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Abstract. Two-stage procedures refers to a family of convergent nested or inner-outer iterations.
This paper addresses their use as preconditioners in the context of systems of coupled nonlinear partial
differential equations, specifically those modeling underground multiphase flow phenomena. The linear
systems arising after the discretization and the Newton linearization are highly nonsymmetric and
indefinite but coefficient blocks associated with a particular type of unknown possess properties that
can be exploited to enhance the overall conditioning of the coupled system. We show that decoupling
strategies combined with two-stage preconditioners provide an efficient device to accelerate Krylov
subspace methods such as GMRES and BiCGSTAB. Theoretical discussion and numerical experiments
reveal the suitability of this approach and contrast it to fairly robust, standard ones which “blindly”
precondition the entire coupled linear system.
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1. Introduction. The advent of increasing computing power has been the driv-
ing force for solving larger scientific and engineering problems. Consequently, new
numerical algorithms have been coming forth with this computer technology sophisti-
cation. Nowadays, the idea of solving partial differential equations (PDE’s) involving
millions of unknowns is becoming plausible and attractive to the numerical analyst
and the application programmer. The present research tries to respond to this reality
in the context of reservoir simulation. The need for solving problems with at least
one million gridblocks, and several unknowns per gridblock, has become one of the
main challenges in the reservoir community. Therefore the conception of robust and
efficient solvers plays an important role in the oil industry research. Major challenges
arise in connection to solving coupled sets of nonlinear equations as obtained by a
fully implicit discretization of multi-phase models.

In this work we focus our attention on two-stage procedures which are also known
in the literature as nested or inner-outer procedures; see e.g., [3, 4, 14, 22, 28, 32, 43].
We address their use as preconditioners for the several large sparse linear systems aris-
ing from the cell-centered finite difference or, equivalently, lowest-order mixed finite
element discretization (with an appropiate quadrature rule; see [54]) and the subse-
quent Newton linearization of the coupled algebraic system of nonlinear equations.
These linear systems (i.e., instances of Newton equations) are highly nonsymmetric
and indefinite. Not surprisingly, specific preconditioners for these type of problems
are not frequent in the literature due in part to the complexity suggested by the con-
trasting physical behavior of the variables involved: pressures (elliptic or parabolic
component) and saturations (hyperbolic or convection-dominated component.)
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Despite the difficulty of these linear systems, there are certainly some “nice”
properties associated to the coeflicient blocks that affect each type of variable. Under
mild conditions, which are regularly met at a modest time step size, each of these blocks
are irreducible and diagonally dominant. Moreover, the strict diagonal dominance
in some of these blocks leads to the M-matrix property. These isolated algebraic
properties can be exploited so that better conditioning can be achieved in the entire
coupled system. Moreover, devices leading to this desirable situation would also aid
to weaken the coupling introduced by the off-diagonal blocks representing the crossed
discretization of the nonlinear partial differential equations. We call these devices
decoupling operators and use them as a preprocessing step to facilitate the effectiveness
of two-stage preconditioners.

We remark that different solvers or preconditioning strategies can be used as
intermediate steps within this two-stage preconditioners. In fact, the idea can be
generalized to multi-stage methods [18]. We do not pursue this idea further here,
though. We rather center our attention on those two-stage algorithms that arise
naturally in block type of preconditioning: block Jacobi, block Gauss-Seidel and Schur
complement based. We include in our analysis a combinative preconditioner originally
proposed in [9] and later restated as an inexact procedure in [52]. The combinative
method relies primarily upon the solution of a reduced pressure based system. In
order to strengthen its robustness we propose an additive and multiplicative extension
of this combinative preconditioner in terms of pressure and saturation residuals. We
also aim these preconditioners at adding efliciency and robustness of two well known
Krylov subspace iterative methods: GMRES and BiCGSTAB.

It is worth mentioning that ideas to sequentialize (i.e. remove part of the fully
implicitness in time) have played an important role not only in the time discretization
formulation of multi-phase flow and transport in porous media simulation but also in
the solution of Navier-Stokes equations governing fluid dynamics problems. Sequential
solution methods can be regarded as strategies to decouple the system by means
of operator splitting or time-lagging some of the variables present in the physical
model. Along this trend, we have the well known IMPES (IMplicit Pressures-Explicit
Saturations) formulation in reservoir simulation (see, e.g., [5]) and, for Navier-Stokes
problems, the segregated methods in CFD [34, 35]. Such strategies can certainly be
inspiring to generate preconditioners for coupled linear systems already treated under
the fully implicit scheme. This geneal idea motivates the work we present in this
paper.

The authors have recently formulated and evaluated a Hybrid Krylov Secant
(HKS) method for solving nonlinear sets of equations [38]. The method represents
a blend of a inexact Newton and a secant method but the key point in HKS that
motivates the present work is as follows. The first Newton step is obtained iteratively
by a Krylov-subspace method inside which information on the eigenvalue spectrum
of the matrix is generated. After convergence to a given (adjustable) tolerance, the
task of finding the subsequent Newton steps is given to a much cheaper fixed point
iteration, with relaxation parameters given by the eigenvalue spectrum found in the
Krylov iteration. This scheme is further optimized by secant updates to the various
linear operators involved.

The Krylov iteration to obtain the first Newton step of the HKS algorithm is nec-
essary to generate (nearly optimal) relaxation parameters which allow the inexpensive
iterative method to converge rapidly. However, a solution to a large system of linear
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equations by a Krylov method can be costly unless a good preconditioner is found.
In particular, knowledge on how to construct preconditioners for linear systems with
multiple unknowns per discretization element (or, equivalently, gridblock) is sparse at
best in the literature [52]. This work proposes and evaluates several preconditioning
schemes for such systems in the context of Krylov-space iterative solvers.

The present work in conjunction with HKS methods constitutes a framework
for a new family of solvers for fully implicit formulations of equations for flow and
transport in porous media. Although, we stress that our experiences are applicable to
more general settings where systems of coupled equations arises such in device circuit
simulation [6], CFD and control problems.

This paper is organized as follows. We begin Section 2 with a presentation of
the equations governing the multiphase flow in porous media. We then describe their
discretization and the linearization by the Newton method. We include into the dis-
cussion a brief description of the GMRES and BICGSTAB algorithms. In Section
3, we analyze the structure of the linear system to be solved at every Newton step.
Section 4 focuses the discussion on two different decoupling operators and their im-
plications in clustering the eigenvalues of the original coupled system. Section 5 is
devoted to discuss the philosophy behind the family of two-stage procedures and to
describe those preconditioners that the authors consider most appropriate for the type
of modeling problem addressed in this work. Technical discussion is supported and
further illustrated through experiments in Section 6. We conclude this work with some
final remarks and suggestions for further research on the subject in Section 7.

2. Description of the Problem. The paper concentrates the analysis on the
equations for black-oil simulation which constitute the simplest way to realistically
model multi-phase flow and transport in porous underground formations. To further
simplify the presentation we only look at the two-phase model. Extensions to multiple
unknowns per gridblock is readily evident.

2.1. Differential Equations. The basic equations for black-oil reservoir simu-
lation consist of conservation equations for oil, gas and water. However, for simplicity,
we limit the presentation to a wetting (i.e., water) and a non-wetting (i.e., oil) phase,
denoted by subscripts w and n, respectively. A more thorough description of the
model can be found in [5] and [39]. The mass conservation of each phase is given by

0(¢pnsn)

(1) o~ V(Pata) =,
(2) % =V (puaw) = qu,

where p; is the density, ¢ is the porosity, 5} is the saturation, ¢ is time, ¢; is the source
term with denotes the production/injection rates at reservoir conditions, and u; is the
phase Darcy velocity which is expressed as

Kk'rl
1

u = (VP —pigVZ),

where K is the absolute permeability tensor, k,; is the relative permeability, u; is the
viscosity, P is the pressure, g is the gravity and Z is the depth. The subscript  can be
either w for the wetting or n for the non-wetting phase. These equations are coupled
through the following extra relations:
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e Wetting and non-wetting saturations add up to one: S, + 5, = 1.
o Capillary pressure: P.(Sy) = P, — Py.
e Relative permeabilities depend on both location and saturation.
The model also allows for slight compressibility of both phases, i.e., p;(F;) =

aPi where py; and ¢; are given physical constants. Absolute permeability tensor

PolE
entries, porosity, viscosity, capillary pressure and the gravity vector depend only upon
location.

The simulator used in the experiments presented in this work can accomodate
problems from both the petroleum and the environmental engineering disciplines for

it can specify general boundary conditions given by

(3) ouy -7+ vPy, = hy,
(4) ou, -+ vP, = h,,

where o and v are spatially varying coeflicients, 7 is the outward, unit, normal vector
and h; is a spatially varying function.

Initially, P, and 5,, are specified. A gravity equilibrium condition is then used
to solve for an initial value of S,. (In reservoir engineering, the typical boundary
conditions are of Neumann type for both the saturation and pressure unknowns. The
resulting (possibly) rank deficient linear system is solved by choosing the bottom hole
pressure at a given reservoir location.)

Frequently, the primary unknowns in the preceding system of parabolic equations
are pressures and saturations of one phase or two different phases (see the discussion
of [5] about other possible formulations.) The primary unknowns in our simulator are
P, and 5,,. All other variables can then be computed explicitly based on these two.

In the case of slight compressibility, it can be shown that the system is of mixed
parabolic-hyperbolic character, with one nonlinear parabolic equation in terms of pres-
sure and one nonlinear convection-diffusion equation in terms of saturation [25]. In this
model, there are weak nonlinearities related to those variables that depend upon pres-
sures of one phase (e.g., densities) and their effect depends on the degree of pressure
change. In contrast, strong nonlinearities are present in variables that basically de-
pend on saturations such as relative permeability and capillary pressure. The pressure
equation degenerates into an elliptic equation for incompressibility of both phases (i.e.,
¢p = ¢y = 0). On the other hand, the diffusive term in the latter equation vanishes
in the absence of capillary pressure, giving rise to a first order quasilinear hyperbolic
equation.

2.2. Discretization. Nowadays, reservoir simulators rely on a variety of dis-
cretization schemes in time, ranging from the IMPES to the fully implicit formulations
(see [5] and [39] for detailed discussions.) In between these two extremes, semi-implicit
[42] and adaptive implicit discretizations have been proposed [30].

However, the fully implicit formulation offers the highest robustness among these
possible alternatives in long term simulation. The main drawback of fully implicit
methods resides in the solution of a large nonlinear system of equations. If Newton
method is employed then several nonsymmetric and indefinite linear systems need to
be solved at each time step.

In the context of the two-phase problem being discussed in this work, both pressure
and saturation (degrees of freedom) unknowns occupy the centers of the discretization
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blocks and velocities are approximated on the edges or faces of the discretization
blocks. The components of the flow coefficients or mass mobilities, A; (I = o,w)
between two grid elements are defined as follows

e (pz_fw)T“ K
Litl/2ik T\ "y 12 i+1/2,5ks

where the superscript 7"+ 1 denotes the (7" + 1)-th approximation of the Newton
iterates to a value at the n + 1 time level; the subscripts 7,7 and k indicate the
gridblock location. The fraction term is approximated through upstream weighting
and the permeability is weighted harmonically in the direction of the flow to account
for variations in gridblock sizes.

Discretization of the model equations (1)-(2) is performed by block-centered finite
differences (or, equivalently, by lowest-order mixed finite elements) obeying a seven
point stencil for pressures and saturations of both phases, thus giving rise in general
to 28 different coefficients associated with a given interanl gridpoint location. The
entire discretization leads to a system of nonlinear algebraic equations given by

Azi Ay Azpdijr((prS L = (p1S)ie) = A" Az Ay;Azpql H)

Privi gk — Prijr
A95i+1/2

+ At"Ay; Az {)\l il
T

I\ ol Zigt1,jk — Zijk

— [\, 1 pg| LR T Pk
l,z-l—2 Axi+1/2
ijk — Prji-1,5k
-1

T2 A952'—1/2

T+1
Ziik — Zi1 jk
A952'—1/2

_I_

HAI,F%PL‘J]
ik

+ similar terms for the y and z directions,

where Az;iq/3 = (7,41 — 2;)/2, i.e., the cell midpoint along the z direction. In a
similar way, Ay; 1/, and Az, are defined. Higher degree of discretization has been
considered in the context of IMPES formulations [45]. Dawson et al. [21] consider a
19-point stencil in space within a fully implicit parallel reservoir simulator to handle
underground heterogeneities. They use a full permeability tensor implementation
together with general boundary condition specifications within each subdomain.

The extra relations mentioned in the previous subsection and their correspond-
ing partial differentiation with respect the primary unknows are used as part of the
Newton linearization of each of the nonlinear conservation equations. Some direct
and indirect simplifications are performed, without affecting the validity of the nu-
merical approximation, as result of small compressibility coefficients accompanying
the linearized terms.

The above procedure follows the description by Wheeler and Smith [55] on de-
veloping a parallel black-oil simulator. Further insights about discretization of these
equations can be found in [5] and [25].



6 RAME, KLIE AND WHEELER

2.3. Newton formulation. The fully implicit formulation for the numerical so-
lution of systems of nonlinear parabolic equations leads us to solving the following
nonlinear problem for each time step

where F : IR® — IR™. Here, the vector u represents unknowns in pressures and
saturations of one particular phase.

The composition of Newton with a Krylov iterative solver (such as GMRES or
BiCGSTAB) with a criterion for defining linear tolerances dynamically, and a line-
search backtracking strategy [24] is the basis of our inexact Newton algorithm. This
algorithm is described as follows:

ALGORITHM 2.1.

1. Let ug be an initial guess.

2. For n =10,1,2,... until convergence do
2.1 Choose n; € [0,1).
2.2 Compute a vector sy satisfying

J(uk)sk = —F(uk) + 7,

with % < 1k, by some iterative method.
2.3 Set up41 = up + ApSk, where Ay is the line search damping parameter.

The step length A is computed using the linesearch backtracking scheme which

ensures a decrease in f(u) = 1F (u)' F'(u). Step 2.2 should force s; to be a descent

direction for f(ug). That is,
VI (ur) sp = F(u)" J (ug) sg <0,

in such case, we can assure that there is a (p such that f(ug + (sg) < f(ug) for
all 0 < ¢ < (p. In practice, the final residual given by the iterative linear solver is
acceptable whenever the Dembo-Eisenstat-Steihaug condition is met [22], i.e.,

(6) el = 1 (un) + J (ur) sell < n|lF (up)l], 0 <n <1

Heuristics to select the linear tolerances or forcing terms, 7, in Step 2.1 have been
subject to extensively detailed research by Eisenstat and Walker [26, 27]. Practical
experiences of their work in the context of reservoir simulation are reported in [21].

2.4. Iterative Method Framework. The typical problem sizes encountered in
large-scale reservoir simulation rule out the use of direct methods to solve the linear
systems arising in the Newton iteration. Consequently, inexact Newton methods are
preferred. Although the theory of inexact Newton solvers is relatively recent [22],
iterative methods such as SIP, SOR, CGS and ORTHOMIN have been of common
practice in reservoir engineering for a number of years (see [39] for a general overview.)
These four algorithms (and some others) have lost popularity over time on account
of their lack of robustness in dealing with physical conditions common in reservoir
engineering applications of current interest. Multigrid has been also investigated [23,
46] but its effectivity has only been shown for moderate rock heterogeneity and 2-D
problems. Lately, Krylov subspace methods like BICGSTAB, Chebyshev iterations
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and GMRES have been employed as inner solvers for inexact Newton methods (see
e.g., [33] and references therein.)

The use of Krylov subspace methods as inexact solvers within the Newton method
was consolidated in [15]. Since then, extensions to the theory have been rapidly ap-
pearing in the literature and bringing insight about the capabilities of Krylov subspace
methods (mainly GMRES) in the developing of globalization strategies [17, 19, 27].

Further description and several pointers into the literature of Krylov subspace
iterative methods can be found in [7, 31]. Here, we just state some of the highlights
of GMRES and BiCGSTAB.

Given a linear operator A in IR™*” and a vector v in IR", the Krylov subspace

K, (A, v)is defined as
K. (A, v) = span{v, Av, A%v,..., A" v},

There are basically two types of approaches for solving a given linear system
Az = b by an iterative procedure defined in terms of a Krylov subspace. Let zg be
a initial approximation towards the solution of this system, and ro = b — Azg be the
corresponding residual. We can either consider
¢ A minimal residual approximation: Choose z, € K,, (4, v) and solve
7 min b— A(zp+2)[|= min ro — Az
(7) Lein I (20 +2) = min " llro I
or,
o A Galerkin approximation: Choose z, € K,, (A, ) so that

(8) rn=r0— Az, LK, (A, 10).

Both formulations, find an approximate solution by setting z,, = zg + 2,. Here,
||| denotes the Euclidean norm.

The GMRES algorithm works under the philosophy suggested by (7) whereas
BiCGSTAB follows (8). We now proceed to briefly describe each one.

2.4.1. GMRES. The GMRES algorithm [44] generates a basis for the Krylov
space through the Arnoldi process. The fundamental point of this process is to create
a decomposition that can be written as:

1
A"[n = ‘/an + hn—}-l,nvn—}—lena
or as
AV, =V, 1 H,,

where

_ Hn
Vi1 = [Valvaga], H, = ( h t ) .

n—}—l,nen

The matrix V,, is orthogonal and its columns represent a basis for K, (A, v) and
H,,is an (n+ 1) X n upper Hessenberg matrix of full rank n. Hence, the minimal
residual approximation can be rewritten as the following least squares problem

yfg]ga [llroll e1 — Hny]| -
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One of the strongest arguments for using GMRES is its capability of producing
monotonically decreasing residual norms. For a problem size n, the theory predicts
that convergence is achieved within n iterations in the absence of roundofl errors.
However, m iterations of GMRES requires O (m*n) operations and O (mn) of stor-
age, making the procedure infeasible for large values of m. Restarting GMRES after
m steps (with m < n ) alleviates the problem but sacrifices its nice convergence prop-
erties. However, the restarted version of GMRES works well in practice specially with
good preconditioning strategies.

2.4.2. Bi-CGSTAB. The BiCGSTAB algorithm [48] was developed to over-
come the erratic converging behavior shown by the Conjugate Gradient Squared
method (CGS) and the Bi-Conjugate Gradient method (Bi-CG.)

In the Bi-CGSTAB algorithm the iterates are constructed in such a way that the
residual r; is orthogonal with respect to a sequence of vectors {Fi}é_l and in the same
way, 7; is orthogonal to {ﬁ}é_l (biorthogonality condition.) The i-th residual can be
expressed as r; = P; (A)rg, where P; is a monic polynomial of degree less or equal to
i. The 7; are generated with polynomials of the form Q; (z) = 2:1 (1 —wjz), where
the w; are chosen so that

(Pi (A)ro,Q; (At) %) =0, i # 7

This last condition is enforced without an explicit reference to A? (as it is done in
CGS.) BiICGSTAB has short recurrences, requires only two A products per iteration
and produces a solution z; € xg + Kok (A4,70) . It typically produces much smoother
residual norm behavior than CGS, but the residuals norms still behave badly in some
problems, specially in discretized diffusion-advection equations with dominant advec-
tion components. Some improvements to the algorithm are discussed and referred to
in [7].

3. The algebraic coupled linear system framework. We now provide gen-
eral description of the linear systems (i.e., Newton equation) arising in Step 2.2 of
Algorithm 2.1. We identify properties associated with the blocks conforming the par-
titioned system and establish some moderate assumptions to facilitate the analysis
and the development of the procedures on which the preconditioners are based. These
assumptions are not intended to give a definitive characterization of real life simula-
tion matrices but are met when the time step is short enough to produce convergence
of the Newton method and, therefore, provide a framework for evaluating the last
advances in preconditioning coupled systems in reservoir engineering.

3.1. Structure of Resulting Linear System. Each linear system associated
with the two phase model depicted in (1)-(2) can be partitioned in the following 2 x 2
block form

(9) Jx:f@(jiﬁ jp)(i’):_(}‘z)

Each block J; ;,¢,7 = s,p is of size nb X nb, where nb, is the number of gridblocks
and f, (fw), is the vector residual corresponding to the nonwetting (wetting) phase
coeflicients.
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FiGg. 1. Matriz structure of linear systems in the Newton iteration.

Each group of unknowns is numbered in a sequential lexicografic fashion: the
pressure unknowns are numbered from one to the total number of grid blocks (nb)
and the saturations are numbered from nb + 1 to 2nb.

The block .J,,,, containing pressure coefficients, has the structure of a purely elliptic
problem in the the nonwetting phase pressures. The block J,s of the Jacobian matrix
has a structure similar to that of a discretized first-order hyperbolic problem in the
nonwetting phase saturations. J,, has the coefficients of a convection-free parabolic
problem in the nonwetting phase pressure and, finally, Js; represents a parabolic
(convective-diffusive) problem in the oil saturations.

The position of nonzero entries of a given Jacobian matrix is shown in Figure 1.
In this particular example, we can observe the effect of the upstream weighting within
the block J,,: the moving front is one block behind giving the only nonzero coefficients
in the lower part of the block. However, the absent values in the upper part are added
positively to the main diagonal of that block.

3.2. An algebraic analysis of the coupled Jacobian matrix. The presence
of slight compressibility ensures invertibility of the Jacobian matrix (further discussion
about this issue is given in [5].) In general, in system (9), the block coefficients J,,, Js
and Jy, the following properties (see e.g., [2, 5] for further physical insights and [3, 10]
for mathematical definitions and related theoretical results):

¢ Diagonal dominance,

e Positive diagonal entries and negative off-diagonal entries (i.e they are Z-
matrices), and

e Irreducibility.

Strict diagonal dominance in all rows is only present in J,s and J,, as result of
compressibility terms and pore factors contribution into the main diagonal of these
blocks. In consequence, these blocks are nonsingular, positive stable and M-matrices.
Strict diagonal dominance for some of the the rows of J,, can be achieved by the
contribution of bottom hole pressures specified as part of the boundary conditions.
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In this case, this block is an irreducibly diagonally dominant matrix. In addition,
under small changes of formation of volume factors and flow rates between adjacent
gridblocks we can expect both blocks J,, and J,, be nearly symmetric.

The saturation coeflicient block —J,s presents algebraic properties similar to the
other blocks. It has a convection-diffusion behavior characterized by capillary pres-
sure derivative terms (the diffuse part) and wetting relative permeability derivative
terms (the convective part.) The diffusive part becomes dominant over the convective
part when capillary pressure gradients are higher with respect relative permeabilities
gradients of the wetting phase. It is likely that this occurs at the beginning and end
of the of the simulation when the capillary pressure curve tends to be steeper. During
intermediate time steps of the simulation, the wetting pressure gradients and relative
permeabilities gradients with respect wetting saturations are less pronounced and af-
fect negatively the magnitude of the convective part. However, under the same trend
the capillary pressure derivatives with respect wetting saturations are less prominent
affecting negatively the amount of dispersivity.

Desirable diagonal dominance in —J,5 can be indeed achieved by shortening the
time step. We have observed that the conditioning of this block has an immediate
incidence on the conditioning of the whole system. Moreover, loss of diagonal domi-
nance of this block not only affects negatively the linear solver but also the Newton
method itself suffers to converge even at steps obtained by a fair solution of the lin-
ear system. Hence, it is our opinion that the conditioning of this block is crucial in
the conditioning of the entire coupled system. The reader can verify the resemblance
between the spectrum of Jss and the Jacobian matrix J through inspection of Fig. 2
and Fig. 3.

We should stress that the “degree” of diagonal dominance is proportional to the
pore volume of the gridblocks and inversely proportional to the time step size. On
the other hand, definition of bottom hole pressures as part of the boundary conditions
affects positively the diagonal dominance of the blocks, whereas specified rates in the
source wells affects the diagonal dominance in a negative way.

In this work, we assume the blocks J,, and —Js, being irreducibly diagonally
dominant and the blocks J,, and Jy, being diagonally dominant. Taking into account
the minus sign in front of Jg, all blocks are Z-matrices with positive diagonal entries.

0.01
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o (5] 10 is 20 25 30 35 40 45 50
i
Oor E R SRBEBS< K =

—1 .
(o] 5 ai0 s 20 25 30 35 40 a5
10 T
>< >
o SN Spanm< Pk ok Kk kK kK -
< >
—10 . . . . . . .
o 1000 2000 3000 4000 5000 6000 7000 8000
o.5 . . . . . . — e
>
O k3 BRI BK K CHE SHOHC DK SHKNE =
—0.5 . . . . . . -
—4000 —3500 —3000 —2500 —2000 —1500 —1000 —500 o

Fig. 2. Spectra of the blocks composing the sample Jacobian matriz. From top to bottom, they
correspond to Jpp, Jps, Jop and Jos.
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It is clear that these conditions do not guarantee nice properties on the whole
matrix J. Moreover, the Jacobian matrix is highly nonsymmetric and indefinite in
principle. This is the main argument in favor of decoupling strategies to generate
preconditioners for (9) since we can exploit better convergence properties out of the
blocks than from the complete system itself.

2.5 : : : : : : =
oL J
1.5+ E
s J
0.5

*
O - 3K KK KK * % -
*

—0.5L

X
|

*
|

—1+ 4

—1.5L 4

o 4

o5 A ‘ ‘ ‘ A ‘ *® ‘
—4000 —3500 —3000 —2500 —2000 —1500 —1000 —500 (o] 500

Fig. 3. Spectrum of the sample Jacobian matriz to be used throughout the discussion on two-stage
preconditioners.

In the forthcoming section, we progressively illustrate our analysis by looking
at spectrum changes of a typical Jacobian matrix after applying different operators.
In this particular case, we consider a Jacobian matrix resulting from a small scale
reservoir simulation (i.e. a grid problem size of 8 X 8 x 4) where the blocks J,,,, Jps, Jsp
and —Jss are positive stable, as clearly depicted in Fig. 2. From Fig. 3 we can infer
that the matrix is indeed highly indefinite. Note that although the eigenvalues are
largely spread along the negative real axis the Sylvester’s law of inertia ensures that
there are at least nb (i.e., half of the total) eigenvalues with positive real part.

4. Decoupling operators. In this section we describe the role that decoupling
operators play in the definition of robust and eflicient two-stage preconditioners. The
basic goal is to weaken, as a preprocessing step, the coupling represented by offdiagonal
blocks within the coupled system.

The idea of decoupling operators has been barely stated not only in the gen-
eral literature but also implicitly treated in works on solvers for reservoir simulation.
Somehow their potential as effective preconditioners for coupled systems has been
underestimated or overlooked, perhaps due to the assumption that pressure based
preconditioners account for all the dominant effects in the system. Unfortunately, this
is no longer true under large changes in saturations likely occurring at high flow rates
or at larger time steps.

Bank et al. [6], with their alternate-block factorization (ABF) method, propose
a simple way to weaken the coupling of system drift-diffusion equations that occur in
semiconductor device modeling. Under the light of highly simplifying assumptions,
however, they analyze the viability of the decoupling process for preconditioning linear
systems.

Their work turns out to be of value in the context of multiphase flow since their
decoupling operator leads to a significant clustering of eigenvalues associated with
Jacobian matrices ocurring during the simulation process. Moreover, in very rare
cases (detected only after extensive experimentation with synthetic random matrices
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whose blocks obey our assumptions for the blocks of JJ), the resulting decoupled system
fails to have all eigenvalues lying at the right half of the complex plane. This suggests
the convenience of employing such decoupling operators for removing a high degree of
indefiniteness in the original linear system.

We then proceed to characterize the decoupling operators and their implications
in preconditioning the coupled system.

4.1. Block decoupling. Consider the Jacobian system shown in (9) and let us

define

(10) D= Dpp  Dps _ diag(Jpp) diag(Jps)
Dsp Dss d’t(lg(Jsp) dmg(Jss) ’

that is, a matrix of 2 x 2 blocks each of them conataining the main diagonal of the
corresponding block of J. It clearly follows that

0 A_l Dppjsp - spJpp ppJSS - .SpJpS
D D

(J% "D)
Jb J

where A = D,,D,s — Dps Dy, and the superscript D has been introduced for later

AT 0 Dy J,, — D,sJ Dy J,s — DygJ
D _ -175 _ ssYpp ps sp ssYps psss

(11)

notational convenience. We can observe that the main diagonal of the main diagonal
blocks is equal to one. Conversely, the main diagonal entries of the offdiagonal blocks
are all equal to zero. In fact, we can expect that the degree of coupling of the off-
diagonal blocks of J has been reduced to some extent. Bank et. al. [6] observe that
this operation weakens the coupling between the partial differential equations which
turns out to be in our particular case, the equation for each phase.

Note that the operation is simple to carry out and may not imply alterations to
the underlying data structure holding the coefficients (e.g., diagonal matrix storage.)
In this case, five diagonals of length nb are enough to go back and forth between the
original system J and the partially decoupled system JP.

In physical terms, the decoupling operator tends to approximate pressure coeffi-
cients as if saturations derivatives were neglected from the transmissibilities compo-
nents. Hence, this is like “time-lagging” or evaluating some transmissibilities explicitly.

We prefer the form D~!J over JD~! since the latter may loose the inherent
diagonal dominance of J. Other implications of this choice will be discussed in the
next subsection.

The above decoupling or ABF operator admits an alternate representation. We
can associate smaller matrix blocks with with individual unknowns within the mesh.
This means to permute rows and columns in an interleaved fashion and to number
every pressure unknown followed by the saturation unknown at the same gridblock and
repeat this for every gridblock. Let P be the matrix that performs such permutation
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and define

{ZM ‘ZL? . {1,nb
~ J J Jon
J=pjp=| P 7 i
jnb,l jnb,? e jnb,nb

where

Gy U
Jii = ( Jady (as)is ) ’

is the 2 X 2 matrix representing the coupling between unknowns.
It clearly follows for an invertible D that

D=PDP' & D '=pD 1Pt

Hence, D! is a block diagonal matrix given whose blocks are the inverse of each
local problem at each gridblock. That is,

Jii 0 0
- 0 Jii 0
(12) D™t = ’
0 e 0 J;bl’nb

To follow the underlying notation, let us define the alternate decoupled system as
JP =D-1J = PD"1JP.

This idea appears rather natural. In fact, Behie and Vinsome [9] comment about
the possibility of decoupling more equations in their combinative method but only
with respect pressure coefficients. They did not forsee the positive effect, as we shall
see here, that a full decoupling of the gridblock has in conditioning the system.

The core of the combinative approach is the effective solution of pressure based
systems. In this situation, there is no need to go beyond in the decoupling process
as expressed in (12). The coefficients introducing the coupling with pressures are
eliminated within the gridblock by Gauss elimination so that corresponding coefficients
at neighboring gridblocks are expected to become small. To be more precise, let

(Wp)l AQ 0
~ 0 W, 0
(13) A T
0 0 (Wp)nb
where

9,74 t i t7-1
(Wp)z = lpuxnu — €161 + (eljiiel) eleljii >

and e; = (1, O)t. Therefore, the operator Wp is a block diagonal matrix that removes
the coupling in each 2 x 2 diagonal block with respect to the pressure unknown. In
fact, it readily follows that

W VT = T 7 7 Jop): 0
(Wp)idii = Jii — eret Jii + (eiJn-el) ere] = ( E pp)l.d. ) .
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Similarly, we could define an operator W, with the canonical vector ey = (0, 1)t.
The operator W, was introduced by Wallis in his IMPES two-stage preconditioner
[52].

The consecutive counterpart, W, of the alternate representation of operator Wp
is given by

0 Inbxnb Jsp Jss

T Jpe

T\ Jar ar )

Clearly, the lower blocks are unmodified as well as the main diagonal of the resulting
pressure block (i.e., Jsvgp = J,p and Jor = Jss.)

In order to reduce the already decoupled system to one particular set of coeffi-
cients, say pressures, the operator R; € R™*?" is defined by

o = g = ( AT'D,, 0 ) ( Dyspp — DysJsp Disdps — Dpyss )

(14)

(R;)ij:{l if i=Fk and j=142(k-1),

0 otherwise

for E = 1,2,...,nb. In this particular lexicographic alternate ordering of unknowns,
we could also define j = 2+ 2(k — 1) for R in order to obtain the corresponding
saturation coefficients.

Finally, we stress that this presentation can be easily extended to more unknowns
sharing a given gridpoint (e.g., three phases and multi components systems.)

4.2. Properties of the partially decoupled blocks. In general, it is a diffi-
cult task (and in fact, an open problem in many related fields [1, 6, 12, 29, 40]) to
characterize properties associated with the entire coupled Jacobian matrix and even
more so if it has been affected by some of the operators described above. This is one
of the reasons that theory concerning existence and applicability of different linear
solvers or preconditioners are based on some specific assumptions on the matrix J.
For the class of matrices that we obtain, there is not yet an easy-to-check theoretical
result that determines when a matrix is positive stable and moreover, when the sym-
metric part of a matrix could have only positive eigenvalues although the matrix has
some blocks that are M-matrices and present diagonal dominance.

In the applications of iterative solvers it is fundamental to have an idea of the
spectrum of the operators on which they are applied. Specially, one would like to
know if the eigenvalues are located in the right half plane of the complex plane to
guarantee that convergence theory of the iterative method is valid. Also important is
to detect a possible clustering of the eigenvalues since this may increase the rate of
convergence. In this section, we briefly present two immediate results related to the
individual diagonal blocks composing the already partially decoupled Jacobian matrix
through D. Consider the decoupled matrix with a block-partitioned representation as
showed in (9).

TuHEOREM 4.1. Let J,, and —Js, be diagonally irreducibly Z-matrices and let J,
and Js, be M-matrices in R™*"™ | then Jég and JE are M-matrices.

Proof. We prove separately that Jgj and JLZ are Z-matrices and strictly diagonally
dominant matrices. Then by [3, Lemma 6.3, page 204] it immediately follows that they
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are M-matrices. We only show that J]g is a M-matrix. The proof for J£ proceeds

similarly.
First, note that (A™!). . < 0,Vi=1,2,...nb. In fact, (Dpp), ; , (Dps), ; and (Dsp), ;
are all positive and (D,,), ; is negative for ¢+ = 1,2,...nb, so that

(A_l)i = (DppDss = DspDps); i = (Dpp); s (Dss); j = (Dsp); ; (Dys); ; < 0.

’
T

Therefore
(J]f;)m _ (A‘l)m_ [(DSS)M(JW)Z.”]. - (Dps)z.J(Jsp)Z.’j] >0,¥i# j,i,5=1,2,...nb

since (Jpp); ; < 0and (Jsp)ij <0,Vi#j,4,5=1,2,...nb.
For the strict diagonal dominance, consider the summation over the absolute value
. . . . D
O}f; the elements (except the one lying on the main diagonal) along the i—th row of J,
then

nb nb
Z ‘(Jpp)i,j = Z (A_l)i i (Dssdpp — DszSP)i,j
j=1 j=1 ’

J# J#

= ‘(A_l)iﬂ- ‘(Dss)i,i ib: ‘(Jpp)z,]‘ + ‘(Dps)i,i ib: ‘(Jsp)id'
J=1 j=1
J# J#i
<] (a7, e [Pl + [P0, | [P, |
=1.

|
The inequality is obtained due to the strict inequality held in every row of Jg,
(Note that we can not affirm this with the exclusive contribution from the irreducibly
diagonal dominance in Jy,.) We can say then, that all entries of the transformed
blocks are bounded by 1, which is the value that all entries have in the main diagonal.
COROLLARY 4.1. The diagonal blocks J]f])o and J£ are posilive stable.
Proof. This is just the result stated in [3, Theorem 6.12,page 211]. |
In Fig. 4 we show the spectrum of the resulting Jacobian matrix after applying the
decoupling operators D~! and Ww. Interestingly enough, the Jacobian spectrum has
been significantly compressed and shifted to the right half of the complex plane with
D!, In contrast, strategies that intent to preserve much of the original structure of
the matrix perform very poorly as preconditioners (see the great resemblance between
the spectrum of WJ and J.) Several experiments like this one have indicated that
the best strategy is to break as much as possible the coupling between equations (or
unknows) than trying to preserve some desirable properties of the individual blocks.

5. Two-stage preconditioners. We begin by giving a brief background as mo-
tivation for the forthcoming ideas. The order of the following presentation obeys
roughly a chronology of how the ideas that led to the formulation of the various
two-stage preconditioners arose. We discuss in detail Wallis two-stage preconditioner
format [52], and a couple of extensions to it in additive and multiplicative form. We
end this section with a more eflicient approach consisting of the combination of the
decoupling operator D~! and the inexact solution of standard block preconditioners
such as block Jacobi, block Gauss Seidel and Schur complement based.



16 RAME, KLIE AND WHEELER

x 10

—2r > ok s >
—a . . . . . . . . .
o 0.2 o.4 O.6 0.8 a 1.2 1.4 1.6 1.8 2
0.2 T T T T T T T T
e
O.1 —
s
O 33 oK K e - 3 -
>
—o.1 |
<
—_o.2 . . . . . . . :
—4000 —3500 —3000 —2500 —2000 —1500 —1000 —500 o 500

Fig. 4. Spectra of the partially decoupled forms of the sample Jacobian matriz. The one above
correspond to D™1J, and the one below to W J (or equivalently, WJ.)

> X 10
T T T T T T T T T
> w <R >
° o -
> . . . . > ok < . . . .
o 0.2 o.4 0.6 o.8 a1 1.2 1.4 1.6 1.8 2
. x107°
T Se—r < e T = e — T T
S S TR e >
O > M = > oo W* e K
> > S > < 7K
—1 . o n . . . . .
—0.4 —0.3 —0.2 —0.1 (o] o.1 0.2 0.3 o.4
o0.o1 ES >
o < < |
—0.01 S e
—0.03 0.03
x 10°°
i T T T T Frey T T T T
* s S *
o SRS S0 S s = = = I SIS -
—1 . . . > 2 o X > . . .
0.5 0.6 0.7 0.8 0.9 i 1.1 1.2 1.3 1.4 1.5

Fig. 5. Spectra of each block after decoupling with D. From top to bottom, they correspond to the
(1,1), (1,2), (2,1) and (2,2) blocks



TWO-STAGE PRECONDITIONERS 17

5.1. Background. Efforts to develop general and efficient solvers for systems
coupled elliptic and parabolic equations have started to emerge strongly in the last
years. However, Behie and Vinsome [9] appear to be the first to consider combinative
preconditioners as a form of decoupled preconditioners in reservoir engineering. A
minor change to the idea but seeking to incorporate saturation information was later
proposed by Behie and Forsyth [8]. Wallis refined the original algebraic presentation
of these authors and proposed the iterative solution of the pressures in order to tackle
larger reservoir simulation problems [52]. Meanwhile, developments on the concatena-
tion or combination of inexact preconditioning stages have been proposed for general
symmetric and nonsymmetric problems [51], but specially in the context of domain
decomposition [11, 13, 36] for flow in porous media. These works, however, do not
address the the topic of specialized preconditioners for coupled equations.

In CFD the idea of using decoupled matrix blocks for the construction of precon-
ditioners for iterative methods and for the implementation of solvers has been around
longer. Segregated algorithms have been successfully applied for solving Navier-Stokes
equations (see e.g., [35, 47] and references therein.) These methods rely upon the al-
ternate solution of pressures and velocities or in the exhaustive solution of one of them
to get a good overall solution of the problem. Similar type of ideas has been devel-
oped in sequential formulations at the level of time discretization rather on the level
of linear solvers or preconditioners for fully implicit formulation.

The use of two-stage methods is not new (see e.g., [41] and references cited there).
In fact, these methods are known under different names and are scattered throughout
the literature. They are also known as inner-outer or inexact iterations [22, 28, 32].
In the context of preconditioning they have been referred to as nonlinear, variable or
inner-outer preconditioners [3, 4, 43]. They have been also subject of study in parallel
computing settings (e.g. see [18] and further references therein.) However, in the
context of large-scale systems of coupled equations they strangely seem to have been
overlooked.

The renewed interest in using two-stage methods obeys primarily to the computa-
tional cost associated with solving large inner linear systems. Recent developments in
Krylov-subspace methods have also contributed to the renewed interest in this area.
For example, the Uzawa algorithm has been around for more than 35 years and it
was recently that some researchers formalized the inexact version of this algorithm
[14, 28]. In same fashion, intensive work has been devoted to extending current non-
symmetric iterative solvers to be able to accommodate the inexactness or variability
of the preconditioner from iteration to iteration; e.g. [3, 43, 49, 50].

In this work, we use right preconditioning. It is well known that this form is
preferable over left preconditioning for comparing different preconditioners since it
makes the relative residual norms measured within the iterative solver invariant. This
norm size invariance simplifies the implementation of globalization methods, such as
linearch backtracking, within an inexact Newton procedure such as the one depicted
in Algorithm 2.1. Furthermore, there is yet a more compelling reason for our adopting
right preconditioning. If a left preconditioner is inexact or unavailable in closed form,
there is no way to measure norms accurately, or rather consistently, throughout the
various steps of an iterative method.

We only make an exception when we include the decoupling operator D~! as a
preprocessing step for the consecutive ordering of unknowns. In view that this oper-
ator is fixed, cheap and that its proper application introduces the desirable diagonal
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dominance of the main diagonal blocks of the coupled system (9), we consider its use
on the left. Hence, the application of D~! implies the use of weighted norms for all
vector norms. That is, if r = (r,,, 7,,)" is a given residual (which concatenates residuals
of both the wetting and the nonwetting phases) whose norm needs to be computed
then

I#llpms = |A ] (1Desrn = Dyarall + 1= Dayr + Do)

Clearly, this does not introduce any major complication or overhead into the imple-
mentation. Moreover, this step can be also regarded as a scaling step for the coupled
variables of the nonlinear function in a given Newton step. This incidentally improves
the robustness of the whole Newton method. Further discussion on scaling within the
Newton method can be seen in [24] and [16].

5.2. Combinative two-stage preconditioner. Consider the two-step precon-
ditioner M expressed as the solution of the preconditioned residual equation M,v = r.
Also, denote JWVr = ij. Then the action of the preconditioner M, is described by
the following steps,

ALGORITHM 5.1.

1. Solve the reduced pressure system (R;jWPRp) p = R;Wpr and denote its
solution by p.

2. Obtain expanded solution p = Ryp.

3. Compute new residual + = r — Jp.

4. Precondition and correct v = M~'7 + p.

The action of the whole preconditioner can be compactly written as
. ~ -1~
(15) v=M"1r=M" [I — (/= m1) R, (RLT"* R,) R;;Wp] .

The preconditioner M is to be preferably computed once for each Newton iter-
ation. This means that M should be easily factored. The system (R;JWPRP) p =

R;Wp'r is solved iteratively giving rise to a nested-like procedure. We finally remark
that M, is an exact left inverse of J on the subspace spanned by the columns of R,.
That is, (M;1J) Ry = Ry,

This is the preconditioner as stated by Wallis [52]. In contrast to the combinative
method of Behie and Vinsome [9], he proposes to solve the pressure system iteratively
and formalizes the form of the operators Wp and R,. Although Wallis refers to the
preconditioner as two-step IMPES preconditioner, we consider more appropriate the
term two-stage combinative preconditioner according to a more accepted terminology
for convergent nested inexact procedures and to the former designation employed by
Behie and Vinsome. Fig. 6 shows the spectrum of the operator for an exact solution
of the pressure system. In this particular example, M was taken to be the tridiagonal
part of J.

5.3. Additive and multiplicative extensions. With the use of D! and in-
corporating solution from saturations we can improve the quality of the previous
preconditioner. We propose two different ways to accomplish this: additively and
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FiG. 6. Spectra of the Jacobian right-preconditioned by the exact version of the combinative operator.

multiplicatively. In the following we present both procedures for computing the pre-
conditioned residual v = ]Wa_dldr and v = M} 7 The additive combinative two-stage
preconditioner is given by

ALGORITHM 5.2.

1.

ov s

6.

mul

Solve the reduced pressure system (RéjDRp) p = R;ﬁ_lr and denote its
solution by p.

Solve the reduced saturation system (RijDRs) s = Riﬁ_lr and denote its
solution by S.

Obtain expanded solutions p = R,p and s = R,s.

Add both approximate solutions y = p + s.

Compute new residual 7 = r — jy

Precondition and correct v = M~17 +v.

The multiplicative combinative two-stage preconditioner proposes the sequential

treatment of the partially preconditioned residuals instead. In algorithmic terms it is
given by
ALGORITHM 5.3.

1.

wo

5.
6.
7.

Solve the reduced pressure system (R;jDRp) p = R;f)_lr and denote its
solution by p.

. Obtain expanded solutions p = R,p.
. Construct new residuals # = r — Jp.

. Solve the reduced saturation system (RijDRS) 5 = Riﬁ_lf’ and denote its

solution by S.
Obtain expanded solutions s = R;S.

Compute new residual w =r — J(s+ p).
Precondition and correct v = M~ 1w + s + p.

Assuming that both reduced pressures and saturations are solved exactly and
introducing the notation

(16)

=R (RTPR) " RID,
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for [ = p, s, the action of these preconditioners can be characterized by

(17) v=Myr=M"1 [I - (f— M) (1, + ts)] T
and
(18) v=Mahr =M1 = (T=0) (1 + 1, — 1,71,

The difference between the two preconditioners resides in the inclusion of the cross
term 7 thp resulting from the computation of a new residual in Step 3 of Algorithm
5.3. This residual is next improved by saturation solutions. Preliminary computational
insights of these preconditioners were presented in [37]. In Fig. 7 and Fig. 8 we can
observe the job that these preconditioners do in clustering the spectrum around the
point (1,0) of the complex plane. Note that the multiplicative two-stage preconditioner
produces the major clustering of the real parts of the eigenvalues around unity among
the three even though the resulting preconditioned system has a negative eigenvalue.

5.4. Block two-stage preconditioners. In the same way that decoupling oper-
ators have interpretation in block or alternate form, we can express the preconditioners
described above in block form. However, in this opportunity we present them in a sim-
pler form given that the decoupling operator performs a “good” job in clustering the
spectrum of the original coupled system. In other words, we apply the block versions
directly to JP and omit the correcting step via M as it is depicted in the combinative
preconditioner and its corresponding additive and multiplicative extensions. The rea-
son for this is that the overhead introduced by this operation is difficult to compensate
for by its own preconditioning effectivity. In Section 6 we extend the analysis of its
action to reinforce this view.

To facilitate the presentation we consider the factored form of the block-partitioned
system (11),
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Ly 42 (42) 7\ [P 0 Lupsent 0
(19) JP = bgb pIbenz ( 0 JSIZ) (Jg)il 2 Lo )
so that
p\7! _ (SD) - 0
(20) ) IR CONR TN

L —J2 (42)7
0 Trbxnb

-1

where SP = J]g - Jpe (JSDS) Jgg is the Schur complement of J¥ with respect JLZ.
t

D

w

Therefore, if r” = (7’ ST
(20) can be described as follows.

tioned blocks associated t
ALGORITHM 5.4.

D D . . o~

Solve J7.q = ;7 and denote its solution by g.

b is a given residual, the inexact action of the parti-
0

1. -

2. w= —Jga(j—l— TB.

3. Solve §Ps = w and denote its solution by 3.
4. y= J£§.

5. Solve J]gz = y and denote its solution by Z.
6. p=q¢—Z.

7.

Return (p,3).

If steps 1, 3 and 5 are solved iteratively instead of via a direct method, we obtain
a two-stage method. Obviously, the convergence of the whole procedure depends
heavily upon the convergence of each individual inner solve. Regarding this as a
preconditioner, its efficiency is dictated by the way in which tolerances are chosen and
satisfied for every new outer iteration.
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Clearly a preconditioner like this is costly to implement in our context. However,
under this presentation it is straightforward to devise the steps for carrying out the
action of different approximations to (JP)~!. When J,s; and Js, are assumed to
be zero matrices we obtain the two-stage block Jacobi (25BJ) preconditioner. The
two-stage Gauss-Seidel (25GS)results from neglecting only the block J;,. A more
robust preconditioner can be obtained by means of a better approximation of the
Schur complement, S, where all blocks of the original matrix are involved. In order
to maintain this approximation under reasonable computational costs, it is customary
to provide a simple approximation to (J]g)_l.

Spectrum of these preconditioners for exact solution of the block subsystems are
shown in Fig. 9-11. In Fig. 9, we can observe the significant clustering of the
eigenvalues around the complex point (1,0) produced by 2SBJ preconditioning. Not
surprisingly, the 25GS block preconditioner does an even better job of clustering the
eigenvalues except for one that appears separated from the rest as shown on Fig. 10.
There is also a certain resemblance between the action of this preconditioner and that
of the multiplicative two-stage preconditioner although the latter leaves one eigenvalue
on the left half of the complex plane. This fact illustrates the close relationship between
these preconditioners which shall become more evident in the next section.

Strategies involving the Schur complement have been employed in several linear
solver variants. In CFD problems, many segregated-type algorithms work under this
concept. A classical example is the Uzawa algorithm which solves the Schur comple-
ment with respect to velocity coefficients by the Richardson iteration. In contrast to
flow in porous media applications, the global discretized equation is never assembled
and solved in its entirety for fully implicit formulations. Many variations are possible
(see [35]) ranging from solving separately for each nodal unknown to solving simulta-
neously for all the degrees of freedom associated with one or more (but not all) of the
primary unknowns. Among the several variants, we construct a third preconditioner
inspired by the discrete projection method proposed by Turek [47] to solve saddle
point formulations arising from the discretization of Navier-Stokes equations for the
incompressible flow. The algorithm departs from an approximation to the Schur com-
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plement with respect pressures and solves iteratively the hyperbolic component given
by the velocities (role represented by saturations in our case). That is, to obtain the
preconditioned residual (r,,7,) we perform the following steps

ALGORITHM 5.5.

oyl
L Set (JB) "~ (JB)~,
o\ -1 oy —1
2. Solve [J]g - J]g (Jslz) Jgo] v, =D — J]g, (Jg) rD iteratively. Obtain o,.

3. Solve JSD’US = 7‘5 — Jbgﬁp iteratively. Obtain v,.

S
4. Return (d,,95)", i.e., the preconditioned residual corresponding to (7, 7.).

The idea behind this preconditioner is to give a sharper solution to pressures
given some approximation to saturations. Note that this presentation comes from a
different factorization to JP given by (19). Conversely, the Schur complement with
respect pressures leads to emphasizing more the saturation components. Thus, in
agreement to the IMPES method we consider Algorithm 5.4 to give a more sound
physical and numerical alternative. From now on, we refer to this preconditioner as
discrete-projection two-stage preconditioner.

The operator js_slis chosen to be computationally cheap. Turek [47] suggests js_sl
to be the inverse of the diagonal part of J, (i.e. Jacobi preconditioner.)
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Fig. 10. Spectra of the Jacobian right-preconditioned by the exact version of the two-stage block
Gauss-Seidel operator.

5.5. Relation between alternate and consecutive forms. If M indicates
any of the preconditioners described above for the Jacobian matrix .J, it is it is desirable
that
(21) |1-sm <o<t

which implies the following two conditions
e Coercivity:

<JM_1x,Jc> >(1-o0)(z,z), Yo € R".
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e Continuity or boundeness:
|spte] < (14 o) fal] Vo e R

Under this circunstances, the two above properties predicts the following error
bound (convergence factor) for GMRES (a similar characterization has not been pro-

posed for BICGSTAB)
(1-o0)* 4o

(1+o)  (1+0)"

The better the preconditioner the smaller we could expect o to be. In this sense,
it is important to see how the preconditioners developed here are related and predict
the convergence of the iterative method. For the sake of simplicity, we assume that we
are able to solve exactly (in terms of machine precision) every inner reduced system.

There is evidently a relation between the additive and block Jacobi two-stage pre-
conditioner and between the multiplicative and Gauss-Seidel two-stage preconditioner.
By looking at first step of Algorithm 5.2 we can see that the solution of the system is
equivalent to the want that we have been solved in terms of Jgj. In fact,

o) (RLTPR,) p= RLD™'r & (RLPDTIP'R,) p = RLPDT'P!

D

_.D
<:>Jppp_rn

Similarly, we can obtain the same correspondence for the saturations. Once a
solution for both type of variables is computed, the alternate two-stage preconditioners
proceed to improve the residuals by a correction with the preconditioner M.

It can be shown that

E,=1-JM;"
— - Jm! [I - (i - M) R, (Rf fWPRp)_l R;;va]

= (1-Jm ) (I ~JR, (R



TWO-STAGE PRECONDITIONERS 25
In a similar way, we can get expressions for the additive and multiplicative extensions,

Eoqd = (I - JM—l) [I —J(t, + ts)] ,

Eolt = (I— fM—l) [I - f(tp i, — tJDtp)] .

In view of (22) we can conclude that the two-stage block Jacobi and the two-stage
Gauss-Seidel preconditioners can be expressed as

Egy=1—-JMzl=1—-J"(,+1,),

Egs =1T—JMg=1-J° (1, +1, - 1,J°1,) .

Note that even if we drop the correction step from the alternate two-stage pre-
conditioners, there is not way to reproduce the same action between the two types
of preconditioning: the alternate deals with the uncoupled system, whereas the con-
secutive already deals with the decoupled system that it is expected to be easier to
solve.

Hence, we can separate the error propagation associated to M from the error
propation associated to the whole two-stage preconditioner. To ensure convergence,
it is necessary that the norms of each of this errors are bounded above by 1. This
imposes the same restrictions to each of the factors involved in the complete error
progation expressions. Moreover, a high error propagation norm (one marginally close
to 1) should be compensated by a low error propagation from the other factor in order
to get faster rates of convergence.

It is at this point, that we find a serious limitation, not say drawback, with the
use of an extra preconditioner to correct residuals. This situation seems to be more
stringent as the problem size or inherent complexity of the problem increases. To put
things in perspective, we can mention a couple of facts,

e There is an inherent penalty for introducing the operator M. The computa-
tion of new residuals involves one extra matrix vector multiplication and an
AXPY operation. This can certainly be computational demanding for large
scale problems and for iterative solvers that perform more than one call to
the preconditioner for iteration (e.g., BICGSTAB, CGS).

e In favour to decoupling operators, we have seen that they are effective in clus-
tering the eigenvalues of the original highly indefinite Jacobian matrix. The
combinative, additive and multiplicative misuse this property and implicitly
reimposes this task to the operator M. For instance, we require

| Eaaall < |1 =7 (1 + 1)

-0 <1,

for the two-stage additive error propagation operator. If ¢, 4+ t; performs a
good job preconditiong j, we should expect that M does a better or at least,
a similar effect. The overall effect is like starting a new preconditioner from
scratch that has to eliminate those error frequencies already removed by ap-
proximate solution to pressures and saturations. Certainly, this problem can
be hard to calibrate for the sake of robust good two-stage preconditioner. Not
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surprisingly, the spectrum plots for the alternate two-stage preconditioner are
less compact than their consecutive counterparts. Of course, a more elabo-
rated M may eventually provide the desired effectiveness but at a significant
cost. Although the use of the operator M seems to be better justified in the
original combinative method, yet it has to capture part of the hyperbolic be-
havior contained in saturations upon a difficult couple linear problem (recall
spectrum pictures in Fig. 2-4,) instead of taking advantage of a reduced sat-
uration problem that can be easily obtained by a better decoupling strategy.
More precisely, a simple computation lead us to

Eaga = (1= TM7) [1= T (t, +1,)]
= (1= T [1= TP (ty + 1) = (T = TP) (1, + )]
Consequently, by taking norms we obtain
| Eadall < v (o +n),

where
y= =T
—H(J 7) t + 1)
= [|Bssl| = |1 - TP Mg}

The use of the preconditioning stage suggested by M can be only justified in
special cases. For example, it can be an operator for retrieving part of the global
information lost in a line correction method. Other acceptable form could be a coarse
representation of the original discretization. However, reliable coarse meshes for hy-
perbolic problems are not easy to obtain creating a problem for enhancing saturation
residuals. In general, it should be designed under simple terms on sequential im-
plementations and with more relaxed bounds if it is suitable for vector and parallel
implementations. We believe that better results at lower computational demands can
be obtained by incorporating more information contained in the decoupled blocks and
improving the performance of each subsystem solution.

5.6. Efficient implementation. In this section we propose several strategies
to enhance the computational efficiency of the two-stage preconditioners. All of the
suggestions included here have undergone preliminary evaluation and their implemen-
tation in the iterative solvers’ code is underway.

In order to decrease the computational requirements of our preconditioners we
can use the old but still effective method of line correction. This concept was first
introduced in reservoir engineering by Watts [53]. The basic idea is to add the resid-
uals in a given direction (collapsing) and then solve the reduced problem in a lower
dimension.

The solution should force the sum of the residuals in the collapsed direction to be
zero. Those solutions are then extended (projected back) onto the original dimension
and new residuals are formed. Frequently, in order to capture heterogeneities along
the collapsed direction, a general relaxation is performed on the new residuals. The
collapsing is done, in most cases, along the vertical direction (i.e., depth.) Let us
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denote the depth coordinate as k containing nz gridblocks along this direction and,
¢ and j as the plane coordinates with nz and ny gridblocks, respectively. Suppose a
lexicographic numbering of nb unknowns with each one of them ocuppying the position

(i,7,k). Hence, the collapsing operation can be represented by a rectangular matrix
C € R™*"™*" guch that

(C)lk:{l if l=(k—-1)nz+ny+1,

0 otherwise

for E = 1,2,...,nz. The line correction can be described by the following steps for
solving Ty = r:

ALGORITHM 5.6.
Collapse residuals by means of the operator C* and solve (C'T'C') w = C'r,
Expand solution to the original dimension: w = C'w,
Compute new residuals ¥ = r — T'w, and,
Perform some relaxation steps by a suitable stationary iterative method along
the collapsed direction (e.g. line Jacobi, line SOR.) Obtain z.
5. Set y = w + z.

= W N

We proceed to describe how to incorporate this method in the framework of two-
stage preconditioners.

Consider the stage for solving the pressure part in any of the preconditioners
defined for the alternate ordering of unknowns. The application of line correction, for
instance, in the combinative approach implies the following computation in steps (1-3)
in Algorithm 5.1,

—~— ~ ~ ~ -1 ~, —
F= RW,r — JC (R R,) T RLW,r,

and apply some suitable relaxation steps on 7. Here, ]~%p =CR,.

Note that neither the operator Rp nor R, nor C' have to be explicitly formed
for implementation purposes. Moreover, approximation of the reduced matrices in
pressure or saturation can be stored in factored form prior to the execution of the
outer linear solver. Application of R,, C' or any other analogous reduction operator
can be implicit performed onto the residuals to be preconditioned.

The translation of this procedure to the preconditioners for consecutive ordering of
unknowns is straightforward. Note that according to Theorem 4.1, the convergence of
any point-, line- or block-type stationary iterative method is guarantee for the resulting
decoupled blocks via D~!. This result comes from the fact that from any M-matrix
we can produce a convergent weak regular splitting (see [3] for further details.).

Further efficiency enhancements may be realized in the use of inexact methods ap-
plied to individual steps of the two-stage preconditioners. Essentially, all alternative
and consecutive preconditioners proposed in this work construct the preconditioned
residual by (iteratively) solving systems whose coefficient matrices are diagonal blocks
of the decoupled Jacobian. We can certainly solve these systems in parallel by an it-
erative Krylov-subspace method with a block-type preconditioner (e.g., block Jacobi).
A variety of domain decomposition approaches, both overlapping and nonoverlapping,
can be used to precondition these problems.

In particular, overlapping domain decomposition algorithms, e.g., additive Schwarz,
do not require the coarse-grid component in the preconditioned residual computation
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TaBLE 1

Results for GMRES preconditioned by the nine schemes tested in this work. N;:: number of outer
iterations; Ts: elapsed time in seconds for the solver iteration; T, : elapsed time in seconds to form
the preconditioner; N; o: average number of inner iterations per unit outer iteration. Preconditioners
shown are from top to bottom: Tridiagonal (Tridiag.), Incomplete LU factorization with no infill
(ILU(0)), Block Jacobi (BJ), Two-stage Combinative (2-S Comb.), Two-stage Additive (2-S Add.),
Two-stage Multiplicative (2-S Mult.), Two-stage Block Jacobi (2-S BJ), Two-stage Gauss-Seidel (2-5
GS) and Two-stage Discrete Projection (2-S DP)

‘ Timestep Size — ‘ At=.1 ‘ At = 1.

Precond. N T T, | Nig Ny T T, | Nig
Tridiag. 782 | 12.16 | 0.26 >1000 - -

Prob. | ILU(0) 859 | 109.01 | 0.37 >1000 - -

Size BJ 363 7.60 | 0.17 358 7.57 | 0.18

4 2-S Comb. 390 | 227.50 | 0.63 42 | >1000 - -

X 2-S Add. 42 | 83.38 | 1.00| 121 30 79.00 | 0.88 | 200

8 2-S Mult. 19| 38.38 | 1.00| 120 18 47.63 | 0.88 | 195

X 2-S BJ 32| 19.54 | 0.02 | 123 21 2441 | 0.02 ] 198

8 2-S GS 16 9.53 | 0.02| 119 13 15.42 | 0.02 | 192
2-S DP 15| 15.80 | 0.03 | 122 11 20.39 | 0.04 | 188

‘ Timestep Size — ‘ At=.1 At =1.

Precond. N T, T, Niq Ny T, T, Ni,
Tridiag. >1000 - - >1000 - -

Prob. | ILU(0) 840 | 141.22 | 5.51 >1000 - -

Size BJ 170 | 152.51 | 37.18 424 | 381.22 | 37.44

4 2-S Comb. 555 | 527.25 | 9.63 15 | >1000 - -

X 2-S Add. 237 | 680.00 | 13.50 52 384 | 1678.13 | 13.50 80

16 2-S Mult. 103 | 305.63 | 13.50 52 90 | 392.75 | 13.50 79

X 2-S BJ 52 | 58.66 | 0.09 52 37 61.77 | 0.09 80

16 2-S GS 25| 28.77 | 0.09 52 19 31.68 | 0.09 78
2-S DP 21| 49.91 | 0.13 63 17 52.27 | 0.13 85

for systems involving parabolic convection-difusion with moderate convective compo-
nent (see [20] for detailed theory on the subject). Results like this are applicable in
the algebraic setting of nonsymmetric M-matrices which are diagonally dominant.

Additionally, convergence properties of overlapping schemes are better in 2-D than
in 3-D, making them very appealing to solve the 2-D problems arising from the line-
correction method. Very robust and highly parallel preconditioners can be formulated
this way. Other nonoverlapping domain decomposition methods can also employed
but their success for nonsymmetric indefinite systems is more limited than that for
the overlapping schemes.

6. Computational experiments. In this section we discuss the results of the
numerical experiments shown in Tables 1 and 2, which were designed to test the ideas
covered in this work.

The matrices and right hand side vectors for our test problems were generated by
the two phase black oil simulator RParSim. Our test model consists of one production
and one injection vertical wells located at opposite corners of the reservoir. The
permeability is uniform in the areal sense and 15 times higher than that in the vertical
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TABLE 2

Results for BiCGSTAB preconditioned by the nine schemes tested in this work. N;:: number of outer
iterations; Ts: elapsed time in seconds for the solver iteration; T, : elapsed time in seconds to form
the preconditioner; N; o: average number of inner iterations per unit outer iteration. Preconditioners
shown are from top to bottom: Tridiagonal (Tridiag.), Incomplete LU factorization with no infill
(ILU(0)), Block Jacobi (BJ), Two-stage Combinative (2-S Comb.), Two-stage Additive (2-5 Add.),
Two-stage Multiplicative (2-S Mult.), Two-stage Block Jacobi (2-5 BJ), Two-stage Gauss-Seidel (2-5
GS) and Two-stage Discrete Projection (2-S DP).

‘ Timestep Size — ‘ At=.1 ‘ At = 1. ‘

Precond. N T T, | Nig Ny T T, | Nig

Tridiag. 127 3.42 | 0.26 227 6.20 | 0.27

Prob. | ILU(0) 239 | 57.90 | 0.37 >1000 - -

Size BJ 80 2.98 | 0.17 75 2.83 | 0.17
4 2-S Comb. 106 | 113.75 | 0.50 40 125 | 253.50 | 0.50 81
X 2-S Add. 24 | 88.75| 1.00 | 118 34 | 158.38 | 0.75 | 183
8 2-S Mult. 13| 61.38 | 1.00| 115 14| 67.38 | 0.75 | 188
X 2-S BJ 23| 24.97| 0.02| 116 241 46.91| 0.02| 173
8 2-S GS 11| 11.91 | 0.02| 115 12| 24.15| 0.02 | 177
2-S DP 10 | 20.04 | 0.03] 118 14| 44.01 | 0.03 | 179

‘ Timestep Size — ‘ At=.1 At = 1.

Precond. N T, T, Niq Ny T, T, Ni,

Tridiag. 176 | 43.37 | 5.54 >1000 - -

Prob. | ILU(0) >1000 - - 424 | 381.22 | 37.44

Size | BJ 57 | 118.53 | 45.99 69 | 115.64 | 37.46
16 2-S Comb. 170 | 292.50 | 9.75 14 180 | 690.00 | 12.00 25
X 2-S Add. 68 | 361.75 | 13.38 50 61 | 490.63 | 13.18 77
16 2-S Mult. 44 | 238.88 | 13.38 49 32 | 255.25 | 13.38 75
2-S BJ 41 | 83.21 | 0.09 49 23| 68.91| 0.09 76
4 2-S GS 17| 35.82 | 0.09 50 11| 33.81 | 0.09 76
2-S DP 13| 56.72 | 0.12 61 10| 58.62 | 0.12 82

direction. We use non-uniform grid spacing and two different discretization sizes:
8 x 8 x 4 and 16 X 16 x 4. We ran both cases with time steps At = 0.1, 1.0 days.

The data for the tests was downloaded from the simulation after 3 time steps and
after 2 Newton iterations within the current time level. The code including all the
combinations of linear solver and preconditioner tested was written in FORTRAN 77
and all of the tests were run on a single node of and IBM SP1(RS6000, model 370,
with a 62.5 MHz clock). These nodes give a peak performance of 125 MFlops and
have 128 MB of RAM memory.

The tests included runs made with both GMRES and BiCGSTAB preconditioned
with each of the schemes analyzed in this work and, additionally, with three pre-
conditioner of common use in reservoir simulation (particularly the last two), i.e.,
tridiagonal, ILU(0) (i.e., incomplete LU factorization with no infill) and block Jacobi.

Table 1 shows the results for all the preconditioners applied to GMRES and Table
2 shows the corresponding results for BICGSTAB preconditioned with each of the
schemes. Each of these tables has results for the four possible combinations of time
step size and spatial discretization size. The four columns of each of these sections on
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both tables list the number of outer linear iterations, N, the total elapsed time for the
iteration of the solver, T, the elapsed time incurred in setting up the preconditioner,
T,, and the average number of inner linear iterations per one outer iteration, NV;,,
respectively from left to right.

All of the linear systems were solved iteratively until a norm reduction of 10~¢ was
achieved, relative to the initial one given by the 2-norm of the right hand side since zero
was used as the initial guess in every case. GMRES with tridiagonal precondititoning
was used as the inner solver in every case, wherever applicable, with a restart of 30
and a linear tolerance equal to that of the outer solves.

Some general comments of the results are in order. The traditional preconditioners
do not take into account any of the physics of the multi-phase model and either fail
to converge or are outperformed by some of the more thoughtful preconditioners, as
the trend suggests when the spatial discretization is refined. Notice that neither of
the two problem sizes tested here are anywhere near the size of numerical models
that the reservoir simulation community wishes to tackle in today’s high performance
computing environment.

In particular, ILU(0) fails to resolve the low error frequencies. Moreover, the
block Jacobi preconditioner appears to be the more reliable one of the traditional
kind. However, our implementation of block Jacobi inverts directly four blocks of the
Jacobian matrix. Such a rich block Jacobi preconditioner may not be realizable in
practice, specially in parallel implementations where each of the block should live in
one processor to minimize the communication overhead.

Turning to a more detailed analysis of the results, the timings of BiCGSTAB
and GMRES are comparable inspite of the lower number of outer iterations given by
BiCGSTAB. This owes to the fact that BICGSTAB has two matrix-vector multiplies
per iteration instead of the single one needed by GMRES. Additionally, the conver-
gence of BICGSTAB is erratic, as is well known and can be appreciated in Figure
13.

Comparison between the results for At = 0.1 and those for At = 1.0 show a greater
number of outer iterations for the first four preconditioners (with a few exceptions)
for the longer time step. However, all of the two-stage (except for the 2-S Comb.)
preconditioners give a smaller number of outer iterations for the longer time step.
The key in interpreting these results is in the action of the full-decoupling operator
implemented for the two-stage preconditioners and its own power to precondition the
system. We believe that the weight of the off-diagonal Jacobian blocks after full decou-
pling is less for the longer time step than for the shorter one and the preconditioner is
more effective as a result. To this point, notice that the combinative preconditioner,
which only uses partial decoupling shows a greater number of of outer iterations for
At = 1.0 than that for the shorter A¢. The increased difficulty of the problem with a
longer time step is reflected in all cases by the growth in the average number of inner
iterations per unit outer iteration.

The number of inner iterations per step of the outer iteration is comparable in the
results for both iterative solvers, except for minor differences due to particular con-
vergence history of each case. Notice that in the case of the last five preconditioners
N; o show the accumulated average of both the pressure and saturation components
whereas the 2-S Combinative only solves for pressure components and therefore show
a lower number of inner iterations. An increase in the time step size damages the diag-
onal dominance of the main-diagonal blocks of the decoupled Jacobian thus producing
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harder inner solves, as reflected by the results on both tables. Somehow surprisingly,
a growth in the size of the linear system decreased N;, in every case.

As for the question of efficiency, the consecutive-type preconditioners, i.e., the
two-stage block Jacobi, Gauss-Seidel and discrete projection, display the best elapsed
times to converge the linear systems typical in fully implicit black-oil simulation. As
mentioned above, although the problem sizes presented here are only modest, the
consecutive preconditioners appear to have the required robustness for problems of
greater size. The combinative preconditioner, for example, is not robust enough even
for these rather friendly problems.

A final word is devoted to the comparison of the alternate with the consecutive
preconditioners. The former family is approximately equivalent to the latter but with
the addition of the global preconditioning step given by M (this step is absent in the
consecutive type). The total elapsed times testify to the high overhead incurred in
the application of the global preconditioner of the alternate schemes. Moreover, as
was mentioned above, M should be at least as effective as a preconditioner as the
inidividual decoupled pressure and saturation blocks. However, M is a preconditioner
for the full Jacobian, which throws us back to beginning of the path... or worse. We
are now looking for a preconditioner for J that has to beat the action of the decoupled
blocks. These experiments show clearly that this is a loosing proposition and therefore,
the application of M is results in wasted time by the iterative solver.

It should be mentioned that M was chosen as an incomplete factorization of J
with complete infill inside a bandwidth of 19. The number of bands was chosen
so that the coupling of nearest-neighbor layers were always retained (notice that all
cases have 4 gridblocks in the z-direction, which is the most rapidly increasing in the
numbering scheme of the gridblocks). In spite of the assumed robustness of this global
preconditioner, its main effect seems to be the posting of greater elapsed times.

Figure 12 summarizes the convergence behavior of GMRES for the discretization
size of 8 x 8 x 4 and At = 0.1. On the upper left corner, the plot show the results for
the three standard preconditioners. The plot on the upper right shows the convergence
of the alternate preconditioners and the one on the lower left corner shows the results
for the consecutive schemes. The remaining plot on the lower right corner shows the
best results out of each of the other three plots. Figure 13 shows the same exact
arrangement for BICGSTAB. We note tha, as the effectiveness of the preconditioner
increases, the characteristic erratic behavior of BICGSTAB gets damped. The results
for GMRES testify to its robustness and efficiency when preconditioned by two-stage
methods, specially of consecutive type. Note, on figure 12, lower-right plot, that the
consecutive preconditioner produces a dramatically faster convergence than does the
fastest of the alterante preconditioners.

7. Conclusions. In this section, we summarize the work we have developed so
far and propose the next activities in pursuing the objectives of this dissertation. We
have already accomplished the following aspects,

e Description of four novel preconditioners for the solution of coupled equations.
Preliminary computational experiments show encouraging results about the
effectiveness of these preconditioners.

o We have incorporated in our framework methods, such as the overlapping
additive Schwarz and line correction, to speed up implementations of these
preconditioners. Meanwhile, we have taken care of their robustness by solving
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decoupled systems by covering all degrees of freedom present in the original
coupled system.

o We have also studied secant preconditioners and found encouraging results

towards this direction. We have already indicated different avenues that may
enhance this approach and as result, save a significant amount of computation
for large scale problems.

We are currently investigating the following points,
o Theoretical framework supporting the convergence and performance of our

preconditioners.

e Computer evaluation of results under more stringent physical situations and

at a larger scale. Here we include the development of parallel implementation
of our preconditioners to measure its scalability on a multiprocessor system.
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