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Abstract

In a recent paper, the author (Ref. 1) proposed a trust-region algorithm for solving
the problem of minimizing a non-linear function subject to a set of equality constraints.
The main feature of the algorithm is that the penalty parameter in the merit function
can be decreased whenever it is warranted. He studied the behavior of the penalty
parameter and proved several global and local convergence results. One of these results
is that there exists a subsequence of the iterates generated by the algorithm, that
converges to a point that satisfies the first-order necessary conditions.

In the current paper, we show that, for this algorithm, there exists a subsequence of
iterates that converges to a point that satisfies both the first-order and the second-order

necessary conditions.

Key Words : Constrained optimization, equality constrained, penalty parameter, non-
monotonic penalty parameter, convergence, trust-region methods, first-order point, second-

order point, necessary conditions.



1 Introduction

In this paper, we are interested in numerically approximating the solution of the following

equality constrained optimization problem:

(EQ)  min  f(z),
s. t. h(z) =0,

where h(z) = [hi(z), ..., hy(z)]F. The functions f and h;,i = 1,2,...,m are assumed to be
at least twice continuously differentiable and the matrix Vhi(z) = [Vhe(z),..., Vhy,(2)] is
assumed to have full column rank at every x in the range of interest.

The Lagrangian function associated with problem (EQ) is the function ¢(z,\) = f(x) +
Mh(z) where A € R™ is the Lagrange multiplier vector.

First and second order optimality conditions can be stated in terms of the Lagrangian
function as follows. The first-order necessary conditions for a point z, € R" to be a solution
of problem (EQ) is feasibility, h(z,) = 0, and the existence of a Lagrange multiplier vector
A € R™ such that the point (z,, A,) satisfies V (2., A) = 0. i. e., the point (z,,A,) is a

solution to the following (n + m) x (n 4+ m) nonlinear system of equations:

VN ] [o
[ ) ]‘M' W

If in addition, the matrix V2{(z,,)\,) is positive semi-definite on the null space of
Vh(z,)T, then we say that the point (x,,),) satisfies the second-order necessary conditions.

The point (z,,A,) is said to satisfy the second-order sufficiency conditions if it satisfies
the first-order necessary conditions and the matrix V2/(z,, A, ) is positive definite on the null
space of Vh(z,)!. For a detailed discussion of the optimality conditions, see, for example,
Ref. 2.

Trust-region algorithms for the equality constrained optimization problem are a class
of numerical algorithms for finding an approximate solution to problem (EQ). They are
iterative methods that compute, at every iteration k, a trial step s; by solving a trust-region
subproblem. The step s is then tested using a merit function. Such merit function often
involves a parameter that i1s called the penalty parameter. This parameter is updated using
an updating scheme. The step 1s accepted only if xxyq 1s a better approximation to the
solution than x; and the radius of the trust region is updated accordingly. The aim is to
allow convergence to a solution from any starting point. This approach has proven to be

very successful both theoretically and practically.



The rest of this section contains historical background. In Section 1.1, a survey on some
local methods for solving problem (EQ) is presented. A brief survey of trust-region methods
for equality constrained optimization is presented in Section 1.2. For a detailed discussion
about trust-region methods for problem (EQ), see Ref. 3.

The rest of the paper 1s organized as follows. In Section 2, we present the trust-region
algorithm that was proposed by the author, Ref. 1. In Section 3, we state the assumptions
that are needed to establish our convergence result. In Section 4, we present the convergence
result. We start with some intermediate lemmas that are needed in the proof of our result.
We then present our main convergence result. Section 5 contains concluding remarks.

Throughout this paper, all the norms used are l; norms and subscripted values of func-
tions are used to denote evaluation at a particular point. For example fj means f(xy),

means {(zy, \x), and so on.

1.1 Local Method

Newton’s method is known to be an effective local method for finding a root of nonlinear
system of equations. Under mild assumptions, it possesses fast local convergence. A natural
way to obtain a local method for solving problem (EQ) is to use Newton method to find a
root of the nonlinear system of equations (1). This gives rise to the following (n-+m)x (n+m)

linear system that has to be solved at the k-th iteration.

__ [ v};zk ] . (2)
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The solution obtained by the above method satisfies the first-order necessary conditions
(1). However, it need not necessarily satisfy the second-order necessary conditions of problem
(EQ). This implies that, the computed solution obtained from the above method need not
necessarily be a minimizer of problem (EQ).

The successive quadratic programming method i1s a method that has the flavor of the
original problem in the sense that it solves a minimization problem at every iteration. In
particular, at each iteration, the SQP method obtains a step SSP and an associated Lagrange

multiplier step A)\SP by solving the following quadratic programming problem.

(QP) min Volps + 35TV 2Us,
s. t. hi + ths = 0.



This method is one of the most popular and successful methods for solving problem (EQ).
The basic idea of the SQP method probably goes back to the beginning of this century.
However, the earliest published reference to the SQP method that we are aware of 1s Ref. 4.

If the solution to problem (QP) exists, then the SQP method is equivalent to Newton’s
method and therefore possesses fast local convergence. However, because the second-order
sufficiency conditions need not hold at each iteration, there is a fundamental difficulty in the
definition of the SQP step. By this we mean that, at each iteration k, the matrix V2/; need
not be positive definite on the null space of VA}; hence the (QP) subproblem may not have
a solution. Even if we assume that problem (QP) can be solved at every iteration, there is
no guarantee that the sequence generated by this method will converge. See Ref. 5 for more
details.

These difficulties 1mply that the SQP algorithm can not be guaranteed to work without
a modification. An effective modification that deals with the lack of positive definiteness on
the null space and guarantees global convergence i1s the use of a trust-region globalization

strategy. This takes us to the following section.

1.2 Trust-Region Algorithms for Problem (EQ)

As an attempt to avoid the difficulties discussed above, a trust-region globalization strategy
is incorporated into the SQP method. The aim is to avoid the fundamental difficulty in
trying to ensure that the (QP) subproblem has a solution at every iteration. This is done by
restricting the size of the step to a region where the model subproblem can be trusted. This
added constraint causes the region of interest to be bounded and therefore the subproblem
is guaranteed to have a solution regardless of the nature of the matrix V2/, provided that
the feasible region is not empty.

If we add a trust-region constraint to the (QP) subproblem in a straightforward manor,

we obtain the following trust-region subproblem

(TRQP) min Vlls + %STVfEEkS,
s. t. hi + ths =0,
]l < Ag.

However, the two constraints may be inconsistent in the sense that the hyperplane hy +
Vhis =0 and the trust-region ball may be disjoint and therefore this approach may lead to

an infeasible subproblem. To avoid this difficulty several approaches have been investigated.



The first approach is to relax the linear constraints in such a way that the resulting
feasible set is non-empty. In this approach the linear constraints in (TRQP) is replaced by

the following relaxed constraints
T, __
orhr + Vh,s =0,

where oy € [0,1]. This approach was suggested in Ref. 6 and was used in Refs. 7-8. A major
difficulty with this approach lies in the problem of choosing «y so that a feasible trust-region
subproblem 1is ensured.

The second approach is to replace the linear constraints in (TRQP) by
I + VAT s|1 < 62

If 65 1s chosen properly, the resulting subproblem is always feasible. This approach was
suggested in Ref. 9 and was used in Refs. 10-12. The parameter 6 is chosen to ensure a
sufficient decrease in the quadratic model of the linearized constraints. This decrease is at
least a fraction of the decrease obtained by the Cauchy point. The Cauchy point is defined to
be the optimal point inside the trust region in the steepest descent direction for the function
|he + VREs||2. That is, the minimum point inside the trust region in the steepest descent

direction. In Refs. 10-11, the parameter 85 was taken to be
Op = (1= )lhell* + |l + Vi s,

for some fixed r € (0,1), where s is the step to the Cauchy point. In Ref. 12, the choice of
0, was

0 = {min ||k + VALs|? : 018k < ||s|| < 024k},

where 0 < 07 < 0y < 1.

A major disadvantage with this approach lies in the fact that the resulting trust-region
subproblem has two quadratic constraints and there is no efficient algorithm for finding a
good approximation to the solution of this subproblem. See Refs. 13-17 for algorithms that
were suggested to solve special cases of this subproblem.

The reduced Hessian technique i1s another approach to overcome the difficulty of having
an infeasible trust-region subproblem. In this approach, the step is decomposed into two
components; the tangential component s and the normal component s”. The step s" is
computed by solving a trust-region subproblem. The tangential component s* is then ob-

tained by solving another trust-region subproblem. This approach has been used in Refs. 1,
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3, 18-25. One of the advantages of this approach is that the two subproblems that we have
to solve at every iteration are similar to the trust-region subproblem for the unconstrained
case. Our way of computing the trial steps uses this approach and 1s presented in detail in

the following section.

2 Trust-Region Algorithm

In this section we present the algorithm. In Section 2.1, we present the trial step computation
strategy. In Section 2.2, we present the trial-step acceptance mechanism and the trust-region
updating rules. Section 2.3 1s devoted to presenting the penalty parameter updating scheme.

Finally, in Section 2.4 we present an overall summary of the algorithm.

2.1 Computing the Trial Steps

At each iteration k, a trial step s 1s computed. Let s; be decomposed into two orthogonal
components; the normal component s and the tangential component Zyvy, where vy, € ™"
and Zj is an n X (n — m) matrix that forms an orthonormal basis for the null space of Vi1.
The trial step has the form

Sk = S + Zivk,

The matrix Zj is obtained from the QR factorization of Vi as follows

Ry,

Vh,=[Yr Z] (3)

To compute a trial step, two model trust-region subproblems are solved for s} and wv.

We start by solving for s} the following trust-region subproblem

min |he + thsnn,
s. t. |s™]] < Ag.

To obtain the tangential component, we solve for vy the following trust-region subproblem

min (Zgik + ZgBkSZ)T‘Uk + %vaZgBkavk, (4)
s. t. HZkUkH S Ak, (5)

where By, is the Hessian of the Lagrangian V2/y.



Once the trial step 1s computed, it needs to be tested to determine whether i1t will be
accepted. To do that, an estimate for the Lagrange multiplier A\;y; is needed. We compute

Ak+1 by solving the following least-squares problem:
A1 = argmin|| Vg A + Vg (6)
Using (3), solving (6) is equivalent to solving

Rk+1)\k+1 = - ;cjjklvfk-l-l' (7)

2.2 Testing the Steps

Let s; be the step computed by the algorithm and let Aiy; be the Lagrange multiplier
obtained by solving (7). We test whether the point (xp + Sk, Ak1) will be taken as a next
iterate. In order to do this, Fletcher’s exact penalty function is employed as a merit function.

It 1s the function

®(z, A1) = f(x) + @) h(z) + r[|h(=)|]?,

where A(z) is the least-squares estimate of the multiplier discussed above and r is a penalty
parameter. This function has been used as a merit function in trust-region algorithms in
Refs. 1, 12.
We define the actual reduction in the merit function in moving from (zg, A) to (zx +
Sky Ak41) tO be
Ap = ®(xp, A, m) — P2k + Sky Akg1,7k)-

This can be written as
A = Lars M) — Oan + 51, M) = Mern — M) g+ ) + el [[el|* = [[R(ex + si) 1]
The predicted reduction that we use has the form:

1 1
Pk = —Vzﬁlj;sk - §SkTBka‘Uk - ()‘k-H - )\k)T[hk + §Vh]{3k]
+re[ |hkll? = [|hx + Vi si))?]-
This form of predicted reduction was first suggested in Ref. 12.

As in Ref. 1, the normal predicted decrease N} is defined to be the decrease at the ktt

iteration in the linearized model of the constraints by the step si. It predicts the actual



reduction in the violation of the constraints obtained by the normal component sj and is
given by:

Nio = [1hall* = e + Vg si]|*

Fa g k k k'Sk' .

The tangential predicted decrease T} is defined to be the decrease at the k iteration by
the step Zivr in the quadratic model of the Lagrangian restricted to the null space of
Vhi. It predicts the actual reduction in the Lagrangian function obtained by the tangential

component Zpvg. It is given by:
1
Ty = _(ngfk + ZgBkSZ)T'Uk - §UngBkaUk .

The acceptable step should be the step that produces a decrease in the merit function
®. To test for this, the predicted reduction has to be made greater than zero. This 1s done
first by increasing the penalty parameter if necessary. We will discuss this issue in the next
section. But assume for the moment that P, > 0. The trial steps are then tested and are

accepted only if the actual reduction 1s greater than some fraction of the predicted reduction.

Define

=5
The step sy, is accepted if 'y > 1, where n; € (0,1). Typically, the value of the constant n; is

Iy

taken to be very small. e. g. n; = 10™%. If the step is judged acceptable, then we proceed to
the next iteration. Otherwise, the trial step is rejected, the trust-region radius is decreased,
and another trial step is computed from zj in the smaller trust-region. ¢. e., the index k 1s
increased only if the step is accepted.

We reject the step if I'y < 1. In this case, we decrease the radius of the trust region by
picking Ay € [aq1][sk]|, az]|sk||], where 0 < a; < a3 < %

Let m1 < m2 < n3 < mq4 < 1. If the step i1s accepted, then the trust-region radius
1s updated as follows. If 5, < I'yx < 53 then the radius of the trust region is kept the
same. If the agreement between the actual reduction and the predicted reduction is poor;
[’y < 1y, then we allow possible reduction in the radius of the trust region. We set Agyy =
min(Ayg,az||sg||). If on the other hand, the agreement between the actual reduction and the
predicted reduction is fair, 73 < I'y < 14, then possibly increase the trust region. Set Api =
min{A,,max(Ayg,az||sk||)}, where A, is an upper bound on the trust-region radius. If the
agreement between the actual reduction and the predicted reduction i1s good, I'y > 54, then,
unless Ay = A,, increase the trust-region radius. Set Axy; = min{A,, max(a2Ag, as||sk|)},

where a3 > % Note that for all k£, we have A, < A,.
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We conclude this subsection by saying that the above represents our practical way of
updating the trust-region radius. Our convergence analysis that will be presented in Section
4 only requires that the trust-region radius be decreased when the step is rejected. . e.
when ['y < 1;. On the other hand, when I'y > 7y, it requires that the trust-region radius be

increased or kept the same. The analysis also requires that, for all k, Ap < A,.

2.3 Updating the Penalty Parameter

In Ref. 1, the author has proposed a scheme for updating the penalty parameter that allows
it to be decreased whenever it is warranted. He proved several global and local convergence
results. The theory allows the sequence {ry} to be non-monotonic. However, it requires
that, for all k, p, < r, where p, is defined below. This scheme can be stated as follows:
Scheme 2.1 Updating the Penalty Parameter
Given a constant p > 0 and an integer N > 0 :
Setr,=r_1=...... =r_w-ny =1
At each iteration k, do

Find p, = min{rg_1,7g—2, ceeneen JTh—N }s
Pr_y = Max{rg_1,7g—2, cooee- JTk—N }-
Set

k-1 = min{ Pr_y TP Pra }-

Set rp = pr_1-

If
Pk—-1

2

P < == [lIhell* = e + Vi sel|],

then set

2 { Vzﬁ,{sk + %sgBkavk + (Akg1 — )\k)T[hk + %Vh,{sk]}
[Pl = I[Pk + Vg s ]2

One positive feature of this scheme is that if at any iteration k£ we have I'y, < 5y, then
we reject the trial step and do not increase the iteration count k. As a consequence the set
{rk—1,+,rk_n} remains unchanged. Thus, implicitly, the value of the penalty parameter
is rejected and the only effect that an unacceptable trial step has is a decrease in the trust-
region radius.

Another advantage of this scheme is that it does not enter in the step calculation, although

1t does enter into the process of testing the steps.



Also, the way of updating the penalty parameter ensures a predicted decrease in the

merit function given by:
T'k 2 T, |12
Pie 2 - [llell™ = lle + Vi sil|"].

That 1s, the predicted decrease is at least as much as the decrease in the linearized model of

the constraints obtained by the normal component of si. So, at each iteration k, we have:
r
P, > ?ka . (3)

Finally, for updating the matrix By, the exact Hessian is used. ¢. e., at each iteration k,

we compute By, = V20, = V2 fi + VZh ).

2.4 Summary of the Algorithm

Putting the pieces together, we can now outline the trust-region algorithm for finding a local

minimizer of problem (EQ).

Algorithm 2.1 The Trust-Region Algorithm:
Initialization: Choose xg € R™ and \g € R™. Compute By = V3l(xq,\g). Set k = 0.
At every iteration, do the following steps:

Step 1. Check for convergence.

Step 2. Compute Sk, A\py1 according to Section 2.1.

Step 3. Update the penalty parameter according to Scheme 2.1.
Step 4. Test the step and update Ay as in Section 2.2.

Step 5. Compute Bii1 = Vil .

Step 6. Set k =k + 1.

3 Assumptions

Let the sequence of iterates generated by the algorithm be {x}, and let 2 € R be a convex
set such that for all k, xy and x + s; € 2, where s; represents all the trial steps computed

at iteration k. For such a set we assume,



(Al) fand h; € C*(Q) i =1,...,m.
(A2) Vh(x) has full column rank for all = € Q.

(A3) f(z), h(z), Vh(z), Vf(z), V*f(z), R(z)™' and each V?h,(z), for i = 1,...,m are all
uniformly bounded in €.

(A4) V2f and V?h,, i = 1,...,m are Lipschitz continuous in .

An immediate consequence of the above assumptions is the existence of a constant b > 0,

such that, for all k,
IBull <6, 128 Bzill <6, and | Z8Bel| <5, )

Another immediate consequence of these assumptions is the existence of constants by > 0
and b; > 0 such that, for all k,
skl < Bol[ 2 (10)

and
[Aks1 = Akl < o[ skll- (11)

The above assumptions are standard in the sense that they have been used by many
authors. See, for example, Refs. 1, 3, 7-8, 10-12, 18-19, 23, 25.

4 Convergence Results

In this section we present our convergence result. We start by stating some intermediate
lemmas. These lemmas are needed in the proof of our main result which will be presented

in Section 4.2.

4.1 Intermediate Results

In this subsection we present some lemmas needed in the proof of the main result.

The following lemma shows that, at any iteration k, the normal predicted reduction Ny
is at least equal to the decrease in the Iy norm of the linearized constraints obtained by the
Cauchy step. ¢. e. it satisfies a fraction of the Cauchy decrease condition.

Lemma 4.1. Assume (A1l)-(A3). Then at any iteration k, N satisfies
Ne > byl minfbsll e, Al (12)

10



where by and b3 are positive constants that do not depend on k.

Proof. The proof is similar to the proof of Lemma 6.1, Ref. 10. O
The following lemma shows that the tangential predicted reduction 7Ty is at least equal

to the decrease in the quadratic model of the Lagrangian obtained by the Cauchy step. :. e.

it satisfies a fraction of Cauchy decrease condition.

Lemma 4.2. Assume (A1)-(A3). Then for all k, the tangential predicted reduction satisfies:

ZIv ZT Bis?

Proof. For a proof see Lemma 3.2, Ref. 11. O

1 .
T, > {125 i+ 2 Bsiminl

Let 4% be the Lagrange multiplier of the trust-region constraint in the trust-region sub-
problem (4)-(5), then the following lemma gives a lower bound to the tangential predicted
reduction T} in terms of v, and Ay. It shows that T} 1s at least equal to a fraction of the
decrease in the quadratic model of the Lagrangian obtained by the optimal step. . e. it
satisfies a fraction of the optimal decrease condition. See Ref. 26 for more details about the
optimal decrease.

Lemma 4.3. Assume (Al) and (A3). Then for all k, the tangential predicted reduction
satisfies:
T > by, (14)

where by 1s a positive constant that does not depend on k.

Proof. See Ref. 26. See also Theorem 4.17, Ref. 27. O
The following lemma gives a relation between the predicted decrease P, and both the

tangential and the normal predicted decrease, T}, and Ny.

Lemma 4.4. Assume (Al)-(A3). Then for all k, there exists a positive constant bs, that

does not depend on k, such that

.
Pe > Tic — b sl + - N (15)

Proof. See the proof of Lemma 5.4, Ref. 1. O
The following two lemmas give bounds on how accurate our notion of predicted reduction
is as an approximation to the actual reduction.

Lemma 4.5. Assume (Al)-(A3). Then for any x, xx + s, € ©, we have
|A — Pi| < beriAf, (16)

where bg 1s a positive constant independent of k.

Proof. The proof is similar to the proof of Corollary 6.4, Ref. 11. O

11



Lemma 4.6. Assume (Al)-(A4). Then for any xj, xr + sk € 2, we have
Ap — Pl < re(brise + bl AL a7)

where b; and bg are positive constants independent of k.

Proof. The proof is similar to the proof of Lemma 6.3, Ref. 11. O

4.2 Main Result

In this section, we present our main result. It says that the sequence of iterates generated
by the algorithm will not be bounded away from a point that satisfies the second order
necessary condition. In other words, there exists a subsequence of the sequence of iterates
generated by the algorithm that will converge to a stationary point that satisfies the second
order necessary condition. We start with the following asymptotic result.

Theorem 4.1. Assume (Al)-(A4). Then the sequence of iterates generated by the algorithm
satisfies

limint (|| 2V (20)]| + | ()] + ] = 0.

Proof. The proof is by contradiction. Suppose that the above limit does not hold. Then

there exists a constant ¢ > 0 such that for all &
1ZEV f()l| + (@)l + % > e (18)

First we show that under (18) at any given iteration k, the next iteration k + 1 can be
computed. In other words, at a given point z; an acceptable step must be found. ¢. e. the
algorithm can not loop infinitely without finding an acceptable step.

If hy # 0, then using (8) and Lemmas 4.1 and 4.5, we can write
A — Py

Py

beA2
o[k || min {bs | 2], Ak}

Te-1) = |

Now as Ay gets small the quantity |y — 1| approaches zero and an acceptable step must be

found. On the other hand, if h; = 0, and assume for the moment that at the point z the

value of the penalty parameter ry is finite (we will see next that this is the case for all k),

then using (18) either || Z}'V f(xy)|| > £ or v > £. Consider the first case and use Lemmas

4.2, 4.4, and 4.5, we obtain

A — Py
Py

b(ﬂ"kA]zc
€ . €1’
cmin{Ag, &}

Te-1f = |

<

12



Now as Ay gets small the quantity |y — 1| approaches zero and an acceptable step must be

found. Note that when hp = 0, Lemma 4.4 implies that
P, > Ty + rz—ka

and no need to increase the penalty parameter. So at xj the value of the penalty parameter
will remain the same through all these unacceptable trial steps. Consider the case when
Yk > £. In this case using Lemmas 4.3, 4.4, and 4.6, we have
A — P brriA
‘ k k| o 07RO

I, —1| =
|k | Pk — %b4 Y

and again as A gets small the quantity |y, — 1| approaches zero and an acceptable step
must be found.

We then show that under (18) the penalty parameter will reach an upper bound and will
remain unchanged. To show this we consider two cases for ||h||. Consider first the case

when ||hg|| < e1Ak, where ¢; > 0 is a small constant that satisfies:

< i € € € in(1 € ) eby (19)
¢; < min , , min(1, , .

t= 3A, 7 6bby A, 48v/2bsA, 12DA, 6\/§b5

Since ¢; < 3A , then ||ht|| < £ and because of (18), | ZEV fi|| + 7% > %. There are two cases

to consider. First, if HZ,?kaH > £, we obtain

1ZEV fi + Z Bispll > HZTkaH—HZTBkHHSZH

e ¢
> = — bhgllh > - — == -,
SN T -
Hence, using Lemmas 4.2, 4.4, and the fact that ||sg|| < \/§Ak, we obtain
1 eAr . €
P > §Tk + 4—8km1n[  T3A | — V2e1bsA2 4 - Nk
Tk
—T — 1 — V2e1b5A4 1A —Ng.
> k-l-{ mln[ 12bA] V2150, } et SN

From (19), the quantity { Zmin|1, ﬁ] — V2¢1b5A,} is positive. Hence,
1 Tk
P, > =T + —Np.
k2 5tk + 5 vk
On the other hand if 4 > £, then using Lemmas 4.3 and 4.4, we obtain

1 b

P > ST+ 564 — V2erbs AL 4 SN
1 eb r
T+ {—4 — V2e,b53A2 ?kN’“'

13



664

From (19), the quantity {%* — V/2¢1b5} is positive. Hence, we have

1 L
P.> =T, + =N,.
k25 k+2 k

So, in the case when || hg|| < ¢1Ag, where ¢; is as in (19), there is no need to increase the
penalty parameter. Consider now the second case when ||hg|| > ¢;Ag. This is the only case
where rp may be increased. But if we follow a proof similar to the proof of Lemma 5.8 Ref.
1, we demonstrate the boundedness of the sequence p;. The proof of the boundedness of the
sequence {ry} follows from the fact that for all k, r;, < pr. The fact that when the penalty
parameter 1s increased it will be increased by at least p implies that there exists a constant
ko such that for all k > ko, rp = rg,.

We can now use argument similar to Lemma 5.1, Ref. 11 and conclude that at any
iteration k, the algorithm can not loop infinitely without finding an acceptable step. This
result allows us to drop the consideration of the trial steps and only consider successful steps.

At this point, the convergence of hy to zero is evident using the same proof as in Lemma
5.12, Ref. 1.

Now since hj converges to zero, there exists k; sufficiently large such that for all & > &y,

we have
€ €

€
in|l, ——] ¢ .
37 Gbby 48+/2b5 all, 12bA*]}
But using (18) inequality (20) will imply that for all k& > ki, || ZL V fi| + v > %. There are

two cases to consider. First, if at any iteration k > ki, we have || ZI'V fi|| > =, then

] < min {5 (20)

1ZeV fi+ Z Brsill = 12 Vil = 1125 Bellll sl

) I3 ) g
> bbbl > = — = = =
= 3 ol ’“”—3 6 6

Hence, using ||sk|| < V2Ay, we have

P> —Tk + {—mln[l S ) ] Y %Nk.

12bA

Now using (20), we obtain

P, > Tk—l——

S AL

48A 12bA

On the other hand, if at any iteration k > k;, we have v, > £, we have

eby

.
P> Tk + {5 D = V20s el } A+ N
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If at this iteration | hx|| < 2%’;, then

P> %b@,‘j

On the other hand, if ||| > 2% then using (8) and Lemma 4.1, we can write

6v/2by 7
€b2b4 . €b3b4 2
min{l, ———} A;.
© 2 Tovan, g, A
So 1in all cases, we have
P, > cAf, (21)

where

. { S . [1 g ] €b4 €b2b4 . [1 €b3b4 ]}
¢y = min min|{l, ——|, —, ——— min|1, .
2 48A, 120A, 7 6 7 12y/2b5 6v/2bs

Now for any iteration indexed k > k;
Ap > mPe > me AL

If k; > max[ko, k1], then the last inequality and the fact that {®;} is bounded below imply
that

oo > Z(‘I)k —®ppq) = Z A > Z m P > Z ThczAz-
k’:k’g k’:k’g k’:k’g k’:k’g

This implies that
Lim Ay, =0.

k—oo

But using (21) and Lemma 4.6, we obtain, for all k > k;

r 0
Dk — 1] < = [brAg + bs eI

C2

Because both ||hg|| and Ay are converging to zero, the condition I'y > 54 will always be
satisfied for large k. So Ay can not converge to zero. This is a contradiction. So the
supposition was wrong and the theorem is proved. O

The above theorem shows that there exists a subsequence of iterates {xy,} that satisfies
: T
Jim [ IZEV i+ 1w ] =0, (22)
and

Jin 2, =0 )
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If we assume that the sequence of iterates {xy} generated by the algorithm is bounded,
then Equation (22) says that there exists a subsequence of iterates of {xy,} converges to
a point, say x,, that satisfies the first-order necessary conditions. Equation (23) means
that the matrix ZI'V2/(z,, \,)Z, is positive semi-definite, if we assume the continuity of the
matrix Z(z) in . For more details about the continuity of the matrix Z(z), see Ref. 28.
This result is stated in the following theorem.

Theorem 4.2. Assume (Al)-(A4). Assume further that Z(z) is continuous in Q. If the
sequence of iterates generated by the algorithm is bounded, then there exists a limit point

z, that satisfies

Z(z)'Vf(z,) = 0
h(z,) = 0,

and the matrix Z(z, )T V2/(z,, \,)Z(z,) is positive semi-definite.

Proof. The proof follows from the above discussion. O
The above theorem implies that there exists a subsequence of the sequence of iterates

generated by the algorithm that will converge to a point that satisfies the second order

necessary conditions.

5 Concluding Remarks

We have presented a convergence theory to a second-order point for the algorithm that was
suggested by the author in Ref. 1.

We showed that the sequence of iterates {x;} generated by the algorithm will not be
bounded away from points that satisfy the second-order necessary conditions. In other
words, we showed that there exists a subsequence of iterates that converges to a point that
satisfies both the first-order and the second-order necessary conditions.

This result is similar to the second-order results obtained in Refs. 29-31 for the uncon-
strained optimization problem and recently in Ref. 21 for the equality constrained optimiza-

tion problem.
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