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NUMERICAL COMPUTATION OF THE LINEAR STABILITY OF THE
DIFFUSION MODEL FOR CRYSTAL GROWTH SIMULATION
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Abstract. We consider a computational scheme for determining the linear stability of a diffusion
model arising from the simulation of crystal growth. The process of a needle crystal solidifying into
some undercooled liquid can be described by the dual diffusion equations

oy .. dU,
T - VUL

= aV2U,,

with appropriate initial and boundary conditions. Here U; and U denote the temperature of the liquid
and solid respectively, and « represents the thermal diffusivity. At the solid-liquid interface, the motion
of the interface denoted by 7 and the temperature field are related by the conservation relation

ﬁ-ﬁ:a(VUs~ﬁ—VU1~ﬁ),

dt

where 7 is the unit outward pointing normal to the interface. A basic stationary solution to this
free boundary problem can be obtained by writing the equations of motion in a moving frame and
transforming the problem to parabolic coordinate system. This is known as the Ivantsov parabola
solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem
of the form

1 [0*U 0%*U ou
772+€2[3€2+ +2P< o )] A
1+£2[—+4P2N—|—2PN+£ ] = AN,
U=2PN atn=1

The largest real part of the eigenvalue A is proportional to the growth rate of the perturbation, and the
eigenfunction is related to the perturbation of the temperature field and the interface geometry. Nu-
merical solution of the above equations is based on a finite difference discretization. The corresponding
large scale algebraic eigenvalue problem is solved by ARPACK, a software package that implements
the Implicitly Restarted Arnoldi Method (IRAM.)

Accurate computation of these eigenvalues helps to determine interesting unstable modes that
involve excitation of the interface. Analysis suggests that at least part of the spectrum corresponding to
this eigenvalue problem is continuous and unbounded. In addition computation via standard methods
such as QR becomes expensive when the mesh size of the discretization becomes small. We find however
that IRAM is very efficient in extracting eigenvalues and eigenvectors of interest with modest cost.
Numerical results will be presented to demonstrate the effectiveness this method.
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1. Introduction. There has been a great deal of interest in the simulation and
modeling of crystal growth and dentridic solidification in the past few years [2] [6].
It is well known that the physical behavior of a needle crystal solidifying into some
undercooled liquid can be described by the dual diffusion equations

1 — = oV = aV2U,
(1) at b ot ’
Here U; and U denote the temperature of the liquid and solid respectively. They are
functions of the time ¢ and the spatial coordinates # and z. The parameter a represents
the thermal diffusivity. At the solid-liquid interface, U; = U, and the motion of the
interface denoted by 7 and the temperature field are related by the conservation relation

.
2) d—:-ﬁza(VUs-ﬁ—VU;-ﬁ),

where 7 is the unit outward pointing normal to the interface. It is also natural to
impose the boundary condition

(3) Uy — 0, as z — oo.

Both analytical and numerical solutions of (1) and (2) are difficult to obtain because
of the moving boundary. We are interested in analyzing the stability of a well known
stationary solution that corresponds to a simple parabolic shaped moving front. In
the following, we give a brief description of the Ivantsov solution and a standard linear
stability analysis that gives rise to an eigenvalue problem. Numerical discretization of
the continuous model and the solution of the large scale algebraic eigenvalue problem
derived from the discretization are also discussed. It is observed from our numerical
computation that the solidification is unstable.

2. Ivantsov solution. A stationary solution of (1) that corresponds to a parabolic
shaped moving front can be obtained by the method of Ivantsov [3]. Suppose the front
is moving in the z direction with a constant velocity v. We first rewrite the equation
(1) in a moving frame. i.e., we let

(4) z—z—vt and = «— z.

After these changes of variables, equations (1) become

2y, 20U _ 10U
(5) VU+laz_oz@t’

in both the liquid and solid phases. The boundary conditions (2) (3) remain the same.
To simplity the geometry, transformations

n? =&
9

(6) x=ppé and z=p
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are used to map the parabolic interface in (z, z) coordinate system to the horizontal line
n = 11in (&,n) coordinate system. In these new coordinates, the convection diffusion
equation (5) can be written as

U U <8U ou
Ui

(7) —‘|-7—|-2P ou

2 g2
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an o) = 0+ P
where P = p/l is the Peclet number, and 7 is defined to be 7 = (v/2p)t. The boundary
condition imposed at the moving front n = 1 satisfies

o rforca(o &) - (- 50 % -2

It is easy to verify that a stationary solution to (7) and (8) is in the form

(9) N =1, U = VaPexp(P)erfc(V'Py), and U, = V7 Pexp(P)erfc(V'P).

3. Linear Stability Analysis. The objective of this paper is to determine the lin-
ear stability of the Ivantsov solution under small disturbance. This is done by assuming
that there exists a solution to (7) and (8) of the form

(10) N =N+ Nexp(or), U =U +Uexp(or), and U, = U, + U, exp(oT),

where NV, U; and U, are stationary solutions derived by Ivantsov method, and o is the
growth rate.
The substitution of (10) into (7) leads to the disturbance equation
O*U | *U ou  oU -
11 (— —) 2P<—— —): P+ PolU,
(11) aet T "oy ~ige) T E)ke

in both phases with boundary conditions

U, = 0 everywhere, U, = —%N at p =1 and
m
. . N ) .
1) PN+ AN +e2) = (T -ar) g =L
Ui

To simplify the notation, we rename variables N and U to N and U respectively,
and let A = o P. Equation (11) and the boundary condition (12) can be written as the
following eigenvalue problem:

_ 1[0 U U OUN]
(13) n2+§2[ag2 T o “P(”%_ a_g)] =W
1 roUu ON
14 — — 4+ 4P*N 2P<N —)] = AN =1).
(14) gy AP 2P (N e (n=1)

where U and N are coupled by U = 2PN at n = 1.

On an infinite domain. The boundary condition at infinity are

ou
— — 0, asp — f£oo, and — — 0, as { — Foo.

dn 0¢
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4. Discretization. In our numerical approximation, the infinite domain problem
is first transformed into a finite domain problem by using the following change of vari-
ables. Let
21

¢ and = ——.
1+¢ 147

S =

In these new variables, (13) and (14) become

1) ceio- 20 +1<z—t>%—E< ™) =
(16) D(g,f){ o [N+ (1-3) azgv]} N
where

) = [t o] b =[]

E(3) = 2(1-3)°+2P3(1 —35), and F(tN):—l(Q—tN)S—l—Pf(:Z—tN).

2

Let 3; = 1A3, t; = jAL, Uy = U(3;,t;), and N; = N(3;). The standard centered
difference formula is used to discretize the equation (15). We replace 92U /832, *U/01?,
OU/93 and U /Ot with

Uir,; —2U;; + Uiy ; Uijt1 — QUi’,j + Ui
(As)? ’ (AD)? :
Usjyr — Ui j Ui1; — Uisa
2AS ’ 2AT

respectively. At the boundary § = 0 and 5 = 1, we use ghost values U_,; = Uy,
Ups1,; = Un—1; and centered difference to discretize dU/0s. i.e.,

(17) U095 =~ U”Q_AZN]‘”, at §=10
/AS
18 U /93 Un-1 _NU”HJ, t5=1.
2A
S

A similar scheme is used to discretize OU/dt at £ = 2. At the interface boundary ¢ = 1,
the temperature U; g and the displacement of the moving front N; satisfies U; g = 2PN;.
To avoid mixing U and N values, an upwind difference scheme

13 Uss
OU /0 ~ K{(‘ﬁU”O + 2 - )

is used to discretize the term AU/t in (16). The term AN /J5 is approximated by
centered difference.
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The above discretization scheme gives rise to an algebraic eigenvalue problem

Ax = Az, where
U
! Us,; No
T = : , U, = : and N = :
Un,
N U, N,

The structure of a typical A is demonstrated in Figure 1. Eigenvalues of positive real
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Fic. 1. The structure of the coefficent matriz.

parts are sought to determine interesting unstable modes that involve excitation of the
interface. Analysis [5] suggests that at least part of the spectrum corresponding to
this eigenvalue problem is continuous and unbounded. The conventional QR method
become expensive as the mesh size of the discretization gets small. Fast iterative scheme
such as the Arnoldi method is attractive in this setting.

5. Implicitly Restarted Arnoldi Method. The standard Arnoldi method com-
putes a factorization of the form

AVi = ViHy + fef, VEVi =1, and V¥ f =0,

where Hj is a k x k upper Hessenberg matrix. The first column of Vj is arbitrarily
chosen and normalized such that ||v1]] = 1. Subsequent columns of Vj, the matrix Hy
and the vector f are generated from the Arnoldi process illustrated below.



Input: (A, vq)

Output: (Vi, Hy, f)

w — Av; a; = vilw;

Hy, = (041); i = (‘Ul); [ = w—via;
for j=1,2.3,..,k—1

- By = I v = F/5;

2. Vigr = (V}, vjp); Hy

—_

i ),
13]'6? ’
3. 2z «— Avjiq;

4. b= Vizy iy = (Hj, h);

5. f — Z — ‘/j+1h;

end;

It can be verified that the columns of V, form an orthonormal basis for the Krylov
subspace K = {vy, Avy, ..., A¥"2v;}. Eigenvalues of Hj provide approximations to the
eigenvalues of A. They are often referred to as the Ritz values. If y is the eigenvector of
Hj, corresponding to an eigenvalue 6, the Ritz vector z = Vyy is an approximation to an
eigenvector of A. It is well known that Ritz values converges rapidly to well separated
extreme eigenvalues. However, in our problem these eigenvalues correspond to the ones
on the left half of the real axis, and are not interesting. (The full spectrum of the A
derived from a coarse discretization is shown in Figure 2.) To overcome this difficulty,
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Fia. 2. The full spectrum of a 2500 x 2500 A .

one must construct a starting vector vy such that the subspace spanned by columns of
Vi contains the desired eigencomponents. The construction of vy is not trivial. The
Implicitly Restarted Arnoldi Method (IRAM) [7] provides an efficient scheme to repeat-
edly modify an arbitrary starting vector vy so that the unwanted eigencomponents v,
are annihilated by a polynomial in A. The analysis and some of the implementation
issues of IRAM are also contained in [4]. The basic theory is outlined below.
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Given a (k + p)-step Arnoldi factorization
(19) AVirp = Vagp iy + fe{-l—p7 Vlill-pvk-l-p =1, Vk{ll—pf =0,

a sequence of QR updates corresponding to the shifts p, o, ..., g, may be applied as
follows. Let Hyy, — 1l = Q1R be the QR decomposition of Hyy, — pq1, it follows
from (19) that

(20) (A= il )Viry = Viup(Hipy — ) + fely, = (VipQu) Ry + fely,.

Multiplying the above equation on the right by ¢); yields

(A= D)(Vesp@1) = VerpQ)(Q1 Hesp Q1) + fesg, Qn

It is easily seen from (20) that the first column of the updated Vk"_'l_p = Vitp Q1 1s related
to the first column of Vj,, through (A — py1)v; = vifp1;. Let H,;"_H) = fl_IHQj_l. The
next cycle of IRAM starts with the factorization of H,j'_l_p — pol followed by the update
of Vk"_'l_p and H,j'+p. After all p shifts have been used, the Arnoldi factorization can be
recovered by dropping the last p columns of Vk"_'l_p and H,;p and performing p more steps

of Arnoldi iteration to give
+ _ oyt g+ +.T
Avk-l—p - Vk-l—ka-I-p +f Chtp-

This is equivalent to a new Arnoldi factorization with v; replaced by v = P,(A)vy,
where P,(A) is a polynomial with roots at u1, g2, ..., ttp. This polynomial is designed to
filter out the unwanted eigen-components in the original starting vector v;. Thus the
shifts pq, g2, ..., ptp are chosen to be approximations to the unwanted eigenvalues of A.
The above process is repeated until all k£ desired eigenvalues of A are extracted from
H,;p. Error estimates and deflation techniques for IRAM are explained in detail in [4].

A software package based on this algorithm, ARPACK is used successfully in our
computation. Table 1 lists the leading eigenvalues that corresponds to different levels
discretization and the number of matrix vector multiplications (MATVECs) and CPU
time used to obtain them. The Peclet number is set to be 0.1 in our computation. The
experiment is performed on a SUN-SPARC 10. For coarse discretization up to about
A§ = Al = 1/29, the results compared favorably to those obtained from the LAPACK
[1]. As the matrix size increases, the computation becomes more expensive as indicated
by a large number of matrix vector multiplications used. In the case A3 = Al = 1/99,
IRAM did not converge in 300 iterations.

An alternative to compute the eigenvalues of A directly is to work with (A—ol)™%
where o is an estimated location of desired eigenvalue. Since eigenvalues of (A —ol)™!
are often large and well separated, the Arnoldi approximation converges extremely fast.
However, the fast convergence is obtained at the cost of factoring the matrix (A — o /)
and solving a linear system (A — ol)w = v at each iteration. In our application, the
matrix can be easily factored using a block Guass elimination. The initial shift can be
predicted from the runs of smaller size problems. In Table 2 we list the number of linear
system solved (LSs) and the CPU time used for problems of various size. It is observed
that using ARPACK in shift-invert mode is considerably faster in this application.
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matrix size | eigenvalue | MATVECs ‘ CPU(seconds) ‘

2500 6.39 4381 876.68

3600 7.78 6645 1252.61

4900 9.17 10406 2664.33

6400 10.6 10508 3847.50
TABLE 1

The performance of ARPACK wn direct mode. Three eigenvalues are found in each run. Parameters k
and p are set to be 4 and 40 repectively.

matrix size ‘ LSs ‘ CPU(seconds) ‘

2500 121 44.09

3600 121 69.19

4900 87 73.88

6400 88 107.25

8100 86 147.88

10000 83 188.95
TABLE 2

The performance of ARPACK in shift-invert mode. The shift used is 0 = 15.0. Ten eigenvalues are
found in each run. Parameters k and p are set to be 10 and 50 respectively.

eigenvalue=0.102 eigenvalue=0.869
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Fia. 3. The interface N associated with different eigenvalues



6. Numerical Results. Our computation shows that there are many eigenvalues
of A with positive real parts. This implies that the solidification of the needle crystal is
unstable. It is also observed in our computation that the leading eigenvalue increases
as A3 and Al decrease. This agrees with the analytic prediction that eigenvalues are
unbounded as A3, At — 0. The computed interface N for the disturbance equation
corresponding to the four positive eigenvalues of A are plotted in Figure 3. The com-
putation is done on a grid with A5 = Af = 1/99. It is observed that as the eigenvalue
increases, the interface becomes more oscillatory. This agrees with the result obtained
from analysis [5]. Finally the temperature field U in both phases that corresponds to a
typical positive eigenvalue is plotted in Figure 4. The contour plots of the temperature
fields corresponding to the four interfaces shown in Figure 3 are demonstrated in Figure

d.

eigenvalue = 0.89
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Fia. 4. The temperature field associated with A = 0.869.
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