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Abstract

Ill-conditioned problems arise in important areas like geophysics,
medical imaging and signal processing. The fact that the ill-cond-
itioning is an intrinsic feature of these problems makes it necessary
to develop special numerical methods to treat them. Regularization
methods belong to this class.

The lack of robust regularization methods for large—scale ill-cond-
itioned problems motivated this project.

Our goal is to develop a regularization method for the least squares
problem as a large—scale discrete ill-posed problem arising in seismic
inversion.
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1 Introduction

[ll-conditioned problems arise in important areas like geophysics, medical
imaging and signal processing. Common problems in these areas are inverse
problems which attempt to determine the structure of a system from the
system’s behavior.

Inverse problems are a natural source of (continuous) ill-posed problems.
The numerical solution of these problems usually involves some kind of dis-
cretization which in turn originates a class of problems known as discrete
ill-posed problems which are very ill-conditioned.

The fact that the ill-conditioning is an intrinsic feature of these prob-
lems makes it necessary to develop special numerical methods to treat them.
Regularization methods belong to this class.

A regularization method computes an approximate solution, the reqular-
ized solution, to an ill-conditioned problem through a regularization param-
eter. A complete regularization method must address these two aspects.

A great variety of regularization methods are available for small to medium
scale problems. The situation is different for the large—scale case. The lack of
robust regularization methods for large—scale ill-conditioned problems moti-
vated this project.

Our goal is to develop a regularization method for the least squares prob-
lem as a large—scale discrete ill-posed problem arising in seismic inversion.

In order to achieve that goal we define the following objectives:

1. Study the background on regularization of ill-conditioned prob-
lems that leads to a reasonable level of understanding of the prob-
lem.

2. Develop a strategy for computing the regularized solution.

3. Develop a strategy for computing the regularization parameter.
4. Implement and test the complete method.

5. Analyze the theoretical properties of the method.

The purpose of the present work is to address points 1 and 2. The orga-
nization of this work is the following. In section 2 we describe ill-conditioned
problems and their features. Section 3 contains the description of the seismic
application. In section 4 we review the least squares problem and analyze the
ill-conditioned case in the presence of noisy data. Section 5 summarizes the
existing regularization methods. In section 6 we discuss previous work for
the large—scale case. In section 7 we describe the proposed approach. Final
remarks are presented in section 8.



2 Ill-conditioned Problems

When ill-conditioned systems or least squares problems are encountered, the
usual recommendation is not to trust any computed solution and to try to
replace the coefficient matrix by a nearby well-conditioned one.

There are problems however, for which the ill-conditioning is an inherent
feature and for which it is not possible to find a nearby problem with a well-
conditioned coefficient matrix; this is the case for discrete ill-posed problems.

According to [26], we can distinguish two main classes of ill-conditioned
problems based on the properties of their coefficient matrices:

1. Rank—deficient Problems. The properties of their coefficient matri-
ces are:
(a) There is a (usually) small cluster of small singular values.

(b) There is a clear gap between large and small singular values, there-
fore the notion of numerical rank applies.

(c) There is usually a reformulation that will eliminate the ill-conditioning.

An example of the singular value distribution for a problem of this type
is shown in figure 1.

Figure 1: Singular Value distribution for a Rank—deficient Problem

2. Discrete IlI-Posed Problems. These problems come from the dis-
cretization of continuous ill-posed problems, and the properties of their
coeflicient matrices are:

(a) There is a large cluster of small singular values (which increases
with the dimension of the problem).

3
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Figure 2: Singular Value distribution for a Discrete Ill-posed Problem

(b) The singular values decay gradually to zero with no gap in the
singular spectrum, i.e. the notion of numerical rank does not apply.

(c) The components of b in the direction of the left singular vectors
on average decay to zero faster than the singular values.

(d) There is usually no reformulation that can change these features.

The singular value distribution for a problem of this type (problem heat
from [25]) can be observed in figure 2.

An extensive coverage of these two classes of ill-conditioned problems was
presented in [26]. A detailed description of applications can be found in [20],
[10] and the references therein. A specific application from geophysics will
be described in this work.

Since standard methods fail to produce a meaningful solution for ill-
conditioned problems and there are cases when it is not possible to eliminate
the ill-conditioning, it is necessary to use other approaches to treat this kind
of problems. One of such approaches is Numerical Regularization, which
attempts to compute a more stable (or regularized) approximate solution by
using additional information about the unknown exact solution.

The existing numerical regularization methods are designed for rank—
deficient and discrete ill-posed problems. For other kinds of ill-conditioned
problems, these methods are not suitable and we must use other techniques
like iterative refinement, extended precision iterative refinement or precon-
ditioning for the large—scale case.

In this project we focus on the regularization of discrete ill-posed prob-
lems.



3 Application

In 1923, Hadamard [18] introduced the concept of a well-posed and ill-posed
problem. Ill-posed problems are those for which there is either no solution,
or the solution is not unique, or the solution does not depend continuously
on the data. By ill-posed he meant that the formulation was incorrect and
the solution was therefore, meaningless. Since then, many industrial applica-
tions have appeared where solutions to ill-posed problems have well-defined
physical meanings.

[ll-posed problems arise naturally from inverse problems, where one is
interested in determining the structure of a system from its behavior. Oil
exploration is one of the many fields where inverse problems are encountered.

In oil exploration, before the expensive drilling procedure takes place,
experts need to determine the composition of the subsurface of the earth in
places where geological data or other information indicates that oil or other
valuable hydrocarbons are likely to be found.

The seismic inversion technique tries to determine the composition of the
subsurface of the earth from the behavior of waves in that subsurface. To
obtain data, seismic waves are generated (typically by an explosion) and their
wave form (amplitude and direction) is measured by receivers located on the
surface of the earth.

The goal of the experiment is to recover the slowness (inverse of wave
propagation velocity) distribution of the subsurface. With this information
(velocity with which waves travel in different media) experts can predict the
composition of the subsurface.

The behavior of the waves travelling through the earth is modeled by
means of the wave equation. After considerable simplifications, the problem
to solve is

Find a function x such that Fz =b (1)

where F is an ill-conditioned operator in most situations of practical interest.
F being ill-conditioned means that some of its singular values (from the Sin-
gular Value Expansion (SVE) of the operator) are small. A discretization of
F usually results in a matrix whose singular values are approximations of the
singular values of the operator and whose singular vectors give information
on the singular functions. We refer the reader to [23].

When b is replaced by real data b, it will typically be the case that
b & R(F) and instead of (1), the following problem is considered



min || f.f[?—?)”

where the minimization is on an appropriate function space and || - || is some
suitable norm, usually the £5 norm.

For this choice of norm, the common approach to solving this minimiza-
tion problem is known as linearized inversion. Two different techniques fall
under this name. The first one, known as asymptotic linearized inversion (see
[1]), finds an approximate inverse of the normal operator F*F (* denoting
adjoint) analytically. If we denote by P that approximate inverse operator,
the solution is computed as

z=PFb

We are interested in the second approach known as linearized least squares
inversion (see [50]). In this approach, F is discretized and || - || is chosen
to be the [; norm in an appropriate vector space. The problem to solve is a
discrete least squares problem.

Both techniques are used in practice. Asymptotic linearized inversion
is efficient since there is no need to use an iterative process to compute the
approximate solution. The disadvantage of the approach is that the accuracy
of the solution is limited in view of the asymptotic nature of the approximate
inverse operator used to compute it.

Because of the large size of the problems, linearized least squares inversion
usually involves the use of an iterative process. While this increases the cost
of the method, it also allows more control on the accuracy of the approximate
solution. Moreover, linearized least squares inversion is the only option when
it is not possible to compute the inverse of the normal operator analytically.

The problem to solve in least squares inversion can be stated as

Recover the solution z of
min || Az — b ||2 (2)
from z, the solution to
min || Az — b ||, (3)
Where

1. A€ R™"™ (m > n) is the discretized operator.

6



2. m, n are large and A is unstructured.

3. A is not available explicitly, instead the action of A, A" (and hence
AT A) on a vector are available.

4. The data vector b € R™ is a perturbation of the exact vector b caused
by the noise in the experiment.

5. A inherits the ill-conditioning of F in the sense that it will have a
similar singular value distribution, unless the discretization is so coarse
that the singular value distribution of A does not resemble the singular
value distribution of F.

Since A comes from the discretization of an ill-posed operator, the result-
ing discrete least squares problem belongs to the class of discrete ill-posed
problems introduced in section 1. In section 4 we study this kind of problem
in more detail.



4 Least Squares Problems

The purpose of this section is to review some results on the least squares
problem in general and analyze the special situation for the ill-conditioned
case in the presence of noisy data.

The least squares problem has been thoroughly studied and is treated
in most numerical linear algebra text books like [16] and [49], and also in
specialized sources like the classic [31] and more recently in [2]. The problem
is stated as follows

min | Az — b ||z

where A € R™*" m > n and b € R™.
Well known facts about this problem are:

e There is always a solution.
e The solution with minimum norm is unique.

e Any solution satisfies the Normal Equations

AT Az = ATh (4)

An important tool for the analysis of the least squares problem is the
Singular Value Decomposition (SVD) of the coefficient matrix. Let A =
UY V" be such a decomposition, i.e.

U E z]el'mxn7 V E Ran
vtu=1,; vvtr=v'v =1,
Y =diag(oy,...,00)

where 01 > 09 > ---0, > 0 and o;’s are the singular values of A. The
columns of U are the left singular vectors and the columns of V' are the right
singular vectors of A.

To measure the sensitivity of the solutions to linear systems and least
squares problems, we use the condition number of the coefficient matrix. We
define this number with respect to the /; norm as
01

ka(A) =

On



The sensitivity of the least squares solution is measured by either the condi-
tion number in the zero residual case or the square of the condition number
in the nonzero residual case (see [16, Ch. 5]). This implies that when A is
ill-conditioned, meaning that x3(A) is large, the least squares solution will
be unstable, i.e. very sensitive to perturbations in the data A, b.

Replacing A in (4) by its SVD yields

x = VU7
_ oy

=1

Ui
0y

where T denotes the pseudoinverse as it is defined in [16] and r is the rank of
A.

For the problems considered in this work, o; # 0,V: (although some of
them can be very small) and therefore r = n, which yields

We note in passing that (5) is also the expression for the solution of the
linear system Az = b, when A is a square nonsingular matrix.
The norm of the least squares solution (5) is given by

Il | 3220 ]

=1 0

therefore, this norm will not be too large as long as |u7b| < o; for small o;. In
view of this observation and in connection with discrete ill-posed problems,
the following condition is usually assumed

Discrete Picard Condition (DPC)

u; b on average decay to zero faster than o;.

The need of this condition in order for most regularization methods to
compute good approximate solutions was fully justified in [24].

Another fact usually observed in discrete ill-posed problems is that the
singular vectors u;, v; have more sign changes in their components as the
singular values o; decrease, i.e. the high—frequency components correspond
to small singular values.



As we explained in section 3, we are interested in recovering the solution
x of

min || Az —b |2 (6)
from z, the solution to
min || Az —b ||, (7)

where b = b+ er, with ¢ > 0 and » € R™ a random vector representing the
noise.

The solution  of (7) is given by

B " ulb “Leulr
=7 vit ) v;
i=1 01 =1 %

Thus, & consists of two terms: one is the actual solution of the unper-
turbed problem (6) and the other is the contribution from the noise.

The difficulty in finding = from & comes from the contribution from the
noise. Since it is not reasonable to expect that r (a vector of uncorrelated
data) satisfies the DPC, it is possible that u]r increase or become constant

T,

for large 7, causing the ratios u; to blow up as figure 3 illustrates. In figure

H

4 we show that in this case, z can differ considerably from z. We can also
observe in figure 4 how z is dominated by high—frequency components.

The only type of errors considered in the previous analysis were measure-
ment errors (noise) in b. We ignored other kind of errors in b because noise is
typically larger than the rest. We also ignored errors in A (due to discretiza-
tion or finite precision representation). If we take into account perturbations
in both A and b, the difficulty of the problem increases considerably. The
problem becomes a Total Least Squares problem (see [52]) and will not be
treated in this work.
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5 Regularization Concepts and Methods

Regularization is a technique that was originally devised for continuous ill-
posed problems [51]. When the technique is extended to the discrete context
it gives rise to numerical reqularization methods. We limit our presentation
to the latter case.

Numerical Regularization Techniques seek to approximate the exact (un-
known) solution of an ill-conditioned problem by the solution of a related
well-conditioned problem that includes information about the desired solu-
tion to the original problem.

The additional information is usually expressed as a constraint of the
form

| Lz |l.< A (8)

where L is typically the identity or a discretized derivative operator. In the
latter case, the constraint is used to control the smoothness of the approxi-
mate solution. When L = I, the constraint controls the size of the solution.

To justify the use of (8), one must assume that the exact solution is
smooth or that it has small norm. Regularization is also known as smoothing
because it tries to damp nonsmooth components in the approximate solution.
Note that when nonsmooth components correspond to small singular values,
those components are magnified by the noise.

Regularization can also be regarded as a multi-objective optimization
problem where one tries to balance the quality of the approximation and
the effect of perturbations on the solution (this approach is taken in [29]).
Associated with any regularization method there is a parameter, namely
the regularization parameter, which controls how much perturbation effect is
allowed.

Therefore, a complete regularization method has two aspects: the compu-
tation of the regularized solution and the computation of the regularization
parameter.

In the rest of the section we summarize the main regularization tech-
niques for both rank—deficient and discrete ill-posed problems. In section 6
we discussed methods for the large—scale case in detail. The methods pre-
sented here are suitable for ill-conditioned linear systems and least squares
problems, the nonlinear least squares case has been studied in [54] and [11].

For a more detailed description of the methods, we refer the reader to [26].
Early surveys of regularization methods appeared in [3] and [53]. A common

12



framework for the study of numerical regularization methods is proposed in

[26] and [27].

5.1 Methods for Rank—deficient Problems

We recall from section 1 that the coefficient matrix A of a rank-deficient
problem has a well-determined gap in the singular value spectrum, which
makes possible to determine the numerical rank of the matrix.

The numerical e-rank r.(A) of the matrix A is the number of columns
that are numerically linearly dependent with respect to an error level ¢, and
it is defined as

re(A)= min rank(A+ FE)

l|E]l2<e
In terms of the singular values of A

Or(A) > € > Traytl

If r.(A) is ill-determined, i.e. if it is too sensitive to perturbations on €
and on the singular values, then it is better to use methods for problems with
no gap in the singular spectrum.

The regularization strategy for rank—deficient problems consists of two
steps

1. Replace A by a matrix of rank k& = r.(A), i.e. ignore the small singular
values of A. The usual choice for this rank-k matrix is

k
T
Ak = E U;0;v;
=1

Ay 1s the closest rank—k matrix to A in the /; norm and in the Frobenius

norm ([16, Ch. 2]).

2. Compute the approximate solution by

which is known as the truncated SVD solution and the regularization
method is known as truncated SVD.

13



Since the SVD is expensive to compute, an alternative approach in prac-
tice is to compute rank-revealing decompositions like the QR decomposition
with column pivoting ([16, Ch. 5]). In this case the matrix we use to replace
A in step 1 above is still close to A, but not the closest one in any norm.

Although the truncated SVD method does not use additional information
about the desired solution, the method is still regarded as a regularization
method because it stabilizes (regularizes) the solution.

5.2 Methods for Discrete Ill-posed Problems

In the following we assume that I = I, whenever a constraint of the form
(8) is used. If the problem is given in general form (L # I) it is possible to
transform it to the standard form (L = I) by means of the algorithms given

in [9] and [26].
I. Methods for computing the regularized solution
1. Direct Methods

(a) Tikhonov Regularization.
The method solves the following problem

min{]| Az = b |l; +A* || = |13} (9)

where X is the regularization parameter. Alternative formulations
(for A > 0) are

(ATA4+ N1z = A"b

i.e. find a zero for the gradient of the objective function in (9),

NI

which is a damped least squares problem.

min

2

The solution of any of these problems is computed using either the

SVD or the QR factorization of the matrix )é . The method

is suitable for small to medium scale problems only, since one
minimization problem has to be solved for each value of A.

14



(b) Iterated Tikhonov Regularization.
This method is inspired in the iterative refinement technique for
linear systems and consists of computing a sequence of approxi-
mations z(4t1) = z(@) ¢ 5.i(q), where 6z, solves

A r(@)
7(a) _
(53 )=

(¢) Quadratically constrained least squares.

P& —p— Az@

’
2

In this approach, the following problems are considered

min || Az — b (10)

sk, |lzll.<a

min | 2 [ (11)

s.t. ||Az—b|2<a

where A and « are the regularization parameters.

The theoretical aspects of problems (10) and (11) were discussed
in [12].

Problem (10) is known as a trust region subproblem in the op-
timization literature. We will return to methods to solve this
problem in section 7. Methods to solve (10) based on the SVD
and the QR decomposition are presented in [16, Ch. 12].

A method for problem (10) in the large—scale case was presented
in [17] and will be discussed in section 6.

In problem (11) the parameter « can be interpreted as the noise
level in the data.

(d) Other methods. We mention mollifier methods where the regu-
larized solution z,., is computed as z,.;, = A#b. A# is a special

matrix known as the resolution matriz. Other methods are dis-
cussed in [26].

2. Iterative Methods.

These methods are intended for large—scale problems for which factor-
izations are not affordable. For these problems, the coefficient matrix
is usually not available explicitly. In this class of methods we have

15



(a) Landweber iteration.
Tppr = T +wA"(b— Azy) k=0,1,2,...

where w is a parameter. This method in its original form is not
used in practice since it is not very efficient. A modification has
been proposed in [19] to accelerate convergence.

(b) Conjugate Gradient on the Normal Equations (CGLS).
This has been the method of choice for large—scale ill-conditioned
least squares problems. We will discuss the method in section 6.

Other alternatives like the v—methods referenced in [20] are still too
restrictive to be used for practical problems.

II. Methods for computing the regularization parameter

Let us recall the multi-objective purpose of regularization, i.e. minimize
the residual norm while minimizing the effect of perturbations in the data.
Therefore, there are two kinds of errors in any regularized solution. These er-
rors are known as regularization error and perturbation error. Regularization
tries to balance both errors by means of the regularization parameter.

There are two kinds of methods for choosing the regularization parameter.
Methods in the first class assume some knowledge on the noise level in the
data. The only method in this class is the Discrepancy Principle. The second
class of methods try to estimate the parameter assuming no knowledge on
the noise level. To this latter class belong the Generalized Cross—Validation
criterion and the L—curve criterion.

1. Discrepancy principle.
When we know a bound for the noise level « in the data, we can use this
bound to implicitly compute a regularization parameter as the point
where || Az —b ||s< a. The idea behind this criterion is that we cannot
expect more accuracy in the approximate solution than the one present
in the data. This method is attributed to Morozov [35].

2. Generalized Cross—Validation (GCV).
This method was presented in [15] and discussed also in [56]. The idea
of using cross—validation to compute the regularization parameter is the
following. If a data point b; is excluded and a regularized solution Z,.,
based on the reduced data vector is computed, then if we use z,.,; to
compute an estimate of b; we want this estimate to be good. While in

16



ordinary cross—validation the ordering of the data counts, generalized
cross—validation is invariant to orthogonal transformations of the data
vector.

The regularization parameter is chosen as the minimizer of the Gener-

alized Cross—Validation (GCV) function

| Az — b3
GEV(A) = [trace(I — AA#()))]?

where A#()) is the matrix that maps the data vector b onto the regu-
larized solution z,.4, i.e. the resolution matrix mentioned before.

There are several difficulties associated with the GCV criterion. One
is that sometimes the minimum of the function is difficult to compute
numerically. The second one is that sometimes GCV cannot distinguish
between correlated noise and signal. A third problems is that it may
not be possible to compute A#()\), as it is the case for CGLS.

3. L—curve.

This method is based on the trade—off curve between the two goals
of regularization, i.e. minimizing the residual norm while keeping the
solution norm from being too large. The L—curve is a logarithmic plot
of the solution norm versus the residual norm for each value of the
regularization parameter. The name comes from the fact that this
curve is L-shaped.

The optimal regularization parameter gives a solution that lies around
the “corner” of the curve. Figure 5 shows the L—curve (and its corner)
for problem heat from [25]. In this example, the curve is based on the
values of the regularization parameter in Tikhonov regularization.

The use of this curve to estimate the regularization parameter has been
studied in [22] and [27]. The idea is to interpolate the curve in order to
estimate the “corner”. The L-curve method performs better than the
GCV method when the noise in the data is correlated and comparably
well for white noise. The advantage of the L—curve criterion over the
GCV in the presence of correlated noise seems to come from the fact
that the L—curve method uses information on both the residual norm
and the solution norm, while the GCV method uses information on the
residual norm only (see [27]).

Both the L—curve and the GCV methods are a posteriori methods

17
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Figure 5: L—curve for problem heat and Tikhonov Regularization

since they need several approximate solutions in order to estimate the
regularization parameter.

II1. Hybrid Methods

These methods combine an iterative scheme to compute the regularized
solution with a strategy to compute the regularization parameter, aiming
to control the number of iterations in the iterative method. The method
presented in [4] belong to this class. We will discuss that approach in section

6.
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6 Regularization in the large—scale case

As we can see from section 5, there are very few methods for the regulariza-
tion of large—scale ill-conditioned problems. The ones discussed here are the
hybrid method presented in [4] (BGvD), the method for the quadratically
constrained least squares problem presented in [17] (GvM) and the Conju-
gate Gradient method [28] applied to the normal equations (CGLS). The
first method is the only complete regularization method in the sense that
it computes both the regularization parameter and the regularized solution.
The last two methods compute the regularized solution only.

6.1 BGvD Method

The problem is to recover the solution to min || Az — b ||; when b is replaced
by noisy data.

The method uses an Implicitly Restarted Lanczos Bidiagonalization pro-
cess to compute a sequence of approximations to the left and right singular
vectors of A. The implicit restart technique from [46] is adapted to the Lanc-
zos Bidiagonalization process [38] and zero shifts are used to filter out small
singular values.

Reorthogonalization of the Lanczos vectors is carried out at every step of
the Lanczos process. This makes possible the use of the Generalized Cross—
Validation (GCV) function to estimate the regularization parameter k (in
this case, the size of the factorization) when the noise level in the data is
unknown.

The approximate solution computed by this method is a Truncated Singu-
lar Value Decomposition (TSVD) solution in a Krylov subspace of dimension

k.
Advantages

e Uses A and A" only in matrix—vector products.

e Fffective when the minimum of the GCV function occurs at small values

of k.
Drawbacks
e It is necessary to store the two matrices Uy and V}, for variable k.

o If the minimum of the GCV function occurs at a large k, as in the
example in figure 6, then the size of the factorization also increases

19
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Figure 6: GCV function for problem heat from the Regularization Tools
Package. The minimum occurs at k£ = 26 for a problem of dimension 50.

with the consequent increase in both storage and computational cost.
For this method, the increase in computational cost is higher than usual
due to the reorthogonalization step.

e As we discussed in section 5, the GCV criterion for computing the
regularization parameter is not reliable in certain cases.

6.2 GvM Method

The problem in consideration is

min || Az —b ||
s.t. ||zla=A
where b is a vector of noisy data.
The method uses the Lanczos Bidiagonalization process [38] performed

on A and the Cholesky factorization of small matrices, to compute a series
of function pairs (Lx(A), Ug(A)) that bound the secular function

FO) = (ATD)"[(A"A + AD)'T*(A"D)
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A zero—finding procedure is then applied to Li(\) and Ug()) to compute
a new estimate for A, the Lagrange multiplier associated to the minimization
problem.
Advantages

e Uses A and A" only in matrix—vector products.

e The approximate solution  can be computed in an inexpensive way
after the optimal A has been found, since a partial Bidiagonalization of
A is available at that point.

Drawbacks
e It is necessary to store the two matrices Uy and V}, for variable k.

e The method works under the assumption that A <|| Ab ||;. This as-
sumption is not enough in the regularization context since it might still
produce a solution with large norm. Instead, in order to use the method
for regularization purposes A must be such that A <|| ATb ||o<|| ATb ||z,
where b is the exact data vector. This requires knowledge on the norm
of the ezact solution A'b of the unconstrained problem.

e Computes the regularized solution only.

6.3 CGLS Method

One approach to solve the least squares problems is to apply the Conjugate
Gradient method to the normal equations

ATAz = A"b

An implementation of such method should avoid forming the matrix A*™ A
since doing so may introduce large rounding errors as it was pointed out in
[16, example 5.3.2 on p.225]. The resulting method is known as Conjugate
Gradient on the Normal Equations (CGNR, CGLS). The method has been
used successfully to solve the least squares problems for noisy data due to an
intrinsic regularization effect of the iteration.

The Conjugate Gradient method generates iterates in a Krylov subspace.

In particular, for CGLS the iterates z; € Ky(ATA, A7b) defined as

Kr(ATA, ATb) = {ATb, (ATA)A”D,. .., (AT A1 ATD)
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zy 1s the solution to the following minimization problem

min || Az — b ||,

s.t.  zeK,(ATA,ATY)

The regularizing effect of CGLS comes from the fact that for some ap-
plications, K(ATA, ATb) approximates the subspace spanned by the right
singular vectors v; associated to the k largest singular values and therefore,
zr only has components in the direction of singular vectors associated to
large singular values.

When the iteration starts approximating singular vectors associated to
small singular values, contributions from the noise appear in the iterates zy,
which start to diverge from that point. This behavior is known as semicon-
vergence.

It is necessary therefore to stop the iteration before the effect of the noise
appears. The number of iterations k plays the role of the regularization
parameter.

The semiconvergence behavior suggests the following stopping criterion:
monitor the residual norm and stop the iteration when it starts to increase.
The problem with this strategy is that in general, there is no warranty that all
the singular vectors of interest have already converged when the iterates start
to diverge. It is therefore necessary to estimate the regularization parameter
k (i.e. where to stop the iteration) very accurately. Two options mentioned
in [26] are the L—curve criterion and the Monte Carlo Cross—Validation pro-
cedure from [14].

For some problems arising in medical imaging (see [36] for example),
all the singular vectors of interest converge first and therefore the stopping
criterion suggested above can be used. The difficulty in those applications
comes from the fact that the number of large singular values is large, requiring
the use of efficient preconditioners to accelerate convergence.

Advantages

e Uses A and A" only in matrix—vector products.
e The method requires very little storage: five vectors.

e [ast convergence.
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Drawbacks

e The semiconvergence behavior makes it necessary to have an accurate
estimate of the regularization parameter.

e Computes the regularized solution only.

6.3.1 Preconditioned CGLS in the ill-conditioned case

The issue of preconditioning in relation to ill-conditioned problems is very
delicate. The usual goal of preconditioning is to improve the condition of the
coefficient matrix by either clustering its eigenvalues or making them close
to one. In the ill-conditioned case however, it is not desirable to change the
whole spectrum of the matrix.

If we precondition all the eigenvalues of A" A (and therefore, the singular
values of A) we would be computing iterates that contain contributions from
the noise, since the preconditioner has probably mixed the small and large
parts of the spectrum. Thus, in the ill-conditioned case we should precondi-
tion only the large part of the spectrum and leave the small part untouched.
This fact has been observed before in [20], [26, Ch. 5], [21] and [36].

In general, it is not possible to distinguish a priori between the large and
small parts of the spectrum of a matrix. This makes preconditioning for ill-
conditioned problems a very difficult area and the object of current research.
For problems where large and small parts of the spectrum can be identified,
it has been possible to build efficient preconditioners as the ones reported in
[7] and [36]. These problems are characterized by having a highly structured
coefficient matrix (Toeplitz matrix) for which circulant preconditioners have
proved to be successtul. Multilevel preconditioners for more general problems
have been proposed in [30].
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7 Proposed Approach

In this section we present our approach for regularizing large—scale ill-conditioned
least squares problems and propose a strategy for computing the regularized
solution. We also present a brief discussion about the computation of the
regularization parameter.

7.1 Computing the Regularized Solution

We compute the regularized solution of large—scale ill-conditioned least squares
problems as the solution to the quadratically constrained least squares prob-
lem

1 _
min || Az —b |} (12)

st |lzl3<a?

where A is the regularization parameter and b is a vector of noisy data.

Problem (12) is a Trust Region Subproblem (TRS)

1
min (z) = §ZETHI +g'z+c (13)

sk lel3<a?

where H € R™" symmetric, g € R" and ¢ € R. In (12) H = A"A and
g = —A"b.
Two important facts about the TRS are

e There is always a solution, since a continuous functional is being min-
imized on a compact set.

o There exists a characterization of the global solutions. This is a re-
markeable result obtained independently by Gay [13] and Sorensen [45].
It is contained in lemma 7.1.

This problem has been treated extensively in the context of the trust—
region globalization strategy for optimization methods.

In the small to medium scale setting, there are efficient methods to solve
the problem. Such methods include Powell’s dogleg method [40], Dennis and
Mei’s double dogleg method [8] and Moré and Sorensen’s method [34]. The

latter one being the method of choice in most applications.

24



A complete survey of methods was given by Moré in [33]. In that refer-
ence, Steihaug’s method [48] is also mentioned. This method is suitable for
the large—scale case and gives nearly optimal solutions when the Hessian of
the quadratic is positive semidefinite. Methods for the general case were not
available until recently.

It is worth noticing that Steihaug’s approach could be used on problem
(12). However, the fact that this method is based on the Preconditioned Con-
jugate Gradient method constitutes a major obstacle in the ill-conditioned
case where finding efficient preconditioners is still an issue as we pointed out
in section 6.

The known methods for the large—scale TRS were given by Sorensen in
[47], Rendl and Wolkowicz in [41] and Santos and Sorensen in [43].

In [47] the TRS is recasted as a parameterized eigenvalue problem. The
method relies on the Implicitly Restarted Lanczos Method (IRLM) ([46], [5])
to solve a sequence of large symmetric eigenvalues problems. The parameter
is updated by an interpolation scheme and there is a separate treatment of
a special case known as the hard case.

In [41] the same recasting as in [47] is used but the strategy for updating
the parameter is a dual simplex method in the standard case and a primal
simplex method in the hard case. The eigenvalue problems are solved with
a block-Lanczos procedure.

In [43] the recasting of [47] is used again, but the interpolation scheme is
different and there is a unified treatment of all cases. A small advantage of
this method over the one in [41] is reported in [43].

We proposed to use the method for large—scale trust region subproblems
(TRS method) presented in [43] to compute a solution for the constrained
least squares problem (12).

The use of methods for the TRS in the regularization context has been
suggested in [41] and [47]. In [32] a new trust region strategy is presented and
applied to a regularization problem as an example. That particular strategy
is not suitable for large—scale problems. [6] presents a method for the TRS
for the special case of ill-conditioned least squares problems. The method
works under the assumption that A <|| A™b ||.

Interestingly enough, in [44] a nonlinear least squares problem is solved
by means of the Gauss—Newton method with a trust region globalization
strategy, using Steihaug’s method to solve the trust region subproblems. In
that approach the TRS was not used as a way of regularizing the solution.

There is practically no reference to methods for the TRS in the regular-
ization literature. This is maybe due to the fact that until now there was
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no method for the large—scale trust region subproblem and that there were
efficient regularization strategies for smaller problems.

7.1.1 The method for the large—scale Trust Region Subproblem
(TRS method)

The following definitions will be used
® 61,02,...,0, will be the eigenvalues of H in (13), with

01 <6 <. < by

e The eigenspace associated with the smallest eigenvalue of H will be
denoted by &7, i.e.

S1 = {q|Hq = 614}

e The pseudoinverse will be denoted by ' as in section 4.

Before presenting the TRS method of [43], let us first study the properties
of problem (13).

The following lemma contains the characterization of the solutions of (13).

Lemma 7.1 A feasible vector x. is a solution of (13) if and only if x. sat-
isfies
(i) (H— M)z, = —g, with H— X\ positive semidefinite.

(i) A < 0.
(i) Ml 2. |12 ) = 0.
Proof: See [45] O

The solutions of (13) can occur on the boundary or in the interior of the
trust region {z| || = ||2< A}. Interior solutions exist if and only if || z [[.< A
and H is positive definite (see [34]). In this case, the Lagrange multiplier A
is zero and the solution is given by x = H™'g.

There is yet one more special situation that may arise only when g¢ is
orthogonal to §; and H is not positive definite. In this case, depending
on the value of A, it may not be possible to find A < 0 that satisfies the
conditions in lemma 7.1. This situation is known as the hard case. In the
hard case, it is still possible to compute a solution on the boundary of the
trust region. The precise statement is contained in the following lemma.
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Lemma 7.2 Assume that g is orthogonal to Sy and let p = —(H — &,1)1g.
If 61 <0 and || p ||2< A, then the solutions of (13) consist of the set
{zle =p+ 2,2 €81, | z|= A}

Proof: See [15] 0

Near hard case situations (when ¢ is nearly orthogonal to &;) are very
important in the context of regularization because they arise very frequently
when the ill-conditioned TRS is treated. We will return to this in §7.1.2.

To describe the method in [43] we first explain how the TRS (13) is re-
casted as a parameterized eigenvalue problem, for this we define the following

(e
b0 ) "
where « is a parameter. Note that for any value of «, the eigenvalues of
B, M), Aa(@), ..., Apqa (@) satisfy (o) < 6 < Ay(a) <6, < ... <6, <

Ant1(@) by the Cauchy interlacing theorem (see [39]).
If we now define p(z) as

bordered matrix

pla) = (1 2Bl 2"
1
= §a—c‘|"¢($)

i.e. p(x) is a vertical translation of ¢»(z) in (13) and therefore, both functions
will have the same minimizers.
Note that (12) is equivalent to

min () (15)
s.t. (1 &T)T||2<V1+A2

Moreover, if B, is indefinite, (15) has no interior solutions and the prob-
lem is equivalent to finding the smallest eigenpair of B, with an eigenvector
of the form (1 z")" and norm /1 + A2. The smallest eigenvalue is the
minimum value of ¢(z) and z is the minimizer.

This observation suggests computing a (boundary) solution for (13) in
terms of an eigenpair of the bordered matrix.

Suppose that we solve

()

27



for the smallest eigenpair {\(a), (1 z7)"} of B,.
Observe that (16) is equivalent to

a—\A=—g¢"x

(H—-XM)x=—g

moreover, H — Al is always positive semidefinite since, by the interlacing
property, Ai(a) < 6, for any value of a.

The idea is to adjust the parameter a in order to drive the x to the
solution of (13). To accomplish this, the method works with the functions
#(A) and its derivative defined as

d(A) = —g¢g'z
= ¢"(H—X)g, for (H—\)z=—g
n 2
_ Vi
=6 — A

d(A) = 2"z
= ¢'[(H = D)"Pg, for (H—X)x=—g
n 2
_ Z Vi
i=1 (52' - )‘)2
where v; is the component of ¢ in the direction of the ¢th eigenvector of H,
t = 1,2,...,n. Observe that the interlacing property of the eigenvalues of
B, and H also follows from the definition of ¢(A). Moreover, the definition
of ¢(A) implies that A;(a) < 61, unless v # 0 (i.e. unless g L &7).

Since ¢(A) and ¢'(A) are expensive to compute, they are interpolated. A
two point interpolating scheme is used in [43]. The interpolant q?)()\) is built
in such a way that convergence is guaranteed.

Figures 7 and 8 show ¢()) and ¢'(\) respectively in the standard case for
a problem of dimension three with eigenvalues —2, —0.5, 2.

To adjust a, A is computed such that qg’(j\) = A? and then o = \ + q?)(j\)
A new problem of type (16) is solved for this value of « to obtain a new pair
Dala), (1 277,

If the eigenvector associated to the smallest eigenvalue of B, has a zero
first component, then the required normalization cannot take place. This
situation corresponds to a potential hard case situation. The following lemma
establishes this.
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Figure 7: ¢(A) in the standard case and straight line o — A
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Figure 8: ¢/()\) in the standard case and straight line A? = 6
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Figure 9: ¢(A) in the potential hard case and straight line o — A

Lemma 7.3 For any o € R and g € S1, {61,(0 ¢")"} is an eigenpair of
B, if and only if g s orthogonal to S;.

Proof: See [43] O

A potential hard case situation is shown in figure 9. Note that in this
case ¢ L S; and therefore, 6; is no longer a pole of ¢(A). As lemma 7.2
established, the way of computing the solutions in this case depends on the
value of A.

We would like to point out that the assumption in the GvM method (see
section 6) that A <|| A'b ||, rules out the possibility of the hard case, since
for those values of A, we can always find A < 0 such that the rest of the
conditions of lemma 7.1 are satisfied.

The following lemma establishes that there exists a value of a for which it
is always possible to find an eigenvector associated to the smallest eigenvalue
of B, that can be properly normalized when ¢ L &j.

Lemma 7.4 Suppose that g is orthogonal to S; and let p = —(H — &, 1)1g.
If & = 61— g"p then {61,(1 p")"} is an eigenpair of Bs. Moreover, (1 p")"
is orthogonal to (0 ¢")", for every q € Sy.

Proof: See [43] O
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Figure 10: ¢'()\) in the near potential hard case and straight line A* = 35

In practice, it may occur that the eigenvector of interest has a small first
component which will produce large roundoft errors it the required normal-
ization is carried out. This situation is called a near potential hard case and
occurs when ¢ is nearly orthogonal to ;.

As it can be observed in figure 10, computing A such that qg’(j\) = A? can
be a very ill-conditioned problem for large values of A in the near potential
hard case situation. Depending on the shape of qg’(j\), that may be the case
even for small values of A (see §7.1.2.2).

The approach taken in [43] is to “ignore” the pole at 6; and use the second
smallest eigenvalue of B, as an interpolation point. In this way they try to
approach the optimal value of « (the one that yields an optimal pair {\,, .}
for the TRS) from the right. It is shown in [43] that the use of the second
smallest eigenpair is not needed eventually and that this strategy does not
affect the g—superlinear convergence of the method.

Another important feature of the method in relation to convergence is
the safeguarding of \ and a.

In the TRS method convergence is declared in any of the following cases:

e An interior solution is found.

e A boundary solution is found.

e The hard case is detected.

e A maximum number of iterations is reached.
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With all these elements we are ready to present the complete method.

TRS method of [43]

Assume that initial guesses for A_;, « are given.

1. Initialization
1.1 Compute Ag from initial guess A_;
1.2 Compute initial safeguards for A, «
1.3 Safeguards Ao, «
14 k=0

2. while (not convergence) do
2.1 Compute Interpolant qZ)(A) based on Ap_1, Ax
2.2 Compute A such that qZ)’(j\) = A?
2.3 Safeguard A and update safeguards
2.4 Adjust a = A + q?)(j\)
2.5 Safeguard a and update safeguards
2.6 Compute the two smallest eigenpairs of B,
2.7if (near hard case) then
Use second smallest eigenpair to update (Agy1, Tpt1)
else
Use smallest eigenpair to update (Agy1, Tpt1)
end if
28 k=k+1

end while

7.1.2 The TRS method on ill-conditioned problems

When the TRS method is applied to problem (12) and the matrix A is ill-
conditioned, then H = A" A is nearly singular and it is easy to see that in
this case, ¢ = —A”b is nearly orthogonal to Sj.

Let A= UXV?" be the SVD of A. Then

H = VvY?*v”
g = —VIU"b
01
= -V U”b
On—1
On
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Problem o1 urb eurr g v,

heat 1.19 x 10727 | 4.59 x 10~17 | -0.0061 | —7.38 x 10~
deriv2 3.33x107° | —3.33x 10~7 | 0.0051 | —1.68 x 107

Table 1: Nearly orthogonality of ¢ with respect to S;

where 0; = \/0,_i1+1, since we order the eigenvalues and the singular values
in opposite directions.
Suppose that z € §;. Without loss of generality take x = v,,. Therefore,

g’z = —(owlb,... 00 1ul_ b o, utb)V
and since z € Sy, vjx =0, 1 =1,...,n—1
gz = —ou’b (17)

In general, if 0, is very small then ¢ is nearly orthogonal to &; and a near
potential hard case situation occurs.

Expression (17) needs to be studied carefully in the ill-conditioned case.
For noisy data b= b+ er, (17) becomes

g'x = —ouu.(b+er

)
= —o,(u b+ eu,r)
We distinguish two cases

1. When b contains no perturbations and if uZb is not too large (which is
the case if the DPC holds), then g would be nearly orthogonal to S;.

2. In the presence of perturbations, if w”b is not too large, then ¢z is
dominated by o,eu’r. In this case, ¢ might not be nearly orthogonal
to &1 since the coefficient v r might be large enough to compensate for
the small o,,. In most severely ill-conditioned cases however, o, is so
close to zero that even if u’r is large, ¢ will still be nearly orthogonal
to 8. An example of each case is shown in table 1.

As we saw in §7.1.1, a near potential hard case situation is handled by
the TRS method through the second eigenpair of the bordered matrix. This
approach may fail in the discrete ill-posed case due to the kind of eigenvalue
distribution of H for these problems.

As we saw in section 2, H has a large cluster of small eigenvalues. Because
of the interlacing property, the same clustered distribution can be expected
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for the eigenvalues of the bordered matrix, except perhaps for the smallest
eigenvalue A\;(a). Depending on the value of o (which depends on the value
of A computed from A and qg’()\)), the smallest eigenvalue of B, may or may
not be separate from the rest of the spectrum.

For A large Ai(«) will not be well separate from the rest of the spec-
trum. In the ill-conditioned least squares case A («a) and Ay(«) will actually
be very close (and small) even for not too large values of A. In this case
the corresponding eigenvectors will both have small first components and
consequently, the normalization of the eigenvector associated to the second
smallest eigenvalue will produce large errors. The situation is illustrated in

§7.1.2.2.

7.1.2.1 An alternative for handling near potential hard case situ-
ations

In the near potential hard case situation we propose not to use the second
smallest eigenpair if the second eigenvector also has a small first component.
Instead of this, we suggest to use the following procedure to replace step 2.7
in the TRS method.

Assume that {A(a), (11 u])"} is the smallest eigenpair of B, at iteration

k of the TRS method.

if (near hard case) then
if (second smallest gives near hard case) then

uT Hu
6= ;f—ull
Solve (H — é6l)p=—yg
a=6—yg'p
else
Use second smallest eigenpair to update (Agy1, Tp41)
end if
else

Use smallest eigenpair to update (Agy1, Tpt1)
end if

In other words, when the information on the second smallest eigenpair
is not good enough, we try to compute an estimate for the special value &,
given by lemma 7.4, that guarantees that we can find an eigenvector with
the desired structure. A good estimate for ¢; is available in a near potential
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hard case situation, since in this case {A;(a), uq} is a very good estimate for

the smallest eigenpair of H and therefore 6 = %TTLZ“ will be very close to ¢;.
u1 u

To solve (H—61)p = —g we propose to compute [ of the largest eigenvalues
of H by means of the IRLM and take the solution in the corresponding Krylov
subspace as an approximation to p.

The rationale behind this idea is that in the discrete ill-posed case, H
usually has few significant eigenvalues and they are not clustered. Therefore,
the solution in the Krylov subspace associated to the large eigenvalues will
hopefully be a reasonably good approximation for p. Moreover, we expect
that the IRLM will compute those eigenvalues efficiently since there is a small
number of them and they are separate.

This idea is yet to be tried.

7.1.2.2 Examples

All the tests refer to problem heat from the Regularization Tools package
[25]. The problem is an inverse heat equation and is very ill-conditioned.
The dimensions are m = n = 50.

The right hand side was taken as b=b+ er, where b is the exact data
vector returned by routine heat from [25].

The perturbation € was either 0 or 0.001, r is a random vector with
components uniformly distributed in (0,1).

The experiments were carried out in MATLAB on a SUN SPARC station
IPX, with IEEE standard double precision arithmetic. Machine precision is
of order 10716,

For the IRLM we allowed a maximum of nine Lanczos vectors and started
the method every time with the same random initial vector.
For the TRS method the following stopping criteria were used

e Interior Solution

For a given tolerance €;y,, an interior solution is declared if

Iz ll<A) & (A> —ennr)

e Boundary Solution

For a given tolerance ea, a boundary solution is declared if

| 2 — All2< ea * A
e Maximum number of iterations. This limit was set to 50.
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e Hard case. The hard case is verified by the criterion in lemma 5 from
[43]. A tolerance €y is needed for this test.

e KKT and no progress in . KKT refers to the norm of the residual of
the system in the Karush-Kuhn—Tucker (first order necessary condi-
tions) for a minimizer of problem (13). When this condition is satisfied
and « has the same value for many iterations, the current point x is
returned as the solution.

The criterion for the KKT condition is

H g+ (H - )\])TJ HQS” g HQ €EKKT;

In the following tests, the tolerances were chosen as

Tolerance | Value
€A 10-3
€rNT 10—
€mc 10—
CEKKT 1073

The results of the experiments are summarized in table 2. The norm of
the exact solution || x, ||z is 1.7308.

Test # | Type of | A | lz=2l | Exit by

[zl

Data

exact 1.0 | 0.6460 | Boundary Solution
exact 1.5 ] 0.1819 | KKT, no progress in «
exact 3 | 0.1752 | Interior Solution

perturbed | 1 | 0.6478 | Boundary Solution
perturbed | 1.5 | 0.2905 | KKT, no progress in «
perturbed | 3 | 0.2727 | KKT, no progress in «

S| O = | W DO —

Table 2: Experiments

In test number 2 a value of a = 0.1842 yielded |\ () — Ay(a)| & 10717
which shows that the two smallest eigenvalues of B, may be clustered. In
this example, A\;(a) ~ 10727, The corresponding eigenvectors had very small
first components.
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A near potential hard case situation is declared if v, the first component
of the eigenvector associated to the smallest eigenvalue, satisfies

g ll vl _

€
V1 —v?

In test numbers 2, 3, 5 and 6, the near potential hard case situation
arises. Every time this situation was present, the first component of the
eigenvector associated to the second smallest eigenvalue, also satisfied the
previous criterion.

In figure 11 we show the exact and computed solutions for each test.

In figure 12 we show the function ¢'(\) for problem heat and perturbed
data. The function is so steep close to 61, that even for small values of A,
computing A may be a very ill-conditioned problem.

7.1.2.3 Difficulties

The difficulties encountered when using the TRS method on discrete ill-
posed problems are

1. In a near potential hard case situation, the second smallest eigenpair
may fail to update a properly. A good strategy for handling the near
hard case situation is needed, since as we saw in §7.1.2.2, this situation
may arise even when a good estimate for A is available.

2. With respect to the solution of the eigenvalue problems, it is known that
the Lanczos method might perform poorly when applied to matrices
with clustered eigenvalues (see [16, Ch. 9]). We saw before that this

kind of matrices is likely to arise in the ill-conditioned case.

7.1.2.4 Addressing the difficulties

We propose to investigate the following options to try to overcome the

difficulties in §7.1.2.3.

1. To handle near potential hard case situations

o Use the strategy described in 7.1.2.1.

e Use special deflation techniques.
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Figure 11: Exact solution (*) and approximate solution (-) for tests
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Figure 12: ¢’(A) for problem heat and (dash—dotted) straight lines at 1, (1.5)?
and 9, corresponding to A = 1,1.5 and 3. The dotted line corresponds to
[ERNIPE

2. To solve the eigenvalue problems more efficiently

e Look at preconditioning strategies to accelerate the convergence
of the IRLM when computing the smallest eigenpair of a matrix.

e Use harmonic Ritz values instead of Ritz values as approximations
to the eigenvalues. The harmonic Ritz values converge faster than
the Ritz values to the smallest eigenvalues of a matrix.

e Develop a hybrid eigenvalue method using the method proposed
in [37] (Olsen’s method) to compute the smallest eigenpair of the
bordered matrix and the IRLM to compute an initial guess for the
eigenvector. We expect that the use of Olsen’s method will be a
significant improvement since the method uses very little storage
(two vectors) and inexpensive computations.

o Use another eigenvalue method like the Jacobi-Davidson method.
3. To overcome the difficulties associated to the computation of the small-

est eigenvalue from a cluster, it would be interesting to investigate the

possibility of recasting the TRS in terms of the largest eigenvalues of
H.
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7.1.3 Advantages and Drawbacks

The use of the TRS method from [43] to compute a regularized solution
for large—scale ill-conditioned problems has the following advantages and
disadvantages.

Advantages

e Relies on matrix—vector products with either A, A" or A" A. This is an
important efficiency factor in our real application (generated with the
package DSO3.2 ([42])) in which applying A" A directly is less expensive
than applying A and A" separately.

e The storage requirement is only Vj for k& small and fixed.
Drawbacks

e The difficulties pointed out in §7.1.2.3.

e Computes the regularized solution only.

7.2 Computing the Regularization Parameter

This issue still needs to be addressed. The use of the L—curve criterion seems
to be a good option for computing the regularization parameter, as long as
the DPC holds. It was showed in [55] that if that condition is not satisfied the
L—curve criterion may fail to compute a good estimate for the regularization
parameter.
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& Final Remarks

In this work we have shown that large—scale ill-conditioned least squares
problems arise in important applications and that there is a lack of robust
numerical methods to treat these problems.

We have proposed an approach to the regularization of ill-conditioned
problems that allows us to use well known optimization results and new
optimization techniques for the treatment of such problems. The application
of those particular results to regularization problems has been attempted
very few times in the past and never for the large—scale case.

At this stage of the project, we have accomplished the following:
e Cover the background on regularization of ill-conditioned prob-
lems.

e Propose a strategy for computing the regularized solution (use of

the TRS method).

o Identify difficulties associated with the strategy and propose op-
tions for solving them.

In order to achieve our final goal, the following tasks need to be completed:

e Implement proposed improvements for the TRS method.

e Develop a strategy for computing the regularization parameter.
e Implement the complete method.

e Perform numerical experiments on test problems.

e Compare with other approaches.

e Apply the method to a real problem from seismology.

e Study the theoretical properties of the method.

We are currently addressing the first two tasks.
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