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Abstract

We study the parallelization of the steepest-edge version of the dual sim-
plex algorithm. Three different parallel implementations are examined, each of
which is derived from the CPLEX dual simplex implementation. One alterna-
tive uses PVM, one general-purpose System V shared-memory constructs, and
one the PowerC extension of C on a Silicon Graphics multi-processor. These
versions were tested on different parallel platforms, including heterogeneous
workstation clusters, Sun S20-502, Silicon Graphics multi-processors, and an
IBM SP2. We report on our computational experience.

1. Introduction

We investigate parallelizing the CPLEX? implementation of the dual simplex algo-
rithm. We have chosen the dual over the primal for two reasons. First, the simplest
steps to parallelize in both the primal and dual simplex methods are those where
the work grows proportionally to the number of columns (variables). The most im-
portant such step is “pricing” (see the description of the dual simplex method in
the next section). Unfortunately, in most practical implementations of the primal
simplex method, the default pricing paradigm is some sort of “partial pricing,” a
main goal of which is to greatly reduce the amount of work in exactly the step we
are trying to parallelize. The dual simplex method, on the other hand, is more-or-
less required to do some form of “complete” pricing, examing every column at every
iteration. Second, we envision the primary application of our work to “reoptimiza-
tion” in integer programming applications. There the dual is the natural algorithm,
even for many very large, difficult models where, say, barrier algorithms [LuRo096]
potentially provide better performance when solving from scratch. In addition, inte-
ger programming applications, particularly those that employ “column-generation”,
sometimes offer the opportunity to improve the underlying formulation by increasing
the number of variables, thus improving the potential for parallelism.

As suggested by the above discussion, we will concentrate our efforts on the pricing
and other column-based steps in the dual simplex method. In the next section we
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begin with an outline of the steps of the dual simplex method followed by profiling
results and a more detailed discussion of our parallelization. For the profiles we have
selected four test problems with a range of aspect ratios.

The ensuing sections describe our various implementations. We start with an im-
plementation using PVM followed by one using System V shared-memory constructs,
and conclude with by far the most successful implementation based upon the PowerC
extension of the C programming language. Finally we give computational results.
These results use an extensive set of test problems, statistic for which appear in the
appendix.

Other work on the parallelization of the simplex algorithm includes the following.
[HeKeZa88] present a parallelization of the simplex method based on a quadrant in-
terlocking factorization, but no computational results are given. In [EcBoPoGo95]
an implementation of a more practical revised simplex method is investigated, but
the assumption is made that the constraint matrices are dense, a rare occurrence
in practice (see the tables at the end of this paper). In [Wu96] a parallel imple-
mentation of the simplex algorithm for sparse linear systems is described where good
speed ups could be obtained for problems with a high ratio of variables to constraints.
Parallelizing the LU factorizations is a topic of its own and has highly been investi-
gated in computational linear algebra, see the books [DuErRe86], [KuGrGuKa94] and
[GaHeNgOrPePlR0oSaVo90]| for surveys and further references. Finally, in [BaHi94],
[ChEnFiMe88], [Pe90] computational results for parallelizing the network simplex
method are reported.

2. Dual Simplex Algorithms

We suppose the reader to be familiar with the basic terms of linear programming.
For a good introduction to linear programming see [Ch83] or [Pa95].

Consider a linear program (LP) in the following standard form:

min cfzx
(1) st. Az =10
z>0

where c € R", b € R™ and A € R™*". Note that most practical LPs have nontrivial
bounds on at least some variables; however, for purposes of this discussion it will
suffice to consider problems in the form (1).

The dual of (1) is

max bTw
(2) st. A™r <e¢

Adding slacks yields



max bT
(3) st. ATm+

ISHESTE|

=c
>0

A basis for (1) is an ordered subset B = (By,...,By,) of {1,... ,n} such that
|B| = m and B = Ap is nonsingular. B is dual feasible if cy — AxB~"cp > 0, where
N=A{1,...,n}\B.

Algorithm 0.1 A generic iteration of the standard dual simplex algorithm for (1).

Input: A dual feasible basis B, dy = cy — AxB~Tcp and Zp = B™1b.

Step 1. Ifzg > 0, B is optimal-Stop; otherwise, let i = argmin{Zp, : k =1,... ,m}. dp,
1s the entering variable.

Step 2. Solve BTz = ¢;, where e; € R™ is the i'" unit vector. Compute ay = —Ayz.

Step 3. (Ratio Test) If an < 0, (1) is infeasible-Stop; otherwise, let j = argmin{dy /ay, :
ap > 0,k € N}. dj is the leaving variable.

Step 4. Solve By = A;.

Step 5. Set B; = j. Update g (using y) and dy (using z).

Remarks:

1. For all dual simplex algorithms, the efficient computation of z" Ay is crucial.
This computation is implemented by storing Ay row-wise so that zero elements
in z need be examined only once.

2. To improve stability, the ratio test (Step 3) is applied in several passes, using
an idea of Harris [Ha73]. First, the ratios

dp/oy if g > 0 and
Ty = .
400 otherwise,

are computed for each k£ € N. Using these ratios, we compute
(4) t =min{ry +¢/ay : k € N},

where € > 0 is the optimality tolerance, by default 10°¢. Finally, we compute
the actual leaving variable using the formula

(5) J = argmax{oy : rp < t}.



Note that since € > 0, it is possible for some of the dj; to be negative, and hence
that r; is negative. In that case, depending upon the magnitude of r;, we may
shift c; to some value at least c; + |d;|, and then repeat the calculation of ¢ and
j employing the new r;. (See [GiMuSaWr89] for a discussion of the approach
that suggested this shifting. The details of how these shifts are removed have
no effect on our implementation and are omitted.)

3. In order to solve the two linear systems in the above algorithm (see Steps 2
and 4), we keep an updated LU-factorization of B, using the so-called Forrest-
Tomlin update [FoTo72]. For most models, a new factorization is computed

once every 100 iterations. These computations may be considered part of step
5.

Steepest Edge

There are three different dual algorithms implemented in CPLEX: The standard
algorithm, described above, and two steepest-edge variants. The default algorithm is
steepest-edge.

Several steepest-edge alternatives are proposed in [FoGo92]. These algorithms
replace the rule for selecting the index of the entering variable dp, by

i =argmin{Zp, /nx: k=1,...,m},

where the 7, are the steepest-edge norms. The alternative used in our tests corre-
sponds to the choice

(SE) 1 = \/(efB-1) ([ B-1)".

While it is too expensive to explicitly compute all 7, at each iteration, there are
efficient update formulas. Letting {71, ..., ., } be the values of the norms at the start
of an iteration, the values at the start of the next iteration for (SE), 7, are given by
the formula

(SE norm update) 7; = n; — 2(%)6£B_12 + (%)zsz (k #1),
(2 (2
where y and z are as in the statement of the standard dual simplex algorithm. Note
that the implementation of this formula requires the solution of one extra linear
system per iteration, the one used to compute B='2. As suggested in [FoGo92], this
second “FTRAN” can be solved simultaneously with the linear system in Step 4, thus
requiring only a single traversal of the updated LU-factorization of B.

The default dual in CPLEX uses the (SE) norms with the approximate starting
values 7, = 1 for all k. This choice corresponds to the assumption that most variables
in the initial basis will be slacks or artificials. See [FoGo92]| for a detailed discussion.



Summary

In the sections that follow we discuss three different parallel implementations of the
(SE) variant of the standard dual simplex method: One using PVM, one using general-
purpose System V shared-memory constructs, and one using the PowerC extension of
C on an Silicon Graphics multi-processor. In section 3, we begin by outlining the basic
plan for the PVM and “System V” approaches. Each of these requires some explicit
form of data distribution. The PowerC version requires no such data distribution.

To set the stage for the ensuing sections, we close this section with a discussion
of which steps in the dual simplex can be parallelized and give four profiles for runs
on an SGI Power Challenge using the sequential version of CPLEX. The problem
characteristics for the problems selected are given in Table 14 in the appendix.

Since the steps that we have chosen to parallelize (as discussed below) are all
column based, it is apparent that the percentage of parallel work will increase as the
aspect ratio of the selected LP increases. The examples we have chosen demonstrate
this fact quite clearly.

In the discussions that follow, we make use of the following designations, classifying
the various parts of the algorithm:

Designation Description

Enter Step 1.

BTRAN Solution of Bz = e; (Step 2).

Pricing Computation of ay = —A%z (Step 2).

Ratio Computation of ¢ (Step 3 and (4)).

Pivot Computation of j and shifting, if necessary (Step 3 and (5)).
FTRAN Solutions of By = A; and Bw = z.

Factor Factorization and factorization update (Step 5).

Update-d Update of dy.
Update-x Update of Zg and 7.
Misc All other work.

The Pricing, Ratio, Pivot, Update-d, and Update-x steps offer clear opportunities
for parallelism. We have chosen to concentrate on the first four of these. For most
practical LPs, the remaining step, Update-x, seems unlikely to consume a significant
part of the total computation time: In typical LPs, the number of rows is smaller
than the number of columns, usually by a multiple of at least 2 to 3, often by much
more. Indeed, we did test this hypothesis while testing our PowerC implementation,
and found that a parallel version of Update-x was at best of marginal value, and in
some cases actually degraded performance.

Of the remaining steps, the solve steps BTRAN and FTRAN are highly recursive,
and well known to be very difficult to parallelize, especially given the fact that,
in the simplex method, the LU-factorization of the basis matrix B changes by a
rank-1 update at each iteration. Even the “obvious parallelism” afforded by solving



each of the two systems in FTRAN on separate processors is difficult to exploit.
See the discussion in Section 5. Finally, the problem of parallelization of the LU-
factorization is largely independent of the simplex method itself. We have chosen not
to investigate it here. See [HeKeZa88], [DaYe90], [DuErRe86], [KuGrGuKa94], and
[GaHeNgOrPePlR0oSaVo90] for a further discussion of this problem.

Algorithmic % of total computation time
step pilots | cre_b | roadnet | aa300000
Enter 2.1 5.5 0.2 0.1
BTRAN 15.0 11.5 1.5 0.5
Pricing 15.3 | 33.1 57.2 65.4
Ratio 5.3 | 15.6 22.7 20.4
Pivot 2.3 3.9 6.9 4.4
FTRAN 31.2 | 20.5 3.3 1.1
Factor 20.3 3.7 1.2 0.4
Update-d 1.1 3.1 5.2 7.4
Update-x 2.5 0.6 0.6 0.2
Misc 4.9 2.5 1.2 0.1
Total 100.0 | 100.0 100.0 100.0
% Parallel | 24.0 | 55.7 92.0 97.6

Table 1: CPLEX profiles.

3. Outline of the Data Distributed Implementation

In this section we discuss our data distributed implementations of the (SE) version
of the standard dual simplex method. The parallel model we use is master/slave
with one master and (potentially) several slaves. We call the master the boss and
the slaves workers. The boss keeps the basis, and each processor, including the boss,
gets a subset of columns. Each column must belong to exactly one processor. All
computations directly related to the basis are done sequentially, by the boss. The
other steps can be executed in parallel: Pricing, Ratio, Pivot, and Update-d.

Algorithm 0.2 A parallel iteration of the dual simplex algorithm.

Input: A dual feasible basis B, dy = cy — AYB~Tcp and Zp = B™'b.

Enter. If zp > 0, B is optimal — Stop; otherwise, let i = argmin{zp, : k =1,...
is the entering variable.

,m}. dp,

BTRAN. Solve BTz = e;.
Com(z) The boss sends the vector z to the workers.

Pricing. FEach processor computes its part of ay = —A} 2.
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Com(«a). The workers inform the boss whether their parts of ay are non-positive.
Unboundedness Test. If ay <0, (1) is infeasible-Stop;
Ratio. The processors compute their t-values, see (4).

Com(t). The workers send their t to the boss. The boss determines the global t and sends
it to the workers.

Pivot. Each processor determines j as outlined in (5).
Com(p). The workers send their pivot element || to the boss.

Pivot Selection. The boss determines the best pivot and corresponding j and determines if
it is “acceptable”. If it is rejected, the objective-function coefficient for j is shifted
and all processors go back to Ratio*.

Com(j). If the pivot element is accepted, the boss informs the “winning” worker to send
its column. d; is the leaving variable.

FTRAN. Solve By = A;j and Bw = z.
Factor. Factorization and its update.

Com(update). The boss sends information to the workers for the update, including the
leaving and entering variable.

Update-x. Set B; = j. Update Tp (using y).
Update-d. Update dn (using z).

Algorithm 0.2 outlines a typical iteration of the parallel dual simplex. The steps
that do not appear in bold face were described in the previous section in Algorithm 0.1
and are sequentially performed by the boss. The first new step is the communication
of the z vector, Com(z), from the boss to the workers. For the infeasibility test
(see Step 3 of the dual simplex algorithm) the workers inform the boss in Com(«)
whether their part of ay satisfies ay < 0.

The steps Ratio, Com(t), Pivot, Com(p), and Pivot Selection must then be per-
formed iteratively until the pivot has been accepted. In Com(¢) the global ¢, see (4),
is determined and distributed among the processors. This involves two communica-
tions steps. After the workerssend their pivot element in Com(p) to the boss (another
communication step) the boss decides on the acceptance of the pivot. It is rejected,
the boss informs the workers to return to Ratio. Thus, the total number of communi-
cation steps until the pivot element is accepted is 4 - (number of rejected pivots) + 3.

After the pivot element has been accepted, the boss informs the “winning” worker
to send the entering column (two communication steps). The data in Com(update)

4The complete test for pivot acceptability is much more complicated than indicated here, but the
basic structure of the algorithmic response is essentially as indicated.



includes the leaving variable and data for updating the reduced costs. This informa-
tion is collected at different points within the sequential code, resulting in at most
two communication steps. Table 2 gives a diagram of Algorithm 0.2 and shows where
communication steps occur and which steps are performed in parallel.

‘ ‘ Boss ‘Worker‘

Enter *

BTRAN *

Com(z) —E
Pricing

Ratio

Com(«) +—o—
Com(t) —t
Pivot |
Com(p) L
Pivot Selection |
Com(j) +—L
FTRAN

Factor

Com(update) _update
Update-d * *
Update-x

Table 2: The arrows in this table indicate where communication between the boss
and the workers must occur, with directions indicating the direction of data flow. An
asterisk marks where a task is performed.

In view of the profile statistics given in the previous section, and the fact that
Enter, BTRAN, FTRAN and Factor will all be executed on a single processor (the
boss), it is plain that we cannot expect significant performance improvements unless
the ratio of variables to constraints in a given LP is large. Indeed, our first thought
was not only to enforce this requirement, but to concentrate on problems for which
the total memory requirements were so large that they exceeded the memory available
on a single processor. Thus, we began by considering possibly heterogeneous networks
of workstations connected by a local area network. As communication software we
used PVM.

4. PVM

PVM (Parallel Virtual Machine) is a general purpose software package that permits a
network of heterogeneous Unix computers to be used as a single distributed-memory
parallel computer, called a virtual machine. PVM provides tools to automatically



initiate tasks on a virtual machine and allows tasks to communicate and synchronize 5.

Our first implementation was in one-to-one correspondence with the sequential
code. Thus, the boss immediately sent a request to the workers whenever some
particular information was needed. Where possible, the boss then performed the
same operations on its set of columns, thereafter gathering the answers from the
workers. Assuming that the first selected pivot was accepted, this approach led to
from 6 to 9 communication steps per iteration, depending on whether the entering
and/or leaving column belonged to the workers. The data was partitioned in our
initial implementation by distributing the columns equally among the processors.

Table 3 shows the results of our initial tests, carried out on the NETLIB problems.
All solution times given in this paper are real (wallclock) times in seconds, unless
otherwise noted, and are for the reduced models obtained by applying the default
CPLEX presolve procedures. Results for larger problems are presented later. The
boss was run on a SUN S20-TX61 and the one worker on a SUN 4/10-41. The two
workstations were connected by a 10 Mb/s (megabits per second) Ethernet. The
sequential code was run on the SUN S20-TX61. The times, measured in wallclock
seconds, do not include reading and presolving.

Model Sequential 2 processors
Time | Iterations | Time | Iterations

| NETLIB | 3877.8 | 130962 | 12784.8 | 137435 |

Table 3: First results on local area network.

Note that the parallel version was approximately 3.3 times slower than the se-
quential version! Most, but not all of this excess time was due to communication
costs, which suggested the following improvements.

1. In Com(p) each worker sends not only the pivot element but simultaneously
the corresponding column. This modification saves Com(j), since the boss no
longer needs to inform the “winning” worker to send a column.

2. The pivot selection strategy was changed to reduce the number of communica-
tion steps. Each processor determines its own ¢ and performs the steps Ratio,
Pivot and Pivot Selection (including shifting) independently of the other pro-
cessors. The workers then send their selected pivots and ¢ values to the boss,
which makes the final selection. This procedure reduces the number of commu-
nication steps of steps Ratio through Pivot Selection Com(¢) and Com(p) from
4 - (number of rejected pivots) + 3 to 3.

3. The information for the infeasibility test Com(«) can be sent in Com(p). In
case infeasibility is detected, the pivot computation is wasted work, but such
occurrences are rare.

SPVM is public domain and accessible over anonymous ftp via netlib2.cs.utk.edu. For details on
PVM, see the PVM man pages. In our implementation we used PVM Version 3.3.7.



4. All relevant information for the workers’ update is already available before
FTRAN. Note that the workers need only know the entering and leaving column
and the result from the Ratio Test in order to update the reduced costs. Thus,
only one communication step after Pivot Selection is needed for the update.

5. PVM offers different settings to accelerate message passing for homogeneous
networks. We make use of these options where applicable.

6. Load balancing was (potentially) improved as follows: Instead of distributing
columns based simply upon the number of columns, we distributed the matrix
nonzeros in as nearly equal numbers as possible over all processors.

Table 4 shows the results on the NETLIB problems after implementing the above
improvements. For a typical simplex iteration, the number of communication steps
was reduced to three: the boss sends z, the workers send their pivots and correspond-
ing columns, and the boss sends information for the update.

Example Sequential 2 processors
Time | Iterations | Time | Iterations

| NETLIB | 3877.8 | 130962 | 7736.5 | 142447 |

Table 4: Improved results on local area network.

Based upon Table 4, the implementation of 1.-6. improves computational times by
a factor of 1.6, even though increasing the number of iterations slightly. However, the
performance of the parallel code is still significantly worse than that of the sequential
code. One reason is certainly the nature of the NETLIB problems. Most are either
very small or have a small number of columns relative to the number of rows, see the
problem statistics in the appendix. Table 5 gives corresponding results for a test set
where the ratio of columns to rows was more favorable.

Example Sequential 2 processors
Time | Iterations | Time | Iterations

0321.4 9170.1 21481 | 7192.0 20178
cre_b 614.5 11121 | 836.1 13219
nwl6 120.7 313 83.1 313
osa(30 645.8 2927 | 5154 3231
roadnet 864.7 4578 | 609.6 4644

Table 5: Larger models on a local area network.
The results are significantly better. With the exception of cre_b, the parallel times

are between 20% (for 0sa030) and 37% (for nw16) faster, though, again largely due
to communication costs, still not close to equaling linear speedup. Our measurements
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indicated that communication costs amounted to between 30% (for 0sa030) and 40%
(for cre_b) of the total time. Since communication was taking place over Ethernet, we
decided to test our code on two additional parallel machines where communication
did not use Ethernet, a SUN S20-502 with 160 MB of RAM memory and an IBM SP2
with eight processors (each a 66 MHz thin-node with 128 MB of RAM). The nodes
of the SP2 were interconnected by a high speed network running in TCP/IP mode.

Example Sequential 2 processors
Time | Iterations | Time | Iterations

NETLIB | 4621.2 130962 | 6931.1 142447
0321.4 9518.3 21481 | 8261.1 20178
cre_b 650.5 11121 | 769.4 13219
nwl6 99.6 313 78.4 313
0sa030 956.3 2927 | 502.1 3231
roadnet 801.0 4578 | 652.5 4644

Table 6: Larger models on SUN S20-502.

The results on the SUN S20-502 were unexpectedly bad, worse than those using
Ethernet. We will come to possible reasons for this behavior later. The results on
the SP2 were much better (with the exception of cre_b) and seem to confirm our
conclusions concerning the limitations of Ethernet.

Example Sequential 2 processors 4 processors
Time | Iterations | Time | Iterations | Time | Iterations

NETLIB | 2140.9 130054 | 5026.9 143348 | not run not run
0321.4 5153.7 24474 | 3624.6 26094 | 2379.7 21954
cre_b 390.2 11669 | 399.8 11669 458.9 10915
nwl6 94.0 412 50.4 412 30.4 412
0sa030 321.3 2804 | 191.8 2804 152.7 2836
roadnet 407.3 4354 | 235.5 4335 182.4 4349

Table 7: Larger models on SP2.

To summarize, there seems little hope of achieving good parallel performance on
a general set of test problems using PVM and a distributed-memory model. Indeed,
it is our feeling that this conclusion is valid independent of PVM. Such a result is
not unexpected. However, the distributed memory code is not without applications
as illustrated by the final table of this section.

The two examples in Table 8 did not fit onto a single node of the machine being
used, so we could not compare the numbers to sequential times. However, the CPU-
time spent on the boss was 9332.9 sec. (90.5% of the real time) for aa6000000 and
52.5 sec. (= 88.5% of the real time) for us0!. Time measurements for the smaller
examples in Table 7 confirm that about 10% went for communication.
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| Example | Time | Iterations

2a6000000 | 10315.8 10588
us01 59.4 249

Table 8: Large airline models on SP2 using all 8 nodes.

In closing this section, we note that one of the biggest limitations of PVM is
directly related to its portability. The generality of PVM means that transmitted
data usually must be passed through different interfaces and thereby often packed,
unpacked, encoded, decoded, etc. For multiprocessors like the SUN S20-502 or the
Power Challenge (see section 5), this work is unnecessary.

4. Shared Memory/Semaphores

Based upon our results using PVM we decided to investigate the use of general-
purpose, UNIX System V shared-memory constructs. We restricted our choice to
System V mainly because it provides high portability. Possible candidates for inter-
process communication (IPC) on a single computer system are pipes, FIFOs, message
queues, and shared memory in conjunction with semaphores (for an excellent descrip-
tion of these methods see [St90]). We looked at the performance of these four types of
IPC by sending data of different sizes between two processors. It turned out that the
shared memory/semaphore version was the fastest (see also [St90], page 683). Shared
Memory allows two or more processes to share a certain memory segment. The ac-
cess to such a shared memory segment is controlled by semaphores. Semaphores are
a synchronization primitive. They are intended to let multiple processors synchronize
their operations, in our case the access to shared memory segments. There are dif-
ferent system calls available that create, open, give access, modify or remove shared
memory segments and semaphores. For a description of these functions, see the man
pages of Unix System V or [St90].

We implemented our shared memory version in the following way: We have one
shared memory segment for sending data from the boss to the workers. This segment
can be viewed as a buffer of appropriate size. All the data to be sent to the workers
is copied into this buffer by the boss and read by the workers. The workers use the
first four bytes to determine the type of the message. The access to the buffer is
controlled by semaphores. In addition, we have one shared memory segment for each
worker to send messages to the boss. These segments are used in the same manner
as the “sending buffer” of the boss.

The shared memory version differs from the PVM version in the following respects:

1. The workers do not send the pivot column immediately, together with the pivot
element, i.e., improvement 1. on page 9 is removed: There might be several
pivot elements and corresponding columns sent per iteration, depending upon

12



numerical considerations. This behavior could result in overflow in the shared
memory buffer. On the other hand, informing a worker to send a column is
relatively inexpensive using semaphores.

2. We changed the pivot selection strategy (see 2. on page 9) back to that of
the sequential code, mainly because we wanted to have the same pivot selection
strategy for an easier comparison of the results and because the additional com-
munication steps are not time-consuming using shared memory and semaphores.

3. We saved some data copies by creating another shared memory segment for the
vector z. Thus, in Com(z) the workers are notified of the availability of the new
vector by a change of the appropriate semaphore value.

Table 9 shows the results of the shared memory version on the SUN S20-502.

Example Sequential 2 processors
Time [ Iterations | Time | Iterations

NETLIB | 4621.2 130962 | 5593.3 141486
0321.4 9518.3 21481 | 7958.2 20465

cre_b 650.5 11121 | 604.9 13219
nwl6 99.6 313 82.2 313
osa(030 956.3 2927 | 545.1 3231
roadnet 801.0 4578 | T11.2 4644

Table 9: Shared memory version on SUN S20-502.

The results on the SUN S20-502 are again not satisfactory. For the NETLIB
problems the times are better than those using PVM, but are still far inferior to the
CPLEX sequential times. For the larger models the numbers are even worse. Two
contributors to these negative results are the following:

1. The semaphore approach is probably not the right way to exploit shared memory
for the fine-grained parallelization necessary in the dual simplex method. It is
true that there are other communication primitives available that might be
faster. However, as this work was being done, there did not seem to be any
better approach available that was portable. We will come to this point again
in the next section.

2. There is a serious memory bottleneck in the SUN S20-502 architecture. Because
the data bus is rather small, processes running in parallel interfere with each
other when accessing memory. Looking at the SPEC results for the single
processor and 2-processor models (see [Sun|) we have

SUN S20-50 SUN S20-502
SPECrate_int92 1708 3029
SPECrate_fp92 1879 3159

13



This means that up to about 19% is lost even under ideal circumstances. For
memory intensive codes like CPLEX, the numbers are even worse. For the
NETLIB problems, we ran CPLEX alone and twice in parallel on the SUN

520-502:
CPLEX (alone) CPLEX (twice in parallel)
4621.2 sec. 6584.4 sec.
6624.7 sec.

This degradation was about 40%! Clearly the SUN S20-502 has serious limita-

tions in parallel applications®.

The Silicon Graphics Power Challenge multi-processors are examples of machines
that do not suffer from this limitation. Table 10 summarizes our tests running the
System V semaphore implementation on a two-processor, 75 Mhz Silicon Graphs
R8000 multi-processor.

3 i . . . : . 3
2 Processors - 2 Processors -
251 ! 1 25|
2 P

speed up
speed up

15

. . . . . . 05 . . . . .
1 4 16 64 256 1024 4096 16384 16 32 64 128 256 512 1024

columns per row columns per row
Figure 1: Speed up of Shared memory Figure 2: Speed up of Shared memory
version: all problems version: aa-problems

We note that the five larger models (0321.4, cre_b, nw16, 0sa030, and roadnet)
achieve reasonable, though with one exception sublinear speedups, ranging from 22%
for cre_b to 105% for nw16. One reason that better speedups are not obtained is that
a significant fraction of the communication costs is independent of problem size —
indeed, all steps to the point that the worker sends an entering column. As a conse-
quence, examples with low-cost iterations cannot be expected to achieve significant
speedups. This phenomenon is illustrated by aa25000, sfsu4, nopert, cre_b, mctagq,
usfs2, food, aa6, ral, pilots, and especially the NETLIB problems (including fit2d),
where on average at most 0.03 seconds are needed per iteration, running sequentially.
All other examples where, in addition, the number of iterations of the sequential and
parallel codes are roughly equal, give approximately the desired speedup. The “aa”

6Sun Microsystems gave us the opportunity to test some of these examples under an optimal
environment on their machines. On the SUN S20-502 we got the same results as on our machine,
whereas on a SUN S20-712 the degradation was at most 20%. These better results are mainly due
to the 1 MB external cache each of the two processors of a SUN S20-712 has. The extra cache helps
in avoiding bottlenecks on the data bus.
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examples behave particularly well: The numbers of iterations are constant, individual
iterations are expensive, the fraction of work that can be parallelized is near 100%,
see Table 1.

Finally, note that mctaq, sfsu2, sfsu8, finland, and imp1 fail to follow any partic-
ular trend, primarily because the number of iterations for the parallel and sequential
codes differ drastically. That such differences arise was unexpected, since the pivot
selection strategy in both codes is the same, as is the starting point. However, since
the basis is managed by the boss we distribute only the initial nonbasic columns
among the processors, resulting in a possible column reordering. With this reorder-
ing, different columns can be chosen in the Pricing step, leading to different solution
paths. Note, however, that in terms of time per iteration, the five listed models do
achieve close to linear speedups.

Figure 1 and 2 give a graphical illustration of the numbers in Table 10. The z-axis
shows the ratio of the number of columns to the number of rows. The y-axis presents
the speed up of all non-NETLIB examples in Figure 1 and all ae-examples in Figure
2. With the exception of fit2d we obtain at least linear speed up, when the ratio
exceeds 160. For the aa-problems we obtain ideal speed up beginning at a ratio of 80.

5. PowerC

We describe a thread-based parallel implementation of the dual steepest-edge algo-
rithm on an SGI Power Challenge using the SGI PowerC extension of the C program-
ming language [SGI].

The work described in this section was carried out at a somewhat later date than
that in previous sections. As a result, the base sequential version of CPLEX was
somewhat different. As the tables will show, this version not only exhibited improved
performance when parallelized, but was significantly faster running sequentially.

In our work we use only a small subset of the compiler directives provided by the
PowerC extension: #pragma parallel, #pragma byvalue, #pragma local, #pragma
shared, #pragma pfor, and #pragma synchronize. The parallel pragma is used to
define a parallel region. The remaining pragmas are employed inside parallel regions.
Their applications and meanings are sketched below.

Defining a parallel region is analogous to defining a C function. The byvalue,
local, and shared directives specify the argument list for that function, with each
directive specifying the obvious types — for example, shared specifies pointers that
will be shared by all threads. The #pragma synchronize directive forces all threads
to complete all computations up to the point of the synchronize statement before any
thread is allowed to continue. Exactly one synchronization pragma is used in our
implementation (it could be easily avoided by introducing another parallel region).
All of the actual parallelism is invoked by the loop-level directive pfor.

The key parallel computation is the Pricing step. If this step were carried out in
the straightforward way, it’s parallelization would also be straightforward, employing
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Example Sequential 2 processors Speedup
Time | Tterations | Time | Iterations
NETLIB 2004.4 133299 | 2361.7 138837 0.8
0321.4 4406.2 20677 | 2681.2 20662 1.6
0341.4 564.8 8225 | 394.8 8225 14
aal100000 257.2 2133 | 128.8 2133 2.0
221000000 | 15266.6 7902 | 7030.5 7902 2.2
22200000 1262.4 4090 | 632.2 4090 2.0
2225000 7.9 546 7.1 546 1.1
22300000 2724.0 5513 | 1339.5 5513 2.0
22400000 4068.9 5931 | 1964.7 5931 2.1
2250000 34.1 916 23.2 916 1.5
aa500000 6081.8 6747 | 2878.1 6747 2.1
aab 22.7 2679 26.2 2679 0.9
22600000 7619.0 6890 | 3599.5 6890 2.1
aa700000 9746.5 7440 | 4536.4 7440 2.1
2a75000 105.1 1419 60.8 1419 1.7
2a800000 | 11216.1 7456 | 5172.8 7456 2.2
aa900000 | 13130.8 7590 | 6028.9 7590 2.2
amax 3122.5 8276 | 1923.9 9780 1.6
continent 771.6 16586 | 558.8 16570 14
cre_b 337.8 10654 | 275.3 10654 1.2
finland 1654.1 24356 | 1560.7 31416 1.0
fit2d 131.7 6366 97.0 6959 14
food 653.5 21433 | 598.4 21328 1.1
impl 8252.9 38421 | 32314 30036 2.6
mctaq 531.4 28714 | 683.1 41460 0.8
nopert 4241 26648 | 249.9 24185 1.7
nwl6 109.2 403 53.3 403 2.0
0sa030 354.8 2943 | 192.2 2833 1.8
0sa060 2182.7 5787 | 1074.5 5801 2.0
pilots 71.2 4211 82.2 4437 0.9
ral 51.1 3091 46.2 3091 1.1
roadnet 378.9 4405 | 213.9 4608 1.8
sfsu2 1818.2 12025 | 1828.0 23200 1.0
sfsu3 779.2 4055 | 804.0 9436 1.0
sfsud 71.5 2256 66.4 2414 1.1
tm 8154.3 74857 | 5478.7 71657 1.5
us01 782.5 278 | 350.8 278 2.2
usfs2 241.0 8356 | 268.5 7614 0.9
wl.dual 27.2 67 13.5 67 2.0

Table 10: Run times using semaphores on 75 Mhz Silicon Graphics R8000.
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the following sort of loop (inside a parallel region):

#pragma pfor iterate (j = 0; ncols; 1)
for (j = 0; j < ncols; j++) {

compute a sparse inner product for column j;
}

where ncols denotes the number of columns. We note here that the #pragma
pfor construction means that a parallel region is created for the loop following the
pragma, and that within this region the iterates of the loop, the computations of the
sparse inner products, will be scheduled at run time on the available processors. For a
discussion of the specific scheduling algorithms employed by the compiler see [Ba92].
We remark here that on the R8000 the startup cost for the very first parallel region
encountered in the code (at run time) is approximately one millisecond; subsequent
parallel regions have a startup cost of approximately one microsecond.

Returning to our discussion of Pricing, as noted earlier, CPLEX does not carry
out the Pricing step column-wise. In order to exploit sparsity in z (see Step 2), the
part of the constraint matrix corresponding to the nonbasic variables at any iteration
is stored in a sparse data structure by row, and this data structure is updated at each
iteration by deleting the entering variable (which is “leaving” the nonbasic set) and
inserting the leaving variable.

Given that Ay is stored by row, the computation of 2" Ay could be parallelized
as follows:

#pragma pfor iterate (i = 0; nrows; 1)
for (i = 0; i < nrows; i++) {

an + = z[i] * (ith row of An);
}

where the inner computation itself is a loop computation, and « has been previ-
ously initialized to 0. The difficulty with this approach is that it creates false sharing:
the individual entries in ay will be written to by all threads, causing this data to be
constantly moved among the processor caches. One obvious approach to avoiding this
difficulty is to create separate target arrays ay,, one for each thread, with the actual
update of ay carried out as a sequential computation following the computation of
the ay,. However, a much better approach is to directly partition N into subsets,
one for each thread. To do so required restructuring a basic CPLEX data structure
and the routines that accessed it. Once that was done, the implementation of the
parallel pricing was straightforward.

Where K is a multiple of the number of processors, let
0=mng <ny <ng <...<ng = ncols,

and let Py = {ng,... ,ngs; — 1} for k = 0,... , K — 1. The ny are chosen so that
the numbers of nonzeros in Ap, are as nearly equal as possible. For a given set of
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nonbasic indices N, the corresponding partition is then defined by N, = N N P;.
Using this partition, the parallel pricing loop takes the form

#pragma pfor iterate (k = 0; K; 1)
for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {
an, + = z[i] * (ith row of Ay,);
}

}

In initial testing of the partitioning, an interesting phenomenon was discovered,
related at least in part to the cache behavior of the R8000. Consider the model
aa400000. Running the sequential code with no partitioning yielded a timing of
2864.1 seconds while the initial PowerC version on two processors using K = 2 ran
in 1300.4 seconds, a speedup considerably greater than 2.0. Setting K = 2 in the
sequential code yielded a run time of 2549.4, much closer to what one would expect.
After considerable testing, we thus chose to set K — in both the sequential and
parallel instances — to be the smallest multiple of the number of processors that
satisfies K > ncols/(50 nrows). Thus, for aa400000 and two processors, K was 8,
the smallest multiple of 2 greater than 259924/(50 - 837). We note that this change
also seems to have benefitted other platforms. The dual solution time for fit2d on a
133 Mhz Pentium PC was 204.5 seconds with K =1 and 183.7 with the new setting
of K=9.

We now comment on the remaining steps that were parallelized in the dual algo-

rithm: Enter, Ratio, Pivot, Update-d, and the update of the row-wise representation
of AN-

Ratio and Pivot: For these computations we use the same partition of N used in
the Pricing step. Note that the dual algorithm allows the Pricing and Ratio
steps to be performed without any intervening computations. As it turned
out, in the CPLEX sequential implementation prior to the current work, there
were several relatively inexpensive, minor computations that were interspersed
between these two major steps. Since entering and leaving parallel regions does
incur some fixed costs (see the discussion above), it seemed important to be
able to do the Pricing and Ratio steps inside a single region; moreover, with
some reorganization within each of these computations, it was possible to carry
out the “major part” of each step without introducing synchronization points.
Thus, the essential form of the computation as implemented was the following:

#pragma pfor iterate (k = 0; K; 1)
for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {

“Dual is not the way to solve fit2d, especially not on a PC. The solution time using simplex
primal was 18.6 seconds and using the barrier algorithm 15.4 seconds.
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an, + = z[i] * (ith row of ANk);

}

Ratio Test for Ny;

The reorganization of computations for these two steps, as well as other reorga-
nizations to facilitate the parallel computation were carried out so that they also
applied when the dual was executed sequentially, thus preserving code unity.

Enter: Since this computation is easy to describe in essentially complete detail, we
use it as an illustration of the precise syntax for the PowerC directives:

#pragma parallel

#pragma byvalue (nrows)

#pragma local (i_min, min, i)

#pragma shared (x_B, norm, i_min_array)

{
i_min = -1;
min = 0.0;
#pragma pfor iterate (i = 0; nrows; 1)
for (i = 0; i < nrows; i++) {
if ( x_B[i] < min * norm[i] ) {
min = x_B[i] / norm[i];
i_min = i;
}
}
i_min_array[mpc_my_threadnum ()] = i_min;
}
i_min = -1;
min = 0.0;
for (i = 0; i < mpc_numthreads (); i++) {
if ( i_min_array[i] != -1 ) {
if ( x_B[i_min_array[i]] < min * norm[i_min_array[i]] ) {
min = x_B[i_min_array[il] / norm[i_min_array[il];
i_min = i_min_array[i];
}
}
}

The PowerC function mpc_my_threadnum() returns the index of the thread being
executed, an integer from 0 to T — 1, where T is the total number of threads.
The function mpc_numthreads () returns T.

Ay update: The insertion of new columns is a constant-time operation. However,
due to properties of the chosen data structures the deletion operation can be
quite expensive. It was parallelized in a straightforward manner.
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Finally we remark on one important computation that was not parallelized. As
discussed earlier, the dual steepest-edge algorithms all require the solution of one ad-
ditional FTRAN per iteration. The result is that two ostensibly “independent” solves
are performed using the same basis factorization. These solves are typically quite ex-
pensive, and it would seem clear that they should be carried out in parallel (on two
processors). However, in the sequential code these two solves have been combined
into a single traversal of the factorization structures. That combination, when care-
fully implemented, results in some reduction in the actual number of computations
as well as a very effective use of cache. As a result, all our attempts to separate the
computations and perform them in parallel resulted in a degradation in performance.

Computational Results

The computational results for the PowerC parallel dual are given in Table 11. Tests
were carried out on a 4-processor 75 Mhz R8000. (There was insufficient memory to
run aa6000000.)

Comparing the results in Table 11 to the profiles in Table 1, we see that pilots
— as expected, because of the large fraction of intervening non-parallel work — did
not achieve ideal performance; on the other hand, cre_b came very close to the ideal
speedup and aa300000 exceeded ideal speedup by a considerable margin.
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There are unfortunately several, as yet unexplained anomalies in our results.
These mainly show up on larger models. In several instances superlinear speedups
are achieved. Examples are aa200000 and imp1, with 4-processor speedups exceeding
factors of 5. On the other hand, other models that would seem even more amenable to
parallelism, principally the four largest “aa” models, achieve speedups considerably
smaller than 4 on 4 processors. At this writing, the authors can offer no better expla-
nation than that these anomalies are due to R8000 cache and memory bus properties.

Figures 3 through 6 depict the results in Table 11 graphically. For 2 processors,
linear speed ups are obtained for all non-NETLIB problems with ratios 60 or higher.
The same is true for 3 processors. An almost ideal speed up is achieved on 4 processors
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when the ratio is greater than 70, with the exceptions of fit2d and wI1.dual. On 2
processor we see speed ups of 1.5 for problems with as few as 10 columns per row.
Figures 4 and 6 show almost linear scalability up to 4 processors. Note particularly
that the speed ups for the aa-problems are on average close to linear. It remains to
determine whether this behavior carries over to more processors.

Summary

We described three different approaches to implementing parallel dual simplex al-
gorithms. The first of these, using distributed memory and PVM, gave acceptable
speedups only for models where the ratio of rows to columns was very large. It seemed
most applicable to situations involving very large models with memory requirements
too large for available single processors.

We examined two shared memory implementations. The first of these used Sys-
tem V constructs, and, not surprisingly, produced better results than the PVM im-
plementation, but, in many ways, not significantly better. Finally, we constructed
a thread-based, shared-memory implementation using the Silicon Graphics PowerC
extension of the C programming language. This implementation was far simpler than
the previous two, and produced quite good results for a wide range of models. It seems
likely that this thread-based approach can also be used to produce equally simple and
useful parallel dual simplex implementation on other multi-processors with memory
buses having adequate bandwidth.

Finally, we note that primal steepest-edge as well as other “full-pricing” alterna-
tives in the primal simplex algorithm, are also good candidates for parallelization.
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Example Tterations Run time (no. of processors) Speedups
1] 2 | 3] 4] 2] 3] 4
NETLIB 136369 | 1310.2 | 1216.2 | 1151.3 | 1123.6 || 1.1 | 1.1 | 1.2
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Table 11: PowerC run times on 1 to 4 processors.
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Appendix

The following tables contain statistics for the test problems considered in this paper.
Tables 12 and 13 provide the data for linear programs taken from the NETLIB. These
instances are available by anonymous ftp from ftp://netlib2.cs.utk.edu.

Size statistics for non-NETLIB problems employed in our testing are given in
Table 14 in alphabetic order. For the most part these models were collected from
proprietary models available to the first author through CPLEX Optimization, Inc..
With the exception of aa6, all models with names of the form ’aaK’, where K is an
integer, are K-variable initial segments of the 12,753,312 variable “American Airlines
Challenge Model” described in [BiGrLuMaSh92].
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Example Original Presolved

Rows | Columns | Nonzeros | Rows | Columns | Nonzeros
25fv47 821 1571 10400 684 1449 9903
80bau3b 2262 9799 21002 | 1965 8680 18981
adlittle 56 97 383 53 94 372
afiro 27 32 83 20 28 71
agg 488 163 2410 164 107 867
agg?2 516 302 4284 280 250 2267
ageg3 516 302 4300 282 249 2298
bandm 305 472 2494 179 228 1531
beaconfd 173 262 3375 49 105 1033
blend 74 83 491 51 57 394
bnll 643 1175 5121 451 995 4632
bnl2 2324 3489 13999 943 2095 10252
boeing1 351 384 3485 287 419 2765
boeing2 166 143 1196 122 160 811
bore3d 233 315 1429 52 74 411
brandy 220 249 2148 108 177 1667
capri 271 353 1767 159 224 1304
cycle 1903 2857 20720 929 1791 12993
czprob 929 3523 10669 464 2491 4982
d2q06¢ 2171 5167 32417 | 1875 4617 30600
degen2 444 534 3978 382 473 3851
degen3 1503 1818 24646 | 1407 1722 24427
dfloo1 6071 12230 35632 | 3965 9212 32153
226 223 282 2578 148 251 2267
etamacro 400 688 2409 294 478 1910
fHTfR00 524 854 6227 295 638 4804
finnis 497 614 2310 340 404 1426
fitld 24 1026 13404 24 1024 13386
fitlp 627 1677 9868 627 1427 9618
fit2d 25 10500 129018 25 10450 128564
fit2p 3000 13525 50284 | 3000 13525 50284
forplan 161 421 4563 101 364 3801
ganges 1309 1681 6912 576 803 4187
gfrdpnc 616 1092 2377 322 794 1781
greenbea 2392 5405 30877 | 1020 3058 23028
greenbeb 2392 5405 30877 | 1019 3049 22927
growlb 300 645 5620 300 645 5620
grow22 440 946 8252 440 946 8252
grow?7 140 301 2612 140 301 2612
israel 174 142 2269 163 141 2256
kb2 43 41 286 39 32 266
lotfi 153 308 1078 117 282 596
maros 846 1443 9614 539 843 5788
nesm 662 2923 13288 622 2707 12933
perold 625 1376 6018 507 1096 5359

Table 12: Problem statistics for NETLIB problems.
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Example Original Presolved

Rows | Columns | Nonzeros | Rows | Columns | Nonzeros
pilot4 410 1000 5141 353 773 4705
pilot87 2030 4883 73152 | 1890 4511 70370
pilotja 940 1988 14698 745 1420 10985
pilotnov 975 2172 13057 785 1737 11528
pilots 1441 3652 43167 | 1275 3243 40467
pilotwe 722 2789 9126 624 2378 8311
recipe 91 180 663 55 89 395
scl105 105 103 280 59 58 266
sc205 205 203 551 116 115 611
sch0a 50 48 130 29 28 96
sc50b 50 48 118 28 28 84
scagr2b 471 500 1554 240 391 1223
scagr’? 129 140 420 60 103 305
scfxml 330 457 2589 237 383 2148
scfxm?2 660 914 5183 476 768 4321
scfxm3 990 1371 T 715 1153 6494
scorpion 388 358 1426 102 140 532
scrs8 490 1169 3182 158 809 2514
scsdl 77 760 2388 7 760 2388
scsd6 147 1350 4316 147 1350 4316
scsd8 397 2750 8584 397 2750 8584
sctapl 300 480 1692 269 339 1444
sctap2 1090 1880 6714 977 1326 5717
sctap3 1480 2480 8874 | 1344 1767 7630
seba, 515 1028 4352 2 8 11
sharelb 117 225 1151 103 204 1048
share2b 96 79 694 93 79 691
shell 536 1775 3556 248 1204 2414
ship041 402 2118 6332 288 1886 4267
ship04s 402 1458 4352 188 1238 2804
ship08l1 778 4283 12802 470 3099 7100
ship08s 778 2387 7114 234 1538 3534
ship121 1151 5427 16170 609 4147 9222
ship12s 1151 2763 8178 267 1847 4121
sierra 1227 2036 7302 | 1094 1916 6966
stair 356 467 3856 242 270 3520
standata 359 1183 3031 250 717 1600
standmps 467 1075 3679 352 969 2344
stocforl 117 111 447 61 63 349
stocfor2 2157 2031 8343 | 1362 1248 7022
stocfor3 16675 15695 64875 | 10740 9786 52492
truss 1000 8806 27836 | 1000 8806 27836
tuff 333 587 4520 142 388 4041
vtpbase 198 203 908 49 78 227
woodlp 244 2594 70215 170 1728 44884
woodw 1098 8405 37474 555 4010 14536

Table 13: Problem statistics for NETLIB problems.
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Example Original Presolved

Rows | Columns | Nonzeros | Rows | Columns | Nonzeros
0321.4 1202 71201 818258 | 1202 50559 656073
0341.4 658 46508 384286 658 27267 264239
aa100000 837 100000 770645 837 68428 544654
221000000 837 | 1000000 | 7887318 837 604371 | 5051196
aa200000 837 200000 | 1535412 837 134556 | 1075761
aa25000 837 25000 192313 837 17937 140044
aa300000 837 300000 | 2314117 837 197764 | 1595300
aa400000 837 400000 | 3115729 837 259924 | 2126937
aab0000 837 50000 380535 837 35331 276038
aab00000 837 500000 | 3889641 837 320228 | 2624731
aab 541 4486 25445 532 4316 24553
22600000 837 600000 | 4707661 837 378983 | 3138105
226000000 837 | 6000000 | 46972327 837 | 2806468 | 23966705
aa 700000 837 700000 | 5525946 837 434352 | 3620867
aa75000 837 75000 576229 837 52544 415820
aa800000 837 800000 | 6309846 837 493476 | 4112683
22900000 837 900000 | 7089709 837 548681 | 4575788
amax 5160 150000 | 6735560 | 5084 150000 | 3237088
continent | 10377 57253 198214 | 6841 45771 158025
cre_b 9648 72447 256095 | 5229 31723 107169
finland 56794 139121 658616 | 5372 61505 249100
fit2d 25 10500 129018 25 10450 128564
food 27349 97710 288421 | 10544 69004 216325
impl 4089 121871 602491 | 1587 112201 577607
mctaq 1129 16336 52692 | 1129 16336 52692
nopert 1119 16336 50749 | 1119 16336 50749
nwl6 139 148633 | 1501820 139 138951 1397070
0sa030 4350 100024 600144 | 4279 96119 262872
0sa060 10280 232966 | 1397796 | 10209 224125 584253
pilots 1441 3652 43167 | 1275 3243 40467
ral 823 8904 72965 780 8902 70181
roadnet 463 42183 394187 462 41178 383857
sfsu2 4246 55293 984777 | 3196 53428 783198
sfsu3 1973 60859 | 2111658 | 1873 60716 | 2056445
sfsu4 2217 33148 437095 | 1368 24457 180067
tm 28420 164024 505253 | 17379 139529 354697
us01 145 | 1053137 | 13636541 87 370626 | 3333071
usfs2 1484 13822 158612 | 1166 12260 132531
wl.dual 42 415953 | 3526288 22 140433 | 1223824

Table 14: Problem statistics for non-NETLIB problems.
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