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Abstract

Interprocedural pointer analysis provides information on the values pointer variables may have at
various points in a program. It is especially useful in languages like C, where pointers are extensively
used. This analysis does not improve code directly but is used by other optimizations.

This paper presents a framework in which to perform pointer analysis. Basic questions that any
pointer analyzer must answer are discussed, and answers to these questions are developed. A working
pointer analyzer is presented with performance results given for the analyzer. The effect of the analyzer
on the running time of various programs is also shown.

1 Introduction

Many powerful optimization techniques rely on the availability of accurate information connecting the def-

initions and uses of values in a program. Examples of such transformations include dead code elimination,

constant propagation, loop-invariant code motion, partial redundancy elimination, and global value num-

bering. All of these techniques have proved important in compilers for languages like Fortran. Experience
suggests that these techniques are less effective when applied to code written in C. The combination of
frequent procedure calls and pointer-based memory operations make it more difficult to determine precisely
the relationship between the definitions and uses of values. In particular, pointer-based operations introduce
fundamental ambiguities into the compiler’s model of memory, while procedure calls further complicate the

mapping of compile-time names to run-time storage locations.

Unless the compiler analyzes the behavior of pointer-based operations, it must assume that any pointer-
based operation can access any memory location. Thus, any definition of a pointer-based value must be
assumed to redefine every memory location and any use of a pointer-based value must be assumed to reference
every memory location. This conservative set of assumptions introduces ambiguity into the results of any
analysis of program behavior. Analysis of pointer-based operations can remove some of this ambiguity. Such
analysis can improve optimization in two very different ways. First, better information about pointer-based
operations will improve the overall quality of optimization by sharpening the information available to other
analyses and transformations. Second, the compiler can use the results of pointer analysis as a direct basis
for transforming the program. We are interested in pursuing both kinds of improvement.

Much work has already been devoted to developing practical pointer analysis methods for C. This docu-
ment describes a proposed course of research on improved pointer analysis for C. It presents a new framework
in which to perform the analysis. Section 2 examines the basic questions that any pointer analyzer for C
must answer. Section 3 discusses previous work in the area and how it has answered these questions. Sec-
tion 4 presents the new framework for pointer analysis in C, including an abstract, yet simple, model of
how pointer analysis can be done. Performance results for the analyzer and programs it has analyzed are
included. Section 5 lays out a program of further work.

2 Questions

Many different approaches have been attempted to analyze C. A useful way of categorizing pointer analysis

is to consider the questions that the analyzer tries to answer.

This work has been supported by ARPA through Army Contract DABT63-95-C-0115 and by the State of Texas through Texas
ATP award 003604-015.



void caller() {
int a, b;
called(&a,&b);

subroutine caller()
integer a, b
call called(a,b)
end

}

id lled(int *r,int *
subroutine called(r,s) void called(int *r,int *s) {

*r = .
r=1 T 1;
*¥s = 2;
s =2 }
end

Fortran version .
C version

Figure 1 Interactions between pointers and parameter binding

2.1 Choice of Problem

The first design decision for an interprocedural pointer analyzer is “Will it analyze pointers or aliases?” In
alias analysis, the fundamental abstraction is the alias pair. An alias pair is simply a pair (z, y) where z and
y are C expressions that may access the same memory location. The goal of alias analysis is to determine
the set of alias pairs that can hold at a given point in a program.

Using alias pairs is an unfortunate consequence of thinking of pointer analysis in terms of the framework
used to analyze aliases in FORTRAN caused by call-by-reference parameters[2]. Formal parameters in a
call-by-reference language are not equivalent to memory locations. They are alternative names given to
memory locations within a function. In this situation, alias pairs are the correct information to gather. In C,
however, the situation is somewhat different. If we ignore unions, each memory location has a unique name,
the name with which it is declared. Thus, the distinction between a name and a memory location is both
artificial and unnecessary in C. However, even though a memory location has a unique name in C, it can be
accessed through other names—the names of pointers that point to it. We can derive a relationship, called
“points-to”, for a C program that embodies this information. The points-to relationship maps a variable
name into a set of memory locations. This more closely models the run-time situation in C; it appears to be
the critical information to gather in analyzing the pointer behavior of C programs.

An added benefit of adopting the points-to abstraction is that it handles function pointers in an easy
and natural way. The same machinery used to analyze memory pointers can track pointers to functions, as
long as the compiler can recognize both the creation of such pointers and their actual use. Hendren noted
this advantage in her 1994 PLDI paper [9)].

2.2 Modeling Parameter Binding

The analyzer must include a mechanism for modeling the effects of executing a procedure call and a subse-
quent return on the state of the program’s name space. The complications that arise from these events are
a result of the parameter binding mechanism in C, which relies on call-by-value parameters [1]. This seems
simpler than the call-by-reference convention used in Fortran; however, the presence of pointer variables in
C re-introduces all of the problems caused by reference parameters in other languages, as Figure 1 shows.

In designing an analyzer, this problem raises another critical question: “How should the analyzer represent
and name non-local memory?” Two solutions have been proposed in the literature: using abstract but
representative names and using explicit names.

In a framework that uses representative names, the analyzer creates a new abstract name for the non-local
memory that can be referenced at each call-site. These names are then “un-mapped” at the procedure’s



return to reflect the effect of the procedure call on any non-local memory that it may have accessed. To see
this more clearly, consider Figure 2. To model the memory locations that can be accessed by parameters
*pl and #*p2, the analyzer would create a single representative name, like Repl. Only a single name is
used because the analyzer must assume that *p1 and *p2 may point to the same location. (Using distinct
representative names would exclude this possibility.) On exit from called(), the analyzer will know that
Repl can point to globald and globalB. When it maps these results back into the call-site in caller, it
will determine that a can point to either globalAd or globalB. It will also discover that b can point to either
globall or globalB. The use of a single representative name has introduced imprecision into this very simple
example.

A further difficulty with representative names arises in handling arbitrarily-sized data-structures. The
analyzer must decide how many names to create for each pointer; the only real hint available is the type of the
pointer. Unfortunately, programmers can (and do) create types that are both recursive and self-referential,
like a graph. For a pointer to a graph, the analyzer cannot easily determine the number of representative
names that must be created. This problem is analogous to modeling data structures in the heap.

When the code passes a pointer into a function, the pointer can point to an explicitly-named object. In
this case, the analyzer should use the explicit name of the object rather than a representative name. In the
previous example, using explicit names would produce different results. For example, the parameters are
passed the names of distinct pointers, a and b. Using explicit names, the statement

*pl=&globall;

would set the variable a declared in caller to point at globalA. No complicated mapping is needed. Fur-
thermore, after the return, a and b point to globalA and globalB respectively. This is both correct and
precise.

Clearly, an analyzer based on explicit names will have its efficiency limited by the number of names that
it must instantiate. Thus, from an implementation perspective and an efficiency perspective, it is important
to limit the number of non-local variables that the analyzer believes a function can access.! Otherwise,
using explicit names will become too costly. Non-local names arise from three sources: global variables,
heap-based variables, and local variables whose addresses are explicitly computed. The number of globals
is finite. Unfortunately, the number of heap-based variables is unpredictable, in the general case, as is the
number of concurrently live instances of a specific local variable.

void caller() {
int *a,*b;
called(&a,&b);
}

void called(int *#*pl, int#** p2) {
*pl=&globall;
*p2=&globalB;

}

Figure 2 Function modifies non-local memory

10f course, the analyzer must represent all of the names that are possible. What we would like to do is limit the number of
spurious names.



In analyzing a function that can access non-local names, care must be taken with addressed local variables
of recursive functions (ALVRs). Since an ALVR can have more than one instance, the analyzer must be quite
clear about what it means when it determines that an ALVR points to some name. Some approximation
will be necessary. In our framework, we will approximate by having the single name for the ALVR represent
all instantiations of the ALVR. If at a program point p, some instantiation of an ALVR, r, may point to a
location g, then in our analysis at program point p, r should point to q. An important consequence of this
approximation is that stores to an ALVR cannot “kill” old values. (i.e., All pointer values in an ALVR before
a store will still be in the ALVR after the store.) The non-addressed local variables of a recursive function
need not be approximated in this way. When such a variable is accessed, only the most recent instance can
be accessed. Thus, its name does not need to represent all instances, but only the topmost instantiation.
See sections 4.1, 4.2 and 4.3 for a more detailed discussion of this issue.

The choice between using explicit names or representative names may require trade-offs between space,
speed, accuracy, and simplicity. Explicit names should be more accurate, but more space will probably be
required to give a function access to all the non-locals names it may use. Of course, creating representative
names takes space, too. We can undoubtedly write programs where the representative names take more space
than the explicit names, although we do not expect that to be the typical case. With explicit names no
mapping and unmapping functions are necessary. This should simplify both the analysis and the analyzer. It
is not clear which method will be faster, since using representatives will use fewer names, but it also requires
mapping and unmapping functions. Section 4.6 presents performance results for my analyzer, which uses
explicit names.

2.3 Program Representation

Another issue that affects the design of both the analyzer and the analysis algorithm is the design of the
intermediate form used to represent the program. In particular, the level of abstraction in the representation
determines, to a large extent, both the difficulty of deriving the initial information and the ease with which
the results can be applied to the resulting code.

e A more abstract, source-level representation can simplify gathering initial information; in a lower-level,
assembly-like representation, some analysis may be required to recreate information that was obvious in
the source code. For example, an address expression may be implicit at source-level but be distributed
across several basic blocks at assembly-level.

e A more abstract, source-level representation imposes the programmer’s name space onto the results
of analysis; in an assembly-level representation, each individual subexpression may have a unique
name. For example, a source-level analysis is unlikely to disambiguate two pointer references that use
induction variables introduced by operator strength reduction [6].

In designing an analyzer, the compiler writer should consider the uses to which the results will be put. We
intend to use the results of our analysis to drive optimizations on a low-level representation of the program.
Therefore, our analyzer will work from an assembly-like representation of the code. In general, we would
expect the results of analysis on the low-level code to be of greater interest to low-level optimization.

2.4 Flow Sensitivity

In any interprocedural analyzer, the compiler writer must choose between a “flow-insensitive analysis” or a
“flow-sensitive analysis”. In general, the flow-insensitive algorithm will ignore control flow inside individual
procedures, where the flow-sensitive algorithm will need to analyze the flow inside each procedure. For
points-to information, the choice between flow insensitive and flow sensitive will change the results of the
analysis significantly.?

2There are problems for which this is not true. May Modifies information is the classic example of a problem that gains no
additional information from considering intraprocedural control flow.



Flow-sensitive analysis will, in practice, be slower [19]. We feel that the increased precision obtained
with a flow-sensitive analysis is critical in computing points-to information. Thus, our analyzer uses a
flow-sensitive algorithm.

2.5 Modeling the Heap

A common use of pointers in C programs is to track the addresses of data structures that have been dynam-
ically allocated on the heap. Thus, much effort described in the literature has been directed at discovering
and representing the shape of pointer-based structures constructed in the heap [8,4, 17, 12].

From our perspective, the issue of understanding the internal structure of the heap is orthogonal to the
rest of the analyzer.

e The simplest solution available to us would model the whole heap with a single name. All loads and
stores involving the heap would refer to this name. Since the name represents multiple locations, stores
to it cannot kill old values.

e An easy improvement to the simple model would split the heap by call-sites into the allocation routine.
This would give a distinct name to the memory allocated by each call-site, improving the precision of
the analysis at a small cost in complexity, speed, and space.

e Further refinement in heap modeling is possible. It may be possible to split the heap memory allocated
by one call-site into separate regions, along either the time or space dimensions. For example, in the
space dimension, we could split the memory generated by one call-site based on the structure of the
memory allocated at the call-site. In the time dimension, we might try to generalize from splitting by
call-sites to splitting by call-paths.

Splitting the heap by call-paths can be helpful. For example, in Figure 3, the analyzer could return two
separate names for the two calls to My Malloc. However, for memory allocators that recycle memory, this
will not be useful. Since the same memory may be returned by different calls to the allocator, the analyzer
would have to return the same heap name for all calls to the allocator. Another solution would be to allow the
user to specify what calls allocate memory. This would accurately split the heap for all memory allocators.

Another popular approach to splitting the heap is k-limiting[13]. This approach allows up to k copies of
a heap name to be generated where £ is pre-determined. The goal of the k-limited approach is to allow for
more accurate analysis of heap structures. If we have a heap allocated linked list, the first k-1 nodes can
be given unique names and the rest of the list can be approximated with the 4th name. This information
is very difficult to generate. Furthermore, even if this information could be determined, it would not be
very beneficial. In this analysis, a technique is useful only if it allows more precise determination of what
memory locations loads and stores may access. Thus, splitting a heap name into two names, @ heap1 and

main() {
Node *a,*b;
a=My_Malloc(sizeof (Node));
b=My_Malloc(sizeof (Node));
}

Void *My_Malloc(Int size) {

return malloc(size);

}

Figure 3 Splitting the heap by call-paths




@_heap2 will be profitable only if memory operations that operate on only one of the two names can be
found. Finding such operations is easy to do when the heap is split by call-sites. It may be very difficult
when the heap is split by &-limiting.

2.6 Path Information

The final choice facing the compiler writer is how much context to record and use during the propagation of
information. For each pointer, we can associate path information with it that describes the execution path
or paths along which the pointer was created. The contextual information encoded in path information can
eliminate two sources of inaccuracy. In Figure 4, if the analyzer lacks path information, it will conclude
that p1 can point to either al or a2, and that p2 points to the same values. This inaccuracy arises when
the analyzer begins to analyze called(). It begins by merging the contextual information available about
the various calling procedures. In this case, it merges the fact that p can point to al with the fact that p
can point to a2. Propagating these facts through the return and back into the assignment in the calling
procedure results in the erroneous (but conservative) points-to information. This problem has been termed
the realizable path problem.[15]

In Figure 5, pp points to pl and p2 and p points to al and a2. There are no inaccuracies with this
information, but without path information it is impossible to know that pp and p cannot simultaneously
point to p1 and a2 respectively or p2 and al respectively. Thus, in caller1() after the call to called(),
p1 will needlessly point to a2. T have named this problem the pointer mixing problem.

Although path information can eliminate both these inaccuracies, its use must be carefully considered.
If full path information (i.e., a listing containing all the call-sites in a path) is used, an exponential number
of paths may need to be generated. Less powerful but more efficient approaches may be taken. The analyzer
can arbitrarily limit the length of the path context that it retains, much as k-limiting places an arbitrary fixed
bound on the length of models for heap-based data structures. All these approaches should be analyzed by
considering their effect on the running time and space requirements of the pointer analyzer and the speedup
they produce in analyzed programs.

void calleri() {
int ail,*pi;
pl=called(&al);
}

void caller2() {
int a2,*p2;
p2=called(&a2);
}

int *called(int #*p) {
return(p);

}

Figure 4 Realizable path problem




void calleri() {
int *pi,al;
called(&pil,&al);
}

void caller2() {
int *p2,a2;
called(&p2,&a2);
}

void called(int** pp,int *p) {
*PP=P;
}

Figure 5 Pointer mixing

3 Related Work

The literature contains a number of papers on pointer analysis that are related to our own work. We will
consider work by five specific groups: Landi and Ryder[15, 16], Choi et al.[5], Hendren et al.[9], Wilson
and Lam[22], and Ruf[20]. The following sections summarize their individual approaches and describe their
position relative to the issues raised in the previous section.

3.1 Choice of Problem

Both Landi and Ryder, and Choi analyze alias pairs. Landi and Ryder simplify their analyzer by k-limiting
the expressions that can appear in an alias pair. Choi notes that it is not necessary to record all of the alias
pairs to perform alias analysis. A compact representation can be made by only maintaining the transitive
reduction of the directed graph of alias relations. This is the clearest evidence that alias pairs are the
wrong abstraction to use when analyzing C. For acyclic graphs, maintaining only the transitive reduction
is equivalent to saying that only points-to information is needed. For cyclic graphs, points-to information
may contain more information than a transitive reduction, but this information may be useful.® Hendren,
Wilson and Lam, and Ruf use the points-to representation.

3.2 Modeling Parameter Binding

Landi and Ryder, Choi, and Hendren use representatives and mapping and unmapping functions to handle
call-sites. They realize that this requires information about the type of the incoming pointer. They do not
go into detail about how pointers to arbitrary-sized structures should be handled. Hendren notes a single
memory location should not be represented by multiple names. She does not explain how to guarantee that
incoming pointers do not point to the same location in order to allow multiple representatives to be used. If
multiple representatives cannot be used, this could be a large source of approximations. Choi explicitly gives
an example where two pointer arguments of the same type are initialized to point at different representatives.
This will not work unless we guarantee that the two pointers cannot point to the same object. Wilson and

3Consider a graph with three nodes and all possible directed edges. The transitive reduction of this graph contains three edges,
but the points-to representation contains all six. This extra information allows the points-to representation to determine that a
single dereference from one node may reach either of the two other nodes. This information is lost if we keep only the transitive
reduction.



Lam also use representatives to model parameter binding, but they are very careful about any aliasing that
may be introduced by the initial pointer values to a function. They perform a separate analysis for every
aliasing pattern that enters a function. Each analysis produces a partial transfer function which is applied
to the appropriate call-sites to the function. Ruf uses explicit names to model parameter binding.

3.3 Program Representation

Landi and Ryder, and Hendren both use a C-like representation in their analysis. Wilson and Lam build
their work in the SUIF (Stanford University Intermediate Format) environment[10]. It is not clear what
kind of representation the other groups use.

3.4 Flow Sensitivity

Choi presents both flow-sensitive and flow-insensitive versions of his algorithm. He also notes that killing
information can be used with a flow-insensitive version to improve its accuracy. Hendren, Landi and Ryder,
Wilson and Lam, and Ruf all perform flow-sensitive analysis.

3.5 Modeling the Heap

Hendren has the simplest solution for analyzing heap memory. She creates a single name to represent all of
it. This was not the focus of her research, and she notes that more sophisticated methods could be used.
Landi and Ryder use C-expressions to name memory locations. Presumably this would include the heap.
They do not say anything about special processing for expressions that may refer to heap locations. Choi
is very aggressive in splitting the heap. A separate heap name is generated for each call-path. This is an
extension of splitting the heap based on call-site. These names are further k-limited. Wilson and Lam split
the heap by call-path. Ruf splits by call-site.

3.6 Path Information

Landi and Ryder compute alias information with the assumption of an initial alias holding on entry to the
function. This conditional information allows alias information that is specific to a call-site to be calculated.
Choi preserves context in his analysis by recording the call-site from which an alias was generated. Hendren’s
analysis is completely context specific, since her analysis is done over the invocation graph. She notes that
theoretically this is exponential. Ruf’s work examines the difference in accuracy between alias analysis with
no path information and full path information. He does not develop a practical algorithm for analysis with
full path information, since his goal is to determine the upper limit of what can be gained by using full path
information. Wilson and Lam’s work does not use path information, but should produce context specific
results. This is done by applying partial transfer functions to simulate the effect of a call at a call-site. No
imprecision is introduced from other call-sites, since a partial transfer function considers the context from
each call to the function it models individually.

4 Current Work

In this section, we will describe our implementation of a pointer analyzer and examine its effectiveness. Our
pointer analyzer uses pointers rather than alias pairs and explicit names rather than representatives. Our
analyzer represents programs in an assembly-like language, performs flow-sensitive analysis, splits the heap
by call-sites, and uses no path information. (See section 2 for a discussion of these choices.) This section
contains five subsections. Subsection 4.1 describes an abstract pointer language, PL. Subsection 4.2 shows
how pointer analysis can be performed on PL. Subsection 4.3 explains how the pointer behavior of a C
program can be modeled with a PL program. Subsection 4.4 describes my implementation of a PL style
pointer analyzer for C. Subsection 4.5 discusses the various sources of approximation in the analyzer.



Type Call-Sites Heap Path Information
LR Alias Representatives | k-limiting one-level
CBC | Alias Representatives | Call-Path w/ k-limiting | one-level
EGH | Points-to | Representatives | One Name arbitrary-level
WL Points-to | Representatives | Call-Path arbitrary-level?
Ruf | Points-to | Explicit Names | Call-Site none/arbitrary-level
Lu Points-to | Explicit Names | Call-Site none

LR Landi & Ryder

CBC  Choi, Burke, & Carini
EGH Emami, Ghiya, & Hendren
WL  Wilson & Lam

Figure 6 Comparison of approaches

4.1 PL Language

Here we define an abstract language PL that has the relevant features of pointer-based languages but is easy
to analyze. A PL program consists of:

e global regions G
o functions F; one of which, Fy, is the entry point into the program

A function Fj creates function regions F'R;; when it is invoked. These regions are destroyed on exit.
A PL function is defined as:

function — label function (register*) block*

block — label operation*[ jump | branch | return ]
operation  — merge | load | store | address | map | call
jump — JMP label

branch — BR label label

return — RTN register

merge — MR register register*

load — LD register register

store — ST register register

address — ADDR [ region | function ] register

map — MAP register register arithmetic

call — [ CALL label register register* | CALLR register register register*]
region — G | FRj &

arithmetic — A;

Since PL is only concerned with pointer analysis, operations not relevant to pointer analysis have been left
out. The branch operation is indeterminate, since we assume any intraprocedural path may be taken. The
MR merge operation takes a value from a randomly selected source register and puts it in the first register.
The M AP operation maps the address in the source register to a new address in the defined register. This
map is defined by the arithmetic field A;. To be a legal PL program, an instantiation of a function region
FR; 1 can only be referenced or modified by loads or stores if it is the topmost instantiation of F'R; ;.



This is not a natural consequence of the syntax, but is a restriction the programmer must guarantee. This
requirement is necessary in order to make pointer analysis simpler. (See the explanation of how to propagate
a region to a call-site in section 4.2) A consequence of this restriction is that ALVRs must be modeled by
global regions. (See section 4.3)

4.2 Pointer Analysis

Our goal will be to label all loads and stores in PL programs with the regions they may reference or modify.
A load or store labeled with a function region F'R; ; indicates that the load or store may reference or modify
the topmost instantiation of F'R; 1.

To label all the loads and stores, the program must be converted into SSA form[7]. This includes giving
SSA names to all global regions and the topmost instantiation of all function regions. To generate SSA
names for regions, the intermediate form must specify where a region may be modified and where it may be
referenced. Loads, stores, calls, and returns have a list of regions, RR, that they may reference. Stores and
calls also have a list of regions, MR, that they may modify. The RR and MR lists in a call operation do not
include regions generated directly or indirectly by the call. In addition, all regions possibly referenced in a
function, Fj, are given SSA names on entry to the function. This set is written as Uses(F;) and includes
locals. These lists of regions should be as accurate as possible to reduce the time and space needed to build
the SSA form of the program. Although the analyzer builds the SSA form for the whole program, this is
not interprocedural SSA form. The analyzer just builds the intraprocedural SSA form of several functions
at once. There are no phi-nodes connecting SSA names at call-sites with the parameters to which they flow.
Interprocedural connections must be formed by other parts of the analyzer.

Every SSA name s will have a set of possible addresses it may contain written as SET(s). The target
of each ADDR operation is inserted into the worklist and initialized with the address of its region or
function argument. The SSA name in Uses(Fp) for each global region is initialized with any addresses the
region may have when the program starts. If the region has an address, it is placed on the worklist. We
remove items off the worklist and propagate them to their uses. The algorithm terminates when the worklist
is empty. To propagate addresses, the analyzer uses the function SetCopy(dst, src) to set SET(dst) =
SET(dst) USET(src). If this changes SET (dst), dst is added to the worklist.

Figures 7 and 8 illustrate the actions needed to propagate an address in a load operation. In this example,
we are propagating to a load operation with base register r11 and target register r12. The memory regions
that may be accessed by this load are listed in brackets after the operation. They are: @_ap, @_bp, and @_cp.
These memory regions have been given SSA names, which are denoted by the subscripts. The “address” of
these memory locations is shown above the box that represents them. Thus, memory region @_ap’s address is
0. Propagation to this load begins by examining the contents of the base register, ri11, of the load. We start
with the element 0. We look for any memory regions in the list of regions that this load may reference which
are located at address 0. We see that @_ap;3 represents @_ap at this point, which has the correct address.
Since @_ap;3 represents a memory region that may be pointed to by the base register of this load, we copy
the contents of @_ap;3, 90, and put it into the target register, r12. We follow an identical procedure with
the other element, 4, in the base register and put the contents of @ bp;4, 94, into r12. Since the address of
memory location @_cpis is not in r12, we do not copy its contents, 98, into r12. At the end of propagation
the target register, r12, would contain 90 and 94. Since its contents have changed, r12 would be added to
the worklist.

The functions that perform propagation are shown in Figures 9 and 10. The steps needed to propagate
addresses are fairly obvious except for (1) propagating a region to a store, (2) the treatment of regions at a
call-site, and (3) propagating a function pointer to a call-site.

1. A region in the RR list for a store must have its addresses added to the corresponding region in the
MR list because a store might not kill values in a region. Thus any addresses in a region before the
store may still be in the region after the store. This is why stores need RR lists.

10



LOAD ri1 => ri2 [ @_ap13 ‘@_bp14 @_Cp15 ]

Memory Regions

SSA Name

Original Name

Contents

0 4 8
@_ap Q_bp @_cp
11 12 @_apyz | @_bp1a | @_cpis
@_ap @ _bp @_cp
0,4 90 94 98

Figure 7 Before Propagation Step

LOAD ri11 => r12 [ @_apy3 @_bpys @_cpy5 ]

Memory Regions

SSA Name

Original Name

Contents

0 4 8
@_ap Q_bp @_cp
11 12 @_apiz | @_bp1sa | @_cpis
@_ap @ _bp @_cp
0,4 90,94 90 94 98

Figure 8 After Propagation Step

11




2. There are two cases for handling a region r in the RR list at a call-site to function Fj. If r represents a
region F'R; , that is created by F7, then r is copied directly to the MR list at the call-site. Otherwise, r
is copied into the corresponding region in Uses(F7). In the first case, this is done because r represents
the topmost instantiation of F'R;, before the call-site. Within the call it is no longer the topmost
instantiation. Thus, it cannot be referenced or modified, and the values in the topmost instantiation
of F'R;, before and after the call are the same. This is reflected by copying r from the RR list to the
MR list. In the second case, F'R; , is visible in the call, so its values must be copied into the call. If
these values are modified by the call, the modified values will be placed in the call-site’s MR list when
the called function’s RTN operation is processed. An RTN operation’s RR list contains all non-local
regions possibly modified by a call.

3. When a function pointer is propagated to a call-site, the calling-context must be propagated to the
new target. In addition, the return context of the called function must be propagated to the call-site.
This may seem unnecessary, because the return context will be generated by the newly propagated
calling-context. However, if the newly propagated calling-context does not modify the existing return
context (the called function may have other call-sites that may have already created a return context),
the return context will not be properly returned.

Before analyzing the running time, it should be clear that this algorithm must halt. The algorithm
continues only if an SSA name has a region added to its SET. Since there are a finite number of regions
and SSA names, this process must terminate. Four parameters will be used to analyze the running time of
the propagation algorithm.

e S Number of SSA names
e R Number of regions
o U Maximum number of uses of one SSA name

e D Maximum number of SSA names one operation can define

Each SSA name can be inserted and removed from the worklist at most R times. Thus, each SSA name will
be processed at most R times. Each time an SSA name is processed, it may result in U D SetCopy calls.

Void PropagateToCall(Name ssaName,Operation callingOperation,Function calledFunction) {
if (IsActualParameter(ssaName,callingOperation))
SetCopy(CorrespondingFormal(ssaName,calledFunction),ssaName);
else {
/* propagating a region to a call */
if (RegionIsLocalToFunction(ssaName,calledFunction))
SetCopy(CorrespondingRegion(ssaName,callingOperation.Modified Regions),ssaName);
else
SetCopy(CorrespondingRegion(ssaName,calledFunction.UsesRegions),ssaName);

Figure 9 Code for PropagateToCall
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Void Propagate(Name ssaName,Operation operation,Function f) {
/* propagating ssaName to a use in operation in function f */
switch (operation.type) {

MR :  SetCopy/(operation.definedRegister,ssaName);
break;
LD :  forAllRegions(region,operation.Referenced Regions)

if (PointsTo(operation.BaseRegister,region))
SetCopy (operation.definedRegister,region);
break;
ST :  if (ssaName==operation.BaseRegister | |
ssaName==operation.ValueRegister)
forAllRegions(region,operation.Modified Regions)
if (PointsTo(operation.BaseRegister,region))
SetCopy (region,operation.ValueRegister);
else /* propagating a region to a store */
SetCopy(CorrespondingRegion(ssaName,operation.Modified Regions),ssaName);

break;

MAP : SetCopy(operation.definedRegister,operation.arithmetic(operation.sourceRegister));
break;

RTN : if (ssaName==operation.returnRegister)

forAllCallerSites(callOperation,f)
SetCopy(callOperation.definedRegister ssaName);
else {
/* propagating a region to a return */
forAllCallerSites(callOperation,f)
SetCopy(CorrespondingRegion(ssaName,callOperation.ModifiedRegions),ssaName);
}
break;
CALLR: if (ssaName==operation.functionPointerRegister) {
forAllCallees(calledFunction,operation) {
forAllParameters(parameter,operation)
PropagateToCall(parameter,operation,calledFunction);
forAllRegions(region,operation.ReferencedRegions)
PropagateToCall(region,operation,calledFunction);
forAllOutGoingRegions(region,calledFunction)
SetCopy(CorrespondingRegion(region operation.ModifiedRegions),region);
}
} else {
forAllCalledFunctions(calledFunction,operation)
PropagateToCall(ssaName,operation,calledFunction);
}
break;
CALL : PropagateToCall(ssaName,operation,operation.calledFunction);
break;

Figure 10 Code for Propagate
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SetCopy can be implemented to require O(#source addresses) + O(#target addresses) time or O(R) time.
The only non-constant work needed to determine if a SetCopy operation needs to be done is in the LD
and ST cases. In these cases, there is a test, PointsTo(operation.BaseRegister,region). If the addresses in
operation.BaseRegister are represented by a linked-list, this can be done in O(R) time. Since this overhead
is of the same order as the SetCopy operation, the worst case running time is O(R2SU D). The worst case
requires that every SSA name contain every address upon termination and that each SetCopy call adds
at most one address. The average case appears to be much better than the worst case (see Figure 11). In
the eleven programs tested in this paper, there were a total of 1,581,194 SSA names. Of these, 218,261
contained more than nine addresses. Over 72% of the SSA names had no addresses. The indent program
was especially difficult to analyze because of a large array of structures that contained over 200 pointers.
Since an array is approximated by one name in the analyzer, any access to this array would refer to all 200
pointers, greatly slowing down the analysis. Excluding indent, only 52045 SSA names contained over nine
addresses and over 80% percent had no addresses.

4.3 Modeling and Analyzing C in PL

The pointer behavior of C programs can be modeled with the PL language. Global variables are modeled
with global regions. Local variables that are not addressed or are not created by a recursive function can be
modeled by a function region. ALVRs* must be modeled by a global region. These local variables cannot
be modeled with function regions because we cannot guarantee that only the topmost instantiation will be
referenced. An SSA name for a function region only contains what the topmost instantiation of that region
may have at that point, which is not sufficient to model ALVRs. An SSA name for a global region representing
an ALVR contains the possible addresses of any instantiation of that variable at that point in the program.

Program | Number of | Number of SSA names with X

Regions SSA names number of addresses
0-9 | percent 0 | percent
gzip 510 254017 | 254005 100.0 | 220202 86.7
cachesim 556 99981 | 99970 100.0 | 84709 84.7
water 277 13716 | 13714 100.0 | 11523 84.0
ftt 85 4799 4797 100.0 3981 83.0
clean 836 199793 | 199768 100.0 | 155211 7.7
tsp 82 7351 7347 99.9 5788 78.7
dhrystone 71 2502 2500 99.9 1719 68.7
mlink 778 668308 | 666693 99.8 | 559929 83.8
allroots 51 978 976 99.8 807 82.5
be 539 131231 | 80861 61.6 | 68581 52.3
indent 553 198518 | 32302 16.3 | 27481 13.8

Figure 11 SET sizes

40Of the programs tested, only mlink had an ALVR. ALVRs are easy to detect. A call-graph is built and all recursive functions
are found. All addressed memory regions in these functions are ALVRs. It would be unwise to attempt to model ALVRs
more accurately. Accurate modeling would produce little benefit, since ALVRs are rare. Also, any attempt to model them
more precisely would require complex code to be written that would slow down the performance of the analyzer even if no
ALVRs existed in the program. Separate addresses would have to be created for the multiple regions used to model an ALVR.
Complicated code would be needed to adjust these addresses when they enter and leave the function in which they are created.
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Since it represents multiple locations, addresses in these regions can never be killed. Fortunately ALVRs in
C appear to be rare. Heap memory is also represented by global regions. Stores to heap memory cannot kill
old values.

References to a region generate an ADDR operation. Accessing fields of non-heap structures can be
modeled with a M AP operation. Accessing fields of a heap structure is not modeled with a M AP operation,
since heap memory is modeled with a single name. The merge operation is used to model the effect of all
other arithmetic operations on addresses (e.g. MUL rl r2 — r3 becomes MR r3 rl r2). This is correct
since, these arithmetic operations cannot generate addresses to a different region. Calls to heap generating
functions can also be modeled with an ADDR. operation. This splits the heap into sections based on the
call-site.

PL could be extended to handle stores better. This was not done in order to show the core of PL. For
regions modeling a scalar variable, we know that an explicit store to them will kill old values. This could be

struct inner {
int a;
int b;

};

struct outer {
struct inner c[2];
struct inner d;

};

main(int argc, char **argv) {
int *a;
struct outer g;

a=(int *) malloc(sizeof(int));
a=(int *) malloc(sizeof(int));
£();

}

void £() {
int *p,a;
p=¢a;
£();

}

main’s function regions @_a @ g.c @_g.d.a @_g.d.b

f’s function regions @ fp

global regions @_heapl @_heap2 @fa

Figure 12 Program with eight regions
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modeled in PL with a special store operation that did not require an RR list during analysis.

In Figure 12, we have a program with eight regions. Each non-structure field of a structure is considered
a variable and given its own region name. If a field of a structure is itself a structure, (e.g., g.d in function
main()) then the naming is based on the fields of the interior structure. Note that variable a in function
() is an example of an ALVR and is given a global region.

4.4 Implementation

Our implementation was done within the Massively Scalar Compiler Project[3]. C-code is translated into
ILOC our intermediate language, by C2I. C2I generates a region for each scalar and array variable. Each
field of a structure and each compiler-generated location is also given a region. C2I also tells if a region
represents a global variable or a local variable, if a region is ever addressed, and the region’s size. C2I can
explicitly annotate a load or store that does not use a pointer with the region it will reference or modify.
(C2I is also able to denote that some stores must kill old values in the region the store modifies.

ali collects all the files that C2I generates for a program. Each library function has a hand-made ILOC
file that simulates its effect on pointers. Once all the files are parsed, ali generates the MR and RR lists
for ambiguous loads and stores by inserting all addressed regions into these lists. The MR and RR lists
for calls and returns and the list of regions possibly used by a function are limited by performing classical
analysis.® Classical analysis is essential for keeping the SSA form of the analyzed program small. It can also
improve the accuracy of pointer analysis. In Figure 13, p will contain the address of g before the call to
printf in £1. Without classical analysis, this fact will enter the printf function, because all variables are
in printf’s RR and MR lists. The variable p will be propagated to the return operation in printf and will
be returned to all call-sites of printf. (Note this is an example of the false-return problem.) Thus, p will
unnecessarily point to g immediately after the call to printf in main. With classical analysis, we know that
printf cannot modify or reference p, so it will not appear in printf’s RR and MR lists.

int *p,g;

void £1() {
p=ag;
printf("hi");
}

main() {
printf("hello");
£10);

}

Figure 13 Mod and Ref analysis improves accuracy

5In classical analysis, we determine the memory regions a function can directly modify by looking at its loads and stores. Loads
and stores through a pointer are conservatively assumed to access any addressed memory region. The total side-effect of a
function is determined by processing each function in postorder. When a function is processed, the effect of its calls that do
not correspond to backedges will already have been determined. Calls along backedges are conservatively assumed to access
any global or addressed memory region. The call-graph used to perform the depth-first search is generated by assuming that
pointer-based calls may call any addressed function.
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The actual alias analysis starts by giving every region a numerical address. These addresses are chosen
so that an add immediate generated to access a local in a stack frame can generate the correct address by
adding its immediate to the address in the base register. The addresses of regions in a structure are also
chosen so that the addressing arithmetic is preserved. Care is taken in handling add immediates to ensure
that only addresses to the start of a region are generated. Otherwise, an infinite number of addresses might
be generated by code that increments a pointer through an array. Using numerical addresses also makes
initialization of the worklist easier. All references to a stack frame can be initialized by just inserting the
base register onto the worklist.

Once the SSA names are initialized with these addresses, propagation is started. Propagation is done as
described in the PL language section. Once alias analysis is finished, classical analysis is performed again to
generate more accurate RR and MR lists for calls and return operations.

There is no provision for incremental compilation. However, separate compilation can be done with some
user aid. Library functions are modeled with hand-crafted ILOC files that simulate their effect on pointers.
The user can also create ILOC files to simulate portions of the program. If the user knows that a function
£() has no side-effects, he can model it with an empty function. This way the rest of the program can be
compiled without having to load in £() or any of the functions that can only be reached through it. This
technique may be necessary for large programs.

4.5 Sources of Approximation

There are four sources of approximation in the analyzer:

e heap
e path information

e arrays

e ALVRs

The heap is approximated by one name for each call-site that generates heap memory. More sophisticated
methods that split the heap along the space and time dimensions will be considered. No path information is
used in the analyzer. This will be another area for future research. Arrays are treated as one unit. This is
the main source of approximation when analyzing indent (See Figure 15). Names for ALVRs must represent
all instantiations. This is the only approximation that recursion forces in the analysis. Recursion by itself
will not cause any approximation in the analysis.

The first three sources of approximation appear in all algorithms for pointer analysis for C. Any solution
for these three sources of approximation should be applicable in our framework as well. The fourth source of
approximation is needed for the code shown in Figure 14. Suppose function £() was called with £(0,NULL).
This will result in recursive calls to £() to a depth of three. All three calls will have a local instantiation of
a. The call to £() at depth zero has its instantiation of a addressed and passed to the other calls. The call
at depth one stores through its instantiation of a to globall. The call at depth two sets the instantiation
of a at level zero to point to global2. The analysis will unnecessarily conclude that the store through a at
depth one at line 6 may modify global2. This occurs because p initially points to a due to the call on line
3. Thus, line 8 will set a to point to global2. Upon exit from £, a will point to globall and global2. We
unnecessarily conclude on line 6 that a may point to global2. This error occurs because all instantiations
of a are represented by one name. It may be possible to get more accurate analysis by allowing multiple
instantiations of a name (e.g., a_levelO, a_levell, a_level2, a level3) in our analysis. However, this
analysis would be very difficult. It would require knowing that certain portions of code only operate at a
certain recursion depth. Furthermore, code for which such a technique would be useful is probably quite

rare in C.
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int globall,global2;

int £(int depth,int **p) {
int *a;

a=&globall;

if (depth==0) {
f(++depth,&a);

} else if (depth==1) {
f(++depth,p);
*a=3;

} else if (depth==2) {
*p=&global2;

0 ~N O O WN =

Figure 14 ALVR causes approximation

4.6 Results

The analyzer was tested on a small suite of programs. clean is the optimization pass of the Massively
Scalar Compiler Project that removes empty basic blocks. mlink is a genetic linkage analysis program.
be implements a calculator language. gzip is the standard file compression and decompression program.
indent transforms C programs into a pretty format. cachesim is a cache simulator. water is the numerical
computation program from the SPLASH benchmarks. fft performs a Fast Fourier Transform. tsp solves the
traveling salesman problem. dhrystone is the well-known benchmark program. allroots finds the roots of
a polynomial equation.

Figure 15 shows the time and space needed to analyze the programs. The Lines column is the number
of lines in all the source files used to make the program. This does not include header files. The number of
lines for clean includes library files that contain functions not used in clean.

For each program three versions were prepared: one with no pointer analysis, one with classical analysis,

and one with pointer analysis. By “no pointer analysis,”

we mean that ambiguous loads and stores, returns,
and function calls were conservatively assumed to access any memory location.

These three versions were then optimized with: loop peeling, global value numbering, partial redun-
dancy elimination, constant propagation, loop invariant code motion, and dead code elimination. The three
optimized versions were then instrumented so that they would record the number of operations executed.
The results show that pointer analysis can significantly speed up a program compared to a program with
no analysis. For the programs tested, the average speedup was 7.6%. The results were not as good when
compared to programs which had classical analysis. In this case, the average speedup was 1.8%. One in-
teresting result is that pointer analysis can actually hurt performance. This was because the more precise
information generated by the pointer analyzer allowed more loop invariant code to be moved. Unfortunately,
this movement was not beneficial, since this code was in a location that was never executed.

The impact of pointer analysis is even more dramatic when we look at its impact on memory traffic. The
unanalyzed version had 19.7% more stores than the version with pointer analysis. The classically analyzed
version had 0.9% more.

The unanalyzed and classically analyzed versions had 24.7% and 7.0% more loads respectively than the
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Program | Analysis Time (s) | Memory (M) | Lines
clean 13.9 40.9 | 11191
mlink 43.0 110.9 | 9264
be 169.7 26.7 | 7583
gzip 8.2 28.0 | 7331
indent 674.4 46.9 | 5955
cachesim 4.2 16.4 2849
water 0.4 2.7 1345
fft 0.2 1.3 1037
tsp 0.3 1.2 760
dhrystone 0.1 0.7 534
allroots 0.1 0.3 215
Figure 15 Analyzer Statistics
Program Original Modref ali | % Speedup over |
Original | Modref
water 14672886 | 13554931 12795448 14.7 6.0
dhrystone 650195 588176 558176 16.5 5.4
tsp 728990 708337 679273 7.3 4.3
be 5821567 5510190 5416170 7.5 1.7
mlink 145204328 | 137088645 | 134937328 7.6 1.6
allroots 1069 1047 1037 3.1 1.0
clean 1155893 1111025 1102972 4.8 0.7
fft 14069183 | 13125869 13065189 7.7 0.5
gzip (enc) 5834574 5808365 5776916 1.0 0.5
gzip (dec) 991063 988552 988168 0.3 0.0
cachesim 13472239 | 11974137 11972515 12.5 0.0
indent 896766 827127 827907 8.3 -0.1

Figure 16 Results
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Program | Original | Modref ali | % Speedup over |
Original | Modref
dhrystone 82007 60007 56007 46.4 7.1
fft 1055908 | 1036664 | 1016176 3.9 2.0
gzip (enc) | 279882 | 279869 | 274715 1.9 1.9
clean 79932 76387 76385 4.6 0.0
mlink 6090638 | 5490006 | 5489241 11.0 0.0
cachesim | 1246105 | 594474 | 594474 109.6 0.0
water 1034219 | 1034219 | 1034219 0.0 0.0
tsp 51049 51047 51047 0.0 0.0
gzip (dec) 17786 17562 17562 1.3 0.0
indent 68855 67404 67404 2.2 0.0
allroots 13 11 11 18.2 0.0
be 365517 | 265747 | 265747 37.5 0.0

Figure 17 Stores

version with pointer analysis. This is especially encouraging since loads can be very expensive operations.
Since microprocessor speed is increasing faster than memory speed, these memory traffic improvements will
become more and more important.

5 Future Work

Several issues should be explored further. Two of these areas, heap modeling and path information, have
already been mentioned in Section 2.

1. Model the heap more accurately.
2. Explore the use of path information for more precise analysis.
3. Examine the effect of unions and type casts on our analysis.

4. Find transformations that can directly use the information to improve pointer-based codes.

5.1 Heap-Splitting

Currently, the analyzer models the heap by making separate names for the heap memory generated by
each malloc() call-site. We plan on further refining our model of the heap by the methods (i.e., splitting
along call-paths, user-specification of memory allocators, and splitting by fields of heap allocated structures)
mentioned in Section 2.

When refining the heap model, it should not be arbitrarily split. Generating heap regions is an expensive
operation in the analyzer. Heap regions are addressed regions, so they will appear on the region lists of
all calls and pointer-based memory operations. This will expand the SSA name space and require more
memory. Modeling the heap more accurately is not the ultimate goal. It may or may not produce more
accurate pointer analysis. This in turn may or may not result in performance increases in the analyzed
code. We must weigh all the potential improvements against the increased time and space required. This
evaluation will be done by running various versions of the analyzer on the test suite.
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Program Original Modref ali | % Speedup over |
Original | Modref
water 3198626 | 2533613 | 1784412 79.2 42.0
dhrystone 74033 64018 54018 37.0 18.5
tsp 135071 124636 107001 26.3 16.4
mlink 33219484 | 27723944 | 26264447 26.4 5.6
be 936994 820604 792242 18.2 3.6
fit 1924513 | 1253023 | 1216671 58.2 3.0
gzip (enc) 961509 915398 889141 8.1 3.0
allroots 163 145 141 15.6 2.9
clean 199961 175789 171927 16.3 2.2
gzip (dec) 138307 136145 135802 1.8 0.2
cachesim 2103377 | 1901788 | 1900867 10.6 0.0
indent 194601 144099 144877 34.2 -0.5

Figure 18 Loads

5.2 Path information

The results in this paper were produced without using path information. We plan to extend our analyzer to
use the various types of path information introduced in Section 2. All implementations of path information
will be evaluated by testing their performance on our test suite. We will consider both the effectiveness of
path information to improve code and the extra costs needed to analyze with path information.

5.3 Safety

The analyzer assumes that it can identify where addresses to new regions are generated. In the analyzer,
the only place where these addresses should be generated are:

e load immediate of the address of a global
e add to a stack pointer

e add to a structure pointer

We are able to distinguish between an add operation that generates an address to a new region and an add
to an array pointer by the layout of memory regions in our analyzer’s address space. The code in Figure 19
will illustrate how this works and a problem in this approach. The regions for this code can be seen at the
bottom of the Figure. (Note that p does not have a region since it is allocated to a register) Regions are
shown with their address above their top left corner. The code in this first section would produce the ILOC
in Figure 20. Register r0 will be initialized with address 0, since this is the base of the stack frame. Thus,
we recognize that the 1ADDI generates an address to a new region because the resulting address, 4, is the
start of region @_c.b. On the other hand, in the iADD operation, r4 will contain the address 4, and r5 will
contain 4. When these are added together, the result, 8, is not the base of any region, so we do not add this
address to r6. Instead, we assume that 4 is the address of an array region, so when we add to it we generate
the same address, 4. Thus, 4 will be inserted in the list of addresses in r6.

Problems with this process can occur when we use type casts and unions. For the code in the second
section of Figure 19, the analyzer will incorrectly conclude that the first store through p stores to @_c.b,
and the second store through p stores to @_c.a. This occurs because the analyzer does not understand how
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struct foo {

int a,b[2];
};
void £() {
int *p;

struct foo c;
/* good addressing */

p=c.b;
pl1]1=3;

/* bad addressing */

p=(int *) &c;

pl1]1=3; /* analyzer thinks this stores to c.b */
p+=2;
pl0]l=3; /* analyzer thinks this stores to c.a */
}
0 4

®

_c.a @_c.b

f’s function regions

Figure 19 Good and bad address creation

9 iADDI 4 r0 => 13 # get address of f_c
9 i23i r3 => r2

10 i2i r2 => r4

10 iLDI 4 =>r5

10 iADD r4 r5 => 16

10 iLDI 3 =>r7

10 iSTor ' 4 0 r6 x7

Figure 20 ILOC code with no address creation problems
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to deal with type casts. All stores through p should be to the same region. Unfortunately, the underlying
structure that was inherited through the type cast puts a region, @_c.b, in the middle of the array pointed to
by p. The first store happens to hit the base of this region, so we conclude that it is a store to @_c.b. When
p is incremented, this lands in the middle of region @_c.b. Since this is not the base of a region, the analyzer
assumes this is an array increment and sets p to its original address. Thus, p points to region @_c.a after
the increment. Further work needs to be done to ensure that this case is handled correctly. More generally,
we need to answer how unions and type casts will affect our analysis.

5.4 Transformations

We will also look for code transformations that directly improve code using the implemented points-to
analysis. For example, we plan on implementing a pass to perform register promotion. In register promotion,
variables that are allocated in memory are promoted to registers. This can be done in the regions where the
variable is never accessed through a pointer.
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