A General Stencil Compilation
Strategy for Distributed-Memory
Machines

Gerald Roth
Steve Carr
John Mellor-Crummey
Ken Kennedy

CRPC-TR96652-S
June 1996

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

A General Stencil Compilation Strategy
for Distributed-Memory Machines

Gerald Roth

Steve Carr

Dept of Comp Sci Dept of Comp Sci
Rice University Michigan Tech
Houston, TX 77005 Houghton, MI 49931

Abstract

For many Fortran 90 programs performing dense
matriz computations, the main computational portion
of the program belongs to a class of kernels known as
stencils. This paper describes a strategqy for optimizing
such stencil computations for execution on distributed-
memory multiprocessors. The optimizations presented
target the overhead of data movement that occurs be-
tween processors, within the local memory of the pro-
cessors, and between the memory and registers of the
processors. We focus on the application of this strat-
egy on distributed-memory architectures, although it is
more broadly applicable.

1 Introduction

High-Performance Fortran (HPF)[17], an extension
of Fortran 90, has attracted considerable attention
as a promising language for writing portable par-
allel programs. HPF offers a simple programming
model shielding programmers from the intricacies of
concurrent programming and managing distributed
data. Programmers express data parallelism using
Fortran 90 array operations and use data layout di-
rectives to direct partitioning of the data and compu-
tation among the processors of a parallel machine.

For HPF to gain acceptance as a vehicle for parallel
scientific programming, it must achieve high perfor-
mance on problems for which it is well suited. To
achieve high performance on a distributed-memory
parallel machine, an HPF compiler must do a superb
job of translating Fortran 90 data-parallel stencil com-
putations which are common to many dense matrix
algorithms. In this paper, we focus on the problem of
optimizing stencil computations, no matter how they
are instantiated by the programmer, for execution on
distributed-memory architectures.

John Mellor-Crummey

Ken Kennedy

Dept of Comp Sci
Rice University

Houston, TX 77005

Dept of Comp Sci
Rice University

Houston, TX 77005

In the next section we briefly discuss stencil com-
putations and their execution cost on distributed-
memory machines. In Section 3 we give an overview
of our compilation strategy, and then address the indi-
vidual optimizations in detail in Sections 4, 5, and 6.
In Section 7 we compare this strategy with other
known efforts.

2 Stencil Computations

In this section we introduce stencil computa-
tions and discuss their execution cost on distributed-
memory machines.

2.1 Stencils

A stencilis a stylized matrix computation in which
a group of neighboring data elements are combined to
calculate a new value. They are typically combined in
the form of a sum of products. Consider the follow-
ing the Fortran 90 array assignment statement that is
commonly referred to as a 5-point stencil:

DST(2:N-1,2:N-1) = C1 * SRC(1:N-2,2:N-1)
& + C2 * SRC(2:N-1,1:N-2)
& + C3 * SRC(2:N-1,2:N-1)
& + C4 * SRC(3:N ,2:N-1)
& + C5 * SRC(2:N-1,3:N)

in which SRC and DST are arrays, and C1-C5 are
either scalars or arrays. Each interior element of the
result array DST is computed from the corresponding
element of the source array SRC and the neighboring
elements of SRC on the North, West, South, and East.

A 9-point stencil that computes all grid elements
by exploiting the csHIFT ! intrinsic might be specified
like this:

1The CSHIFT intrinsic takes three arguments: the array to
be shifted, the amount of the shift, and the dimension to shifted.

DST = C1 * CSHIFT(CSHIFT(SRC,-1,1),-1,2)
& + C2 * CSHIFT(SRC,-1,1)

& + C3 * CSHIFT(CSHIFT(SRC,-1,1),+1,2)
& + C4 * CSHIFT(SRC,-1,2)

& + C5 * SRC

& + C6 * CSHIFT(SRC,+1,2)

& + C7 * CSHIFT(CSHIFT(SRC,+1,1),-1,2)
& + C8 * CSHIFT(SRC,+1,1)

& + C9 * CSHIFT(CSHIFT(SRC,+1,1),+1,2)

In the two previous examples the stencil was spec-
ified as a single array assignment statement but this
need not always be the case. Let’s consider again the
9-point stencil above. If the programmer attempted
to optimize the program by hand, or if the stencil
was preprocessed by an optimization phase perform-
ing common subexpression elimination, we might be
presented with the following (taken from Problem 9 of
the Purdue Set [23]):

TMP1 = CSHIFT(SRC,-1,1)
TMP2 = CSHIFT(SRC,+1,1)

DST = C1 * CSHIFT(TMP1,-1,2)
& + C2 * TMP1

& + C3 * CSHIFT(TMP1,+1,2)
& + C4 * CSHIFT(SRC,-1,2)

& + C5 * SRC

& + C6 * CSHIFT(SRC,+1,2)

& + C7 * CSHIFT(TMP2,-1,2)
& + C8 * TMP2

& + C9 * CSHIFT(TMP2,+1,2)

When encountering a set of statements such as
these, we would like to be able to produce code equiv-
alent to that produced for the single-statement sten-
cil. Thus we have designed our optimizer to handle
the most general form which has several distinguish-
ing characteristics:

e CSHIFT intrinsics and temporary arrays have been
inserted to perform data movement needed for
operations on array sections that have different
processor mappings.

e Each CSHIFT intrinsic occurs as a singleton opera-
tion on the right-hand side of an array assignment
statement and is only applied to whole arrays.

e The expression that actually computes the stencil
operates on operands that are perfectly aligned,
and thus no communication operations are re-
quired.

All stencil and stencil-like computations can be
translated into this general form by factoring expres-
sions and introducing temporary arrays. In fact, this

is the intermediate form used by several distributed-
memory compilers [21, 24]. For example, given
the 5-point stencil computation presented above, the
CM Fortran compiler would translate it into the fol-
lowing statement sequence?:

ALLOCATE TMP1, TMP2, TMP3, TMP4
TMP1 = CSHIFT(SRC,SHIFT=-1,DIM=1)

TMP2 = CSHIFT(SRC,SHIFT=-1,DIM=2)
TMP3 = CSHIFT(SRC,SHIFT=+1,DIM=1)
TMP4 = CSHIFT(SRC,SHIFT=+1,DIM=2)
DST(2:N-1,2:N-1) = C1 * TMP1(2:N-1,2:N-1)
& + C2 * TMP2(2:N-1,2:N-1)
& + C3 * SRC (2:N-1,2:N-1)
& + C4 * TMP3(2:N-1,2:N-1)
& + C5 * TMP4(2:N-1,2:N-1)

DEALLOCATE TMP1, TMP2, TMP3, TMP4

For the rest of this paper we assume that all stencil
computations have been put into this form, and that
all arrays are distributed in a BLOCK fashion. And
although we concentrate on stencils expressed using
the CSHIFT intrinsic, our techniques can be generalized
to handle the EOSHIFT intrinsic as well.

2.2 Stencil Execution Costs

The cost of a stencil computation on a distributed-
memory machine can be analyzed by breaking it down
into its two major components: the set of CSHIFT op-
erations and the calculation of the sum of products.

When a CSHIFT operation is performed on a dis-
tributed array two major actions take place:

1. Data elements that must be shifted across pro-
cessing element (PE) boundaries are sent to the
neighboring PE. This is the interprocessor compo-
nent of the shift. The dashed lines in Figure 1 rep-
resent this data movement for arrays distributed
in a BLOCK fashion.

2. Data elements that stay within the memory of the
PE must be copied to the appropriate locations in
the destination array. This is the intraprocessor
component of the shift. The solid lines in Figure 1
represent this data movement.

Assuming a BLOCK distribution and that each PE
contains a 2D subgrid of size (g x g), a shift amount
of d, d < g, consists of an interprocessor move of d
columns (of size g), and an intraprocessor move of

2For this reason most CM Fortran programmers use
CSHIFTs explicitly in their stencil computations since array-
syntax stencils produced the same CSHIFT intrinsic calls but
then had the additional overhead of the vector masking opera-
tions required for handling the array subsections [25].

SRC SRC SRC

TR S T

DST DST DST

Figure 1: DST = CSHIFT(SRC,SHIFT=-1,DIM=2)

g — d columns. The cost of such a shift operation is
described by the following model [14]:

Tonitt = g (!] - d) tonpe + Conpe +gd totipe + Coffpe (1)

where tonpe and tompe represent the time to perform
an intraprocessor and interprocessor copy respectively,
and Conpe and Cofpe represent the startup time (or
latency) for each type of copy. Different models are
required for the cases d = g and d > ¢. cycLIC(K)
distributions also require a different model which in-
clude a parameterization for the blocking factor.

For most common stencil computations, the shift
amount d is small compared to g. For such cases
Equation (1) is O(g? tonpe) and the execution time
Tshiet 18 dominated by the cost of the intraprocessor
copies, even when tonpe < Tofipe-

The sum of products is calculated within a loop
nest. The loop nest is a result of scalarization [28],
where the array constructs are replaced by serial code,
and the generation of SPMD code [11], where the com-
putation is partitioned and loop bounds are reduced.
This loop nest is the subgrid loop nest which will be ex-
ecuted on each PE of the parallel machine such that
the PE only computes the data which it owns. At
this point specific array elements are referenced rather
than full arrays or array sections. If the stencil is not
computed over the entire matrix, or if the subgid size
is not known at compile time, each PE must com-
pute its subgrid loop bounds. The subgrid loop for
the 5-point stencil presented at the end of the previ-
ous subsection would look like this (where $MY PID
returns the processor id number (zero based) for the
given dimension, GG is the extent of the local subgrid,
and N is the extent of the original array):

LB1=MAX((MYPID(1)*G)+1,2)-(MYPID(1)*G)
UB1=MIN((MYPID(1)+1)*G,N-1)-(MYPID(1)*G)
LB2=MAX((MYPID(2)*G)+1,2)-(MYPID(2)*G)
UB2=MIN((MYPID(2)+1)*G,N-1)-(MYPID(2)*G)
DO J = LB2, UB2

DO I = LB1, UB1

DST(I,J) = C1 * TMP1(I,J)
& + C2 * TMP2(I,J)
& + C3 * SRC (I,J)
& + C4 * TMP3(I,J)
& + C5 * TMP4(I,J)
ENDDO
ENDDO

Calculating the execution cost of such a loop nest is
usually accomplished by totalling the number of float-
ing point operations in the loop, dividing that number
by the rate the target machine can execute those flops,
and then multiplying by the total number of iterations.
Unfortunately, due to the large number of array refer-
ences found in such a loop, this metric is insufficient.
To better measure the performance of subgrid loops
in relation to their memory accesses we will use the
notion of balance as defined by Callahan, et al. [6].

The machine balance (Fpr) for a particular machine
is defined to be the relationship between the rate at
which memory can be accessed compared to the rate
that floating-point operations can be executed:

maz words/cycle

Fu = maz flops/cycle

The loop balance (Br) for a given loop is defined as:

number of memory references

Pr = number of flops

If B = Bar then the loop is balanced for the target
machine and will run well. If fp < Gy then data can
be supplied faster than it can be processed, and the
loop is said to be compute bound. In this case the ma-
chine will be running at its peak computational rate.
If 8z > Par then data can be processed faster then
it can be supplied, and there will exist idle computa-
tional cycles. Such a loop is memory bound. For many
advanced architectures which offer efficient multiply-
add operations, the value of fr for loops generated
from stencils will often be larger than s, resulting
in memory bound loops. The value of g; will also be
significantly increased if the stencil is specified with
array-valued coefficients rather than with scalar val-
ues, thus exacerbating the problem.

3 Compilation Strategy

In this section we give an overview of our compi-
lation strategy. We then present the details of this
strategy in the subsequent sections.

Assuming that the program containing the stencil
has been put into the form presented at the end of

Section 2.1, we begin by optimizing the CSHIFT oper-
ations. We apply two separate optimization phases:
one addressing the intraprocessor data movement and
the other handling the interprocessor data movement.

Intraprocessor data movement is optimized by com-
pletely eliminating it when possible. This can safely
be done whenever we can determine that the source
array (SRC) and the destination array (DsT) of the
CSHIFT can share the same memory locations. When
this determination has been made, we can transform
the program to perform only the interprocessor data
movement and rewrite references to DST to refer to
SRC with indexing adjusted by the shift amount. We
call such a destination array an offset array.

Once the intraprocessor data movement has been
eliminated, we analyze the resulting interprocessor
data movement to eliminate redundant and partially
redundant movement. The resulting program will
require only a single communication operation across
each edge 3 of the stencil. This optimization will pro-
duce only four communication operations for the 9-
point stencil example presented earlier, even though
its original specification required twelve CSHIFT intrin-
sics.

Finally, after scalarization has produced a subgrid
loop nest, we optimize it by applying a set of loop
transformations designed to improve the performance
of memory-bound programs. These transformations
include unroll-and-jam, which addresses memory ref-
erences, and loop permutation, which addresses cache
references. Each of these optimize the program by
exploiting reuse of data values.

4 Eliminating Intraprocessor Copying

As mentioned in the previous section, the intra-
processor copying of data can be eliminated if we can
determine that the source array and the destination
array of the CSHIFT operation can share the same
memory locations. If this is the case only the inter-
processor data movement needs to occur. We exploit
overlap areas [16] to receive the data that is copied be-
tween processors. After this has been accomplished,
appropriate references to the destination array can be
rewritten to refer to the source array with indexing
offset by the shift amount. We call such a destination
array an offset array [19].

The principal challenge then is to determine when
the source and destination arrays can share stor-

3 An edge is determined by the dimension and direction spec-
ified in a shift operation.

age. We have established a set of criteria to de-
termine when it is safe and profitable to create an
offset array. Given an assignment statement DST =
CSHIFT(SRC,SHIFT,DIM) within our intermediate rep-
resentation, the array DST may be treated as an offset
array if the following criteria can be verified for this
statement at compile time:

(1) The source array SRC is not modified while this
definition of DST is live. (2) The destination array
DST is not partially modified* while src is live. (3)
The src array and the DST array are distributed in the
same BLOCK (or cYCLIC(K)) fashion and are aligned
with one another. (4) The values SHIFT and DIM are
compile-time scalar constants. (5) The amount of
interprocessor data must fit within the bounds placed
on the size of the overlap areas. (6) For each use of
DST that is reached by the given definition, all the def-
initions of DST that reach that use are identical offset
arrays of the same source array SRC.

From the work on copy elimination in functional
and higher-order programming languages [26], we
know that the first two criteria are necessary and suf-
ficient conditions for when the two objects can share
the same storage. However, the sharing of storage
may not always be profitable. To insure profitabil-
ity, we added the remaining criteria. These efficiency
criteria may be relaxed if we are willing to generate
multiple versions of code for statements that use the
array DST, and then select the appropriate version de-
pending upon run-time conditions. However, due to
the drawbacks of multiple versions of code, in particu-
lar code growth, we consider these additional criteria
as important.

Once we have determined that the destina-
tion array of the assignment statement DST =
CSHIFT(SRC,SHIFT,DIM) may be an offset array, we
perform the following transformations on the code.
These transformations take advantage of the data that
may be shared between the source array srRC and des-
tination array DST and move only the required data
between the PEs.

First we replace the shift operation with a
call to a routine that moves the interprocessor
data into the appropriate overlap area: CALL
OFFSET_SHIFT(SRC,SHIFT,DIM). We then replace all
uses of the array DsST, that are reached from this defi-
nition, with a use of the array src. The newly created

4 Any partial modification will require a copy of the shifted
array SRC and so we simply go ahead and make the copy at the
point of the shift. Any full modification of DST which kills the
whole array does not require the copy of SRC and thus DST may
still be treated as an offset array up to the point of the killing
definition.

references to SRC carry along special annotations rep-
resenting the values of SHIFT and DIM. Finally, when
creating subgrid loops during the scalarization phase,
we alter the subscript indices used for the offset ar-
rays. The array subscript used for the offset reference
to SRC is identical to the subscript that would have
been generated for DST with the exception that the
DIM-th dimension has been incremented by the SHIFT
amount.

It is possible that offset arrays are themselves used
in other shift operations. If these shift operations also
meet all of the criteria to be an offset array then the
above transformations can again be applied. We call
such arrays multiple-offset arrays. If one dimension is
shifted multiple times the annotations for the SHIFT
amounts are simply added together.

The algorithm that we have devised for verify-
ing the stated criteria and for performing the above
transformations is based upon the static single as-
signment (SSA) intermediate representation [13]. The
algorithm, after validating the use of an offset ar-
ray at a shift operation, transforms the program and
propagates that information in an optimistic man-
ner. The propagation continues until there are no
more references to transform or one of the criteria
have been violated. When a criterion has been vi-
olated, it may be necessary to insert an array copy
statement into the program to maintain its original
semantics. The inserted copy statement performs the
intraprocessor data movement that was avoided with
the OFFSET_SHIFT. The details of the algorithm are
presented elsewhere [19].

It is important to note that due to the algorithm’s
optimistic nature, it is able to employ offset arrays in
many difficult situations. In particular, it can deter-
mine when offset arrays can be exploited even when
their definition and uses are separated by program
control flow. This allows our stencil compilation strat-
egy to eliminate the intraprocessor data movement in
situations that other strategies would not even con-
sider.

5 Reducing Interprocessor Movement

After eliminating the intraprocessor data move-
ment via our offset array optimization, we now focus
our attention on the interprocessor data movement
that occurs during the calls to OFFSET_SHIFT. Due
to the nature of offset arrays we are presented with
many opportunities to eliminate redundant and par-
tially redundant data movement.

Before discussing our strategy, we need to extend
the definition of our OFFSET_SHIFT routine. We add
an optional fourth argument that takes a regular sec-
tion descriptor (RSD) [3]. The RSD is used to spec-
ify which data elements in the overlap areas of other
dimensions are to be transferred along with the spec-
ified subgrid elements. This extension allows us to
include “corner” elements that are a part of multi-
offset arrays. The RSD will contain a null speci-
fier “x” for the dimension being shifted. The de-
fault RSD would contain the range 1 : N for all
other dimensions. Here’s an example of an OFF-
SET_SHIFT along the second dimension that carries
along the data in the overlap area from the top of
the column but not the overlap area from the bottom:
OFFSET_SHIFT(SRC,+1,2, [0:N,*]1).

There are two key observations that will allow us
to find and eliminate redundant interprocessor data
movement. First, shift operations, including OFF-
SET_SHIFT, are commutative:

CSHIFT(CSHIFT(SRC,+1,1),-1,2) =
CSHIFT(CSHIFT(SRC,-1,2),+1,1)

And secondly, since all OFFSET_SHIFTS move data into
the overlap areas of the subgrids, a shift of a large
amount in a given direction and dimension may sub-
sume all shifts of smaller amounts in the same di-
rection and dimension. Or more formally, an OFF-
SET_SHIFT of amount ¢ in dimension k is redundant if
there exists an OFFSET_SHIFT of amount 7 in dimen-
sion k such that |j] > |i| and sign(j) = sign(i). Given
these two points, we proceed to eliminate redundant
data movement in the following manner.

First we reorder the statements within basic blocks
so that OFFSET_SHIFT calls are grouped into maximal
sets; t¢.e., as many calls as possible are made adja-
cent. This is accomplished by applying our contezt
partitioning optimization [20]. From this point on we
then restrict our focus to the individual groups of OFF-
SET_SHIFT calls.

Next we use the commutative property to rewrite
all the shifts for multi-offset arrays such that OFF-
SET_SHIFTs for the lower dimensions occur first and
are used as input to the OFFSET_SHIFTs for higher
dimensions. We then reorder all the calls to OFF-
SET_SHIFT, sorting them by the shifted dimension.

We now scan the OFFSET_SHIFTs for the first di-
mension and keep only the largest shift amount in each
direction. All others can be eliminated as redundant.

Next we process the OFFSET_SHIFTs for each higher
dimension in ascending order by performing the fol-
lowing three actions. First we scan the OFFSET _SHIFTs
for the given dimension to determine the largest shift

HH

m m

Figure 2: First half of 9-point stencil communication

Figure 3: Second half of 9-point stencil communication

amount in each direction. Secondly, we look for source
arrays that are already offset arrays, indicating a
multi-offset array. For these, we use the annotations
associated with the source array to create an RSD to
be used as the fourth argument in the call to OFF-
SET_SHIFT. As with shift amounts, larger RSDs sub-
sume smaller RSDs. Finally, we generate a single OFF-
SET_SHIFT in each direction, using the largest shift
amount and including the RSD as needed — all other
OFFSET_SHIFTs for that dimension can be eliminated.

This eliminates all communication for an offset ar-
ray, except for a single message in each direction of
each dimension. The number of messages is thus min-
imized.

As an example, consider again the 9-point stencil
computation presented in Section 2.1. The original
stencil specification required twelve CSHIFT intrinsics.
After applying the above transformations, only the fol-
lowing four calls are required:

CALL OFFSET_SHIFT(SRC,-1,1)
CALL OFFSET_SHIFT(SRC,+1,1)
CALL OFFSET_SHIFT(SRC,-1,2,[0:N+1,%])
CALL OFFSET_SHIFT(SRC,+1,2,[0:N+1,%])

Figures 2 and 3 display the data movement that re-
sults from these calls. The figures contain a 5 x 5
subgrid (solid lines) surrounded by its overlap area
(dashed lines). Portions of the adjacent subgrids are
also shown. Figure 2 depicts the data movement spec-
ified by the first two calls. The data movement of the
last two calls is shown in Figure 3. Notice how the last
two calls pick up data from the overlap areas that were
filled in by the first two calls, and thus they populate
all overlap area elements needed for the subsequent
computation.

6 Optimizing the Computation

Once the communication optimization has been
completed, we must optimize the performance of the
stencil on each node. Our strategy involves the follow-
ing compiler optimizations to improve data locality:

1. Improve the order of memory accesses through
loop permutation [9].

2. Improve loop balance through unroll-and-jam and
scalar replacement [8, 7).

Note that strip-mine-and-interchange can be included
here [27]. We have omitted it because of its relative
instability and the large amount of cache reuse that
already exists in stencil computations [22, 12]. In the
rest of this section we give an overview of loop permu-
tation, unroll-and-jam and scalar replacement.

6.1 Loop Permutation

Not all loops exhibit good cache locality, resulting
in idle computational cycles while waiting for main
memory to return data. For example, in the loop,

DO 10 I =1, N
DO 10 J =1, N
10 B(I,J) = A(I,J) + A(I+1,J)

references to successive elements of B and A are a long
distance apart in number of memory accesses (this as-
sumes Fortran’s column-major storage). Most likely,
current cache architectures would not be able to cap-
ture the potential cache-line reuse available because
of the volume of data accessed between reuse points.
With each reference to B(I,J) and A(I+1,7J) being a
cache miss, the loop would spend a majority of its time
waiting on main memory. However, if we interchange
the I- and J-loops to get

DO 10 J =1, N
DO 10 I =1, N
10 B(I,J) = A(I,J)+ A(I+1,J)

the references to successive elements of B(I,J) and
A(I+1,J) immediately follow one another. In this
case, we have attained locality of reference for B(I,J)
and A(I+1,J) by moving reuse points closer together.
The result will be fewer idle cycles waiting on main
memory. For a more complete discussion of loop per-
mutation see Wolf and Lam [27], Kennedy and McKin-
ley [18] and Carr, et al. [9)].

6.2 Scalar Replacement

Even with better cache performance through loop
permutation, a loop may still not perform as well as
possible. If a loop is memory bound, then its balance
must be lowered. Balance can be lowered by reduc-
ing the number of memory references in a loop by
replacing references to arrays with sequences of scalar
variables. In the code shown below,

DO 10 J =1, N
DO 10 I =1, N
10 B(I,J) = A(I,J)+ A(I+1,J)

the value accessed by A(I, J) is defined on the previous
iteration of the loop by A(I+1,7J) on all but the first
iteration. Using this knowledge, the flow of values
between the references can be expressed with scalar
temporaries as follows.

DO 10 J =1, N
T1 = A(1,7)
DO 10 I =1, N
TO = A(I+1,J)
B(I,J) = TO + Ti
10 T1 = TO

Since the values held in scalar quantities will probably
be in registers, the load of A(I,J) has been removed,
resulting in a reduction in the memory cycle require-
ments of the loop (the register copy, T1 = TO, can
be removed by unrolling I) [10]. This transformation
is called scalar replacement and is described in detail
elsewhere [7].

6.3 Unroll-And-Jam

Unroll-and-jam is a transformation that can be
used in conjunction with scalar replacement to
improve the performance of many memory-bound
loops [1, 2, 6]. The transformation unrolls an outer

loop and then jams the resulting inner loops back to-
gether. Using unroll-and-jam, more computation can
be introduced into an innermost loop body without a
proportional increase in memory references. For ex-
ample, the loop:

DO 10 J = 1, 2N
DO 10 I =1, N
10 B(I,J) = A(I,J)+ A(I,J+1)

after unroll-and-jam of I by a factor of 1 becomes:

DO 10 J = 1, 2*N, 2
DO 10 I =1, N
B(I,J) = A(I,J)+ A(I,J+1)
10 B(I,J+1) = A(I,J+1)+ A(I,J+2)

In the original loop, one floating-point operation and
three memory references are left after scalar replace-
ment, giving a balance of 3. After applying unroll-
and-jam, two floating-point operations and five mem-
ory references exist in the loop, giving a balance of
2.5 (the second reference to A(I,J+1) can be scalar
replaced). If the original loop were memory bound,
the unroll-and-jammed loop would perform better as
it has a lower balance.

Carr and Kennedy describe an automatic method
for applying unroll-and-jam [8]. Their method com-
putes the unroll amount for a loop that best balances
the nest with respect to a target architecture while
limiting register pressure. For a detailed discussion of
this method, see [8§].

7 Related Work

One of the first major efforts to specifically address
stencil compilation for a distributed-memory machine
was the stencil compiler for the CM-2 [4, 5]. Like
our strategy, they eliminated the intraprocessor data
movement. They also optimized the interprocessor
data movement by exploiting the CM-2’s polyshift
communication [15]. The final computation was per-
formed by hand-optimized library microcode that took
advantage of different loop transformations.

However, the CM-2 stencil compiler had many limi-
tations. It could only handle single-statement stencils.
The stencil had to be specified using the CSHIFT intrin-
sic; no array-syntax stencils would be accepted. Since
the compiler relied upon pattern matching, the stencil
had to be in a very specific form: a sum of terms, each
of which is a coefficient multiplying a shift expression.
No variations were possible. And finally, the program-
mer had to recognize the stencil computation, extract

it from the program and place it in its own subroutine
to be compiled by the stencil compiler.

Our compilation scheme handles a strict superset
of patterns handled by the CM-2 stencil compiler.
Our strategy will optimize single-statement stencils,
multi-statement stencils, CSHIFT intrinsic stencils, and
array-syntax stencils all equally well. And since our
optimizations are made to be included into an HPF
compiler, our optimizations will benefit those compu-
tations that only slightly resemble stencils.

There are also some other commercially available
compilers that can handle certain stylized, single-
statement stencils. The MasPar Fortran compiler will
avoid the intraprocessor data movement for single-
statement stencils written using array notation. This
is accomplished by scalarizing the Fortran 90 expres-
sion (avoiding the generation of CSHIFTs) and then
using dependence analysis to find loop-carried depen-
dences which indicate interprocessor data movement.
Only the interprocessor data is moved, and no local
copying is required. However, the compiler still per-
forms all the data movement for single-statement sten-
cils written using SHIFT intrinsics. This strategy is
shared by many HPF/Fortran 90 compilers that re-
ally only want to handle scalarized code. As with the
CM-2 stencil compiler, our methodology is a strict su-
perset of this strategy.

In general, there have been several different meth-
ods for handling specific subclasses of stencil compu-
tations. In this paper, we have presented a strategy
that encompasses all of them and more.

8 Conclusion

In this paper, we have presented a general com-
pilation scheme for compiling HPF stencil compu-
tations for distributed-memory architectures. The
strategy optimizes such computations by eliminating
unnecessary intraprocessor data movement resulting
from CSHIFT intrinsics, eliminating redundant inter-
processor data movement, and optimizing memory ac-
cesses via loop-level transformations. The optimiza-
tions are general enough to be included in a general-
purpose HPF /Fortran 90 compiler as they will benefit
many computations, not just those that fit a stencil
pattern.

References

[1] A. Aiken and A. Nicolau. Loop quantization: An
analysis and algorithm. Technical Report 87-821,

2]

(3]

(4]

Dept. of Computer Science, Cornell University,

March 1987.

F.E. Allen and J. Cocke. A catalogue of optimiz-
ing transformations. In Design and Optimization
of Compilers, pages 1-30. Prentice-Hall, 1972.

J. R. Allen. Dependence Analysis for Subscripted
Variables and Its Application to Program Trans-
formations. PhD thesis, Dept. of Computer Sci-
ence, Rice University, April 1983.

R. G. Brickner, W. George, S. L. Johnsson, and
A. Ruttenberg. A stencil compiler for the Connec-
tion Machine models CM-2/200. In Proceedings
of the Fourth Workshop on Compilers for Paral-
lel Computers, Delft, The Netherlands, December
1993.

M. Bromley, S. Heller, T. McNerney, and
G. Steele, Jr. Fortran at ten gigaflops: The Con-
nection Machine convolution compiler. In Pro-
ceedings of the SIGPLAN 91 Conference on Pro-
gramming Language Design and Implementation,
Toronto, Canada, June 1991.

D. Callahan, J. Cocke, and K. Kennedy. Estimat-
ing interlock and improving balance for pipelined
machines. Journal of Parallel and Distributed

Computing, 5(4):334-358, August 1988.

David Callahan, Steve Carr, and Ken Kennedy.
Improving register allocation for subscripted vari-
ables. SIGPLAN Notices, 25(6):53-65, June
1990. Proceedings of the ACM SIGPLAN ’90
Conference on Programming Language Design
and Implementation.

Steve Carr and Ken Kennedy. Improving the ra-
tio of memory operations to floating-point oper-
ations in loops. ACM Transactions on Program-
ming Languages and Systems, 16(6):1768-1810,
1994.

Steve Carr, Kathryn McKinley, and Chau-Wen
Tseng. Compiler optimizations for improving
data locality. In Proceedings of the Sixth Inter-
national Conference on Architectural Support for

Programming Languages and Operating Systems,
pages 252-262, Santa Clara, California, 1994.

G.J. Chaitin, M.A. Auslander, A.K. Chandra,
J. Cocke, M.E. Hopkins, and P.W. Markstein.
Register allocation via coloring. Computer Lan-
guages, 6:45-57, January 1981.

[11]

[13]

[15]

[19]

[20]

A. Choudhary,
G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
S. Ranka, and C.-W. Tseng. Compiling Fortran
77D and 90D for MIMD distributed-memory ma-
chines. In Frontiers '92: The 4th Symposium on

the Frontiers of Massively Parallel Computation,
McLean, VA, October 1992.

Stephanie Coleman and Kathryn S. McKinley.
Tile size selection using cache organization. SIG-
PLAN Notices, 30(6):279-280, June 1995. Pro-
ceedings of the ACM SIGPLAN 95 Conference
on Programming Language Design and Imple-
mentation.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman,
and K. Zadeck. Efficiently computing static
single assignment form and the control depen-
dence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451-490, October
1991.

R. Fatoohi. Performance analysis of four SIMD
machines. In Proceedings of the 1993 ACM Inter-
national Conference on Supercomputing, Tokyo,

Japan, July 1993.

W. George, R. Brickner, and S. L. Johnsson.
Polyshift communications software for the Con-
nection Machine systems CM-2 and CM-200. Sci-
entific Programming, 3(1):83, Spring 1994.

M. Gerndt. Updating distributed variables in lo-
cal computations. Concurrency: Practice and Ez-
perience, 2(3):171-193, September 1990.

High Performance Fortran Forum. High Perfor-
mance Fortran language specification. Scientific
Programming, 2(1-2):1-170, 1993.

K. Kennedy and K. McKinley. Optimizing for
parallelism and memory hierarchy. In Proceed-
ings of the 1992 International Conference on Su-
percomputing, pages 323-334, Washington, DC,
July 1992.

K. Kennedy, J. Mellor-Crummey, and G. Roth.
Optimizing Fortran 90 shift operations on
distributed-memory multicomputers. In Lan-
guages and Compilers for Parallel Computing,
Eighth International Workshop, Columbus, OH,
August 1995. Springer-Verlag.

K. Kennedy and G. Roth. Context optimiza-
tion for SIMD execution. In Proceedings of the
1994 Scalable High Performance Computing Con-
ference, Knoxville, TN, May 1994.

[21]

[23]

[26]

[27]

[28]

K. Knobe, J. Lukas, and M. Weiss. Optimiza-
tion techniques for SIMD Fortran compilers. Con-
currency: Practice and Ezxperience, 5(7):527-552,
October 1993.

Monica S. Lam, Edward E. Rothberg, and
Michael E. Wolf. The cache performance and
optimizations of blocked algorithms. In Pro-
ceedings of the Fourth International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, pages 63-74,
Santa Clara, California, 1991.

J. R. Rice and J. Jing. Problems to test parallel
and vector languages. Technical Report CSD-TR-

1016, Dept. of Computer Science, Purdue Univer-
sity, 1990.

G. Sabot. A compiler for a massively parallel
distributed memory MIMD computer. In Fron-
tiers '92: The Jth Symposium on the Frontiers
of Massively Parallel Computation, McLean, VA,
October 1992.

G. Sabot. Optimized CM Fortran compiler for the
Connection Machine computer. In Proceedings of
the 25th Annual Hawaii International Conference
on System Sciences, Kauai, HI, January 1992.

J. T. Schwartz. Optimization of very high level
languages — 1. Value transmission and its corol-
laries. Computer Languages, 1(2):161-194, 1975.

Michael E. Wolf and Monica S. Lam. A data lo-
cality optimizing algorithm. SIGPLAN Notices,
26(6):30-44, June 1991. Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation.

M. J. Wolfe. Optimizing Supercompilers for Su-
percomputers. The MIT Press, Cambridge, MA,
1989.

