figure 10 shows the same exact arrangement for BICGSTAB. We
note that as the effectiveness of the preconditioner increases, the characteristic
erratic behavior of BICGSTAB gets damped. The results for GMRES testify to
its robustness and efficiency when preconditioned by two-stage methods, spe-
cially of consecutive type. Note, on figure 9, lower-right plot, that the 25SGS
consecutive preconditioner produces a dramatically faster convergence than
does the fastest of the alternate preconditioners.

6.3 Parallel timplementation case

We test parallel implementations of the 2SComb (used with relative success in
reservoir simulation [31]) and 2SGS preconditioners, attached to the Newton
scheme of the simulator described above. The parallel 25Comb preconditioner
includes a z-line correction (see e.g., [22]) and GMRES solution of the 2D
inner system, with block Jacobi preconditioner, giving it some advantage not
exploited in the sequential implementation. The line correction method in the
25GS has some difficulties due to the lack of diagonal dominance of the pres-
sure block matrix when there are relative small capillary pressure gradients
compared to permeability gradients of the wetting phase at large time steps,
thus violating the conditions of Theorem 1. (This situation does not arise in
the concentration coefficient block but this 3D system is really easy to solve
iteratively anyway.) Since the line-search backtracking method helps handle
guesses far from the nonlinear solution, we reinforce the preconditioner robust-
ness by using GMRES to solve both 3D inner problems, with block tridiagonal
preconditioner, in order to be able to take larger time steps. Overall, we es-
timate one linear iteration using the 2SGS scheme to be about 40% more
expensive than using the 2SComb.

Numerical experiments are performed on an Intel Paragon and on an IBM
SP2 parallel machines. The Paragon machine has 42 nodes arranged in a 2-D
mesh topology, 64 Mbytes of RAM plus 16 Kbytes of data cache and a peak
performance of 80 Mflops per node, with a peak interprocessor transfer rate of
40 Mbytes/s. The SP2 machine consists of 16 nodes, each with 128 Mbytes of
RAM and peak performance of 260 MFlops and a bidirectional communication
rate of 50 MBytes/s. We use the MPICH message passing system library for
portability of the simulator.

The data are decomposed in an areal sense (i.e., each processors holds the
same original number of gridblocks along the depth direction), since in most
reservoir domains the vertical dimension is relatively much smaller than the
horizontal plane. The effective manipulation of a full permeability tensor in-
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Table 4

Summary of linear iterations (LI), nonlinear iterations (NI), number of backtracks
(NB) and execution times of GMRES and Bi-CGSTAB with 25Comb and 25GS.
Simulation of 20 time steps with At = .05 and A? = .5 Problem size: 8 x 24 x 24
gridblocks. Intel Paragon processor mesh of 4 X 4 nodes. (*): Backtracking method
failed after the 17th time step; (**): At was halved after the 16¢h time step.

At | Linear solver/Prec. LI NI NB Time(Hrs.)
GMRES/2SComb 1450 45 0 1.10

.05 | GMRES/25GS 102 49 0 0.11
Bi-CGSTAB/2SComb 85 45 0 1.19
Bi-CGSTAB/25SGS 66 4 0 0.07
GMRES/2SComb 6745 100 0 6.37

5 | GMRES/2SGS 538 107 0 0.51
Bi-CGSTAB/2SComb(*) | 2808 190 41  5.62
Bi-CGSTAB/2SGS (**) | 493 102 12 0.70

duces a 19-point stencil discretization for the pressures and concentrations of
the linearized wetting phase equation and, a 19-point stencil for pressures and
a 7-point stencil for concentrations of the linearized non-wetting phase equa-
tion (this gives rise to the 64 coefficient arrays accompanying each gridblock
unknown). Therefore, matrix-vector products involve data communication of
each node with its four lateral and four corner neighbors [12].

Table 4 (Intel Paragon) shows that both GMRES and BiCGSTAB algorithms
perform similarly for a problem of modest difficulty (i.e., for At = .05). No-
tice that BICGSTAB employs almost half of the total number of iterations of
GMRES but, on the other hand, BICGSTAB doubles the number of matrix-
vector multiplications and preconditioner calls made by GMRES at each linear
iteration, making the times comparable between these two linear solvers. In
simple problems, Bi-CGSTAB can outperform GMRES, whereas in more com-
plex problems the latter tends to be more robust and efficient as the simulation
for At = .5 reveals.

Also remarkable is the performance of both linear solvers with the 2SGS pre-
conditioner in relation to the 2SComb preconditioner. For this particular prob-
lem, the 25GS preconditioner reduces by more than a 10-fold the total number
of linear iterations. Since the number of nonlinear iterations is practically un-
changed, we improve the computer times by almost 10 times (recall discussion
on cost of both schemes). This result corroborates the observations made in
the previous section for sample matrices extracted from this physical model.

BiCGSTAB fails twice for different reasons. For At = .5, the 25GS precondi-
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tioner forces a reduction of the time step due to the high changes of pressures
and concentrations within the time step. In many reservoir simulation codes
it is customary to regulate the next time step according to a maximum al-
lowable change of pressures and concentrations within the current time step.
This prevents possible loss of material balance due to the deterioration or
eventual failure of the nonlinear solution. Shortening the time step increases
the chances of convergence for the nonlinear method. The failure with the
25Comb preconditioner is more serious. The line-search failed because the lin-
ear solver was unable to converge at the maximum tolerance allowed (0.1, in
our case). Therefore, BICGSTAB could not provide an acceptable direction for
decreasing ||F'||. Note that, before breakdown, this execution had undergone
a high number of backtracks and nonlinear steps.

28k — #x12x12 1 gl — 4x12x12
- - Bx2ax24 - - Bx24x24
26| 12x36x36 1 2.6 12x36x36

— - 16x48x48 — - 16x48x48
f N 4

Fig. 11. Speedup vs. number of processors for the two-phase problem using the
Newton/2SGS solver on an Intel Paragon (LEFT) and an IBM SP2 (RIGHT) after
20 time steps.

Figures 11 and 12 summarize parallel scaling on the Paragon and IBM SP2.
Note that speedups are normalized to 4-processor runs. For four different
problem sizes, we compare timings on 4, 8 and 12 processors. This was enough
to capture the efficiency trend of the Newton/2SGS solver on both machines.
The simulator scales better on the IBM SP2 than on the Intel Paragon, mainly
due to the lower latency and higher bandwidth of the former. As expected,
the larger the problem size the greater the efficiencies obtained. Note how the
computing time for the smallest problem size is practically governed by the
communication overhead in both machines.

The major bulk of parallelism resides in the computation of the preconditioner.
The block tridiagonal preconditioner used in the innermost GMRES is totally
parallel and sufficient to meet the required linear tolerances. Unfortunately,
most of the operations in the inner and outer GMRES are parallelizable at
the level of BLAS-1 operations (i.e., AXPY’s and inner products). In this re-
gard, the classical Gram-Schmidt is chosen over the modified Gram-Schmidt
to exploit further parallelism in the construction of the Krylov basis with-
out sacrificing stability requirements. (However, the GMRES implementation
contemplates iterative refinement to preserve orthogonality if required.)
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Having in mind the above discussion, the scaling results shown in both figures
are somehow encouraging in spite of the significant portion of code with a
small degree of fine grain parallelism. The results on the Paragon show a more
rapid speedup degradation but at the same time display a greater efficiency
gain as the problem size increases than the SP2. This is explained by the fact
that interprocessor communication on the Paragon is latency-bound because
of the relatively long times needed to set up a message of zero length. The
much shorter latencies of the SP2 make the interprocessor transfer time more
linearly dependent on message length, thus keeping the ratio of computation
to communication fairly constant for different problem sizes.
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Fig. 12. Log-log plot of the number of processors vs. execution time for the two-phase
problem using the 2SGS preconditioner on an Intel Paragon (LEFT) and on an IBM
SP2 (RIGHT) after 20 time steps.

The log-log plots in Figure 12 show the deviation from ideal speedup (indicated
with slope -1) that all problem size cases present on both the Paragon and
the SP2. This complements the observation that timings are less sensitive to
degradation as more processors are added in the SP2. In these experiments
the SP2 shows to be from 50% to 100% faster than the Paragon. In theory
this margin is expected to be larger, but the author suspects that memory
hierarchy effects may be deteriorating the performance of the SP2.

Figure 13 (left graph) illustrates the relatively strong impact of the 25GS
preconditioner on the simulation. For a moderate problem size, GMRES with
25Comb preconditioning takes over 10 times more linear iterations than with
25GS preconditioning. The difference between the 25Comb and 25GS pre-
conditioning is less prominent in terms of computer time (right graph). The
line correction in the 25Comb preconditioner contributes to reducing the cost
for solving the pressure system since, at the beginning of this simulation, the
capillary pressure gradients are high. This method was not introduced in the
2SGS in order to preserve the highest possible robustness. Despite this the
Newton/2SGS solver still outperforms by almost a three-fold the timings of
the inexact Newton/2SComb solver.

The previous analysis for a particular time step explains clearly the saving of
GMRES iterations for a moderately long simulation. Figure 14 (left graph)
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Fig. 13. Number of accumulated GMRES iterations vs. relative nonlinear residual
norms (LEFT) and CPU time vs. relative nonlinear residual norms (RIGHT) using
the 25GS and 25Comb preconditioners on 12 nodes of the IBM SP2 for a problem
size of 16 x 48 x 48 at the third time step.
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Fig. 14. Performance in accumulated GMRES iterations (LEFT) and accumulated
CPU time (RIGHT) of Newton/2SGS and Newton/25Comb solvers after 100 time
steps of simulation with At = .05 of a 16 x 48 x 48 problem size on 16 IBM SP2
nodes.

shows that the new Newton/2SGS spends a considerably smaller amount of
GMRES iterations compared to the Newton/2SComb solver. As before, since
one GMRES iteration is more expensive with the 25GS preconditioner than
with the 2SComb preconditioner the Figure 14 (right graph) shows that sim-
ulation times are reduced by more than a three-fold with the new solver.

7 Conclusions

We have described a family of two-stage preconditioners for linear systems
arising in coupled systems of nonlinear partial differential equations modeling
multi-phase flow. Qur analysis has shown that a simple decoupling strategy
combined with inexact solution of the main blocks governing the physical
process provides a powerful device to speedup the convergence of Krylov it-
erative methods such as GMRES and BiCGSTAB. Our results outperform a

few traditional approaches proposed in the literature of reservoir engineering:
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ILU(0), block Jacobi or banded preconditioner (for preconditioning of the en-
tire system), and an inexact version of the combinative approach (originally
developed for coupled linear systems).

These two-stage preconditioners have been developed under a simple and gen-
eral basis: they are easy to implement and can afford the use of several ef-
ficient iterations to solve the resulting inner linear systems. We believe that
this simplicity and generality provides a satisfactory vehicle to extend iter-
ative linear solver theory already developed for individual PDE’s to coupled
systems of PDE’s. Although the ideas presented here could be fitted into sev-
eral scenarios, special considerations on the physics behind the problem may
lead to further enhancements and interpretations. In our particular case, the
consideration of full decoupling translated in a way to concentrate parabolic
convection-diffusion information in the main diagonal blocks producing the al-
gebraic properties that make them amenable to efficient inner iterative solvers.

Also included is a parallel implementation of the best two-stage preconditioner
proposed in this work to expose its high performance capabilities. However,
the possibilities here are enormous since a higher degree of scalability can
be achieved by focusing on well known parallel strategies for preconditioning
single phase problems (e.g., overlapping and non-overlapping Schwarz domain
decomposition methods, multigrid, line-correction).

Full understanding and conception of efficient preconditioners for coupled lin-
ear systems is a difficult task. Only a few experiences have been reported on
the topic even though coupled systems of equations arise in many applica-
tion areas. Further theoretical investigation and computational experiments
remain to be done with more PDE’s coming into play, such as in the case
of compositional and thermal reservoir simulation. We certainly encourage
research in this direction.
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