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In a recent paper, Dennis, El-Alem, and Maciel suggested a class of trust-region-based algorithms
for solving the equality constrained optimization problem. They proved global convergence for
the class.

In this paper, we characterize this class and present a short, straightforward, and self-contained
global convergence theory. The results are stronger than Dennis, El-Alem, and Maciel’s results.
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1 INTRODUCTION

Over the last two decades, trust-region algorithms have proven to be very effective
and robust techniques for solving the unconstrained optimization problems. Since
mid eighties, many authors have considered extending the trust-region idea to the
following equality constrained optimization problem

minimize f(z)

(EQ) = { subject to  C(z) = 0.

The functions f : R — R and C : R® — RN™ are at least twice continuously
differentiable where C(z) = [c1(%), ..., cm(z)]T and m < n.

Most trust-region algorithms for solving problem (EQ) attempt to incorporate
the trust-region idea within the successive quadratic programming (SQP) frame-
work. The SQP method iteratively minimizes a quadratic model of the Lagrangian
function

£z, ) = fz) + \TC(), (1)
subject to a linear approximation of the constraints. At each iterate zg, the SQP
method obtains a step sgp and an associated Lagrange multiplier step A)\,?P by
solving the following quadratic programming subproblem

minimize Vxﬁgs + %STHkS,
subject to  Cy + VCkTS =0,
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where Hy, is the Hessian of the Lagrangian function (1) or an approximation to it.

The reduced Hessian technique is one approach to incorporate a trust region
into the above subproblem. This approach was suggested by Byrd and Omojokun
(1987)[2] (see also Omojokun (1989)[12]). In this approach, the trial step sj is
decomposed into two components; the tangential component sf and the normal
component s7. The step s is computed by solving the following trust-region sub-
problem

minimize ||Cx + VCTs"||3,
subject to  ||s"]|2 < ody,

for some o € (0, 1), where Jj is the trust-region radius. The tangential component
st is then obtained by solving another trust-region subproblem. Let Z; be a matrix
that forms an orthonormal basis for the null space of VCkT and let sf = 75, . The
step 5 is computed by solving the following trust-region subproblem

minimize [Z] (Valy + HysP)]T s + £(55)T ZF Hi. 2,5,
subject to || Z5"13 < 67 — |Isg II5.

The trial step s; has the form s = s7 + 73 52.

This approach has been used by many authors. See, for example, Alexandrov
(1993)[1], Dennis and Vicente (1997)[4], El-Alem (1995)[7], and (1996)[8], Lalee
(1993) [9], Lalee, Nocedal, and Plantenga (1993)[10], Maciel (1992)[11], Plantenga
(1995)[13], Vicente (1996)[16], and Zhang and Zhu (1990)[17].

Dennis, El-Alem, and Maciel (1997)[3] have considered a general class of trust-
region based algorithms for solving problem (EQ). In their algorithms, the two
components of the trial step are not necessarily orthogonal. We present this class
of algorithms in the next section. In Section 3, we state the assumptions under
which global convergence is proved. Section 4 is devoted to presenting the global
convergence results. Finally, Section 5 contains concluding remarks.

The following notations are used throughout the rest of the paper. The sequence
of points generated by the algorithm is denoted {zx}. A subscripted function
denotes the value of the function evaluated at a particular point. For example,
fe = f(zg), Cy = C(zg), by = £(xk, M), and so on. Finally, all the norms are
{5-norms.

2 DENNIS, EL-ALEM, AND MACIEL’S CLLASS OF ALGORITHMS

In a generic trust-region algorithm, a trial step s; that satisfies some conditions is
computed. The step is then tested. If the step is accepted the algorithm proceeds
by setting zx41 = xx + sk and the radius of the trust-region is increased accordingly.
If the step is rejected the trust-region radius is decreased and another trial step is
computed in the smaller trust region.
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2.1 Description of the class

In Dennis, El-Alem, and Maciel’s class of algorithms, the trial step s is the sum
of two components: the tangential component s!, and the quasi-normal component
sp. Dennis, El-Alem, and Maciel (1997)[3] do not require the two components of
the trial step to be orthogonal. Instead, they impose a condition on the quasi-
normal component s to prevent it from being too long when the violation of the
constraints is small. They require that the following condition holds for the quasi-
normal component of the trial step at every iteration £,

llskll < Eal|Crll,

where K is a positive constant. This condition can be viewed as a relaxation to
the orthogonality of the two components of the trial step.

The quasi-normal component of the trial step is taken to be any step inside the
trust region ||s”|| < o1dk, for some o1 € (0, 1), and gives at least a fraction of the
Cauchy decrease obtained by the Cauchy step s, 7. Thus, the step s™ satisfies,

ICkI* = ICk + VO™ I > o[l Cill” = [ICk + VO s 171,

for some o3 € (0, 1].

Let the quadratic model of the Lagrangian function be gx(s) = £ + Vxﬁgs +
%ST Hys and let Wy be a matrix whose columns form a basis for the null space of
VCkT. The tangential component s!, is then taken to be any step that satisfies the
trust-region constraint ||s* + s7|| < 8 and gives at least a fraction of the decrease
obtained by the Cauchy step SZCP on the quadratic model of the Lagrangian ¢x(s)
reduced to the null space of VCT . i. e., it satisfies

i (sp) — ar(sp +5) > oslae(sp) — ar(sp + 5,71,

for some o3 € (0,1). See Dennis, El-Alem, and Maciel (1997)[3] for the definitions
of the steps s, " and SZCP and for more details about the double fraction-of-Cauchy
decrease conditions imposed on the two components of the trial step.

Once the trial step is computed, the algorithm requires an estimate for the La-
grange multiplier Agy1 to test the trial step for acceptance. Any approximation
to the Lagrange multiplier vector that produces a bounded sequence of multipliers
can be used.

We test whether the point (2 + sk, Ak4+1) is acceptable as a next iterate. For test-
ing the trial steps, Dennis, El-Alem and Maciel (1997)[3] use, as a merit function,
the augmented Lagrangian

Oz, X p) = f(z) + AT C(2) + plIC()1%,

where p > 0 is the penalty parameter.
The actual reduction in the merit function in moving from (2, Ax) to (zx +
Sk, )\k+1) 18
Aredy = ®(xg, Ar; pr) — ®(xk + 5k, Aeg1; pr)-
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The predicted reduction that Dennis, El-Alem, and Maciel (1997)[3] use has the
form:

1
Pred, = —fogsk — §SkTHk8k — ()‘k-l-l — )\k)T[Ck + VCkTsk]
+or [ 1CkI* = 1|Ck + VO sk ). (2)

The acceptable step must produce a decrease in the merit function ®. To test for
this, the predicted reduction has to be made greater than zero. Thus, if necessary,
the value of the penalty parameter is increased before the algorithm tests the trial
step.

For updating the penalty parameter, Dennis, El-Alem, and Maciel (1997)[3] use
a scheme suggested by the author [5]. This scheme ensures that the predicted
decrease in the merit function at each iteration is at least a fraction of the Cauchy
decrease in the quadratic model of the linearized constraints. At the current iterate
x, after choosing the step si and the multiplier Mg 41, we tentatively set pr = pr_1
and if Pred; < %[||Ck||2 —|Cx + VC'kTskH?] then, we change py to

2[qx(s) — qx(0) + g1 — )" (Cr + VO s1)]
ICk]I* = lICx + VO sk ||?

Pk = + ﬂoa
for some 3, > 0. This way of updating the penalty parameter ensures that, at the
current iterate xzg,

Predi > Z|ICLI1” = |Gk + VO s (3)

After computing a trial step and updating the penalty parameter, we test the
step and accept it only if the actual reduction is greater than some fraction of the
;‘:ZZ: > 1 where gy € (0,1) is
a small fixed constant. Otherwise, we reject the step and decrease the trust-region
radius by setting d; = «al|sg||, where a € (0, 1).

From the theoretical point of view, a proof of global convergence requires that the
trust-region radius be decreased when the trial step is rejected. On the other hand,

predicted reduction. That is, we accept the step si if

when the step is accepted, the radius of the trust region must increase or remain
the same. However, dmin < dr41 18 required once the trial step si is accepted. The
analysis also requires that, for all k, dx < dmax. See Dennis, El-Alem, and Maciel
(1997)[3] for a practical way of updating the trust-region radius.

After accepting the step, the approximate Hessian matrix Hi must be updated.
The algorithm requires the sequence {H} of approximate Hessians be bounded.
Thus, the exact Hessians or any approximation scheme that produces a bounded
sequence of Hessians can be used.

Since we do not specify a particular way of computing Wy, it is required that
{||Wk]|} be bounded and the smallest singular values of the members of the sequence
{Wi} be bounded below and away from zero.

Finally, the algorithm is terminated when ||WkTV£k|| + ||Ckl| < €tor, for some
Etol > 0.
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2.2 Summary of the DEM class

We present a summary of Dennis, El-Alem, and Maciel’s class of trust-region-based
algorithms for solving problem (EQ).
Algorithm 2.1. The DEM Algorithm.

step 0. Given xg, Ag, compute Wy.

Choose dmin, Omax, and dg such that dmin < g < dmax-
Choose B, > 0 and €1, > 0.
Setp_.1=1and k=0

step 1.If ||WEV€k|| + ||Ck|| < etor then terminate.
step 2. If vy s feasible then

find a step st that satisfies a fraction-of-Cauchy decrease condition on the

quadratic model qi(s) of the Lagrangian function around xy.
Set s, = 52‘
else

a) Compute a quasi-normal step s, that satisfies a fraction-of-Cauchy decrease
condition on the quadratic model of the linearized constraints.

b) If WEVq(s?) = 0 then set s, =0,
else find si, that satisfies a fraction-of-Cauchy decrease condition on the quadratic
model qx(s? + s') from s}.

c)Set s = si + st

step 3. Choose an estimate Agy1 of the Lagrange multiplier vector.
step 4. Update the penalty parameter py_1 to obtain py.
step 5. Fvaluate the step and update the trust-region radius.

If the step is accepted then update Hy, set k = k + 1, and go to step 1,
else go to step 2.

2.8 Characterization of the DEM class

In this section, we list a set of algorithmic assumptions that hold for any member of
the DEM class of algorithms. In other words, the following assumptions characterize
the DEM class.

(A1) Thestep sy satisfies the fraction-of-Cauchy decrease condition on the quadratic
model of the linearized constraints.

(A2) Thestep sk, satisfies the fraction-of-Cauchy decrease condition on the quadratic
model g (s} + s') from s? reduced to the null space of VCI.

(A3) The step s} satisfies, for all &, |[s7|| < K1||Ck||-

(A4) The sequence of projection matrices {Wy} is bounded and the sequence of
smallest singular values of the Wy ’s is bounded below and away from zero.

(A5) The sequence of Lagrange multiplier vectors {Ag} is bounded.
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(A6) If an approximation to the Hessian of the Lagrangian is used, then the
sequence of matrices {H} is bounded.

(A7) The trial steps are tested using the augmented Lagrangian as a merit func-
tion.

(A8) The penalty parameter is updated so that the predicted decrease in the
merit function at each iteration is at least p; times a fraction of the Cauchy
decrease in the quadratic model of the linearized constraints.

Throughout the rest of the paper we assume that the algorithm we use belongs
to the DEM class. In other words, we assume that A1-A8 hold.

In Section 4, we present a global convergence theory for the algorithm. How-
ever, for this result to follow, we require that the problem we solve satisfy certain
assumptions that we describe in the next section.

3 PROBLEM ASSUMPTIONS

We assume certain continuity and boundedness assumptions on the functions f and
C' of problem (EQ) and on their derivatives.

Let Q € R™ be a convex set that, contains all iterates xy and zj + s, for all trial
steps si examined in the course of the algorithm. The following assumptions are
imposed on problem (EQ).

(P1) fand C; €C*Q)i=1,...m.

(P2) VC(z) has full column rank for all z € Q.

(P3) f(z),C(z), Vf(z), VO (z), Vif(z), (VC(z)TVC(z))~!, and each of V2C;(z),
for # = 1, ..., m are all uniformly bounded in €.

An immediate consequence of the above assumptions and A4-A6 is the existence
of positive constants b, b1, and by such that any iteration k generated by the DEM
class of algorithm satisfies

| Hell < b, (W HeWe|| < b, [|[W{ Hyl| < b,

[{(zk, Ae)| < b1, (4)
and

ICkIl < b2 (5)

4 GLOBAL CONVERGENCE

In this section, we prove global convergence. In the first two subsections, we present
some technical lemmas and intermediate results. The proof of our main global
convergence result builds upon these intermediate results and appears in the third
and fourth subsections.
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4.1  Technical Lemmas

The following two lemmas express in a manageable form the pair of fraction of
Cauchy decrease conditions imposed on the two components, s and s, of the trial
steps.

Lemma 4.1. Assume (P1)-(P3). Then there erxists a positive constant K»
independent of the iterates such that the quasi-normal component si of the trial
step s satisfies

ICkl* = [|Cx + VO sE|I* > Ko

Crl[ min{[[Ck ||, % }-
Proof. See Powell (1975)[14]. O

From the penalty parameter update formula and the above lemma, we have for

all &,
1 R .
Predy, > ika&QHC'kHmm{||C'k||,(5k}. (6)

Lemma 4.2. Assume (P1)-(P3). Then there exists a positive constant K3
independent of the iterates such that

4 (58) = qr(sk) > Ksl Wy Vi (si) || min{|[ Wy Var(st)I], 9 ).

Proof. See Powell and Yuan (1991)[15]. O

The following lemma gives an upper bound on the difference between the actual
reduction and the predicted reduction. It shows how accurate our definition of
Predj; 1s as an approximation to Ared.

Lemma 4.3. Assume (P1) and (P3), then there exists a constant K4 > 0 that
does not depend on k, such that

|Aredy, — Predy| < Kapg||skl|*. (7)

Proof. See Corollary 6.4 of El-Alem (1991)[6]. O

The following lemma gives a lower bound to the predicted decrease in the merit
function produced by the trial step.

Lemma 4.4. Assume (P1) and (P3). Then the predicted decrease in the merit
function satisfies

Predy > Ks||Wy Var(sh)|| min{||[ Wy Var ()l , 8}
= K|kl + px [l Cell* = ICk + VO s 1?],

where K3 1s as in Lemma 4.2 and K5 is a positive constant independent of k.
Proof. See Lemma 7.6 of Dennis, El-Alem, and Maciel (1997)[3]. O
Lemma 4.5. Assume (P1)-(P3). Let k be the index of an iteration at which py

1s increased. Then there exists a positive constant Kg that does not depend on k,

such that

pr min||Cil, 8} < K, ®)
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Proof. The proof follows from the first part of the proof of Lemma 7.10 of Dennis,
El-Alem, and Maciel (1997)[3]. O

Lemma 4.6. Assume (P1) and (P3). If at a given iteration k, ||WIV f|| > o
and ||Cy|| < B8y where eq is a positive constant and (3 is given by

. o 1(360 . o
0<pB< 1
<p< mm{%mamax’ 1K, Mgy — }}’

then there exists a positive constant Ky that depends on £¢ but does not depend on
k, such that

Predy > K6 + pi{||Ckl” = ||Cx + VO sk} (9)

Proof. The proof is similar to the proof of Lemma 7.7 plus the proof of Lemma
7.8 of Dennis, El-Alem, and Maciel (1997)[3]. 0

4.2 Intermediate Results

This section is devoted to presenting some intermediate lemmas that are needed
in the proof of our main results. We start with the following lemma which shows
that if at any iteration k, the point zy is not feasible, then the algorithm can not
loop infinitely without finding an acceptable step. To state this result, we need to
introduce one more notation. The ;% trial of iteration k is denoted by k7.

Lemma 4.7. Assume (P1)-(P3). If ||Cx|| > €, where ¢ is any positive constant,
then an acceptable step is found after finitely many trials. i. e., the condition
Aredy;/Predy; > nm1 will be satisfied for some finite j.

Proof. Since ||Ck|| > & > 0, then we have, using (6) and (7),

Aredy, = |Aredy, — Predy| < 2K 46}
Predy o Predy, = Koemin{e,d}

Now as the trial step s, gets rejected, §z; becomes small and eventually we will
have

Aredkj 2[{45;“'

‘Predkj a Koe
This inequality implies that after finite number of trials (i. e., for j finite), the
acceptance rule will be met. This completes the proof. d

Lemma 4.8. Assume (P1)-(P3). If at a given iteration k, the j" trial step
satisfies
(1 — 771)[&72

Iswil| < min{

then it must be accepted.
Proof. The proof is by contradiction. Suppose that the statement of the lemma
is not true. 7. e., suppose that the step s;; is rejected. Then we have

|Aredy; — Predy;]
Predy; ’

(1-m)<
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Substituting from (6) and (7) and using (10), we have

2[{4||Skj||2

2RI 1 ).
Celllsey S 20— M)

1 —

This gives a contradiction and implies that the step must be accepted. This com-
petes the proof of the lemma. d
The following lemma is a consequence of the above lemma.
Lemma 4.9. Assume (P1)-(P3). Then for all trail iterates j of any iterate k
generated by the algorithm, we have

dmin a (1 - 771)[\72
by 4K,

5,5 > min |Gl (11)

Proof. Consider any iterate k7. If the previous step was accepted; i. e., j = 1,
then 0 > dmin. Using (5), we can write

N émin
s > 7|
2

Therefore, (11) holds in this case.
Now assume that j > 1. 7. e., there exists at least one rejected trial step. For all
rejected trial steps we must have

. (1 — 7]1)]\72
i —— 1}|C
el > minf S E2 1yic,
forallz = 1,...,j — 1, otherwise, we get a contradiction to Lemma 4.8. From the

way of updating the trust region, we have

(1 — 7]1)[&72
4K,

Hence the lemma is proved. d
The following lemma will be used in proving that the algorithm converges to
the feasible region. Tt says that as long as ||Ck|| is bounded away from zero, the
trust-region radius i1s bounded away from zero.
Lemma 4.10. Assume (P1)-(P3). Then any iterate zy such that ||Cy|| > eq,
where g9 > 0, salisfies

:1}||Ck||’

Ori = fsgs-1]| > amin{

dpi > Ksg,
where Kg 1s a positive constant that depends on £q but does not depend on k.
Proof. The proof follows directly from the above lemma. Simply take Kg =

i Smin 1=n)K
€0 min{ % ,a%ﬁlu,a}. 0

From (8) and (11), we have for all k7 at which the penalty parameter is increased
pri||Ckl| < Ko, (12)

where Ky is a positive constant that does not depend on k or j. This inequality is
used in proving that the sequence of iterates generated by the algorithm converges
to the feasible set. This is the subject of the following section.
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4.3 Convergence to the Feasible Set

In the following theorem, we prove that the sequence of iterates generated by the
algorithm converges to the feasible set.

Theorem 4.11. Assume (P1)-(P3). Then the sequence of iterates generated by
the algorithm satisfies

lim ||C|| = 0.
k—o0

Proof. Suppose that limsup,_, . ||Ck|| > ¢ > 0. This implies the existence of an
infinite subsequence of indices {k;} indexing iterates that satisfy ||Cx|| > £, for all
k€ {k;}.

From Lemma 4.7, there exists an infinite sequence of acceptable steps. Without
loss of generality, we assume that all members of the sequence {k;} are acceptable
iterates.

Consider two cases. If {px} is bounded, then there exists an integer k such that
for all k > k the value of the penalty parameter remains the same. We have, for
all k >k and k € {k;},

£

O, — ;= Ared; > mPred; > 771[(24 min{g,ﬁé}.

k k41

Using Lemma 4.10, we have

e . E =
o; — <I>1,;+1 > 7]1A21 mm{i, Kg} >0,
where Kg is as Kg in Lemma 4.10 with &g is replaced by % Now, as k- 00, we
get a contradiction.

The second case is when {py} is unbounded. This implies the existence of a
subsequence of indices {k;} indexing iterates at which the penalty parameter in

increased. Because of (12),

lim ||Cy, || = 0. (13)
k;—00

Therefore, for k sufficiently large, there are no common elements between the two

sequences {k;} and {k;}. We have, for all k € {k;},

Ared; Pred; K K .
reag > " > ﬂl%miﬂ[gé;}] > Ul%miﬂ[gvKSL

Pk 2
where Ky is as above. Hence, we have

6[{2

£y — L e -
% +ICHI” = [|Cpal* 2 == min[5, Kg] > 0. (14)

k

On the other hand, for all acceptable steps generated by the algorithm, we have

b, —/f
E B Gk~ [[Crepa]? > 0. (15)
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Let k; and k;,, be two consecutive elements of the sequence {k;} such that there
exists an iterate k € {k;} between k; and k;_ ;. From (14) and (15) , we can write

kipi— .
by, — £ ek
> {aten) Bt )i 2~ 1P > T i, K > 0
Because the value of the penalty parameter is the same for all iterates k;, ..., k; , — 1,
we have ' ‘
ky 7 Yhig eR
T | O 17 2 m TR minl, Kl

But because £ is bounded and pr — 0o as k — oo, we can write, for k; sufficiently
large

eK . € =
—ICk 1P > 77172 min[z, Ks] > 0.

This contradicts (13). The supposition is wrong. This proves the theorem. d

4.4 Main Result

The main result is proved in Theorem 4.15. First, we present the following two
lemmas which are used in the proof of the theorem.

Lemma 4.12. Assume (P1)-(P3), then there exists a positive constant Kig,
independent of k, such that

| Aredi — Predi| < Ko [ lskll* + prllskll® + pillsil P Crll 1

Proof. See Lemma 6.3 of El-Alem (1991)[6]. 0

Lemma 4.13. Assume (P1)-(P3). If at a given iteration k%, ||[WIV fi|| > &0
and ||Cy|| < Bog; where g is a positive constant and § is as in Lemma 4.6 and if
the penalty parameter is bounded, then

dgi > Kyy,

where K11 1s a positive constant that does not depend on k or j.

Proof. Because py, is bounded, there exist k and p such that for all k > k, pr = p.

Let k7 > k. If the previous step was accepted; i. e., j = 1, then 81 > dmin.
Hence ¢j; is bounded in this case.

Now assume that j > 1. i. e., there exists at least one rejected trial step. For all
rejected trial steps, using Lemmas 4.3 and 4.6, we must have for i =1,...,57—1

ﬁ[(4||8k1 2
1 — prrallck L
(1=m) < K6,

From the way of updating the trust-region radius, we have

a(l —m)K7

% = ellso-ll > ==

Hence the lemma is proved. d
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The following theorem together with Theorem 4.11 prove that the sequence of
iterates generated by any member of the DEM class of algorithms satisfies the
termination condition of the algorithm.

Theorem 4.14. Assume (P1)-(P3). Then the sequence of iterates satisfies

liminf |[|[WI V£ = 0.
k— oo

Proof. The proof is by contradiction. Suppose that for all k, ||[WI V fx|| > eo.
Assume that there exists an infinite subsequence {k;} such that ||Cy,|| > Bk,
where (3 is any positive constant. For later use of 3, we take it to be as in Lemma
4.6. Then, because ||Ck|| = 0, we have

lim 5k, =0.

k;—00

Consider any iterate k7 € {k;}. There are two cases to consider.

First, consider the case where the sequence {pg} is unbounded. We have for the
rejected trial step j— 1 of iteration k, ||Ck|| > Béri = af||ski-1]| . Use Lemma 4.12
and the fact that the trial step sg-1 1s rejected,

|Aredyi—1 — Predy -1
Predy;—
2K10l|ski-1][ + pra=1 ([ski-1 11> + [[sk5-1 [ Cr D]

= pri-1 Ko min(afB, 1)]|Ckl|
2K 2K10(1 + af)
pri-1 Ksafmin(af, 1)  Kaafmin(ag, 1)

(1 —m)

IA

ki-1.

This gives a contradiction when pgj-1 is sufficiently large and §;;-1 is sufficiently
small. So d;; can not go to zero in this case.

Second, consider the case when the sequence {p;} is bounded. There exists an
integer k such that for all k& > k the value of the penalty parameter is the same.
Let k > k and consider a trial step j of iteration k, such that ||Ck|| > B8 .

If j = 1, then from our way of updating the trust-region radius, we have d; >
dmin. Hence dy; is bounded in this case. If j > 1, and

ICrell > B, (16)

where | = 1, ..., 7, then for all rejected trial steps | = 1,...,7 — 1 of iteration k we

have
|Ared — Predy,| 2K 4]|sg: ]

Predy, = Kymin(3, 1)]|Ck||’

(1-m)<
Hence,
aKsmin(B3, 1)(1 — n1)||Ck|] S aKsmin(B3, 1)(1 — )8
2K, - 2K,

aKymin(3,1)(1 —n1)3
- 2K,

6k1

Opi = ol|spi-1]|

6min .
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Hence d;; is bounded in this case too. If j > 1 and (16) does not hold for all /,
there exists an integer m such that (16) holds for { = m+1,...,j and

|Cxell < B, (17)
for{ =1,...,m. As in the above case, we can write
Komi (1 - Komi (1 -
b > B D= m) ey, 2K DA - i)
2[&4 21&4

But from our way of updating the trust-region radius, we have
(5km+1 Z OzHSka. (19)

Now using (17), Lemma 4.6, and the fact that the trial steps for alll = 1,...,m are
rejected, we can write

|Aredy: — Predy,| < 2Kapk||skt|
Predy, = Ky ’

(1-m)<

Notice that py is bounded. This implies that, ||sg=|| is bounded. This fact together
with (18) and (19) imply that ;s is bounded in this case too. Hence d;; is bounded
in all cases.

This contradiction implies that for k sufficiently large, all the iterates satisfy
[|Ckl|| < Bds. This implies using Lemma 4.6 that there is no need to increase the
value of the penalty parameter. So, {px} is bounded. Let k7 > k and using (9), we
have

Dpi — Ppip = Aredyi > mPredy; > 11 K70,

As k goes to infinity the above inequality implies that limg_, o, d5; = 0. This gives
a contradiction to Lemma 4.13. This contradiction proves the theorem. d

5 CONCLUDING REMARKS

We have presented a short, straightforward, and self-contained global convergence
theory for Dennis, El-Alem, and Maciel’s class of algorithms. The result is slightly
stronger than the result obtained by Dennis, El-Alem, and Maciel. We have shown
that the whole sequence of iterates generated by the algorithm converges to the
feasible set and a subsequence converges to a first-order point.

Many practical applications require feasible points that produce a reasonable
amount of decrease in the objective function of problem (EQ). Tt is guaranteed
by our theory that, from any starting point, any member of the DEM class of
algorithms converges to the feasible set. It is also guaranteed that, for any e, > 0,
the algorithm terminates at a point that satisfies ||WiV fx|| + ||Cx|| < €tor.



14

Mahmoud El-Alem

6 ACKNOWLEDGMENT

This work was done while the author was visiting the Department of Computational
and Applied Mathematics and the Center of Research on Parallel Computation,
Rice University. He thanks Rice University for its financial support and for the
congenial scientific atmosphere that it provided.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

N. ALEXANDROV. Multi-level Algorithms for Nonlinear Egquations and Fquality Con-
strained Optimization. PhD thesis, Department of Computational and Applied Mathematics,
Rice University, Houston, TX 77251, 1993.

R. H. BYRD and E. OMOJOKUN. Robust trust region methods for nonlinearly constrained
optimization. 1987. Present at the 1987 SIAM Conference on Optimization, Houston, TX.

. J. E. DENNIS Jr., M. M. EL-ALEM, and M. C. MACIEL. A global convergence theory

for general trust-region-based algorithms for equality constrained optimization. STAM J.
Optimization, 7(1):177-207, Feb., 1997.

J. E. DENNIS Jr. and L.. VICENTE. On the convergence theory of general trust-region-based
algorithms for equality-constrained optimization. STAM J. Optimization, 7(4), Nov., 1997.

. M. M. EL-ALEM. A global convergence theory for a class of trust region algorithms for

constrained optimization. PhD thesis, Department of Mathematical Sciences, Rice University,
Houston, TX 77251, 1988.

M. M. EL-ALEM. A global convergence theory for the Celis-Dennis-Tapia trust region
algorithm for constrained optimization. STAM J. Numer. Anal., 28:266-290, Feb. 1991.

M. M. EL-ALEM. A robust trust region algorithm with a non-monotonic penalty parameter
scheme for constrained optimization. STAM J. Optim., 5 No. 2:348-378, May 1995.

M. M. EL-ALEM. Convergence to a second order point of a trust-region algorithm with a
non-monotonic penalty parameter scheme for constrained optimization. J. Optim. Theory
Appl., 91 No. 1:61-79, Oct. 1996.

. M. LALEE. Algorithms for nonlinear optimization. PhD thesis, Department of Industrial

Engineering, Northwestern University, Evanston, 1L, 1993.

M. LALEE, J. NOCEDAL, and PLANTENGA. On the implementation of an algorithm
for large-scale equality constrained optimization. Technical Report 93, EECS Department,
Northwestern University, Evanston, IL, Oct. 1993.

M. C. MACIEL. A global convergence theory for a general class of trust region algorithm for
equality constrained optimization. PhD thesis, Department of Computational and Applied
Mathematics, Rice University, Houston, Texas, 1992.

E. O. OMOJOKUN. Trust region strategies for optimization with nonlinear equality and
inequality constraints. PhD thesis, Department of Computer Science, University of Colorado,
Boulder, Colorado, 1989.

T. PLANTENGA. Large-Scale nonlinear constrained optimization using trust regions.
PhD thesis, Department of Electrical and Computer Engineering, Northwestern University,
Evanston, IL, 1995.

M. J. D. POWELL. Convergence properties of a class of minimization algorithms. In O.L.
Mangasarian, R.R. Meyer, and S.M. Robinson, editors, Nonlinear Programming 2, pages
1-27. Academic Press, New York, 1975.

M. J. D. POWELL and Y. YUAN. A trust region algorithm for equality constrained opti-
mization. Math. Prog., 49:189-211, 1991.

L. N. VICENTE. Trust-Region interior-point algorithms for a class of nonlinear program-
ming problems. PhD thesis, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas 77251-1892, 1996.



A CONVERGENCE THEORY FOR THE DEM ALGORITHM 15

17. J. Z. ZHANG and D. T. ZHU. Projected quasi-Newton algorithm with trust region for
constrained optimization. J. Opt. Th. and Appl., 67:369-393, 1990.



