PARPACK: An Efficient Portable
Large Scale Eigenvalue Package
for Distributed Memory Parallel

Architectures

K. J. Maschhoff
D. C. Sorensen

CRPC-TR96659
October 1996

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

revised November 1996

P_ARPACK: An Efficient Portable Large Scale
Eigenvalue Package for Distributed Memory
Parallel Architectures

K. J. Maschhoff and D. C. Sorensen

Rice University

Abstract. P_.ARPACK is a parallel version of the ARPACK software.
ARPACK is a package of Fortran 77 subroutines which implement the
Implicitly Restarted Arnoldi Method used for solving large sparse eigen-
value problems. A parallel implementation of ARPACK is presented
which is portable across a wide range of distributed memory platforms
and requires minimal changes to the serial code. The communication
layers used for message passing are the Basic Linear Algebra Commu-
nication Subprograms (BLACS) developed for the ScaLAPACK project
and Message Passing Interface(MPI).

1 Introduction

ARPACK is a collection of Fortran77 subroutines designed to solve large scale
eigenvalue problems. ARPACK stands for ARnoldi PACKage. ARPACK software
is capable of solving large scale non Hermitian (standard and generalized) eigen-
value problems from a wide range of application areas. The software is designed
to compute a few, say k, eigenvalues with user specified features such as those of
largest real part or largest magnitude using only n-O(k)+O(k?) storage. A set of
Schur basis vectors for the desired k& dimensional eigen-space is computed which
is numerically orthogonal to working precision. Eigenvectors are also available
upon request. Parallel ARPACK (P_ARPACK) is provided as an extension to the
current ARPACK library and is targeted for distributed memory message passing
systems. The message passing layers currently supported are BLACS and MPI.

The Arnoldi process is a technique for approximating a few eigenvalues and
corresponding eigenvectors of a general n x n matrix. It is most appropriate
for large structured matrices A where structured means that a matrix-vector
product w < Av requires O(n) rather than the usual O(n?) floating point
operations (Flops). This software is based upon an algorithmic variant of the
Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When
the matrix A is symmetric it reduces to a variant of the Lanczos process called
the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed
as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR
technique that is suitable for large scale problems. For many standard problems,
a matrix factorization is not required. Only the action of the matrix on a vector
is needed.

The important features of ARPACK and P_.ARPACK are:

A reverse communication interface.

e Ability to return k eigenvalues which satisfy a user specified criterion such as
largest real part, largest absolute value, largest algebraic value (symmetric
case), etc. For many standard problems, the action of the matrix on a vector
w «— Av is all that is needed.

e A fixed pre-determined storage requirement suffices throughout the compu-
tation. Usually this is n - O(k) 4+ O(k?) where k is the number of eigenvalues
to be computed and n is the order of the matrix. No auxiliary storage or
interaction with such devices is required during the course of the computa-
tion.

e Sample driver routines are included that may be used as templates to imple-
ment various spectral transformations to enhance convergence and to solve
the generalized eigenvalue problem.

e Special consideration is given to the generalized problem Ax = MxA for
singular or ill-conditioned symmetric positive semi-definite M.

¢ Eigenvectors and/or Schur vectors may be computed on request. A Schur
basis of dimension £ is always computed. The Schur basis consists of vectors
which are numerically orthogonal to working accuracy. Computed eigenvec-
tors of symmetric matrices are also numerically orthogonal.

o The numerical accuracy of the computed eigenvalues and vectors is user
specified. Residual tolerances may be set to the level of working precision.
At working precision, the accuracy of the computed eigenvalues and vectors
is consistent with the accuracy expected of a dense method such as the
implicitly shifted QR iteration.

e Multiple eigenvalues offer no theoretical or computational difficulty other
than additional matrix-vector products required to expose the multiple in-
stances. This is made possible through the implementation of deflation tech-
niques similar to those employed to make the implicitly shifted QR algorithm
robust and practical. Since a block method is not required, the user does not
need to “guess” the correct block size that would be needed to capture mul-
tiple eigenvalues.

2 Parallelizing ARPACK

The parallelization paradigm found to be most effective for ARPACK on dis-
tributed memory machines was to provide the user with a Single Program Mul-
tiple Data (SPMD) template. The reverse communication interface is one of the
most important aspects in the design of ARPACK and this feature lends itself
to a simplified SPMD parallelization strategy. This approach was used for pre-
vious parallel implementations of ARPACK [2] and is simple for the the user to
implement. The reverse communication interface feature of ARPACK allows the
P_ARPACK codes to be parallelized internally without imposing a fixed par-
allel decomposition on the matrix or the user supplied matrix-vector product.

Memory and communication management for the matrix-vector product can be
optimized independent of P_.ARPACK . This feature enables the use of various
matrix storage formats as well as calculation of the matrix elements on the fly.
The calling sequence to ARPACK remains unchanged except for the addi-
tion of the BLACS context (or MPI communicator). Inclusion of the context
(or communicator) is necessary for global communication as well as managing
I/O. The addition of the context is new to this implementation and reflects the
improvements and standardizations being made in message passing [9, 7].

2.1 Data Distribution of the Arnoldi Factorization
The numerically stable generation of the Arnoldi factorization
AV, =V, H; + fkeg

where

A, n x n matrix

Hj, k x k - projected matrix (Upper Hessenberg)
Vi, n X k matrix, £ < n - Set of Arnoldi vectors
f),, residual vector, length n, ngk =0

coupled with an implicit restarting mechanism [1] is the basis of the ARPACK
codes. The simple parallelization scheme used for P_ARPACK is as follows.

Arnoldi Factorization

,,,,,,,,,,,,,,,, A\

,,,,,,,, S n

— Hj, replicated on every processor
— V, is distributed across a 1-D processor grid. (Blocked by rows)
— fr and workspace distributed accordingly

The SPMD code looks essentially like the serial code except that the local block
of the set of Arnoldi vectors, Vy,., is passed in place of V, and nj,., the dimension
of the local block, is passed instead of n.

With this approach there are only two communication points within the
construction of the Arnoldi factorization inside P_ARPACK: computation of the
2-norm of the distributed vector f and the orthogonalization of f; to Vi using
Classical Gram Schmidt with DGKS correction [5]. Additional communication
will typically occur in the user supplied matrix-vector product operation as well.
Ideally, this product will only require nearest neighbor communication among
the processes. Typically the blocking of V is commensurate with the parallel
decomposition of the matrix A. The user is free, however, to select an appropriate
blocking of V such that an optimal balance between the parallel performance of
P_ARPACK and the user supplied matrix-vector product is achieved.

The SPMD parallel code looks very similar to that of the serial code. Assum-
ing a parallel version of the subroutine matvec, an example of the application of
the distributed interface is illustrated as the follows:

10 continue
call psnaupd (comm, ido, bmat, nloc, which, ...,
* Vloc , ... lworkl, info)
if (ido .eq. newprod) then
call matvec (’A’, nloc, workd(ipntr(1)), workd(ipntr(2)))
else
return
endif
go to 10

Where, nloc is the number of rows in the block Vloc of V' that has been assigned
to this node process.

Typically, the blocking of V' is commensurate with the parallel decomposition
of the matrix A as well as with the configuration of the distributed memory and
interconnection network. Logically, the V' matrix be partitioned by blocks

vT = (v y@T | yereoT

with one block per processor and with H replicated on each processor. The
explicit steps of the process responsible for the j block are shown in Table 1.

Note that the function gnorm at Step 1 is meant to represent the global
reduction operation of computing the norm of the distributed vector f;, from
the norms of the local segments f,gj) and the function gsum at Step 3 is meant
to represent the global sum of the local vectors hU) so that the quantity h =
E;ﬁqoc h{/) is available to each process on completion. These are the only two
communication points within this algorithm. The remainder is perfectly paral-
lel. Additional communication will typically occur at Step 2. Here the operation
(Aloc)v is meant to indicate that the user supplied matrix-vector product is able
to compute the local segment of the matrix-vector product Av that is consis-
tent with the partition of V. Ideally, this would only involve nearest neighbor
communication among the processes.

(1) B — gnorm(| 70) o)y — £ A

(2) w?) — (Aloc)ol?), ;

Vri1s

(4) (NHT (%)
h vV, h h
Ukt

h
(4) £y — 0 = Vi, ve42) (a) i

5) (H !)
k41 — ;
Br ef —

(6) V2, — Vi, veg0))

Table 1. The explicit steps of the process responsible for the 5 block.

Since H is replicated on each processor, the parallelization of the implicit
restart mechanism described in [1, 2] remains untouched. The only difference
is that the local block V) is in place of the full matrix V. All operations on
the matrix H are replicated on each processor. Thus there is no communication
overhead but there is a “serial bottleneck” here due to the redundant work. If &
is small relative to n this bottleneck is insignificant. However, it becomes a very
important latency issue as k grows and will prevent scalability if £ grows with
n as the problem size increases.

The main benefit of this approach is that the changes to the serial version
of ARPACK were very minimal. Since the change of dimension from matrix
order n to its local distributed blocksize nloc is invoked through the calling
sequence of the subroutine psnaupd, there is no fundamental algorithmic change
to the code. Only eight routines were affected in a minimal way. These routines
either required a change in norm calculation to accomodate distributed vectors
(Step 1), modification of the distributed dense matrix-vector product (Step 4),
or inclusion of the context or communicator for I/O (debugging/tracing). More
specifically, the commands are changed from

rnorm = sdot (n, resid, 1, workd, 1)
rnorm = sqrt(abs(rnorm))

to

rnorm = sdot (n, resid, 1, workd, 1)
call sgsum2d(comm,’Al1l’,’ ’,1, 1, rnorm, 1, -1, -1)
rnorm = sqrt(abs(rnorm))

where sgsum2d is the BLACS global sum operator. The MPI implementation

uses the MPI_ALLREDUCE global operator. Similarly, the computation of the
matrix-vector product operation h «— V7w requires a change from

call sgemv (°T’, n, j, one, v, ldv, workd(ipj), 1,
* zero, h(1,j), 1)

to

call sgemv (°T’, n, j, one, v, ldv, workd(ipj), 1,

* zero, h(1,j), 1)
call sgsum2d(comm, ’All’, ’ °, j, 1, h(1,j), j,
* -1, -1)

Another strategy which was tested was to use Parallel BLAS (PBLAS) [§]
software developed for the ScaLAPACK project to achieve parallelization. The
function of the PBLAS is to simplify the parallelization of serial codes imple-
mented on top of the BLAS. The ARPACK package is very well suited for testing
this method of parallelization since most of the vector and matrix operations are
accomplished via BLAS and LAPACK routines.

Unfortunately this approach required additional parameters to be added to
the calling sequence (the distributed matrix descriptors) as well as redefining
the workspace data structure. Although there is no significant degradation in
performance, the additional code modifications, along with the data decompo-
sition requirements, make this approach less favorable. As our parallelization is
only across a one dimensional grid, the functionality provided by the PBLAS was
more sophisticated than we required. The current implementation of the PBLAS
(ScaLAPACK version 1.1) assumes the matrix operands to be distributed in a
block-cyclic decomposition scheme.

2.2 Message Passing

One objective for the development and maintenance of a parallel version of the
ARPACK [3] package was to construct a parallelization strategy whose imple-
mentation required as few changes as possible to the current serial version. The
basis for this requirement was not only to maintain a level of numerical and al-
gorithmic consistency between the parallel and serial implementations, but also
to investigate the possibility of maintaining the parallel and serial libraries as a
single entity.

On many shared memory MIMD architectures, a level of parallelization can
be accomplished via compiler options alone without requiring any modifications
to the source code. This is rather ideal for the software developer. For exam-
ple, on the SGI Power Challenge architecture the MIPSpro F77 compiler uses
a POWER FORTRAN Accelerator (PFA) preprocessor to automatically uncover
the parallelism in the source code. PFA is an optimizing Fortran preprocessor
that discovers parallelism in Fortran code and converts those programs to par-
allel code. A brief discussion of implementation details for ARPACK using PFA
preprocessing may be found in [6]. The effectiveness of this preprocessing step is

still dependent on how suitable the source code is for parallelization. Since most
of the vector and matrix operations for ARPACK are accomplished via BLAS
and LAPACK routines, access to efficient parallel versions of these libraries alone
will provide a reasonable level of parallelization.

Unfortunately, for distributed memory architectures the software developer
is required to do more work. For distributed memory implementations, message
passing between processes must be explicitly addressed within the source code
and numerical computations must take into account the distribution of data. In
addition, for the parallel code to be portable, the communication interface used
for message passing must be supported on a wide range of parallel machines
and platforms. For /small P_ARPACK, this portability is achieved via the Basic
Linear Algebra Communication Subprograms (BLACS) [7] developed for the
ScaLAPACK project and Message Passing Interface (MPI) [9].

3 Parallel Performance

To illustrate the potential scalability of Parallel ARPACK on distributed memory
architectures some example problems have been run on the Maui HPCC SP2.
The results shown in Table 1 attempt to illustrate the potential internal perfor-
mance of the of the P_LARPACK routines independent of the users implementation
of the matrix vector product.

In order to isolate the performance of the ARPACK routines from the per-
formance of the user’s matrix-vector product and also to eliminate the effects
of a changing problem characteristic as the problem size increases, a test was
comprised of replicating the same matrix repeatedly to obtain a block diago-
nal matrix. This completely contrived situation allows the workload to increase
linearly with the number of processors. Since each diagonal block of the ma-
trix is identical, the algorithm should behave as if nproc identical problems are
being solved simultaneously (provided an appropriate starting vector is used).
For this example we use a starting vector of all “1’s”. The only obstacles which
prevent ideal speedup are the communication costs involved in the global oper-
ations and the “serial bottleneck” associated with the replicated operations on
the projected matrix H. If neither of these were present then one would expect
the execution time to remain constant as the problem size and the number of
processors increase.

The matrix used for testing is a diagonal matrix of dimension 100,000 with
uniform random elements between 0 and 1 with four of the diagonal elements
separated from the rest of the spectrum by adding an additional 1.01 to these
elements. The problem size is then increased linearly with the number of proces-
sors by adjoining an additional diagonal block for each additional processor. For
these timings we used the non-symmetric P.ARPACK code pdnaupd with the
following parameter selections: mode is set to 1, number of Ritz values requested
is 4, portion of the spectrum is “LM”, and the maximum number of columns of

V is 20.

Number of Nodes Problem Size Total Time (s) Efficiency

1 100,000 * 1 40.53

4 100,000 * 4 40.97 0.98
8 100,000 * 8 42.48 0.95
12 100,000 * 12 42.53 0.95
16 100,000 * 16 42.13 0.96
32 100,000 * 32 46.59 0.87
64 100,000 * 64 54.47 0.74
128 100,000 * 128 57.69 0.70

Table 2. Internal Scalability of P_.ARPACK

4 Availability

The codes are available by anonymous ftp from
ftp.caam.rice.edu

The ARPACK package is in
pub/software/ARPACK/arpack96.tar.gz
Parallel ARPACK (P_ARPACK) is in

pub/software/ARPACK/parpack96.tar.gz

Follow the instructions in the README files. ARPACK and P_ARPACK software
is also available on Netlib in the directory scalapack.

5 Summary

We have presented a parallel implementation of the ARPACK library which is
portable across a wide range of distributed memory platforms. The portability
of P_.ARPACK is achieved by utilization of the BLACS and MPI. We have been
quite satisfied with how little effort it takes to port P_ARPACK to a wide va-
riety of parallel platforms. So far we have tested P_.ARPACK on a SGI Power
Challenge cluster using PVM-BLACS and MPI, on a CRAY T3D using Cray’s
implementation of the BLACS, on an IBM SP2 using MPL-BLACS and MPI,
on a Intel paragon using NX-BLACS and MPI, and on a network of Sun stations
using MPI and MPI-BLACS.

6 Research Funding of ARPACK

Financial support for this work was provided in part by the National Science
Foundation cooperative agreement CCR-912008, and by the ARPA contract num-
ber DAAL03-91-C-0047 (administered by the U.S. Army Research Office).

References

1. D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnold:
method, SIAM Journal on Matrix Analysis and Applications, 13(1):357-385, Jan-
uary 1992.

2. D. C. Sorensen, Implicitly-Restarted Arnoldi/Lanczos Methods for Large Scale
Figenvalue Calculations, (invited paper), in Parallel Numerical Algorithms: Pro-
ceedings of an ICASE/LaRC Workshop, May 23-25, 1994, Hampton, VA, D. E.
Keyes, A. Sameh, and V. Venkatakrishnan, eds., Kluwer, 1995 (to appear).

3. R.B. Lehoucq, D.C. Sorensen, P.A. Vu, and C. Yang, ARPACK: Fortran subrou-
tines for solving large scale eigenvalue problems, Release 2.1

4. R. B. Lehoucq and D.C. Sorensen Deflation Techniques for an Implicitly Re-started
Arnoldi Iteration , To appear in STAM Journal of Matrix Analysis

5. J. Daniel, W.B. Gragg, L. Kaufman, and G.W. Stewart Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization , Mathematics
of Computation, 30:772-795, 1976

6. M.P. Debicki, P. Jedrzejewski, J. Mielewski, P. Przybyszewski, and M. Mrozowski
Application of the Arnoldi Method to the Solution of Electromagnetic Eigenprob-
lems on the Multiprocessor Power Challenge Architecture, Technical Report Num-
ber 19/95, Department of Electronics, Technical University of Gdansk, Poland.

7. J. J. Dongarra and R. C. Whaley LAPACK Working Note 94, A User’s Guide to
the BLACS v1.0, , June 7, 1995

8. J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley
LAPACK Working Note 100, A Proposal for a Set of Parallel Basic Linear Algebra
Subprograms , May 1995

9. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard ,
International Journal of Supercomputer Applications and High Performance Com-
puting, 8(3/4), 1994

This article was processed using the INTpX macro package with LLNCS style

