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Abstract

This work presents a convergence theory for a general class of trust-region-based algorithms for solving
the smooth nonlinear programming problem with equality constraints. The results are proved under
very mild conditions on the quasi-normal and tangential components of the trial steps. The Lagrange
multiplier estimates and the Hessian estimates are assumed to be bounded. In addition, the regularity
assumption i1s not made. In particular, the linear independence of the gradients of the constraints is not
assumed. The theory proves global convergence for the class. In particular, it shows that a subsequence
of the iteration sequence satisfies one of four types of Mayer-Bliss stationary conditions in the limit. This

theory holds for Dennis, El-Alem, and Maciel’s class of trust-region-based algorithms.
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1 Introduction

Over the last two decades, trust-region algorithms have enjoyed a good reputation on the basis of their
remarkable numerical reliability in conjunction with a sound and complete convergence theory. They have
proven to be very effective and robust techniques for solving the unconstrained and the equality constrained

optimization problems.
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The first trust-region algorithm was given by Levenberg (1944)[24] and later was re-derived by Marquardt
(1963)[27]. The algorithm was designed for solving nonlinear least-squares problems. Powell (1970)[36]
derived from the Levenberg-Marquardt method the first trust-region algorithm for solving the unconstrained
minimization problem. Detailed discussion about the Levenberg-Marquardt method can be found in Moré
(1977)[32] and about the trust-region method for solving the unconstrained optimization problem can be
found in Dennis and Schnabel (1983)[13], Fletcher (1987)[21], and Shultz, Schnabel, and Byrd (1985)[39].

Since mid eighties, many authors have considered extending the trust-region idea to the following equality

constrained optimization problem

| minimize f(2)
(BQ) = { subject to  C(z) =0.

The functions f : R® — R and C : R* — R™ are at least twice continuously differentiable, where m < n.
Most trust-region algorithms for solving problem (EQ) try to combine the trust-region idea with the
successive quadratic programming (SQP) method. In general, the SQP method iteratively minimizes a

quadratic model of the Lagrangian function
(1.1) Lz, \) = flz) + M O(z),

where A is the Lagrange multiplier vector, subject to a linear approximation of the constraints. At each
iteration k, the SQP method obtains a step sgp and an associated Lagrange multiplier step A)\I?P by

solving the following quadratic programming subproblem

minimize Vl(zg, M) + %STHRS,
subject to  C(zg) + VC(zx)Ts =0,

where Hy is the Hessian of the Lagrangian function (1.1) at (zx, Ax) or an approximation to it.

If a trust-region constraint is simply added to the quadratic programming subproblem the resulting
trust-region subproblem may be infeasible because the trust-region constraint and the hyperplane C(zx) +
VC(zk)Ts = 0 may have no intersecting points. In other words, the two constrained sets may be disjoint.
Even if they intersect, there is no guarantee that when the trust-region radius dg is decreased, the above
subproblem remains feasible. Note that, the global convergence of the trust-region methods is based on
being able to reduce J; until the model trust-region subproblem accurately represents the actual problem.

To avoid possible infeasibility in the subproblem, different approaches have been proposed. The first ap-
proach is to relax the linear constraints in such a way that the resulting feasible set is non-empty. In particu-
lar, the hyperplane C(zx) + VC(z)Ts = 0 is replaced by the relaxed hyperplane v C(zx) + VC(zx)Ts = 0,
where vy € [0, 1]. This approach was first suggested by Miele, Huang, and Heideman (1969)[30] in the context
of a line-search globalization strategy for solving problem (EQ) (see also Miele, Cragg, and Levy (1971)[29]
and Miele, Levy, and Cragg (1971)[31]). Tt was later used to obtain a feasible trust-region subproblem by
Vardi (1985)[40], Byrd, Schnabel, and Schultz (1987)[9], and El-Hallabi (1993)[20].

A major difficulty with this approach lies in the problem of choosing v so that a feasible trust-region
subproblem is guaranteed. This difficulty makes this approach impractical.

The second approach for resolving this infeasibility was proposed by Celis, Dennis, and Tapia (1985)[11].
They replaced the linear constraints by the quadratic constraint ||C(zx) + VC (2)T s]|2 < 0k, where 0y, is a



given parameter chosen to ensure that the resulting trust-region subproblem is always feasible. This approach
was used by El-Alem (1991)[16] and Powell and Yuan (1991)[38]. The parameter 8y, is also chosen to ensure
a sufficient decrease in the quadratic model of the linearized constraints. This decrease is at least a fraction
of the decrease obtained by the Cauchy step, which is defined to be the minimizer of ||C(zx) + VC(xx)7 s||2
inside the trust region in the steepest descent direction.

In Celis, Dennis, and Tapia (1985)[11] and El-Alem (1991)[16], the parameter 6, was taken to be

Ok = (1= D)|C(w)|l3 + 7I|C(zx) + VO (zx)T 57113,
for some fixed v € (0,1), where s;” is the Cauchy step. In Powell and Yuan (1991)[38], the choice of f; was
04 = {min|[C(ax) + VORI v 6 < llslls < 904},

where 0 < v < v <1 and § is the trust region radius.

A major disadvantage with this approach lies in the fact that the resulting trust-region subproblem
has two quadratic constraints, so that there is no efficient algorithm for finding a good approximation to
the solution of this subproblem. Although, Williamson (1990)[42] has attempted to produce an efficient
algorithm by computing an inexact solution of the subproblem and others have suggested algorithms to
solve special cases of this subproblem (see El-Alem and Tapia (1995)[19], Yuan (1988)[43] and (1990)[44],
and Zhang (1992)[47]), the results are not in general satisfactory. This approach will remain impractical
until an efficient way of solving the trust-region subproblem is discovered.

The reduced Hessian technique is another approach to overcoming the difficulty of having an infeasible
trust-region subproblem. The approach was suggested by Byrd (1987)[8] and Omojokun (1989)[34]. In this
approach, the trial step sy is decomposed into two components; the tangential component s!, and the normal

component si. The step s is computed by solving the following trust-region subproblem

minimize ||C(zg) + VC(zg)Ts"|2,

subject to  ||s"]|2 < vk,

for some v € (0, 1). The tangential component st is then obtained by solving another trust-region subprob-
lem. Let Z; be a matrix that forms an orthonormal basis for the null space of VC(CL‘k)T and let 52 =7 52.

The step 5, is computed by solving the following trust-region subproblem.

minimize [ZkT(Vxﬂ(mk, Ak) + Hksg)]TEt + %(?)TZkTHkaét,

subject to || Zx5"||3 < 82 — ||s2|3.

The trial step s; has the form s, = s}, + Zkéi.

This approach has been used by many authors. See, for example, Alexandrov (1993)[1] and [2], Alexan-
drov and Dennis (1994)[3], Biegler, Nocedal, and Schmid (1995)[4], Dennis and Vicente (1994)[14], El-Alem
(1995)[17], and (1996)[18], Lalee (1993)[22], Lalee, Nocedal, and Plantenga (1993)[23], Maciel (1992)[25],
Plantenga (1995)[35], Vicente (1996)[41], and Zhang and Zhu (1990)[46].

One of the advantages of this approach is that the two trust-region subproblems are similar to the
trust-region subproblem for the unconstrained case.

Dennis, El-Alem, and Maciel (1997)[12] have considered a general class of trust-region based algorithms
for solving problem (EQ). In their algorithms, the two components of the trial step are not necessarily

orthogonal. We present this class of algorithms in the next section.



In unconstrained optimization, the use of a trust-region has made it possible to make strong guarantees
of convergence. In particular, to guarantee global convergence, it is not necessary to require that the Hessian
approximation be positive definite or even well conditioned, but only that it be uniformly bounded. To
ensure global convergence, the step is required only to satisfy the fraction-of-Cauchy decrease condition;
that is, the step must produce at least a fraction of the decrease obtained by the Cauchy step.

Powell (1975)[37] proved a powerful theorem. He showed that if the sequence of iterates generated by the
algorithm satisfies the fraction-of-Cauchy decrease condition and if the sequence of Hessian approximations
is bounded, then

lim inf[|V 1 (22 = 0.

Powell’s theorem does not prove convergence to a solution of the unconstrained problem. It only proves
that a subsequence of the sequence of gradients of the objective function converges to zero. The strength of
this result, however, comes from the weak assumptions imposed on the sequence of local models. Detailed
discussion about the convergence results of trust-region algorithms for unconstrained optimization can be
found in Carter (1986)[10], Moré (1983)[33], and Shultz, Schnabel, and Byrd (1985)[39].

Many authors have established global convergence results for algorithms that have been suggested for
solving problem (EQ). The author in (1991)[16] and Powell and Yuan (1991)[38] have proved global conver-

gence for variants of the Celis, Dennis, and Tapia trust-region algorithm by showing that
lim inf{]| 75V £ (2)l]2 + [|C (24) ]2} = 0.

Analogous to Powell’s theorem for the unconstrained case, Dennis, El-Alem, and Maciel (1992)[12] proved

for their class of algorithms that,
lim inf{[[ W,V f(26)l2 + [|C ()1} = 0,
where Wy is a matrix that forms a basis (not necessarily orthogonal) for the null space of V' (z)7.

In Dennis, El-Alem, and Maciel’s class of algorithms, the local model of the problem is generally taken
to be a linear model of the constraints and a quadratic model of the Lagrangian function. The information
in the local model depends on the Lagrange multiplier estimates as well as the second order information.
Analogous to Powell’s theorem, Dennis, El-Alem and Maciel only require the boundedness of the sequences
of model Lagrange multipliers and Hessians. The results of Dennis, El-Alem, and Maciel were proved under
very mild conditions on the quasi-normal and tangential components of the trial steps. However, their results
were proved under the linear independence assumption.

In this paper, we reduce Dennis, El-Alem, and Maciel’s assumptions even further and yet obtain similar
global convergence results. In our theory, the linear independence assumption on the gradients of the
constraints is not made. Our theory is so general that it holds for any algorithm that uses the augmented
Lagrangian as a merit function, the El-Alem scheme for updating the penalty parameter [16], and bounded
Lagrange multiplier and Hessian estimates.

The following notations are used throughout the rest of the paper. The sequence of points generated by
the algorithm is denoted by {(zx, Ax)}. We abbreviate f(zx) as fi, £(zk, Ax) as £, and so on. However, f(z)
is not abbreviated when emphasizing the dependence of f on z. We use the same symbol 0 to denote the

real number zero, the zero vector, and the zero matrix. Finally, all norms used in this paper are [5-norms.



The organization of the paper is as follows. In Section 2, we present in detail all the components of
the general class of trust-region-based algorithms suggested by Dennis, El-Alem, and Maciel (1997)[12]. An
overall summary of the class is presented at the end of this section. In Section 3, we state the assumptions
under which we prove global convergence. The main results of this paper show that the algorithm generates
a sequence of iterates that has a subsequence that asymptotically satisfies one of four types of stationary
conditions for problem (EQ). In Section 4, we identify these conditions, state their definitions, and demon-
strate some of their properties. In Section 5, we state our main global convergence results. Our convergence

theory is presented in Sections 6-8. Finally, Section 9 contains concluding remarks.

2 General Trust-Region-Based Algorithms

In this section, we present the class of algorithms suggested by Dennis, El-Alem, and Maciel (1992)[12] for
solving problem (EQ). This is a general class of trust-region-based algorithms. The basic idea of the trust-
region algorithms is as follows. Approximate the problem by a model trust-region subproblem. The trial
step is obtained by solving this subproblem. Test for accepting or rejecting the trial step and update the
trust-region radius accordingly. If the step is rejected, decrease the radius of the trust region and compute
another one using the new value of the trust-region radius. To test the trial steps, a merit function must
be employed. Such a merit function often involves a parameter, usually called the penalty parameter. This
parameter is updated using an updating scheme. More details about the trust-region method for constrained
optimization can be found in Dennis, El-Alem, and Maciel (1992)[12].

In any trust-region algorithm for solving problem (EQ), there are four important issues to be considered.
At each iteration k, we must first compute a trial step, and we address this issue in Section 2.1. Once the
step is computed, we will need a criteria for accepting the trial step. Section 2.2 is devoted for this subject.
To test the step, the penalty parameter needs to be updated. We address this issue in Section 2.3. Finally,
we need a procedure for updating the trust-region radius and it is presented in Section 2.4. An overall

summary of the algorithm is presented in Section 2.5.

2.1 Computing a Trial Step

We do not present a particular way for computing the trial steps. Instead, we present some conditions
the steps must satisfy. Let s; be decomposed into two components; the tangential component s and the
quasi-normal component s?. The trial step will then have the form sy = si + s?. Observe that the two
components of the trial step are not necessarily orthogonal.

Dennis, El-Alem, and Maciel require that the quasi-normal component s of the trial step satisfy, at

every iteration k,
(2.1) sl < K

Ckl|,

where K is a positive constant. This condition is needed to obtain Dennis, El-Alem, and Maciel’s global
convergence results. It can be viewed as a relaxation to the orthogonality condition of s} and sf,.
Because we do not assume linear independence of the gradients of the constraints, VCC; = 0 does not

necessarily imply that Cx = 0. For this reason, we modify condition (2.1) to be

(2.2) Isgll < K

sk 1l



where s’ is the minimum-norm solution of

(2.3) minimize ||[VCOL's+ Cy|?
subject to ||s|| < 76,
for some 7 € (0, 1), where d; is the trust-region radius.
As stated in Section 5.1 of [12], we do not suggest choosing K and enforcing condition (2.2). Rather, we
suggest that (2.2) results naturally from any reasonable algorithm for computing a step sp.
If Cy # 0, then the quasi-normal component s of the trial step is required to produce at least a fraction

of the decrease in the quadratic model of the linearized constraints obtained by the Cauchy step. The Cauchy
step s;” is the step that solves the following problem:

minimize 1||VCls + C|?
subject to ||s|| < 78
s = —nipVCka, nip > 0.
So, the quasi-normal component s} is chosen such that it satisfies for some r; € (0, 1],

ICkII* = ICk + VO™ |2 > ri{]|Ck||* = ICk + VO 57|}

We note here that the Cauchy step defined above satisfies condition (2.2) for some K > 0.

Now we use the quasi-normal component to choose a linear manifold My, parallel to the null-space of
the constraints. Let My = {s: VCF's = VCI's?}. We select the tangential component from My. Observe
that, the intersection of My, and the set {s = s* + s? :||s|| < §x} is not empty.

On the manifold My, we consider the quadratic model ¢x(s) of the Lagrangian function (1.1) given by

1
(2.4) qk(s) = by + vngs + §5THks.

Let Wy be a matrix whose columns form a basis for the null space of VCT. Then, when W[ Vg (s?) # 0,
the tangential component s, is taken to be any step that satisfies the fraction of Cauchy decrease condition

from s on qx(s) reduced to My. That is, the trial step sx = s, + s? € G N My, where
G ={s=5"+s; : |lsll <k, ar(sF) — ar(s) > raflan(sp) — ar(sk — t&" W W Var(si))]}-

The constant ry € (0,1] and t;” is given by

IWE V()12 i WEVaGDIPIWeWE Vo DIl ¢ 5
qu(s:)TWkaWEqu(s:) qu(SZ)TWka‘i‘/quk(s:) —_ k
t) = and Vi (s?)T Wy HeWI Vg (s?) > 0
5 .
—IIWkaTeqk(sZ)II otherwise,

where Hy = WkTHka is the reduced Hessian matrix and & is the maximum length of the step allowed
inside the set Mg N {s = s* + s :||s|| < dx} in the negative reduced gradient direction —W7T Vg (s7).
Once the trial step is computed, an estimate for the Lagrange multiplier Mgy is needed to determine
whether the computed trial step will be accepted. Again, we will not present a particular way for computing
the Lagrange multiplier. Instead, we impose a condition on the estimates of the Lagrange multiplier that is
needed to prove global convergence. The sequence {\;} of Lagrange multiplier estimates is required to be
bounded. So, any approximation to the Lagrange multiplier vector that produces a bounded sequence can

be used. For example, setting Ax to a fixed vector (or even the zero vector) for all k is valid.



2.2 Testing the Trial Steps

Let s; be a trial step computed by the algorithm and let Agy1 be an estimate of the Lagrange multiplier
vector. We test whether the point (25 + sk, Ag+1) will be taken as a next iterate. In order to do this, a merit

function is needed. We use, as a merit function, the augmented Lagrangian
Oz, X p) = f(z) + ATC(z) + pl| ()%,

where p is the penalty parameter.

The actual reduction in the merit function in moving from (2, Ag) to (zx + sk, Ak+1) is defined to be
Aredy = O (2, Ar; pr) — ®(xk + 5k, Aeg1; pr)-
This can be written as
Aredy = £(z, Ae) — (@ + s, M) — ANTC 2k + ) + pul [|ICxl[* = 1C (2 + s0) 7],
where AXg = Ag41 — Ax. The predicted reduction has the form:
Predy = -Vl s, — %SkTHksk = AN [ 4 VC 5] + prl ICE I = 11Cx + VC k).

The acceptable step should be the step that produces a decrease in the merit function ®. To test for
this, the predicted reduction has to be forced to be greater than zero by increasing the value of the penalty

parameter if necessary. This takes us to the following section.

2.3 Updating the Penalty Parameter

For updating the penalty parameter, Dennis, El-Alem, and Maciel (1992)[12] used a scheme proposed by the
author [16]. This scheme ensures that the merit function is predicted to be decreased at each iteration by
at least a fraction of the Cauchy decrease in the quadratic model of the linearized constraint. This indicates
compatibility with the fraction of Cauchy decrease condition imposed on the quasi-normal component of the
trial steps.

It is noteworthy that, since no regularity is assumed, there is no guarantee that when ||C||? — || VCE sy, +
Ck||? = 0, we have Predy, > 0. Therefore, it could happen that ||Cy||> — |[VCE sp + C||? = 0 and Predy < 0.
In this case, the algorithm should be terminated because it 1s an infeasible stationary point of the constraints
as we will show in Section 4. We write our way of updating the penalty parameter in algorithmic form as

follows.

Algorithm 2.1 Updating the Penalty Parameter

1. Initialization

Set p_1 = 1 and choose a small constant p > 0.

2. At the current iterate z, after s; has been chosen:

set pr = pr—1-

a) If Pred; <0 and ||Ckl|? — [|[VOTL sk + Ck||? = 0 then terminate.



b) If Predy < %[||Ck||2 —IVCT sk + Ci||?], then set

ICkII* = IIVC{ sk + Cill”

The initial choice of the penalty parameter p_q is arbitrary. However, it should be chosen such that it is
consistent with the scale of the problem. Here, for convenience, we take p_; = 1.

An immediate consequence of the above algorithm is that, at the current iteration, either the point zj
is an infeasible stationary point of the constraints (see Section 4) and the algorithm terminates from Step

2-(a) of the above algorithm or

(2.6) Predi > L|ICl1? = |Gk + VO s,

2.4 Updating the Trust-Region Radius

After computing a trial step and updating the penalty parameter, we test the step and accept it only if the

actual reduction is greater than some fraction of the predicted reduction. That is, we accept the step sg if

ﬁ:ij: > 11 where 1 € (0,1). Otherwise, we reject the step and decrease the radius of the trust region by

setting 0 = a1||sk||, where oy € (0, 1).

From the theoretical point of view, a proof of global convergence requires that the trust-region radius be
decreased when the trial step is rejected. On the other hand, when the step is accepted, the radius of the
trust region must increase or remain the same. However, dmin < dr41 is required once the trial step si is
accepted, where dpi, 1s a pre-specified constant. In short, §; can be reduced below dy,;, while seeking an
acceptable step, but dmin < dry1 must hold at the beginning of the next iteration after finding an acceptable
step. The analysis also requires that, for all &, dx < dmax, Where dmax is another pre-specified constant such
that dmin < dmax. We present the way of updating the trust-region radius used by Dennis, El-Alem, and
Maciel (1992)[12] in this algorithm.

Algorithm 2.2 Evaluating the Step and Updating the Trust-Region Radius

Given the constants: 0 < a1 < 1 < ag, 0 < < 12 < 1, and dmax > 0k > Omin > 0.

While 425% < 7,

Reduce the trust-region radius: o < aul|sk||, and compute a new trial step sy.
End while

If n < ﬁ::j’; < M2 then

Accept the step: k41 = xk + Sk

Set the trust-region radius: di41 = max{dg, Smin }-
End if
Ared
If —P::d: > 1 then
Accept the step: xi41 = xk + Sk

Increase the trust-region radius: 6gy1 = min{dmax, max{min, ¥2dg }}.



End if

After accepting the step and updating the trust region radius, the approximate Hessian matrix Hi must
be updated. Our theory requires the sequence {Hy} of approximate Hessians be bounded. Thus, the exact
Hessians or any approximation scheme that produces a bounded sequence of Hessians can be used. For
instant, setting Hy = 0 for all k&, is valid.

Since we do not specify a particular way for computing Wy, it is required that {||WWx||} be bounded and
the sequence of smallest singular values of the matrices Wy ,k = 1,2, ... be bounded away from zero.

Finally, the algorithm is terminated when ||WI V|| +||VCxCg|| < ctor, for some g0 > 0. Observe that,
we use ||[VCCy|| instead of ||Ck|| because the columns of VCj, may be linearly dependent. This implies that
the algorithm may terminate at a point zy that satisfies VCyCy = 0 but does not satisfy Cp = 0.

2.5 Summary of the Algorithm

We present a summary of the DEM class of trust-region-based algorithms for solving problem (EQ).
Algorithm 2.3 The Trust-Region Algorithm.

Step 0. (Initialization)
Guven zg, Ay, compute Wy.
Choose a1, s, N1, N2, €tol;s P, Omin, 00, and dmax, such that 0 < a3 < 1 < ag, 0 <y < 12 < 1,
Etor > 0, p> 0, and Smin < g < dmax-
Set p_.1=1and k = 0.

Step 1. (Test for convergence)
If |WIVE|| + ||[VCkCk|| < etor then terminate.
Step 2. (Compute a trial step)

If zp s feasible then
a) find a step st that satisfies a fraction of Cauchy decrease condition on the quadratic model
qx(s) of the Lagrangian around zy. (See Section 2.1.)
b) Set si = st.
else (*C(zg) #0 %)
a) Compute a quasi-normal step s that satisfies a fraction of Cauchy decrease condition on the

quadratic model of the linearized constraints. (See Section 2.1.)
b) If WIVq(s?) =0 then set s, =0
else find sl that satisfies a fraction of Cauchy decrease condition on the quadratic model
qx(sp +s) from s}. (See Section 2.1.)
End if
c) Set s = s + st.

End if



Step 3. (Update \;)

Choose an estimate A1 of the Lagrange multiplier vector. Set AXgp = Agy1 — Ak
Step 4. (Update the penalty parameter)

Update pi_1 to obtain py by using Algorithm 2.1.
Step 5. (Evaluate the step)

FEvaluate the step and update the trust-region radius by using Algorithm 2.2.

If the step is accepted
then update Hy, set k = k+ 1, and go to Step 1.

else go to Step 2.
End if

Because we do not assume that the columns of VC} are linearly independent, another condition for
terminating the algorithm should be added. For example, the following condition can be tested at the end
of Step 2 of the above algorithm: if ||sg|| < 1o then terminate. The reason for that will be clear when we

proceed with the paper. More details are given in Section 9.

3 General Assumptions

Let Q be a convex subset of R" that contains all of z; and z; + sg for all trial steps s; examined in the

course of the algorithm. On the set Q, we assume:

A1) f and C are twice continuously differentiable for all z € Q.

A2) f(z),Vf(z), Vif(z), C(z), VC(z), and V2C;(z) for i = 1,-- -, m are uniformly bounded in Q.
A3) The sequence of Lagrange multiplier vectors {\gz} is bounded.

A4) If approximations to the Hessian matrices are used, then we require that the matrices Hg, k = 1,2, ...

be uniformly bounded in norms.

A5) The sequence {||W;]|} is bounded and the sequence of smallest singular values of the matrices Wy, , k =

1,2,...1s bounded away from zero.

The above are the assumptions under which we prove global convergence. Observe that they do not
include the assumption of the linearly independence of the gradients of the constraints, a commonly used
assumption by many researchers.

An immediate consequence of the above assumptions is the existence of positive constants b and by, such
that for all &,

(3.1) IVCCr|| < b
and
(3.2) Wi Hl| < by

10



4 Stationary Points

In this section, we give definitions to four types of stationary points, show some of their properties, and show
some relations between them. The terminology used in this section follows Burke (1991)[6] and (1992)[7]
and Yuan (1995)[45].

Definition 4.1 First-order point
A point z, € R" is called a first-order point of problem (EQ), if it satisfies

(4.1) W(2)'Vf(z) = 0,
(4.2) C(z) = o.

Equations (4.1) and (4.2) are called the first-order conditions. If z, solves (4.1), then this implies the
existence of A, such that z, and A, satisfy V f(z) + VC(z)A = 0.

Definition 4.2 Mayer-Bliss point

A point x, € R" is called a feasible Mayer-Bliss point or simply a Mayer-Bliss point of problem (EQ), if
there erxist a constant v, € N and a Lagrange multiplier vector A, € R™ such that (v, Ac) # (0,0) and x4,
Y%, and Ay satisfy the following conditions

(4.3) AV f(z) + VO (2)A
(4.4) C(x)

0,
0.

Equations (4.3) and (4.4) are called the feasible Mayer-Bliss conditions. See Mayer (1886) [28] and Bliss
(1938) [5].

The feasible Mayer-Bliss conditions is the same as the well known Fritz John’s conditions for general
nonlinear programming. See Mangasarian (1969)[26].

If (24, %%, M) 1s a feasible Mayer-Bliss point and v, # 0 then (z, %) is a first-order point. Conversely,
if (24, As) is a first-order point then it is a feasible Mayer-Bliss point with v, = 1.

Definition 4.3 Infeasible first-order point
An infeasible point z, € R" is called an infeasible first-order point of problem (EQ), if it satisfies

(4.5) W()"Vf(z) = 0,
(4.6) VC(z)C(z) = 0.

Equations (4.5) and (4.6) are called the infeasible first-order conditions for problem (EQ).

Definition 4.4 Infeasible Mayer-Bliss point
A point z, € R" is called an infeasible Mayer-Bliss point if xy satisfies the following conditions

(4.7 VC(z)C(x) = 0,
(4.8) C(z) # 0.

11



Equations (4.7) and (4.8) are called the infeasible Mayer-Bliss conditions.
If z, is an infeasible Mayer-Bliss point, then there exist a constant v, € R and a Lagrange multiplier

vector A, € ™ such that (v, Ax) # (0,0) and 24, v, and A, satisfy the following conditions

YV f(z) + VC(x)A
VC(z)C(x)

0,
0.

If in addition 7, # 0 then (24, %) is an infeasible first-order point.

Definition 4.5 Stationary conditions
The conditions stated in any of Definitions 4.1-4.4 are called stationary conditions of problem (EQ) and the

point that satisfies any of the stationary conditions is called a stationary point.

The following Lemma gives a condition for an infeasible iterate zj; generated by the algorithm to be a

Mayer-Bliss point.

Lemma 4.6 If at a point zy generated by the algorithm ||Ck|| # 0 and
(4.9) minimize)s<s,  ||Cr + VCTs|)? = ||Ckl?,
then it 1s an infeasible Mayer-Bliss point.

Proof:  Let q(s, p) = ||Cx + VCFEs||? + p||s||?, where p > 0 is the multiplier associated with the trust-region
constraint. Because (s, p¢) is convex, the local minimizer is a global one. Also, V;q(sk, ttx) = 0 implies that
the minimizer satisfies VCC, = 0. Hence (4.7) holds. This completes the proof. a

In the above Lemma, it is easy to see that at the point zy, the matrix VC} does not have full column
rank.

It is noteworthy that if the algorithm generates a point z; which is an infeasible Mayer-Bliss point and
Pred, < 0, then the algorithm may not be able to move away from this point. In this case, the algorithm
terminates from Step 2(a) of Algorithm 2.1. However, we will proceed with the analysis assuming that this
case will not happen.

The following lemma gives conditions for the sequence of iterates generated by the algorithm to have a
subsequence that satisfies the feasible Mayer-Bliss conditions in the limit. A similar lemma for a different
algorithm was given by Yuan (1995) [45].

Lemma 4.7 If there exists a subsequence of infeasible iterates {k;} such that limy,_ ||Cy;|| =0 and
. . |Cr; + VO slI?
(4.10) lim < minimizesepn ———5—— = ||| <[|Cx]lp =1,
kj—co [1C;1[? -

then it satisfies the feasible Mayer-Bliss conditions in the limat.
Proof: The above limit is equivalent to

(4.11) lim {minimizeja<1 Uk, + VCLd|?} =1,

kj—>oo

12



where Uy, is a unit vector in the direction of Cy, and d = HC‘?TH Let ka be a solution to the minimization
3

problem inside the above limit. Then there exists a nonnegative parameter py, such that

(4.12) VijUkj + VijVC,Z;ka =+ ,ukjtikj =0
and
(4.13) ,L‘kj(HkaHz - 1)=0.

From the optimality of ka, we have

(4.14) Jim {24, TV C, U, + di TV CL, VO dr b = 0.
00 7
If limg ;oo ka = 0, then from (4.12), we have limy; , oo VCy,;Ux, = 0. Otherwise, multiply (4.12) from the
right by 2de, subtract from (4.14), and use (4.13), we obtain as k; — oo, VCZ;ka — 0 and px; — 0. This
yields
lim VCy, U, =0.

kj—o00

Hence, in both cases, (4.3) holds in the limit with v = 0. This shows that the lemma is true. a

From the above lemma, we can easily see that, for any sequence {k;} that asymptotically satisfies the
Mayer-Bliss conditions that are not first-order conditions, the matrix VC},; does not have full column rank
in the limit. So, for any subsequence {k;} of the iteration sequence, if {||Cy,||} converges to zero and
the corresponding sequence of smallest singular values of {VCj,} converges to zero, then it satisfies the
Mayer-Bliss conditions in the limit.

Throughout the rest of the paper, we use {o%,} to denote the sequence of smallest singular values of VCj,
for all k € {k;}.

In the rest of the paper, we present our convergence results. We start with the following section which

summarizes our global convergence results.

5 Main Result

In this section, we state the main result of our convergence analysis in order to understand the motivation

for the lemmas presented in the next two sections.

Theorem 5.1 Assume A1-AJ5, then the sequence of iterates generated by Algorithm 2.3 has a subsequence
that satisfies one of the stationary conditions of problem (EQ) in the limit. In particular, it asymptotically
satisfies either the infeasible Mayer-Bliss conditions, the feasible Mayer-Bliss conditions, the infeasible first-

order conditions, or the first- order conditions.

The above theorem summarizes the main results of this paper. The proof of this theorem is presented in

Section 8. The proof needs some intermediate lemmas. They are presented in the following two sections.

6 Intermediate Results

In this section, we present some technical lemmas needed in the proof of our main global convergence results.

13



The following two lemmas use the fact that the steps s? and s, satisfy the fraction of Cauchy decrease
condition. They express in a manageable form the pair of fraction of Cauchy decrease conditions imposed

on the trial steps.

Lemma 6.1 Assume AI-A2. Then there exists a positive constant Ky independent of the iterates such that

the quasi-normal component of the trial step s satisfies

(6.1) ICkII* = ICk + VOTsE|I* > K

VCkaH min{HVCkaH, 6k}~

Proof: If VCyCj = 0, then VC’kTsZ = 0 and the lemma is valid a fortiori.

Assume that ||[VCiCyg|| > 0. In this case, the proof follows from the fact that the step s} satisfies the
fraction of Cauchy decrease condition and using Assumption A2. For a proof see Powell (1975)[37] or Moré
(1983)[33]. a

From (2.6) and the above lemma, we have, for all &

Kip
2

(62) Predk Z ||VCka||mm{||VCka||,6k}

Lemma 6.2 Assume AI-A5. Then there exists a positive constant Ko independent of the iterates such that
(6.3) a(58) = qe(sk) > Kol [Wy Vi (sp)| | min{|[W, Var(st)l], 9 ).

Proof: The proof is similar to the proof of the above lemma. a
The following two lemmas give upper bounds on the difference between the actual reduction and the

predicted reduction.

Lemma 6.3 Assume AI1-A4, then there exists a positive constant K3, independent of k, such that

(6.4) [ Aredy — Predyl < Ks [ sl + pallssl® + pxlsel PGl 1

Proof: See Lemma 6.3 of El-Alem [16]. O
Lemma 6.4 Assume A1-A/4, then there exists a positive constant K4 independent of k, such that

(6.5) |Aredy, — Predy| < Kapg||sk||*.

Proof: The proof follows directly from the above lemma and the fact that py > 1 and ||sg|| and ||C|| are
uniformly bounded. a

The following lemma shows that if at any iteration k, the point zp is not a stationary point of the
constraints, then the algorithm can not loop infinitely without finding an acceptable step. To state the

lemma, we need to introduce one more notation. The i*? trial iterate of iteration k is denoted by k.

Lemma 6.5 Assume AI1-A4. If ||[VCyCy|| > €, where € is any positive constant, then an acceptable step is
found after finitely many trials. i. e., the condition Aredy;/Predy; > n1 will be satisfied for some finite j.

Proof:  Since ||VC,Cg|| > € > 0, then using (6.2) and (6.5), we have

Aredy, = |Ared, — Predg| < 2K 46}
Predy, o Predy, — Kiemin{e, o}
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Now, as the trial step sj; gets rejected, dg; becomes small and eventually we will have

Aredkj 1 2[(4(5;“'
Predy; ’

1{16

This inequality implies that after finite number of trials (i. e., for j finite), the acceptance rule will be met

and this completes the proof. a

Lemma 6.6 Assume A1-A5. Let j and k be any pair of indices such that py; is increased at the j** trial

iterate of the k'" iteration, then there exists K5 > 0 that does not depend on j or k, such that
prs |Gkl = 10k + VO s ||} < Ks max{||Cyl], s3]},
where 7" is the minimum-norm solution of (2.3) with 0 = &y;.
Proof: If py; is increased at the j%” trial step of the k*" iteration, then it is updated by (2.5). Hence,
PO — NG+ VO sisl?] = laslows) — a5(0)] + A (C + VO 50

+S UGk = 1ICk + VO 5y ]

c

N

= [ar(sks) — qr(s35)] + [ax(s75) — g (0)] + AXL (Cr + VC{ s75)

+ 52V C) s = IVCE s 1]

n n 1 n
[9x (s65) = au (k)] + IV Eellllsis Nl + S Ekllsfs 11
+ AN Ik + VO sis || + AV CrCrllllsis Nl + IV CEN 711

INA

The rest of the proof follows by applying (6.3) and (2.2) to the right-hand side, followed by the use of the

general assumptions. a

From (6.1) and the above lemma, we can write, at any iteration &k’ at which the penalty parameter is

increased,
. K mn
(6.6) pri ||V O Cy || min{[|[ VO Ci ||, 85 } < F‘:max{HCkH, llsk5" 113
Lemma 6.7 Assume A1-Aj. If the j** trial step of a given iteration k satisfies
. (I—=m)K
(67 Il < ming EIEL 4y
4[&4

then the step must be accepted.

Proof: The proof is by contradiction. Suppose that (6.7) holds but the step sy, is rejected. Then, we have
|Aredyi — Predy;|

1 —
(1=m) < Predy;
Substituting from (6.2) and (6.5) and using (6.7), we have
2K4||s1il)?

1—

< =(1 —mn).
VO Gl < 217
This gives a contradiction and implies that the step must be accepted. This competes the proof of the

lemma. O

The following lemma is a consequence of the above lemma.
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Lemma 6.8 Assume AI1-A4. All trail iterates j of any iteration k generated by the algorithm satisfy

min (1 - 771)[{1
y A1 -
b 4K,

)
(6.8) Opi > mm{ ,al}”VCkaH,
where b is as in (3.1).

Proof:  Consider any iterate k7. If the previous step was accepted; i. e., j = 1, then 85 = &1 > Gmin.

Using (3.1), we can write

émin
Opi 2 =~ IV CCll.

Therefore, (6.8) holds in this case.
Now assume that j > 1. 7. e., there exists at least one rejected trial step. Hence, we must have

(1-m)K,

1|V C
e  HIVCCyl,

s} > min{

otherwise, we get a contradiction with Lemma 6.7. From the way of updating the trust region, we have

(1 — 7]1)[&71

1 "
4[{4 ) }||v0k0k||,

6k:j = O[1||Skj—1|| > Qq Hlll’l{

Hence the lemma is proved. a
The following lemma is used in proving that the sequence {||VCyCy||} converges to zero. It says that
as long as {||[VCyCg||} is bounded away from zero, the sequence of trust-region radii {Jx} is bounded away

from zero.

Lemma 6.9 Assume A1-A4. Then all trial iterates j of any iteration k such that ||VCrCy|| > €0, where
gg > 0, satisfies
dgi > Ko,

where K 1s a positive constant that depends on ¢ but does not depend on k.

Proof: Taking
(69) 1(6 = £&p HllIl{

ZHCELL )
the proof follows directly from the above lemma. a

From (6.6) and Lemma 6.8 and using the general assumptions, we have for all £/ at which the penalty
parameter is increased

(6.10) pkj||VCka||2 < Ky,

where K7 i1s a positive constant that does not depend on j or k. This inequality is used in studying the

convergence of the sequence {||VCiCg||}. This is the subject of the following section.

7 Stationary Points of the Constraints

The following lemma proves that for the iteration sequence generated by Algorithm 2.3, if {p } is unbounded,
then the sequence {||VC;Cg||} is not bounded away from zero.
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Lemma 7.1 Assume A1-A5. If {pr} is unbounded, then the sequence of iterates generated by the algorithm
satisfies

(7.1) lim ||VCy,
k;—oc0

where {k;} is the sequence of iterates at which the penalty parameter is increased.

Proof: The proof follows directly from the assumption that {px} is unbounded and (6.10). O

{k;} has a subsequence that satisfies the infeasible Mayer-Bliss conditions in the limit.

=0.

wterates at which the penalty parameter is increased, then the iteration sequence satisfies
(7.2) lim ||VC,Cg|| = 0.
k—o0

Proof:  Suppose that limsup,_, ., ||[VCxCx|| > € > 0. This implies the existence of an infinite subsequence
of indices {k;} indexing iterates that satisfy ||VCLCy|| > §, for all k € {k;}.
From Lemma 6.5, there exists an infinite sequence of acceptable steps. Without loss of generality, we

assume that all members of the sequence {k;} are acceptable iterates.

From Lemma 7.1, limg, 00 |[|[VCh,
which the penalty parameter is increased. Therefore, for k sufficiently large, there are no common elements
between the two sequences {k;} and {k;}. For all k € {k;}, using (6.2) and Lemma 6.9, we have

Ared;, Pred;, eK; € eK,

> >n— 6l >n—— K
P >m p” >m 1 mm[2 i >m 1 mm[2 K],

where Kg is as K in (6.9) with ¢ is replaced by % Hence, we have

61\1

. El%_f 2
(7.3) T+I|C WP = NCh PP > m—— 1

k

, Ke] > 0.

mln[

2’

On the other hand, for all acceptable steps generated by the algorithm, we have

Ly — g

(7.4) +ICk]* = l|Cha]* > 0.

Let k; and k;,, be two consecutive elements of the sequence {k;} such that there exists an iterate k € {k;}
between k; and k; ;. From (7.3) and (7.4) , we can write

z+1 4
P, eKy . e -
Z = tan) "“} - [1Ck; I = 1Cs [I* > m =+ min, Ke] > 0.

2
Because the value of the penalty parameter is the same for all iterates k;, ..., k;,, — 1, we have
by, — b, eK
— Cr.|? = ||C > L min[=, K
S O Oy 2 S minl K
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But because £ is bounded and pr — co as k — oo, we can write, for k; sufficiently large

eKy . e o
1Cx 11 = NICyy, II* > 771T1mlﬂ[§,116] > 0.

This contradicts the assumption that limg, o ||C,|| = 0. The supposition is wrong. This proves the lemma.
O

When {px} is bounded, we have the following result.

Lemma 7.3 Assume A1-A4. If {pr} is bounded then the sequence of iterates generated by the algorithm
satisfies

k—o0

Proof:  The proof is by contradiction. Suppose that limsup_, . ||[VCiCk|| > €0 > 0. This implies the
existence of an infinite subsequence of indices {k;} indexing iterates that satisfy ||[VCyCk|| > %, for all
k€ {k;}.

From Lemma 6.5, there exists an infinite sequence of acceptable steps. Without loss of generality, we let
all elements of the sequence {k;} be acceptable iterates.

Since {px} is bounded, there exist an integer k and a positive constant g such that for all k > k, pp = p.
Using the general assumptions, this fact implies that {®;} is bounded.

From (6.2) and Lemma 6.9, we have for all k; > k

Kip -
Y 1PE0 min{z—o,f(g} >0,

(7.6) Predy,; >

where K is as Kg in (6.9) with &g is replaced by 5. Using the fact that the steps indexed by any member

of the sequence {k;} are acceptable, we have

I(lﬁEO

(7.7) O, — ®p, 41 = Aredy; > mPredy; > 1m min{%o, Kg} > 0.

Since {®} is bounded below, a contradiction arises if we let k; go to infinity. This proves the lemma. O
The following theorem proves that if limsup,_, ., ||Ck|| > 0, then the iteration sequence has a subsequence

that satisfies the infeasible Mayer-Bliss conditions in the limit.

Theorem 7.4 Assume AI1-A4. If limsupy_, . ||Ck|| > 0 then the iteration sequence has a subsequence that

satisfies the infeasible Mayer-Bliss conditions in the limit.

Proof: Consider first the case when {pg } is unbounded. From Lemma 7.1, we have limg, 0 ||VC5,Ci,|| = 0,

where {k;} is the sequence of iterates at which the penalty parameter is increased.

If lim supy, , o, |[Ck,|| > 0, then there exists a subsequence of the sequence {k;} that satisfies the infeasible

Mayer-Bliss conditions in the limit.

= 0. Then from Lemma 7.2, we have limg_ ||[VC5Cg|| = 0. On the

other hand, because limsup,_, o, ||Ck|| > 0, there exists a subsequence of the iteration sequence that satisfies

Now assume that limg, e ||Ck,

the infeasible Mayer-Bliss conditions in the limit.
Now, consider the case when {p;} is bounded. From Lemma 7.3, we have limgy_, ||VCrCg|| = 0. This
limit and the assumption that limsup,_, . ||Ck|| > 0 imply the existence of a subsequence of the iteration

sequence that satisfies the infeasible Mayer-Bliss conditions in the limit. This completes the proof. a
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8 Stationary Conditions

In this section, we answer the following questions. Does the iteration sequence have a subsequence that
satisfies the Mayer-Bliss conditions in the limit? If yes, can we identify 1t7 Does the iteration sequence have
a subsequence that satisfies the first-order conditions in the limit? If yes, can we identify it7 To answer
these questions, we need the following three technical lemmas.

The following lemma gives a lower bound on the predicted decrease in the merit function produced by

the trial step.

Lemma 8.1 Assume A1-A5. Then the predicted decrease in the merit function satisfies

Predy > Ko |[W{ Var(sp)|| min{|[W Vae(sp)l| , 6k}

— Ksmax{||Cel|, 151} + o I Cell* = 11Cx + VCT 5|,

where Ky 1s as in Lemma 6.2 and Kg is a positive constant independent of k.

Proof:  The proof is similar to the proof of Lemma 7.6 of Dennis, El-Alem, and Maciel (1997)[12] with
(2.2) is used instead of (2.1). O

Lemma 8.2 Assume Al-A5. If at a given iteration k', |[WI'V fi|| > €0 and max{||Ck||, ||s7"

where g 1s a positive constant and 3 is given by

|} < B

[;7
0<ﬂ§min{ c0 1250 min{e—o,l}},

201 Kdmax  4Kg 20 max
where K is as in (2.2), by is as in (3.2), Ky is as in (6.3), and Kg is as in Lemma 8.1, then there ezists a

posttive constant Kg that depends on g but does not depend on k or i, such that

(81) Predki Z I(gaki + pkl{ |Ck||2 - ||Ck + VC,?skz| 2}.

Proof:  The proof is similar to the proof of Lemma 7.7 plus the proof of Lemma 7.8 of Dennis, El-Alem,
and Maciel (1997)[12]. O
The above lemma shows that at any iteration k% with ||WI'V fgx|| > e, if max{||Cy]], [|s73|} < Bdy:, then

the penalty parameter is not increased.

The following lemma bounds ||s7*"|| by ||Ck|| and ||Ck]| by ||[VCkCx||, for any iteration where the smallest

singular value of VC is not zero.

Lemma 8.3 Assume Al and A2. If there exists a subsequence {k;} of the iteration sequence such that {oy,}

is bounded away from zero, then all trial iterates j of any iteration k € {k;} salisfy
(8.2) l[si5" 1] < KiollCll,

and for any k € {k;}
(8.3) ICkIl < Kl [VORCrl],

where K1g and Kq1 are two positive constants that do not depend on k or j.
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Proof: The proof of (8.2) is similar to the proof of Lemma 7.1 of Dennis, El-Alem, and Maciel (1997)[12].
The proof of (8.2) follows from the fact that for all & € {k;}, ||Ck] < ||(VC,?VCk)_IVC£||||VCka||,
followed by the use of the assumptions. a

From the above two lemmas, if for the subsequence {k;} of the iteration sequence at which the penalty

for all k € {k;}, then

parameter is increased, {og,} is bounded away from zero, and ||Wk7: V fr,
(8.4) ICkIl > Brdk

holds for all k € {k;}, where 1 = w8
From (6.6), (8.2), and (8.3), if {k;} is the sequence of iterates at which the penalty parameter is increased

is as in Lemma 8.2, and K1g is as in (8.2).

and {og,} is bounded away from zero, then we have for all k € {k;},
(8.5) PEllCI < Ko,

where K15 1s a positive constant independent of &.
The following theorem studies the behavior of the iteration sequence when {||Ck||} converges to zero and

{px} is unbounded.

Theorem 8.4 Assume A1-A5. Assume also that {py} is unbounded and {||Cy||} converges to zero. The
iteration sequence at which pg 1s increased has a subsequence that satisfies either the feasible Mayer-Bliss

conditions or the first-order conditions in the limit.

Proof: Let {k;} be the iteration sequence at which py is increased. Since limg, ;oo |[Ck;|| = 0, then if there
exists a subsequence of the sequence {k;} where the sequence of smallest singular values of VC}; converges
to zero. Then it satisfies the feasible Mayer-Bliss conditions in the limit and the proof ends here.

Consider the case where {0}, } is bounded away from zero. Suppose that, for all k € {k;},
(8.6) WV fill > eo.
From (8.4), we have ||Ck|| > $16x, for all k € {k;}. But because limg, o ||Ck;|| = 0, we have

(8.7) kh_r}rloo 5k; =0.
The rest of the proof is by contradiction. From the way of updating the trust-region radius, 5k1 > dmin -
Therefore, the superscript ¢ # 1 in (8.7). Because 5k1 > 6min and both of 5kl and C}; are converging to zero,
then for k; sufficiently large, there must be an m > 1 such that ||Cy,|| > ﬂldkm and ||Cy,|| < £14 Kmet where
B1 is as in (8.4). Using dk;n = a1||sk;n 1|| and (8.5), we have

Ogm [[Cx,ll = Kis
m— met|| < ppm —— < pgm I < .
Py 1||8kj 1| < PET P Pr? i = arf

From Lemma 6.3 and the above inequality, we have

Aredk;n_l — Predk;n_l S 1{3[1 + (1 —|—ﬂ1) pkm—l ||8k;n—1|| ] ||8k;n—1|| 5k;n—1,

lea

a1

< Kz [14(143) ] ||5k;"—1|| Gm—1.
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Also ||Cy;|| < 10 m—1 implies that max{||C;||, ||521,,?_1||} < B8 m-1. Hence, from Lemma 8.2, we have
3 7 7
Predkm_l Z I{gfskm—l.
3 3

Therefore, since s, m—1 was a rejected step,
7

o181

<
Predkm_l - 1\79
i

a : |Ared m—1 — Predym-1| Ks[l+ (1+751) K12]||Skm—1||
- < J J J .

K — .
W and we obtain

Hence, ||sk;n_1|| > ;
@1P1

|| > 011[{9(1—771)
T OKs[l+ (14 B S

o161

Sk > an|sgm—s
7

This means that dgm is bounded below. Hence {[|C},][} is bounded away from zero. This contradicts the
assumption that {||Cx||} converges to zero and means that for k; sufficiently large there is no m such that
[|Ck; || > ﬂldk;n holds. Hence, all trial iterates i of k; satisfy ||Cy; || < ﬂlﬁk;. But this contradicts the fact that
k; is an iterate at which Pris for some trial 7, is increased. This contradiction implies that the supposition
(8.6) was wrong and completes the proof of the theorem. a

From the above lemma, we conclude that, if along the subsequence of the iteration sequence at which
pr 1s increased, the corresponding subsequence of op converges to zero, then it has a subsequence that
asymptotically satisfies the feasible Mayer-Bliss conditions. Otherwise, it has a subsequence that satisfies
the first-order conditions in the limit.

When {px} is bounded, there must exist a positive integer k and a positive constant p such that for all
k >k, pr = p. Without loss of generality we will take py = p for all k, whenever we assume that {ps} is
bounded.

To study the case when {pi} is bounded, we need the following lemma which is similar to Lemma 6.7.

Lemma 8.5 Assume AI-Aj. Let {py} be bounded. If at the j* trial iterate of iteration k, there exists a

positive constant K3 independent of k and j such that
(88) Predkj Z [{135;“'

and if
(1—=m)Ks

il <
||81€J|| = 2[{4ﬁ

)

where K4 is as in (6.5), then the step sii must be accepted.

Proof: The proof is similar to the proof of Lemma 6.7. a
From the above lemma we can easily conclude that if {pg} is bounded and if at a given iteration k all its
trial iterates satisfy (8.8), then an acceptable step must be found after a finite number of trials.

The following theorem studies the asymptotic behavior of the iteration sequence when {pi} is bounded.

Theorem 8.6 Assume A1-A5. Assume also that {py} is bounded and limg_, o ||Ck|| = 0. Then the iter-
ation sequence has a subsequence that satisfies either the feasible Mayer-Bliss conditions or the first-order

conditions in the limit.
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Proof:  Assume that there exists an infinite subsequence {k;} such that max{||Cg,||, |[s}"

1> ﬂékl for
some trial iterate i of k; and some # > 0. We take 3 as in Lemma 8.2. If {0, } is not bounded away from
zero, then there exists a subsequence that satisfies the feasible Mayer-Bliss conditions in the limait.

Let us assume that {oy;} is bounded away from zero and suppose that ||WiV fi|]| > g0 > 0 for all
ke {k;}.

Because 5k1 > dmin and as k; — oo, both of ||5

m”ll} > ﬂffkm and maX{IICI« Il il < B0gpe—r,

where /j’ is as in Lemmas 8.2. Note that ||8k? , for all trial iterates 7 of 1terat10n k;, Where
7

kj € {k;}.

From Lemma 8.2, we have Pred,m-1 > Kgd,m-1. Because s, m-1 is a rejected step, we have using (6.5),
7 7 7

|Ared,m—1 — Predgm-1| Kap||sgm—1]|
7 J < 7 .

1—
(1=m) < Pred, = Ky

K9(1_771) 061K9(1—771)
Kip Kap ’

7 7
This means that dxm is bounded away from zero. This contradicts the assumption that {||C},||} converges

Hence, ||sgm-1]| > . Therefore, (5k;n = aq|[sgm-1|| >

to zero and means that there is no m such that max{||Cy;,||, ||8 2|} > Békr.

Hence, all trial iterates i of k; satisfy max{||Cj,]|, |[s}3"

. But this implies, using Lemma 8.2
that Predg: > Kgdg:, for all trial iterates ¢ of any 1terat10n ke {k }. From the above lemma, there must be

an infinite sequence of acceptable trial iterates {ké} For all acceptable iterates of {kj}, we have
Q1 — @y = Aredy > mi Predy > 1 Kodg .
7 7 7 7 7

If we take the limit as k¥ — oo, we obtain

(8.9) lim 6, = 0.

k— o0 3
We show a contradiction by proving that {d,:} is bounded. Using argument similar to that of Lemma 8.5,
7
we conclude that, the trial iterate k‘lj_l must satisfy |[s -1 > %);(—9. From the way of updating the trust
7

region radius, we have
a1(1 — 7]1)[\79

O, = atllsyll> =552

This implies that {d,:} is bounded. Therefore, the supposition is wrong and we have
lim ||[WIVf,| = 0.
k:j—}OO 7 7

This completes the proof of the theorem. a

Let us again state and then prove our main global convergence result, Theorem 5.1.

Theorem 5.1 Under assumptions A1-A5, the algorithm produces a sequence of iterates that has a subse-
quence that satisfies either the infeasible Mayer-Bliss conditions, the feasible Mayer-Bliss conditions, the

infeasible first-order conditions, or the first-order conditions.

Proof: The proof follows immediately from Theorems 7.4, 8.4, and 8.6. a
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9 Summary and Concluding Remarks

We have established a global convergence theory for the class of trust-region-based algorithms suggested by
Dennis, El-Alem, and Maciel [12]. This class of algorithm is characterized by generating steps such that
their quasi-normal components satisfy a fraction of Cauchy decrease condition on the quadratic model of
the linearized constraints. Furthermore, their tangential components satisfy a fraction of Cauchy decrease
condition on the quadratic model of the Lagrangian function associated with the problem, reduced to the
tangent space of the constraints. The augmented Lagrangian is used as a merit function. For updating the
penalty parameter, a scheme proposed by the author [15] was used.

Because the two components of the trial step are not necessarily orthogonal, an additional condition on
the length of the normal component is needed to prove global convergence. Dennis ; El-Alem, and Maciel
(1997)[12] suggested the condition ||sp|| < K

minimum-norm solution that minimizes ||Cy —|—VCkTs|| inside the trust region J;. This condition is equivalent

Ck||- In this paper, we used ||s}|| < K||s*"||, where sP*” is the
to the above condition whenever YV} has full column rank and allows the full SQP step to be taken when
it is inside the trust region.

As pointed out in Section 2.3, if at a given iteration k the algorithm generates an infeasible point with
[[Ckl]? = ||Cr + VCisg||> = 0, then it may not be able to move away from that point. We pointed out in
Lemma 4.6 that in this case the point is necessarily an infeasible Mayer-Bliss point. Probably, if a good
estimate of the Lagrange multiplier vector is used every iteration, or at least at this point, then the algorithm
moves away from such points. Avoiding Mayer-Bliss points that are not first-order points is an important
issue for algorithms that are designed to handle the lack of linear independence in the gradients of the
constraints. This issue indeed deserves to be studied.

Because we do not assume that the columns of VY, are linearly independent, the iteration sequence may
have no subsequence that asymptotically satisfies the first order conditions (see Section 4). In other words, it
may be the case that no iterate k generated by the algorithm satisfies ||WyV fi|| + ||V CiCy|| < €. Therefore,
another condition for terminating the algorithm should be added. For example, the following condition can
be tested at the end of Step 2 of the algorithm. If ||sg|| < 101 then terminate.

The main feature of the global convergence theory presented in this paper is that the gradients of the
constraints are allowed to be linearly dependent. We showed that under the general assumptions of Section 3
and without the regularity assumption the iteration sequence has a subsequence that asymptotically satisfies
one of four types of stationary conditions. In particular, it asymptotically satisfies either the infeasible Mayer-
Bliss conditions, the feasible Mayer-Bliss conditions, the infeasible first-order conditions, or the first-order
conditions.

In our theory, we used the assumption that the Lagrange multiplier vector is bounded. Such a reasonable
assumption is justified as follows. In practice, if a scheme like the projection formula, for instance, is used for
computing the Lagrange multiplier and if the matrix VY, 1s poorly conditioned, the vector Ay may contain
very large numbers. In order to avoid large numbers in certain calculations, the vector A should be normalized
using a scale factor w = m and w scales f and V f in all expressions where A appears. Of course,
the theory will require that the sequence of scale factors {wg} be bounded away from zero. Fortunately, this
is the case unless a subsequence of the iteration sequence asymptotically satisfies either the feasible or the

infeasible Mayer-Bliss conditions.
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