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Abstract

Dependence analysis and dependence information are critical com-
ponents of many optimizing and parallelizing compilers. And there
exist many fast and precise dependence tests that work on scalar-
subscripted array references. We have extended this analysis by
adding tests that directly handle Fortran 90 array-section refer-
ences. This paper describes our testing methodology and how we
have extended direction vectors to contain the additional informa-
tion.
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1 Introduction

Fortran 90 and High-Performance Fortran (HPF)[9] are increasingly becoming the lan-
guage of choice for creating high-performance applications targeted for today’s high-end
architectures, no matter whether those architectures are parallel, vector or superscalar.
The array constructs of these languages have raised the level of abstraction from the
strictly scalar constructs of Fortran 77, thus making them more expressive. Unfor-
tunately, few compilers have taken advantage of this heightened level of abstraction.
Instead they prefer to scalarize the array constructs into familiar scalar constructs which
they then optimized by standard analyses and transformations.

In this paper we present a methodology for performing data dependence analysis
directly on Fortran 90 array-section references. We show how direction vectors can be
extended to include the dependence information. We also introduce a special class of
dependences that arise from array syntax, and discuss some of their properties. Finally,
we show how this additional information can be used to perform advanced program
transformations.

1.1 Fortran 90

It is assumed that the reader is familiar with Fortran 90 [1], especially with the execution
semantics of array operations. In Fortran 90, operations deal with their operands as
unitary objects, even when they are arrays. Thus all right-hand side elements of an



array assignment statement are read before any left-hand side elements are stored.
Arrays or subsections of arrays can be specified by using triplet subscripts. A triplet
specifies a range in the form [lower bound] : [upper bound] [:stride]. If the lower
or upper bounds are not specified, the declared bounds of the array are assumed. The
stride is 1 if not given.

Before we begin we’d like to clarify some terminology that is used in this paper. An
array reference is a subscripted variable reference. A subscript is one element from a
subscript list. A triplet, as defined above, is one type of subscript. It is assumed that
whole array references, array references without a subscript list, have been modified
within the compiler’s internal representation to have a subscript list containing the
appropriate number of null triplets.

1.2 Data Dependence

The theory of data dependence is well understood and is extensively used in advanced
optimizing and parallelizing compilers. We say that a data dependence exists between
two statements if there is an execution path from one to the other and both statements
access the same memory location. Data dependence is fundamental to compilers that
attempt reordering transformations since it specifies statement orderings that must be
preserved to maintain program semantics [2, 15, 17].

There are four types of data dependence. True dependence occurs when one state-
ment writes a memory location that another statement later reads. Antidependence oc-
curs when one statement reads a memory location that another statement later writes.
Output dependence occurs when one statement writes a memory location that another
statement later writes. Input dependence occurs when one statement reads a memory
location that another statement later reads.

Dependence testing is the process of determining whether a data dependence exists
between two statements [5]. Dependence testing is mostly concerned with determining
dependences that arise from subscripted array references that appear within loop nests,
since it 1s not always easy to determine if such references access the same memory
location.

1.3 Partition-based Dependence Testing

In the partition-based dependence testing algorithm [8] used in the analysis and trans-
formation systems at Rice University, pairs of array references are classified before being
tested. This allows us to chose the most efficient test for a given pair of references and
lets us test the subscripts in the order of less expensive to more expensive. The classi-
fication system consists of two orthogonal criteria: complezity and separability.

Complexity refers to the number of distinct loop induction variables that appear
within a subscript. Individual subscripts are first classified, and then those results are
used during dependence testing to derive a classification for a subscript pair. Current
complexity classes include ZIV (zero index variables), SIv (single index variable), and
MIV (multiple index variables).

Separability refers to whether or not different subscript positions contain common
induction variables. A subscript position is separable if the indices it contains do not



1. Partition the subscripts into separable and minimal coupled groups.
2. Label each subscript pair as zZIv, SIV, or MIV.

3. For each separable subscript pair, apply the appropriate single subscript test based
upon the complexity of the subscripts.

4. For each coupled group, apply a multiple script test.
5. If any test yields independence, no dependences exist.

6. Otherwise merge all the direction vectors computed by the previous steps into a
single set of direction vectors for the two references.

Figure 1: Partition-based dependence testing algorithm.

appear in other subscript positions [2, 7]. If different subscript positions contain the
same index, they are said to be coupled [12]. The concept of separability is important
when testing multidimensional arrays in that it allows dependence testing to proceed
subscript-by-subscript without a loss of precision. In contrast, coupled subscripts must
be tested as a group to obtain exact results.

The concepts of complexity and separability are combined in the partition-based
dependence testing scheme to determine the most appropriate test to use for a given
pair of references. An outline of the algorithm is given in Figure 1. This algorithm
has been used with great success in the PFC compiler [3], the ParaScope programming
environment [11], and the Fortran D compiler [10, 14].

2 Dependence Representation

Data dependences are often represented using direction vectors and/or distance vec-
tors [15]. These vectors are convenient methods for characterizing the relationship
between the values of the loop indices of the two array references involved in the de-
pendence. In this paper we will only discuss direction vectors, although the algorithms
presented could easily be made to work with distance vectors.

Direction vectors are useful in determining if a dependence is loop-carried or loop-
independent [3]. For loop-carried dependences, the direction vector also tells us which
loop carries the dependence and in which direction. The vectors contain an element for
each loop which encloses both statements involved in the dependence. The positions in
the vectors from left to right correspond to the surrounding loop indices from outermost
to innermost.

2.1 Dependence Vectors and Array Sections

To extend direction vectors for array-section references, we add vector elements to
account for the implied loops of the triplets. The number of elements added to a vector
corresponds to the number of triplets that the two array references have in common.



DOI =1, N-1
Syt A(T,2:N-1,1
Syt B(I,2:N-1,1
END DO

A(T,1:N-2,1:N) + A(I,2:N-1,1:N)

:N)
:N) A(I,3:N,1:N) + A(I+1,2:N-1,1:N)

2

Figure 2: Fortran 90 code fragment.

In most cases these vector elements will only be considered when the two references
originate from the same statement, in which case they will have the same number of
triplets. These new direction vector elements will appear to the right of those elements
corresponding to surrounding loops. We will order the elements from left to right as
they appear in the subscript list, although any consistent ordering will do. In fact some
people may want to use the opposite ordering since they want the rightmost direction
vector position, corresponding to the innermost loop, to be associated with the leftmost
subscript due to the column-major storage layout of Fortran arrays. We chose the left
to right ordering for its ease of understanding since it matches the order in which the
triplets appear in the program text.

Consider the code fragment shown in Figure 2. Any dependences among statements
S1 and 53 due to the references to array A would have an associated direction vector
containing three elements: the first corresponding to the I loop, the second correspond-
ing to the first triplet, and the third corresponding to the second triplet.

2.2 Scalarization Dependences

Given this extension to the concept of a direction vector, there is a subclass of depen-
dences that deserve some special attention: those dependences which have an “="
non-triplet direction vector positions. We call these dependences scalarization depen-
dences. Since scalarization dependences arise from parallel constructs in the Fortran 90

in all

program, they do not have the same behavior as non-parallel dependences, Note that
it is valid for any of the three direction specifiers to appear in the triplet-related vector
positions. Thus for scalarization dependences, it is no longer the case that a true de-
pendence with a “>” as the first non-“=" direction is equivalent to an antidependence
with the direction reversed, as has been previously noted [4, 6].

By definition, scalarization dependences are loop-independent with regard to sur-
rounding loops. This has several implications. First, any such dependence of a state-
ment on itself will always be an antidependence (ignoring input dependences), whereas
such a dependence from one statement to a subsequent one will either be a true or out-
put dependence. Next, scalarization dependences have no effect on the parallelization
of surrounding loops, regardless of what direction the triplet-related positions contain.
Finally, it is especially important to point out that such dependences do not affect the
ability to parallelize the DO-loops that get generated during the scalarization of the
Fortran 90 code. This is due to the fact that the array-section subscripts are explicitly
parallel constructs.

But this does not mean that we can ignore scalarization dependences. These depen-
dences will play an important role when the compiler scalarizes the Fortran 90 program
into its Fortran 77 equivalent. This aspect of the dependences will be addressed in more



DO J =1, N
Ss: A(J:N,K,1:N) = A(J:N,1:N,L) + ---
END DO

Figure 3: Complexity and separability example.

detail later in the paper.

As an example, we will once again refer to the code in Figure 2. This fragment of

code contains the following scalarization dependenges: 515(:7%:)51, 515(:7:7:)51, and

515(:7%:)52. The code also has the dependence 525(<7:7:)51 which is carried by the [
loop.

3 Classification of Array-Section References

As introduced in Section 1.3, pairs of array references are classified before being tested
by the partition-based dependence testing algorithm. This allows us to chose the most
efficient test for a given pair of references. We now explain how we have extended the
concepts of complexity and separability to include array-section references.

3.1  Complexity

We have created a new complexity class for subscripts containing array syntax. We call
this new class simply TRIPLET, corresponding to the triplet notation used in the sub-
script. Unlike the other complexity classes, a TRIPLET is also subclassified to indicate
the complexity of its components. A TRIPLET is subclassified as S1v if the correspond-
ing triplet subscript contains no index variables (the S1v subclassification is due to the
index variable implicit in the triplet notation). If the triplet contains one or more index
variables from enclosing loops in any of its components, then the TRIPLET is subclassi-
fied as MIV. When convenient we will use the shorthand TRIPLETs;y and TRIPLET ys7v
to represent the complexity and subclassification of a triplet subscript.

Statement S3 in Figure 3 has two array references, each containing two subscripts
that are classified as TRIPLET. For each reference, the first triplet subscript is sub-
classified as MIV due to the induction variable .J, and the second triplet subscript is
subclassified as SIV.

3.2 Separability

The concept of separability is an important issue for a dependence testing algorithm
that is interested in both precision and efficiency. It allows dependence testing to
proceed subscript-by-subscript, thus breaking down the problem space into smaller
pieces, without a loss of precision. Luckily, array-syntax subscripts can cause different
subscript positions to become coupled in only one situation: if corresponding triplets for
the two array references being tested are in different subscript positions, those positions
must be coupled.



Considering again the two references to array A in Figure 3, we see that the second
and third subscript positions become coupled since the second triplet appears in each
of them. The first subscript position is separable. Note however, that if the induction
variable J appeared in another subscript position, that position would be coupled with
the position that contains the first triplet. That coupling would be due to J though
and has nothing to do with the triplet.

4 Dependence Testing of Array Expressions

We have designed our dependence testing methodology to fit into the partition-based
testing scheme presented in Figure 1. The algorithm is first modified to include the
determination of separability and complexity for triplet subscripts as defined above. In
the following subsections we introduce the necessary decision algorithms that will deter-
mine independence of array-section references, or determine dependence and produce
the desired direction vectors. As with most dependence testing schemes, we assume
that all expressions used in the subscripts and triplets are linear in the loop induction
variables. If nonlinear expressions are encountered we assume all direction vectors are
possible.

In some situations that may occur, we will be exploiting existing SIV and MIV tests.
This will necessitate the generation of the appropriate input parameters. To accomplish
this we translate the triplet notation into a linear function of a pseudo-induction variable
i. The pseudo-induction variable will run from 1 to (ub— b+ st)/st, where [b, ub, and
st are the lower bound, upper bound, and stride of the triplet, respectively. The linear
function that will be used in place of the triplet within the dependence tests is then
stx 1+ (Ib— st). When the lower bound and stride are both one, this simplifies to i.
This translation does not need to be applied to the program representation; it is only
needed to produce the necessary input parameters for existing tests when required.

4.1 Separable Triplet Subscript Tests

The dependence test used for a separable subscript pair in which one of the subscripts
is a triplet will depend upon the triplet’s subclassification as well as the complexity of
the other subscript. If the triplet is classified as TRIPLETs;y and the other subscript is
71V, the pair has the form (lb:ub:st,¢;). For this situation, we define the dependence
distance to be:

by st
g= - otst (1)
st

A dependence exists if and only if d is an integer and is in the range 1:(ub—Ib+ st)/st.
For the common case where both (b and st are equal to one, d is simply equal to ¢;.
The dependence direction is calculated in the normal fashion by comparing d to zero.

Next we’ll consider when both subscripts in the pair to be tested are classified as
TRIPLETg7y. In this case an SIV test is required, and we can exploit the existing SIv
test implemented in the system. To use the test we must produce the appropriate
input parameters by generating the linear functions of a pseudo-induction variable, as
explained above.

However, there are two common cases which can be tested quite easily without



requiring the conversion.The first case is when both triplets have a stride of one. In
that situation the dependence distance is simply the difference of the lower bounds:

d=1b, — b, (2)

A dependence exists if and only if |d| < ub; —[b;. The second case is when both triplets
have the same non-unit stride, in which the dependence distance is:

by — Ib,

Stl

d (3)
In this case a dependence exists if and only if d is an integer and |d| < (uby—1by+st1)/st;.
Most triplet subscripts are expected to fall into one of these two special cases, and as
can be see in Equations 2 and 3, the dependence tests for these cases are simple and
easy to compute.

In all other cases of separable subscript pairs that contain at least one triplet an
M1V test will be required. We will rely upon the existing M1V tests implemented in the
system in the same manner as we used the SIV test above, by converting the triplet into
a linear function of a pseudo-induction variable.

4.2 Coupled Triplet Subscript Test

When triplet subscripts are coupled with other subscripts we will need to exploit a
multi-subscript test. Again we will utilize the existing testing algorithms available in
the system by converting the triplets into linear functions of pseudo-induction variables.
However, this conversion has a special consideration in the case of coupled subscripts. If
the subscripts became coupled because corresponding triplets did not appear in match-
ing subscript positions, then the linear functions generated for the corresponding triplets
will share the same pseudo-induction variable. Once the triplets have been translated,
we can exploit whichever multi-subscript test is available in our system [12, 13, 16].

5 Advanced Scalarization

Before an array statement can executed on the target architecture, it must be rewritten
so that it accesses smaller chunks of data. The size of the chunks must “fit” the hardware
of the target machine, whether that be individual array elements for scalar machines
or array sections for vector machines. This translation is known as scalarization when
discussed in terms of a scalar machine, and is called sectioning on vector architectures.
In this section we address compiling to a scalar machine, although the material is equally
applicable to vector machines.

5.1 Two-Pass Scalarization

Due to the semantics of array statements, their translation into correct serial code is
not always trivial, as can be seen in Figure 4. The code in Figure 4b, the result of a
naive scalarization, is not equivalent to its Fortran 90 counterpart since on the second
and subsequent iterations of the I loop the reference A(1—1) will access the new values
of the array A assigned on the previous iteration.



DO I=2, N

A(2:N) = A(1:N-1) + B(1:N-1) A(I) = A(I-1) + B(I-1)
END DO
(a) array statement (b) naively scalarized code

Figure 4: Invalid scalarization example.

Fortunately, data dependence information can tell us when the scalarized loop is
correct. Allen and Kennedy [4] have shown that a scalarized loop is correct if and
only if it does not carry a true dependence. Using this fact, most compilers perform
scalarization in the following manner:

1. Perform a naive scalarization of the array statement into scalar code.
2. Compute the data dependences of the resulting code.

3. While a loop carries a true dependence, perform code transformations to either
eliminate the dependence or change it into an antidependence.

The code transformations that can be applied to handle the loop carried true depen-
dences include loop reversal, loop interchange, prefetching, and as a last resort the gen-
eration of array temporaries. The interested reader is referred to Allen and Kennedy [4]
for a complete discussion.

Note that the above algorithm requires two passes over the code, one to perform the
naive scalarization and another to perform code transformations to restore the semantics
of the program if the initial scalarization was invalid. Using the dependence information
produced by the methods described in this paper, we propose a new algorithm that
eliminates the need for the first pass and is able to determine a valid scalarization
before attempting any transformations.

5.2 Omne-Pass Scalarization

Our new scalarization algorithm begins by performing dependence analysis directly on
the Fortran 90 array statements. When attempting to scalarize an array statement,
we only need to be concerned with the scalarization dependences of that statement on
itself. As discussed in Section 2.2, such dependences will always be antidependences
and may contain any of the three direction specifiers in triplet positions. If we were to
perform naive scalarization on a triplet that has a forward (<) or loop independent (=)
antidependence, the resulting loop will have an equivalent antidependence. However, if
we were to naively scalarize a triplet that carried a backward (>) antidependence, the
resulting loop will carry a forward true dependence indicating an incorrect scalarization.
Thus we must be careful to address the antidependences that contain an “>” in the
position corresponding to a triplet we are scalarizing.

Our algorithm will proceed to scalarize the statement one triplet at a time, paying
particular attention to those triplets that carry backward antidependences. There are
several methods we can use to handle these dependences; basically the same methods
that the two-pass algorithm uses to address loop carried true dependences.



A(2:N-1,2:N-1) = A(1:N-2,3:N) (>,<)
+ A(3:N,3:N) (<,<)
+ A(1:N-2,2:N-1) >,=)
(a) array statement (b) dependence vectors

Figure 5: One-pass scalarization example.

DO J = 2, N-1
DO I = N-1, 2, -1
A(I,J) = A(I-1,J+1)
+ A(I+1,J+1)
+ A(I-1,0)
END DO
END DO

Figure 6: Generated scalar code.

First we can choose the order in which the triplets will be scalarized. If we choose
a triplet position that contains only “<” and “=" elements in the scalarization depen-
dences, we can perform a naive scalarization of that triplet and know that it is correct.
Afterward we can eliminate from further consideration those dependences which con-
tained an “<” in that position, since those dependences are carried by the scalarization
loop. This is advantageous when the eliminated dependences contained “>” elements
in other positions.

Second, if all dependences contain either a “>” or “=” in a given position, the

corresponding triplet can be correctly scalarized with a reversed loop. Again, those
dependences that were carried at that triplet position can be eliminated. Failing these,
we can continue to attempt all the transformations that the two-pass algorithm utilized,
including prefetching.

If there are triplets remaining that cannot be scalarized by any of the transforma-
tions, we generate a temporary array whose size equals the remaining array section. We
then create two adjacent loop nests for the remaining triplets. The first nest performs
the desired computation and stores it in the temporary array, and the second copies
the results from the temporary array into the destination array.

As an example, consider the statement in Figure 5a and its corresponding scalariza-
tion dependences in Figure 5b. After scanning the dependences, we see that the second
triplet can safely be scalarized using the naive method. This eliminates the first two
dependences from further consideration since they both contain an “<” in the position
corresponding to the second triplet. That leaves us with a single dependence of (>, =)
and only the first triplet to scalarize. The dependence vector quickly tells us that the
remaining triplet can safely be scalarized by generating a reversed loop. The resulting
code is shown in Figure 6.



6 Conclusion

In this paper, we have presented a methodology to extend dependence testing to directly
analyze data dependences arising from array-section references. The testing procedures
presented in this paper were designed to fit smoothly into the framework of an existing
dependence testing system; in particular, we have augmented the definitions of complex-
ity and separability to include subscripts containing triplet notation. This extension to
dependence analysis will give Fortran 90 and HPF compilers analysis capabilities not
previously available, allowing them to make decisions and perform transformations at
the Fortran 90 level before scalarizing the program into Fortran 77 code. As a first
application, we have shown how this information allows the compiler to perform the
scalarization process more efficiently.
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