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Abstract

Traditionally, applications executed on distributed memory architectures in single-program
multiple-data (SPMD) mode use distributed (multi-dimensional) data arrays. Good perfor-
mance has been achieved by applying runtime techniques to such applications executing in a
loosely synchronous manner. However, many applications utilize language constructs such as
pointers to synthesize dynamic complex data structures, such as linked lists, trees and graphs,
with elements consisting of complex composite data types. Existing runtime systems that solely
rely on global indices cannot be used for these applications, as no global names or indices are
imposed upon the elements of these data structures.

CHAOS++ is a portable object-oriented runtime library that supports applications using
dynamic distributed data structures, including both arrays and pointer-based data structures.
In particular, CHAOS++ deals with complex data types and pointer-based data structures by
providing mobile objects and globally addressable objects. Preprocessing techniques are used to
analyze communication patterns, and data exchange primitives are provided to carry out efficient
data transfer. Performance results for four applications are also included to demonstrate the
wide applicability of the runtime library.

1 Introduction

A large class of applications execute on distributed memory parallel computers in single-program
multiple-data (SPMD) mode in a loosely synchronous manner [15]. That is, collections of data
objects are partitioned among processors, and the program executes a sequence of concurrent com-
putational phases. Each computation phase corresponds to, for instance, a time step in a physical
simulation or an iteration in the solution of a system of equations by relaxation, and synchronization
is only required at the end of each computation phase. Therefore, once the data for a computation
phase (which is typically produced by a preceding computation phase) becomes available, a collective
communication phase can be performed by all processors, after which each processor will contain a
local copy of the data needed to carry out the computation phase. The computation phase can then
be executed completely locally on each processor. Throughout this chapter, we assume that there
is only one process executing on each processor of the distributed memory machines. This is simply
for ease of presentation, as the techniques described can also be applied to parallel executions with
multiple processes running on each processor.

*This research was supported by the National Science Foundation under Grant #ASC 9318183, NASA under
Grant #NAG 11485 (ARPA Project #8874), and the Office of Naval Research under Grant #N00014-93-1-0158 (Rice
University Subcontract #292122193).



Traditionally, parallel applications utilize (multi-dimensional) data arrays, which are often par-
titioned dynamically during program execution. Optimizations that can be carried out by compilers
are thus limited, and runtime analysis is required [38]. Good performance has been achieved by ap-
plying such runtime techniques to various problems with unstructured data access patterns, such as
molecular dynamics for computational chemistry [20], particle-in-cell (PTIC) codes for computational
aerodynamics [28], and computational fluid dynamics [12].

Unfortunately, many existing runtime systems for parallelizing applications with complex data
access patterns on distributed memory parallel machines fail to handle pointers. Pointers are fre-
quently utilized by many applications, including image processing, geographic information systems,
and data mining, to synthesize complex composite data types and build dynamic complex data
structures. We refer to data structures constructed with pointers as pointer-based data structures.
Without proper support for pointers, existing runtime systems only allow the transfer of primitive
data types, such as integers and floating point numbers, and of simple objects that contain no ref-
erences to other objects. Most of these runtime systems also rely on the existence of global indices,
which makes them applicable only to distributed arrays.

CHAOS++ is a runtime library targeted at object-oriented applications with dynamic communi-
cation patterns. It subsumes CHAOS [14], which is a runtime library developed to efficiently support
applications with irregular patterns of data accesses to distributed arrays. In addition to providing
support for distributed arrays through the features of the underlying CHAQOS library, CHAOS++
also provides support for distributed pointer-based data structures, and allows flexible and efficient
data exchange of complex data objects among processors.

CHAOS++ is motivated by the way pointers are often used in many real applications. In
these applications, hierarchies of data types are defined, such that ones at the higher levels serve
as containers for the ones at lower levels. Pointers are often used by container objects to point
to the objects they contain. Objects that are solely contained within such a container object are
referred to as sub-objects. A sub-object is effectively part of its container object, though it does
not necessarily occupy memory locations within that of its container object. Objects of data types
at the top of the hierarchy (i.e. objects of the outermost container class) can further be connected
through pointers, forming complex pointer-based data structures. Such data structures are dynamic
in the sense that data elements in the data structures are often created and/or deleted during
program execution, and accesses to these data elements are done through pointer dereferences. As a
consequence, access patterns to such data structures cannot be determined until runtime, so runtime
optimization techniques are required.

class Pixel { // a single pixel of an image
int x, y; // x,y coordinates
b
class Region { // a region consisting of pixels
int num_pixels; // number of pixels
Pixel =*pixels; // an array of pixels
int num_neighbors; // number of adjacent regions
Region **neighbors; // list of pointers to adjacent regions
b
class Region_Map { // a connected graph consisting of regions
Region *region; // a pointer to some Region in the graph
b

Program 1.1: An example of complex objects and pointer-based data structures.

As an example, Program 1.1 shows the declaration of a set of C++ classes, which can be used to
describe how pixels of a given image are clustered into regions, and how regions containing pointers
to adjacent regions form a map. In this example, the Region class is implemented as a container class
for the Pixel class, so that a Pixel is a sub-object of a Region. Since different regions may consist
of different numbers of pixels, the Region class uses a pointer to an array of its constituent pixels.
A set of regions interconnected with pointers then form a graph, defined by the class Region Map.
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Figure 1: A graph consisting of Region objects.

Figure 1 gives an example of such a graph. When a graph is partitioned among multiple processors,
the runtime system must be able to traverse pointers to support remote data accesses. Without
efficient support for pointers, parallel applications utilizing such complex data structures cannot
achieve good performance on distributed memory architectures.

CHAOS++ is implemented as a C++4 class library, and can be used directly by application
programmers to parallelize applications with adaptive and/or irregular data access patterns. The
design of the library is architecture independent and assumes no special support from C++ compilers.
Currently, CHAOS++ uses message passing as its transport layer and is implemented on several
distributed memory machines, including the Intel iPSC/860 and Paragon, the Thinking Machines
CM-5, and the IBM SP-1 and SP-2. However, the techniques used in the library can also be applied
to other environments that provide a standard C+4++ compiler and a mechanism for global data
accesses, including various distributed shared memory architectures [25, 29, 41].

The remainder of the chapter is structured as follows. In Section 2 we discuss how CHAOS++
supports complex objects and distributed arrays, and in Section 3, we discuss how distributed
pointer-based data structures are supported in CHAOS++. Section 4 describes the implementation
of the library. Performance results for the polygon overlay problem and three complete applications
are presented in Section 5. Section 6 discusses some related work, and we present conclusions
in Section 7.

2 Runtime Support for Distributed Arrays

CHAOS++ provides runtime support for distributed arrays through use of the Maryland CHAOS [37]
and Multiblock Parti libraries [42]. The CHAOS library is employed as the underlying support for
arrays with irregular distributions, while Multiblock Parti is used to support regular data distri-
butions. Neither library is visible to the user of CHAOS++; they are used internally to provide
efficient, high-performance runtime support for arrays distributed across the processors of a dis-
tributed memory machine.

The CHAOS runtime library has been developed to efficiently support applications with irregular
patterns of access to distributed arrays, running on distributed memory machines. In these problems,
arrays are frequently partitioned in an irregular manner for performance reasons (e.g. to reduce
communication costs or to obtain better load balance), and accesses to off-processor array elements
are carried out by message passing. Furthermore, the data access patterns to the arrays are not
known until runtime, since array elements are accessed through one or more levels of indirection.
Program 1.2 illustrates a typical irregular loop. The data access pattern is determined by arrays,
ia and ib, whose values are not known until runtime, and we call them indirection arrays.



double x[max_nodes], y[max_nodes]; // data arrays
int ia[max_edges], ib[max_edges]; // indirection arrays

for (int i = 0; i < max_edges; i++) // a parallel loop
x[ialil] += y[ib[il];

Program 1.2: An example with an irregular loop.

For the loosely synchronous applications we have described in the introduction, the data access
pattern of a computation phase is usually known before entering the computation phase and is re-
peated many times. CHAOS thus carries out optimization through two phases, the inspector phase
and the ezecutor phase [27, 38]. During program execution, the CHAOS inspector routines examine
the data references expressed in the indirection arrays, given in global indices, and convert them
into host processor numbers and local indices. This is done by a lookup into a translation table that
CHAOS constructs for arrays partitioned in an irregular fashion. The translation table contains the
host processor number and the local address for every array element. Since the translation table can
be large (the same size as the data array), it can be either replicated on all processors, or distributed
across the processors. Duplicate irregular references are removed through simple software caching,
and unique references are aggregated to reduce communication latency and startup costs. The result
of these optimizations is a communication schedule, which is later used by CHAOS data transporta-
tion routines in the executor phase to efficiently collect the data needed for the computation phase.
CHAOS also provides primitives to redistribute data arrays efficiently at runtime. Special attention
has been devoted towards optimizing the inspector for adaptive applications, where communication
patterns are not reused many times [39].

2.1 Mobile Objects

CHAOS++ defines an abstract data type, called Mobject, for mobile objects. These are objects
that may be transferred from one processor to another, so they must know how to pack and unpack
themselves to and from a message buffer. In general, the object model that CHAOS++ supports is
one in which an object is owned by one processor, but other processors may possess shadow copies
of an object, as will be discussed in Section 3.2. This implies that a distributed array of objects is
treated by CHAOS++ as multiple objects, so that it can be distributed across multiple processors.

The Mobject class contains two pure virtual member functions, pack and unpack, and is designed
as a base class for all objects that may migrate between processors, and/or will be accessed by
processors other than the ones they are currently assigned to. CHAOS++ employs the user-provided
pack/unpack functions to move or copy Mobjects between processors. In C+4+4, virtual functions
allow the dynamic binding of a function call, so that the pack or unpack functions actually invoked
will be based on the type of the object at runtime. Consequently, CHAOS++ can always invoke the
proper methods with Mobject: :pack() and Mobject: :unpack().

An implication of requiring the user to provide pack and unpack functions for all Mobjects is
that CHAOS++ does not allow distributed arrays of C++ base types (e.g. double, int, etc.),
because C++ does not allow a user to define member functions for base types. One way for a user
to implement such a distributed array would be to define a class derived from Mobject consisting
solely of a member with the base type, and then provide the pack and unpack functions for that
class. In the applications we have investigated so far, this is not a major problem, because all the
distributed arrays have been arrays of complex structures.

For an object that only occupies consecutive memory locations, the pack and unpack functions
consist of a simple memory copy between the object data and the message buffer. For a more complex
object that contains pointers to sub-objects, and thus has parts to be copied scattered throughout
the program memory (runtime heap), the application programmer must provide an implementation
of pack and unpack that supports a deep copy. To be more specific, the pack function should
copy both the contents of the object and its sub-objects into the message buffer. A straightforward
implementation of pack for an object with sub-objects can be done by also deriving the classes
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for all sub-objects from Mobject, and having the pack function for an object recursively call the
pack function for each of its sub-objects. On the receiving processor side, the unpack function must
perform the inverse operation. That is, it must interpret the flattened object data in the message
buffer, packed by the sender’s pack function, and restore the complete structure of the object. This
includes recursively unpacking all the sub-objects, and setting up all the pointer members properly.
Restoring the pointer members properly is important because a local pointer on one processor is not
valid across processor boundaries on distributed memory architectures. This means that sub-objects
must be dynamically allocated on the receiving processor, and the pointers to the sub-objects must
be initialized to point into local memory. In other words, an object transferred to another processor
may not retain the same pointer values for its sub-objects, but the new pointers will point at its new
sub-objects with the same user data values (and connectivity, through pointers) as in the original
object.

2.2 Partitioning Data Arrays
The CHAOS runtime support library [32, 37] contains procedures that

e support static and dynamic distributed array partitioning,

partition loop iterations and indirection arrays,
e remap arrays from one distribution to another, and
e carry out index translation, buffer allocation and communication schedule generation.

The partitioning of arrays during the data distribution phase can be done with partitioners
supplied by either CHAOS or the application programmer. CHAQS supports a number of parallel
partitioners that use heuristics based on spatial positions, computational load, connectivity, etc.
The partitioners return an irregular assignment of array elements to processors; this is stored as a
CHAOS construct called the translation table.

When an array is irregularly distributed, a mechanism is needed to retrieve required elements of
that array. CHAQOS supports a translation mechanism using a data structure called the translation
table. A translation table lists the home processor and the local address in the home processor’s
memory for each element of the irregularly distributed array. In order to access an element A[m] of
distributed array A, a translation table lookup is necessary to find out the location of A[m].

A translation table lookup, which is aimed at computing the home processor and the offset
associated with a global distributed array index, is known as a dereference request. Any preprocess-
ing aimed at communication optimizations needs to perform dereferencing, since it is required to
determine where elements reside.

Several considerations arise during the design of data structures for a translation table. De-
pending on the specific parameters of the problem, there is usually a trade-off involving storage
requirements, table lookup latency and table update costs. Of these, table lookup costs are of pri-
mary consideration in adaptive problems, since preprocessing must be repeated frequently, and must
be efficient.

The fastest table lookup is achieved by maintaining an identical copy of the translation table
in each processor’s local memory. This type of translation table is a replicated translation table.
Clearly, the storage cost for this type of translation table is O(NP), where P is the number of
processors and N is the array size. However, the dereference cost in each processor is constant and
independent of the number of processors involved in the computation.

Due to memory considerations, it is not always feasible to place a copy of the translation table
on each processor. The approach taken in these cases is to distribute the translation table between
processors. This type of translation table is a distributed translation table. Earlier versions of CHAOS
supported a translation table that was distributed between processors in a blocked fashion. This 1s
accomplished by distributing the translation table by blocks, i.e., putting the first N/ P elements on
the first processor, the second N/P elements on the second processor, etc. When an element A[m)]



of the distributed array A is accessed, the home processor and local offset are found in the portion
of the distributed translation table stored in processor (m x P)/N. The dereference requests may
require a communication step, since some portions of the translation table may not reside in the
local memory. Similarly, table re-organization also requires interprocessor communication since each
processor 1s authorized to modify only a limited portion of the translation table.

Besides supporting replicated and distributed translation tables, CHAOS also supports an inter-
mediate degree of replication with paged translation tables. In this scheme, the translation table is
divided into pages, and pages are distributed across processors. Processors that refer to a page fre-
quently receive a copy of the page, making subsequent references local. A more detailed description
of this scheme is presented in Das et al. [14].

For applications with more regular data access patterns, the translation tables employed by the
CHAOS library are not required. Instead, distributed array descriptors that contain complete infor-
mation about the portions of the arrays residing on each processor can be generated. For regularly
distributed data, the data distribution across the processors (e.g. block, cyclic), and its associated
descriptor, can be represented compactly, for example by using regular section descriptors [19]. This
form of descriptor has been used in the Multiblock Parti library [1, 2, 42], which CHAOS++ uses to
partition data and generate communication schedules for regularly distributed arrays. Multiblock
Parti has been designed to support the parallelization of applications that work on multiple struc-
tured regular grids, such as those that arise in multiblock and/or multigrid codes. While Multiblock
Parti produces distributed array descriptors at runtime, because it allows the sizes of arrays to
be determined at runtime, compilers for data parallel languages such as Fortran 90D [5] and High
Performance Fortran (HPF) [22], can produce such descriptors at compile time. In either case, this
compact representation allows the descriptors to be replicated across all processors, so that commu-
nication schedules can be built without additional communication being performed, as is required
when using a CHAOS distributed translation table.

Multiblock Parti conforms to the inspector/executor model of parallel computation, building
communication schedules in the inspector phase and performing communication in the executor
phase. The library supports two forms of inspectors: one for intra-array communication, for handling
the communication required because a single array is partitioned across processors, and one for
inter-array communication, for handling regular section moves between different arrays or different
portions of the same distributed array. A regular section move copies a regular section (e.g. as
represented by Fortran 90-style triplets) of one distributed array into a regular section of another
distributed array, potentially involving changes of offset, stride and index permutation. Intra-array
communication is handled by allocation of extra space at the beginning and end of each array
dimension on each processor. These extra elements are called owverlap, or ghost, cells [16]. Both
inspectors produce the same form of communication schedule, which can be used by the Multiblock
Parti collective data movement routines.

2.3 Data Movement

The preprocessing, or inspector, phase of a program parallelized using CHAQOS results in a data struc-
ture called a communication schedule [13], which stores the send/receive patterns of off-processor
elements. The computation, or executor, phase uses the schedules to carry out communication. A
communication schedule is used to fetch off-processor elements into a local buffer and to scatter
these elements back to their home processors after the computational phase is over. Communication
schedules determine the number of communication startups and the volume of communication, so
it is important to optimize them.

CHAOS also supports specialized communication schedules [39]. For some adaptive applications,
particularly those from the particle-in-cell domain, there is no significance attached to the placement
order of incoming array elements. Such application-specific information can be used to build much
cheaper light-weight communication schedules. In inspectors for such applications, index translation
is not required, and a permutation list need not be generated for the schedule data structure. Besides
being faster to construct, light-weight schedules also speed up data movement by eliminating the



need for rearranging the order of incoming off-processor elements. Light-weight schedules have been
used in the parallelization of the Direct Simulation Monte Carlo code discussed in Section 5.2.

While communication schedules store data send/receive patterns, the CHAOS data transporta-
tion procedures actually move data using these schedules. The procedure gather can be used to
fetch a copy of off-processor elements from the processors that own the elements into a local buffer.
The procedure scatter can be used to send off-processor elements from a local buffer to the owners.

A set of data movement primitives has also been developed that can perform irregular communi-
cations efficiently using the light-weight communication schedules. The procedure scatter_append
can be used to perform data movement when the order in which elements are scattered into their
destination processors is not relevant (i.e. when using a light-weight schedule). While the cost of
building light-weight schedules is much less than that of regular schedules, light-weight schedules
and data migration primitives still provide all the CHAOS communication optimizations, such as
aggregation and vectorization of messages. Multiblock Parti also has data transportation routines
similar to those in CHAQS for performing the communication specified by a schedule produced by
either the ghost cell fill or regular section move routines. A more detailed description of the CHAOS
procedures can be found in Saltz et al. [37].

2.4 An Example

We now discuss how to parallelize Program 1.2 using the CHAOS runtime library. The transformed
code for Program 1.2 that carries out the inspector and executor is shown in Program 1.3. The arrays
ia and ib contain the globally indexed reference patterns used to access arrays x and y, respectively.
Because some referenced data might reside on other processors, non-local values must be transferred
to local memory. However, communication between two processors involves a non-trivial communica-
tion latency, or message startup cost, on distributed memory machines. Vectorizing communication
reduces the effect of communication latency and software caching reduces communication volume.
To carry out either optimization, it is helpful to have a priori knowledge of data access patterns. In
irregular problems, it 1s generally not possible to predict data access patterns at compile time. For
example, in Program 1.2, the values of indirection arrays ia and ib are known only at runtime.

// Create the required schedules (Inspector)
localize(dist_of_x, schedule_ia, ia, local_ia, n_local_iterations, &off_proc_x)
localize(dist_of_y, schedule_ib, ib, local_ib, n_local_iterations, &off_proc_y)
// The actual computation and communication (Executor)
zero_out_buffer(&x[begin_buffer_x], off_proc_x)
gather (&y[begin_buffer_y], y, schedule_ib)
for (int i = 0; i < n_local_edges; i++)

x[local_ia[il] = x[local_ialil] + y[local_ib[i]]
scatter_add(&x[begin_buffer_x], x, schedule_ia)

Program 1.3: Node code for simple irregular loop.

In source Program 1.2, values in array x are updated using the values in array y. Hence, a
processor may access an off-processor array element of y to update an element of x. A processor
may also need to update an off-processor array element of x, if loop iteration i is not assigned to the
processor owning x[ia[i]]. The two localize function calls in Program 1.3 perform the inspectors
for arrays x and y. The goal of the inspector is to compute the schedules to both pre-fetch off-
processor data items before executing the loop and carry out off-processor updates after executing
the loop. Hence, two schedules are computed in the inspector:

1. a gather schedule — a communication schedule that can be used to fetch off-processor elements
of y, and



2. a scatter schedule — a communication schedule that can be used to send updated off-processor
elements of x.

Copies of the off-processor elements are stored in the on-processor buffer area. The on-processor
buffer for off-processor data array elements immediately follows (in physical memory) the on-
processor data for that array. For example, the buffer for data array y begins at y[begin buffer_y],
and is of size off_proc_y. The value of off _proc_y is is returned by the localize function call. The
CHAOS procedure localize also translates ia and ib to local_ia and local_ib, respectively, so
that valid references are generated when the loop is executed. All references to off-processor ele-
ments are translated so that they point to the on-processor buffer. The communication schedule
returned by localize is used by the CHAOS gather operation to fetch the off-processor data and
store them in the on-processor buffer. The data are stored in a way such that execution of the loop
using local_ia and local_ib accesses the correct data. CHAOS data movement routines, such as
gather, are collective operations. That is, all processors must participate to complete the opera-
tion, but synchronization occurs only through matching sends and receives between processors. No
explicit barrier occurs either in the CHAOS data movement routines, or needs to be inserted by
the application programmer. The CHAOS scatter_add procedure is a variant of the basic scatter
operation that adds values from the on-processor buffer into the corresponding off-processor array
elements, instead of overwriting them.

3 Runtime Support for Distributed Pointer-Based Data Struc-
tures

In addition to arrays, CHAOS++ is designed to effectively support applications that contain pointer-
based data structures. It is more difficult to support distributed pointer-based data structures
because they usually have more dynamic behavior than arrays. In this section, we first describe
the type of runtime support required for distributed pointer-based data structures, and then briefly
discuss how CHAOS++ provides the required functionality. The approach that CHAOS++ takes
relies heavily on class inheritance, as supported by the C++ language.

3.1 Issues in Runtime Support for Pointer-Based Data Structures

The CHAOS library has been successfully applied to irregular and adaptive problems that use
distributed arrays. In distributed arrays, each element is associated with a global index, which can
be used as a unique identifier for that element. In pointer-based data structures, however, since
elements (objects) may be added to and removed from the data structures dynamically, no static
global names or indices are associated with the elements, and accesses to those elements are done
through pointer dereferencing. It is therefore not feasible for the runtime system to rely on the
existence of global indices. Furthermore, partitioning a pointer-based data structure may assign two
elements connected via pointers to two different processors, raising the need for global pointers. A
global pointer, as supported by several languages, including Split-C [11], CC++ [7], and pC++ [26],
may point to an object owned by another processor, and effectively consists of a processor identifier
and a local pointer that is only valid on the named processor.

In CHAOS++, these problems are addressed by introducing an abstract data type, called Globally
Addressable Objects, which we now discuss in detail.

3.2 Globally Addressable Objects

Elements in a pointer-based data structure are linked and accessed through pointers. As we previ-
ously described, global pointers are needed on a distributed memory parallel machine to successfully
partition pointer-based data structures. One obvious approach is to define a C++ class for global
pointers and overload the dereference operator (¥), so that whenever a global pointer is dereferenced,



the necessary interprocessor communication is generated transparently to the application program.
This approach, however, does not allow collective communication, which is an important technique
for achieving high performance using a loosely synchronous execution model. Furthermore, derefer-
encing a global pointer requires a conversion between a reference to a remote object and a reference
to a local buffer. This imposes additional overhead with every dereference of a global pointer. It is
more desirable to perform the conversion only when the binding between the global pointer and the
local buffer changes.

Instead of defining a class for global pointers, CHAOS++ supports global pointers by defining
an abstract C++ base class for globally addressable objects, or Gobjects. A Gobject is an object
whose ownership is assigned to one processor, but allows copies to reside on other processors. The
copies are referred to as ghost objects, and each processor other than the one assigned ownership of
the Gobject may have a local copy of the Gobject as a ghost object. Figure 2 illustrates an example
of partitioning a graph between two processors. The dashed circles represent ghost Gobjects. Each
Gobject has a member function that determines whether it is a real object (the permanent version
of the object) or a copy of a remote object (a ghost object). The ghost object is used to cache the
contents of the remote counterpart, so that once the ghost object is filled with data from its real
counterpart, accesses to the object can be carried out locally. The contents of ghost objects are
updated by explicit calls to CHAOS++ data exchange routines. Deciding when to update a ghost
object from a real object is made by the application. This description implies that all Gobjects
must also be CHAOS++ Mobjects, to support transfer of data between real and ghost objects that
are owned by different processors.

In the object model supported by CHAOS++, a pointer-based data structure is viewed as a
collection of Gobjects interconnected by pointers. Partitioning a pointer-based data structure thus
breaks down the whole data structure into a set of connected components, each of which is surrounded
by one or more layers of ghost objects. In the partitioned data structure, pointers between two
Gobjects residing on the same processor are directly represented as C++ pointers. Pointers to
Gobjects residing on other processors correspond to global pointers, and are represented as C++
pointers to local ghost object copies of the remote Gobjects. The outermost layer of ghost objects
on a processor can be thought of as the boundary of the distributed data structure assigned to that
processor, and they would be the nodes where a local traversal of the data structure terminates. In
Figure 2, note that edges that get partitioned in the original graph are pointing to ghost objects in
the partitioned graph.

Since accesses to elements of a pointer-based data structure are done through pointers, the
layers of ghost objects surrounding each connected component encapsulate all the possible remote
accesses emerging from that connected component. Accesses to remote objects that are more than
one “link” away can be satisfied by creating ghost objects for remote objects that are pointed to
by local ghost objects, and filled on demand. A mapping structure is constructed by CHAOS++
for each distributed pointer-based data structure on each processor, to manage the ghost objects
residing on that processor. The mapping structure maintains the possible remote accesses from the
local processor by creating a list of all the ghost objects. The mapping structure also records for
each ghost object the processor number and the local address of the remote object that the ghost
object represents. The mapping structure is used during the inspector phase of the parallel execution
for translating global references into processor and local address pairs to generate communication
schedules. In Figure 2, the dashed box for each processor represents the CHAOS+4 mapping
structure. The CHAOS++ data exchange routines then use the schedules to transfer data between
real Gobjects and ghost Gobjects in the executor phase.

3.3 Building Distributed Pointer-Based Data Structures

A distributed pointer-based data structure is defined by its nodes and edges, as well as by how it is
partitioned among the processors. To enable the parallel execution of an application that contains
a distributed pointer-based data structure, the program must be able to build the distributed data
structure based on application-specific information. This is usually done in two steps: all processors



processor 0 processor 1

Figure 2: Partitioning a graph between two processors. At top is the original graph, partitioned at
the vertical bar, with the resulting processor assignment shown at bottom.

first construct their local connected components, and then compose those components to form the
final distributed data structure. In general, there are two possible scenarios. One is a situation
where each node in the pointer-based data structure is associated with a globally unique identifier.
The other is the case where no such identifier exists. In both cases, CHAOS++ provides primi-
tives to assist in the construction of a distributed pointer-based data structure, and to create the
corresponding mapping structure.

3.3.1 Nodes With Unique Identifiers

In many applications, each node in a pointer-based data structure is associated with a globally
unique identifier. In this case, the nodes can be named by their associated identifiers, the edges
can be specified by the identifiers of their two end points, and the partitioning information can be
described by pairs of processor numbers and node identifiers. One such example is an unstructured
CFD code, where a node table is used to record all the node information for the graph, including
initial values, node identifiers and the assigned processor numbers, and an edge table is used to specify
the graph connectivity. When node identifiers are available, CHAOS++ provides a hash table on
each processor that stores, for each node of the local component of the data structure, the node
identifier, its local address, and its assigned processor number if available. The records are hashed
by the node identifiers, so accesses through node identifiers are fast. Program 1.4 demonstrates
how the CHAOS++ hash table assists in constructing a distributed data structure. Applications
can store information about their distributed pointer-based data structures in any format. For
simplicity, the application in this example uses replicated C++ arrays Node_Table and Edge_Table.

class Graph_Node : Gobject { ... };
chaosxx_hash_table<Graph_Node> htable; // declare a CHAOS++ hash table
Graph_Node #*node, *from_node, *to_node; // pointers to graph nodes

// assume a replicated node table and edge table
// go through the node table
for (i=0; i<num_nodes; i++) {

if (Node_Table[i].owner_processor == MY_PROC_ID)
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node = new Graph_Node(...); // create and initialize the node

else
node = NULL;

// register the node with CHAOS++ hash table
htable.add(Node_Table[i] .node_id, node, Node_Table[i].owner_processor);

}

// go through the edge table
for (i=0; i<num_edges; i++) {
j = Edge_Table[i].from_node_id;
k = Edge_Table[i].to_node_id;
if ((from_node = htable.get_local_pointer(j)) != NULL) {
// an edge from a local node
if ((to_node = htable.get_pointer(k)) == NULL) {
// a ghost node needs to be created
to_node = new Graph_Node(...); // create a ghost node

// register the node with CHAOS++ hash table
htable.set_pointer(k, to_node);

}

// add a pointer from *from_node to *to_node
from_node—>neighbor[from—>number_of_neighbors++] = to_node;

}
}

// create the mapping structure for CHAOS++
TPMapping<Graph_Node> *map = htable.create_map();

Program 1.4: Constructing a distributed graph with a CHAOS++4 hash table.

The program consists of three steps. In the first step, the program scans through the node table
and registers node information into the hash table. Nodes assigned to the local processor are created
and properly initialized in this step. Nodes that are not assigned to the local processor are marked by
recording their assigned processor numbers. If a node is known to be remote, but the owner processor
is not yet known, the constant CHAOSXX REMOTE can be used as the owner processor. CHAOS++
uses this information to bind local copies with remote copies, in the final step of the program. Exact
knowledge of the owner processors of remote nodes makes that process more efficient, since a single
request suffices to locate a remote node. When the owner processor is not known to the runtime
system, locating a remote node may require the local processor to send out multiple requests. In the
second step, the program scans through the edge table and creates the specified pointers. Only edges
that originate from a node assigned to the local processor are of interest. The CHAOS++ hash table
is used to find the addresses of the end nodes, specified by the node identifiers stored in the edge
table. Nodes that are assigned to the local processor are created in the first step, and their addresses
can be retrieved from the hash table through their node identifiers. Nodes that are not assigned to
the local processor can be created as ghost objects and registered with the hash table upon their
first appearances in the edge table. At the end of the second step, each processor has constructed
its local component of the distributed data structure, containing both objects assigned to the local
processor and ghost objects. In the final step of Program 1.4, an appropriate mapping structure
is constructed by CHAOS++. The mapping structure is of type TPMapping<Graph Node>, and
records the association between ghost objects and real remote objects, using the information stored
in the hash table. This is done via a collective communication, in which all processors exchange the
node identifiers and the local addresses stored in their CHAOS++ hash tables.
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3.3.2 Nodes With No Unique Identifiers

For applications with nodes that do not have unique identifiers, CHAOS++ provides another inter-
face. Since there is no natural way to name the nodes in distributed pointer-based data structures,
the connectivity of the data structures in these applications is usually induced from application-
dependent information. For example, the initial graph built by the image segmentation problem,
which is discussed in Section 5.4, is defined by the input image. In this case, the CHAOS++ library
assumes that each processor running the target application is able to build its assigned component of
the distributed data structure, and has the information necessary to “linearize” its boundary nodes
with the components on the other processors. CHAOS++ primitives can then be used to associate
the corresponding boundaries, to compose the local components into a global data structure and
generate an appropriate mapping structure.

To be more specific, each processor i provides, for each other processor j, two lists of node
pointers, local;; and ghost;;. local;; consists of the nodes that are owned by processor # but have
ghost objects on processor j, and ghost;; consists of the ghost nodes residing on processor # that
correspond to real objects on processor j. To compose the components between two processors
correctly, node pointers in the corresponding lists must be listed in the same order. That is, node
pointers in local;; must match exactly with the node pointers in ghost;j;, one-to-one, and those in
ghost;; must match with those in local;;, one-to-one. As an example, to compose the two components
on processor 0 and 1 in Figure 2, the processors would construct the following matching boundaries.

processor 0 :  localyy = {D,E} ghostq = {J', F' ,G'}
processor 1. localig = {J, F,G} ghostio = {D', E'}

The ordering of the lists implies that nodes D and F on processor 0 are associated with ghost
nodes D’ and FE’, respectively, on processor 1, and similarly, nodes J, F' and G on processor 1 are
associated with ghost nodes J’) F”and G’ respectively, on processor 0.

Given the information for the boundaries between every pair of processors, the CHAOS++
runtime library is able to associate real objects with their corresponding ghost objects (i.e. compute
the local addresses on each processor, for later communication), through collective communication,
and store that information in the mapping structure.

3.4 Data Movement Routines

The data transfer between real Gobjects and ghost Gobjects is carried out by the CHAOS++ data
movement routines. CHAOS++ allows processors to either update ghost objects with data from
their corresponding remote objects on other processors (as in a CHAOS gather operation), or modify
the contents of remote objects from the contents of ghost objects (as in a CHAOS scatter operation).
The data movement routines use the pack and unpack functions of Mobjects to enable deep copies.
Recall that all Gobjects are also Mobjects. The communication schedules generated from the
mapping structure, constructed using either of the two methods discussed in Section 3.3, ensure
that neither polling nor interrupts are needed at the receiving processors, so that communication
can be performed efficiently.

3.5 An Example

An example of using the CHAOS++ runtime library is given in Program 1.5. In this example, a
parallel computation is applied to a distributed graph consisting of objects defined by a user-defined
class, Graph_Node. The user derives class Graph_Node from the CHAOS++ Gobject base class,
and provides implementations of the two virtual functions pack and unpack.

class Graph_Node : public Gobject {

public:
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int num_neighbors() const;

Graph_Node* neighbor(int i);

int& datal();

int data2() const;

void pack(Buffer&); void unpack(Buffer&);

};

// build the partitioned graph, and create the appropriate mapping structure,
Graph_Node *root = ...; TPMapping<Graph_Node> #*map = ...

// the inspector: build a communication schedule from the mapping structure
PSchedule<Graph_Node> *sched = map.schedule();

for (int i=0; i < num_iterations; i++) {
// the executor: transfer data from remote real objects
// to local ghost objects with CHAOS++ gather function
sched->gather();

// a local graph traversal, starting from the root of the local
// component, to compute for every Graph_Node object,

// the sum of data2 of its neighboring Graph_Node objects
mark_all_nodes_as_not_visited(root); local_traversal(root);

// some other computation that might update the value of data2

.-

void local_traversal(Graph_Node *node)

{

if (node == NULL || node->isGhostObject() || node->been_visited())

return;
node->mark_visited();
// computation on node data values
for (int i=0; i<node->num_neighbors(); i++) {

Graph_Node #next = node->neighbor(i);

node->datal() += next->data2();

local _traversal (next);

Program 1.5: Parallel computation over a partitioned graph.

Every Graph Node object contains a list of pointers to other Graph Node objects that it interacts
with. The member function num_ neighbors returns the number of Graph Node objects a Graph Node
object interacts with, and the member function neighbor (i) returns a pointer to the i-th neigh-
boring Graph Node object.

The program first constructs the distributed graphs, using either of the two methods described
in Section 3.3, and generates a mapping structure. For simplicity, we assume that each processor
is assigned one connected component, pointed to by a Graph Node pointer, root. CHAOS++ then
analyzes the mapping structure and builds a communication schedule to allow efficient data transfer
between real and ghost objects. The for-loop traverses the local component of the distributed graph
on each processor, to perform computation on the graph nodes. In this example, each Graph Node
object accumulates into its data member datal the values of data member data2 from its neigh-
boring Graph Node objects. Remote data accesses are required to perform this computation over a
distributed graph.

To achieve good performance, the loop body is thus broken into a communication phase and
a computation phase. During the communication phase, all ghost nodes are filled with data from
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their remote objects by invoking the CHAOS++ gather routine with the communication schedule
generated before the for-loop. The computation phase follows, with every processor traversing its
local component of the distributed graph to apply the computation to each of the Graph Node
object it owns. Program 1.5 uses a recursive depth-first search algorithm to traverse the local graph.
The local traversal of the graph terminates when encountering either the end of the graph (node
== NULL), a ghost object (node->isGhostObject() == TRUE), or a node that has already been
visited (node->has_visited() == TRUE). All the computations applied to the local graph nodes
are performed locally, since all remote data required by the computation was fetched during the
communication phase.

4 Implementation

CHAOS++ provides support for efficient data transfer between remote objects and local buffers.
This requires the runtime system to be able to translate a global reference into a processor number
and a local reference on that processor. This process is referred to as a dereference, and is discussed
in Section 4.1. After dereferencing, communication optimizations are applied and the result is a
communication schedule, which is later used by the CHAOS++ data transfer routines to carry out
interprocessor communication. CHAOS++ communication schedules and data transfer routines will
be discussed in Section 4.2.

4.1 Dereferencing Global References

The purpose of dereference operations is to determine the local address of the object that corre-
sponds to a given global reference. For distributed arrays, the most convenient global references
are global indices, which often appear as indirection arrays in programs with irregular array data
access patterns. CHAOS++ uses a translation table to record the association between global in-
dices and local addresses. On the other hand, since CHAOS++ supports global pointers implicitly
through Gobjects, pointers to Gobjects that are actually ghost objects are the global references
used by an application. CHAOS++ uses its mapping structure to carry out dereference operations
for distributed pointer-based data structures.

4.1.1 Translation Tables

In distributed memory machines, large data arrays need to be partitioned between the local pro-
cessor memories. These arrays can be partitioned with a regular distribution, such as a blocked
distribution or a cyclic distribution. But it is frequently advantageous to partition them in an ir-
regular manner to minimize interprocessor communication, or to improve load balance. Once the
distributed arrays have been partitioned between processors, each processor is assigned a set of
globally indexed distributed array elements, and CHAOS++ uses a translation table to store that
information.

A translation table stores the information that is required for the dereference operation. For
a regular array distribution, such as a block or cyclic distribution, a simple formula is stored that
allows the dereference to be performed by local computation. For an irregular distribution, an entry
that lists the home processor and the local address in the home processor’s memory is created for
every element of the distributed array, and a dereference is performed by table lookup. Since local
addresses of array elements are described in terms of offsets from a local base address, rather than
absolute memory addresses, a translation table can be shared by multiple distributed data arrays
with the same distribution.

A translation table can be replicated on all the processors, in which case a dereference can be
performed locally on each processor. But with an irregular distribution, the translation table has the
same size as the distributed array that it describes, so could be quite large. To minimize memory
usage, a translation table can be distributed among the processors, in which case interprocessor
communication is required for dereference. CHAOS++ uses the paged translation table [14] described
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in Section 2.2. The advantage of a paged translation table is that each processor is allowed to
choose which pages to replicate based on the access patterns to its distributed arrays, so that
the communication cost for dereference can be minimized. Das et al. [14] discuss the performance
behavior of two applications using paged translation tables, and to no surprise, performance improves
as more of the table entries are cached locally.

4.1.2 Mapping Structures

Partitioning a pointer-based data structure among processors, as described in Section 3.1, generates
global pointers that point from one processor to another. A mapping structure for such a distributed
pointer-based data structure effectively records the incoming pointers and the outgoing pointers for
each processor. That is, it keeps track of all the ghost objects on the local processor, as well as
all the local objects that have corresponding ghost objects residing on other processors. The space
required to store the mapping structure on each processor is proportional to the number of ghost
objects on the local processor, and the number of local objects that have corresponding ghost objects
residing on remote processors. With a good partitioning scheme that minimizes the number of edges
between Gobjects assigned to different processors, the space overhead should be quite small.

The association between real objects and ghost objects is obtained by the CHAOS++ runtime
system, either through the use of global node identifiers, when they are available, or through match-
ing boundaries (see Section 3.3.2). By exchanging the recorded information between processors,
the runtime system is able to obtain the processor number and local address of the corresponding
remote object for each ghost object, and records the information in the mapping structure. The
information can then be used to dereference pointers to ghost objects.

Furthermore, since the objects in a distributed pointer-based data structure can only be accessed
by traversing pointers, the mapping structure effectively records all potential remote data accesses.
With the information available for dereferencing pointers to ghost objects, the CHAOS++ runtime
system can generate a communication schedule from a mapping structure, to generate efficient data
transfers between the owners of Gobjects and the ghost copies of the Gobjects.

4.2 Data Movement

CHAOS++ provides efficient and flexible data movement routines to transfer data between remote
objects and local buffers. This is carried out in an inspector and an executor phase. The inspector
phase analyzes the communication requirements and applies several optimizations, such as removing
duplicate references and aggregating messages, to create a communication schedule. Then, the
executor phase uses the schedule to move data efficiently between processors via the CHAOS++
data transportation routines.

4.2.1 Communication Schedules

A communication schedule records, for each processor, the information required to fulfill a given
communication request. In particular, a schedule for processor p stores the following information:

e send list — an array of lists of references, one list per processor, to local objects that must be
sent to other processors,

e send size — an array that specifies the numbers of objects to be packed into each of the out-going
messages from processor p to other processors,

e fetch size — an array that specifies the number of objects to be unpacked from each of the
incoming messages to processor p from other processors.

e permutation list — an array of references to local buffer space that specifies the placement of
incoming off-processor objects,
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The send list on processor p stores, for each other processor, a list of local objects that must
be packed into a message and sent to that processor, with the send size specifying the number
of objects to be packed into each message. The fetch size gives the number of objects that each
incoming message contains. After receiving all the incoming messages, the permutation list directs
the placement in local memory of each object unpacked from the incoming messages.

The CHAOS++ runtime library provides communication schedules for both distributed arrays,
whose elements can be accessed by indices, and pointer-based data structures, whose elements cannot
be accessed by indices. Both types of communication schedules have the same structure, with the
only difference being the way information is represented in the schedules.

CHAOS++ uses CHAOS communication schedules for distributed arrays [14], which refer to
local objects and buffer space by local indices. The starting addresses of the distributed arrays
involved are needed only when the actual data transfer occurs. Due to the abstraction provided
by local indices, communication schedules for distributed arrays can be shared by different arrays
that have the same distribution and are accessed via the same indirection arrays. CHAOS++ also
provides, through the underlying CHAOS library, routines to build incremental schedules, which for
a given indirection array, only fetch additional objects that have not been brought in by previously
built schedules. To minimize message startup overhead, CHAOS++ also provides the capability of
merging existing schedules.

In contrast, communication schedules for distributed pointer-based data structures cannot rely
on local indices. The schedules must use local pointers to refer to local objects and buffer space,
and, as a consequence, they cannot be shared among different data structures, even those with the
same distribution of objects. A schedule of this type can be built out of a mapping structure, as
described in Section 4.1.2.

4.2.2 Data Transfer

CHAOS++ data movement routines use the communication schedules described in Section 4.2.1 to
perform the required interprocessor communication. They can be used either to obtain copies of
data stored in specific off-processor memory locations (i.e. a gather operation), or to modify the
contents of specified off-processor memory locations (i.e. a scatter operation). All the data transfer
routines use the same basic algorithm:

1. for each remote processor that expects data from the local processor, pack local objects spec-
ified by the communication schedule into a message,

2. send to remote processors the sizes of the out-going messages,

3. allocate buffers for incoming messages,

4. send to, and receive from, remote processors messages that contain objects packed in step 1,
5. unpack all objects from the incoming message buffers

Figure 3 shows the time required, categorized by the steps in the algorithm, to gather a total of
100,000 integers on all processors. As can be seen, most of the time is spent packing objects into
and unpacking from the message buffer.

In the data transfer algorithm described above, step 2 is required because it is not always possible
to determine in advance the amount of space needed to hold all the packed Mobjects. This may
happen , for example, because different objects of the same data type contain different numbers
of sub-objects, thus requiring different amounts of storage. If the size of each packed Mobject
can be determined, and all Mobjects involved in the communication are known to have the same
size, step 2 could be replaced by a local computation to avoid one round of all-to-all interprocessor
communication.

Although the CHAOS++ data exchange routines can be made quite efficient, additional opti-
mizations are still necessary. For complex data types, objects may become quite large, and simply
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Figure 4: An example of polygon overlay.

polygon overlay problem, which is what was implemented, both input maps consist of only non-
empty rectangles, with vertices on a rectangular integer grid.

Polygons of a map may be stored in a sorted order. This can be done by first sorting the polygons
by their lower-X coordinates. Then each group of polygons with the same lower-X coordinates is
sorted by their high-X coordinates. Polygons with the same lower-X and higher-X coordinates are
further sorted by their lower-Y coordinates, breaking ties by comparing their upper-Y coordinates.
Since the polygons are assumed to be non-overlapping, this guarantees a unique ordering of the
polygons. Several of the variant implementations that will be described in this section rely upon
this ordering. In our implementation, the algorithm sorts the output map if both input maps are
sorted.

5.1.1 The Sequential Implementations

A naive sequential implementation of the polygon overlay algorithm consists of a nested loop that
sweeps through two input maps, comparing each polygon in the first input map to each polygon in
the other. Throughout this section, we will refer to the input map that corresponds to the outer
loop in the sequential code as the outer input map, and the one that corresponds to the inner loop
as the inner input map.

The naive overlay algorithm can be improved in several ways. The most obvious is to make
use of the sorted order of the entries in each input map. If a polygon’s high-X coordinate is z,
then no polygon whose low-X coordinate is greater than or equal to z can possibly overlap it. This
sorted-order optimization thus limits the sweep of the inner input map.

A second optimization is to keep track of how much of the area of each polygon has not yet
been accounted for. A polygon with all its area “used up” no longer needs to be considered when
calculating overlaps with other polygons. This area-tracking optimization uses an auxiliary integer
vector to keep track of the unaccounted-for area of each inner polygon, and a scalar integer to do
the same job for the current outer polygon. If the remaining area of a polygon from the inner map
becomes zero, it 1s never examined in later iterations of the outer loop. When the area of the outer
polygon is exhausted, that iteration of the outer loop is terminated.

A further refinement on the area-tracking optimization is to create a linked list of intermediate
structures that “shadow” the inner input map. Each element of this list records the area of its
corresponding inner polygon. Instead of looping through the whole inner map, the algorithm using
this list-deletion optimization repeatedly traverses the list. Once an inner polygon’s area has been
exhausted, its shadow is deleted from the linked list so that later iterations of the outer loop need
not consider it at all.

Finally, several combinations of these optimizations are possible. The first set of bars in Figure 5,
marked “sequential”, give the execution times for processing two sorted input maps of size 60,398
and 60,374, using the naive algorithm, the various optimizations, and the combinations of those opti-
mizations. In Figure 5, execution times for using the naive overlay algorithm are labeled as “naive”.
Execution times for using only the sorted-order optimization, only the area-tracking optimization,
and only the list-deletion optimization, are labeled as “ordered”, “area” and “list”, respectively.
Execution times for using the combinations of these optimizations are labeled accordingly. The
experiments show that the sorted-area optimization reduced processing time of the sequential exe-
cution by approximately half, which is what one would expect. The area-tracking optimization was
much more effective, while the list-deletion optimization delivers the best performance. Surprisingly,
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Figure 5: Performance results, in seconds, for the replicated parallel implementation. (a) uses a
block distribution, and (b) uses a cyclic distribution.

combining the sorted-order optimization with either area-tracking or list-deletion produces a slower
program. This may be attributable to the cost of an extra test in the control section of the inner
loop.

5.1.2 The Parallel Implementations

Based on the sequential algorithm, we have implemented two parallel polygon overlay algorithms
with the CHAOS++ library. Our basic strategy is to partition the outer input map across the
processors so that iterations of the outer loop can be executed in parallel. The two implementations
differ in the way the inner input map is handled. The experiments presented in this section use two
input maps, both sorted, of size 60,398 and 60,374, respectively, with the output map containing
203,006 polygons. The reported running times do not include the time for either sorting the output
or I/0.

The first algorithm is a straightforward parallel implementation with polygons from the inner
input map fully replicated across all the processors. After reading all its assigned polygons into local
memory, each processor concurrently executes the sequential overlay algorithm over its assigned
polygons. Various optimizations that were shown to improve the performance of the sequential
algorithm in Section 5.1.1 can also be directly applied with no modifications. Figure 5 gives the
performance results for this replicated implementation with the outer input map partitioned with
either a block or a cyclic distribution.

The naive algorithm, as expected, shows a linear speedup. The sorted-order optimization re-
duces the processing time relative to the naive algorithm by approximately half when using a cyclic
distribution, but was far less effective for the block distribution, actually increasing the processing
time on 16 processors. This is because the sorted-order optimization reduces the workload by telling
every outer polygon how early it can terminate the inner loop. For polygons located near the begin-
ning of the sorted outer input array, this is very effective, since very few polygons from the sorted
inner input array need to be examined before the sorted-order optimization terminates the inner
loop. However, for polygons located near the end of the sorted outer input array, the sorted-order
optimization does not terminate the inner loop until most of the polygons from the sorted inner
input array are examined. With a block distribution of the outer input map, this results in very
imbalanced load on the processors, because the processor that is assigned the last part of the outer
array cannot terminate the inner loop early to reduce its computation. That processor thus must
perform more computation than the others, and becomes the bottleneck. In contrast, when a cyclic
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distribution is used the work load is distributed more evenly, providing better performance.

The area-tracking and list-deletion optimizations are less effective in the parallel than in the
sequential implementation. In particular, the list-deletion optimizations make the parallel execution
much slower than sequential execution with the same optimization. This is because the area-tracking
and list-deletion optimizations reduce the computation by skipping all inner polygons that have
been exhausted by the preceding outer polygons. With a block distribution of the outer map,
each processor is assigned a set of outer polygons that spatially spans a very small area, and is
therefore only able to eliminate inner polygons that are wholy contained within that small area. This
implies that inner polygons can only be exhausted late in the computation, significantly limiting
the effectiveness of the optimizations. With a cyclic distribution, each processor is not confined
to polygons in a small area, and is therefore able to exhaust inner polygons much earlier in the
computation, providing greater benefits. However, the outer polygons that each processor is assigned
under a cyclic distribution do not span a contiguous area, significantly reducing the effectiveness of
these two optimizations, so that they are much less beneficial than in the sequential implementation.

In the replicated algorithm, no interprocessor communication is required until the output poly-
gons must be sorted across the processors. A simple bin sorting algorithm is used for that step
in the application, with the total area covered by the input maps partitioned regularly along the
x-axis among processors, and each of the output polygons moved from the processor where it was
generated to the processor that contains the x-coordinate of its lower left corner. A local sort is then
carried out on each processor over the assigned output polygons. In the parallel implementation, the
CHAOS++ communication primitives are used to scatter output polygons among the processors.
Figure 6 shows the time required to perform the bin sort. The white area in Figure 6 includes
time spent for assigning the output polygons to processors, building a communication schedule, and
performing the communication, taking about 14% of the total sorting time.

The second parallel algorithm forms the processors into a ring, and partitions both input maps
with a block distribution. During program execution, polygons from the outer input map stay on
the processors they were initially assigned to, while polygons from the inner map move between
processors. The computation is thus broken down into alternating phases of computation and
communication. In the computation phase, all processors concurrently invoke the sequential overlay
algorithm, either the naive or improved versions, to process their local polygons from both maps. In
the communication phase, a simple scheme is used, with each processor employing the CHAOS++
datamove routines to pack all the inner polygons it currently holds into a single message, then sending
the polygons to the next processor in the ring. With NP processors, exactly NP computation
phases and NP — 1 communication phases are required to ensure that the entire inner input map
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Figure 7: Performance results, in seconds, for ring parallel implementation, using block distributions
and a simple communication scheme.

is examined by all processors. Since the communication pattern remains the same throughout the
entire execution, a schedule is computed once and used for all the communication phases. If sorting
of the output polygons is required, the same bin sort algorithm described earlier is used.

Figure 7 shows the performance of the parallel ring algorithm. The naive ring algorithm provides
the same performance as the naive replicated algorithm, showing linear speedup, and the sorted-
order optimization, which can be applied without any modification to the parallel ring algorithm,
suffers from the same load imbalance problem as does the replicated algorithm. The area-tracking
optimization is implemented by transmitting, at each communication phase, an auxiliary area vector,
in addition to the inner input polygon vector. Area-tracking is more effective than in the replicated
algorithm, since processors in the ring algorithm are able to skip inner polygons that have been
exhausted by preceding processors in the ring, effectively reducing the computational load, which
did not happen with the replicated algorithm.

The list-deletion optimization, as can be seen from the sequential performance, provides the
greatest performance improvement from the naive parallel executions, when applied to the ring
algorithm. In the parallel implementation, the linked list that shadows the inner input map is de-
clared as a CHAOS++ Mobject, and by using a customized pack function the runtime system is
able to traverse the list during each communication phase and transmit only the inner polygons
that have not yet been exhausted. This not only reduces the volume of communication, but also
greatly reduces the processing time in later computation phases, resulting in improved performance.
The effectiveness of the list-deletion optimization is further amplified by the fact that the two input
maps were partitioned using the same distribution function. Partitioning both maps with a block
distribution assigns submaps that are almost spatially aligned with each other to the same processor,
which enables the parallel program to eliminate most of the inner polygons during the first compu-
tation phase. Table 1 shows, in the first column, the total number of inner polygons sent over all the
communication phases, using the simple communication scheme and the list-deletion optimization.
The second column shows the number of polygons sent during the very first communication phase,
for the simple communication scheme. It can be seen that only a few inner polygons survive after
the first computation phase and need to be transferred through the processor ring for further pro-
cessing. For comparison, the naive algorithm (with no optimizations) transfers the whole inner map
(60,374 polygons) during every communication phase. The third column in Table 1 gives the total
number of polygons that need to be communicated by the ring algorithm, when using a different
communication scheme that will be described shortly.

Since every processor in the ring parallel algorithm performs multiple scans over its assigned outer
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number simple first ping-pong
of communication | communication | communication
processors scheme phase scheme
2 393 393 393
4 2394 1026 1710
8 11690 2492 4025
16 50533 5244 8479

Table 1: Number of polygons sent by the ring parallel implementation with the list-deletion opti-
mization, under two different communication schemes. The inner map contains 60,374 polygons.

input submap, it should be useful to also apply the area-tracking and list-deletion optimizations to
the outer input map. Applying these optimizations results in a significant performance improvement,
as shown by the bars marked with “+2” in Figure 7.

However, Figure 7 also reveals that, with the list-deletion optimization applied to the inner input
map, the parallel execution never outperforms the sequential implementation. Even with the list-
deletion optimization applied to both input maps, there is a slowdown when increasing the number
of processors from 8 to 16. This is because the simple rotation communication scheme does not
take full advantage of the spatial locality between the two input maps. As was described earlier,
the two input maps were partitioned with the same block distribution, and with that distribution
every outer polygon only overlaps with inner polygons on the same processor, and possibly ones
on the neighboring processors in the ring. Therefore, the ring algorithm starts with a partitioning
scheme that promotes polygon exhaustion during the very first computation phase. However, the
simple communication scheme consistently rotates the inner input map in one direction along the
processor ring, gradually increasing the spatial mismatch between the two input maps, thereby
preventing early exhaustion of inner map polygons for later computation phases. This can easily
be solved by adopting a ping-pong communication scheme. If we view the processors as forming a
ring, and use mod N P arithmetic, an inner input submap that is initially assigned to processor
under the ping-pong communication scheme would visit processor 7 4+ 1, processor i — 1, processor
1+ 2, processor ¢ — 2, processor i + 3, etc., as illustrated by Figure 8. The last column in Table 1
shows the total number of polygons transferred over all the communication phases with the ping-
pong communication scheme. It can be seen that, compared to the simple communication scheme
shown in the first column, many fewer polygons were transferred between processors with the ping-
pong communication scheme. Note that the same number of polygons are communicated during the
first communication phase under both communication schemes (the second column in the table),
since both schemes exhibit the same communication pattern in the first communication phase. The
only required modification to the parallel program is to generate a new communication schedule for
every communication phase. Figure 9 shows the performance of the parallel implementation using
the ping-pong communication scheme. We see that the new algorithm scales quite well up to 16
processors.

5.2 Scientific Computation - Direct Simulation Monte Carlo Method

The Direct Simulation Monte Carlo (DSMC) method is a technique for computer modeling of a
real gas by a large number of simulated particles. It includes movement and collision handling of
simulated particles on a spatial flow field domain overlaid by a 3-dimensional Cartesian mesh [33].
Depending upon its current spatial location, each particle is associated with a mesh cell, which
typically contains a few particles, and moves from cell to cell as it participates in collisions and various
boundary interactions in the simulated physical space. What distinguishes the DSMC method from
other Particle-in-Cell (PIC) methods is that the movement and collision processes of particles are
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completely uncoupled over a time step [34].

In the parallel implementation, mesh cells are distributed irregularly among the processors to
achieve a good load balance. A CHAOS++ translation table with an entry for each mesh cell is
constructed to describe the distribution. Particles, which only interact with other particles in the
same mesh cell, are assigned to the owner processors of the mesh cells that the particles reside in.
Since particles move between mesh cells, the cells, and thus the particles, are redistributed across
the processors occasionally (once every few time steps) to maintain a good load balance.

Moon [28] describes a parallel implementation of the DSMC application that uses the CHAOS
runtime library. In the CHAOS implementation, various physical quantities associated with each
particle, such as velocity components, rotational energy and position coordinates, are stored in
separate data arrays, and the association between the Cartesian mesh cells and the particles is
represented by indirection arrays. As mesh cells are redistributed, these data arrays are also redis-
tributed accordingly using the CHAOS data transportation primitives. Since the number of mesh
cells is relatively small, the translation table for mesh cells is replicated across all the processors
so that dereference requests can be resolved locally without any communication. The replicated
translation table is modified only when the mesh cells are redistributed.

We have reimplemented the DSMC application in C++, using the CHAOS++ library to maintain
the distributed data structures required for parallel execution. In the C++ version, a Cell class is
defined for the mesh cells, and the particles, represented as objects from class Particle, are stored as
an array pointed to by a data member in the Cell class. That is, the Cell class serves as a container
class, and the Particle objects are sub-objects of the Cell class. Both the Cell and Particle classes
are derived from the CHAOS++ Mobject base class, and when redistributing the cells, the pack
and unpack functions of the Cell class that support a deep copy are used to move all the particles
associated with a cell between processors, along with other data for the cell.

Figure 10 gives the performance for both the C++/CHAOS++ code and the Fortran/CHAOS
code. The simulated space consists of 9,720 cells, and initially contains about 48,600 particles.
400 time steps are performed, and a chain partitioner [28] is used to dynamically partition the
mesh cells at runtime when load imbalance is detected. The Fortran code has been shown to be a
good implementation, and the C++ version is at most 15% slower. As the number of processors
increases, communication cost becomes a significant factor and accounts for the non-linear speedup
of the Fortran code. In the C+4++ version, invoking the virtual functions pack and unpack when
moving particles and cells is somewhat expensive, and is the main reason why the C++ version
performs worse than the Fortran code when very few processors are used. With a small number of
processors, each processor is assigned a large number of particles and cells and therefore invokes the
virtual functions pack and unpack many times. As more processors are employed, fewer cells and
particles are assigned to each processor, which requires fewer invocations of these virtual functions.
With these smaller overheads, the performance of the C++ code comes closer to that of the Fortran
version.

5.3 Spatial Database Systems - Vegetation Index Measurement

Vegetation Index Measurement (VIM) is an application that computes a measure of the vegetation
on the ground from a set of satellite sensor images. It has been developed as part of the on-going
Grand Challenge project in Land Cover Dynamics at the University of Maryland [31]. The overall
project involves developing scalable and portable parallel programs for a variety of image and map
data processing applications, to be integrated with new methods for parallel I/O of large scale
images and maps. The main focus of the Grand Challenge project is in applying high performance
computing to the analysis of remotely sensed imagery, with the initial studies targeted at generating
land cover maps of the world’s tropical rain forest over the past three decades. The VIM application
is an example of such analysis, and exhibits a data access pattern that is often observed in these
types of applications.

In the VIM application, a user specifies a query region of interest on the ground and a set of
satellite images to process. The images may be images of the region taken from the same sensor
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Figure 10: Performance for DSMC application on Intel iPSC/860.

over a period of time, or images from multiple sensors taken at the same time. The query region
is overlaid with a 2-dimensional mesh, whose resolution is likely to be coarser or finer than that of
the given images. For each mesh cell, the algorithm selects from the given images the set of data
points that spatially intersect with the mesh cell, using a C++ class library that supports spatial
operators [40] (currently under development as part of the Grand Challenge project), and computes
a vegetation index.

CHAOS++ has been linked to this spatial operator class library to implement a parallel version
of VIM. In the parallel version, a satellite image is defined as a vector of column data vectors, with
each column represented by a class derived from Mobject. This was done primarily for efficient
implementation of the spatial operators provided by the existing class library. For every specified
sensor image, the algorithm first computes a sub-image that spatially contains the whole query
region, and regularly partitions the sub-image across the processors by blocks of columns of data
vectors to obtain good load balance.

Jovian T/O library [3] routines are then invoked to read the computed sub-image from the disks
and distribute the data vectors as specified. The Jovian library has been designed to optimize the I/O
performance of multiprocessor architectures with multiple disks or disk arrays. On each processor,
the contribution of the assigned portion of the sub-image to the mesh cells of the query window
is then computed, and the CHAOS++ library is used to generate the necessary communication
to combine the results across all processors. The communication phase is necessary, since each
sub-image is distributed to obtain good load balance, and consequently, computing the vegetation
index of a single mesh cell may require satellite image data points assigned to different processors.
Furthermore, the mesh cells may not be spatially aligned with the input satellite data, and therefore
may be distributed differently from the satellite data. The communication phase is needed to align
the computed results with the distribution of the mesh cells.

The results of running VIM on both the Intel iPSC/860 and the IBM SP-1 over two different
sets of data are illustrated in Figure 11. In the first experiment, three satellite images, each of
which consists of 750 x 100 data points, are used to compute the vegetation index for a query region
consisting of 150 x 20 mesh points. In the second experiment, three satellite images, each of which
consists of 1200 x 150 data points, are used to compute the vegetation index for a query region
consisting of 240 x 30 mesh points. For comparison, the execution times for the sequential code are
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Figure 11: Execution time for the Vegetation Index Measurement (VIM) on the (a) Intel iPSC/860
and the (b) IBM SP-1.

also given when available. Due to insufficient memory, we could not conduct the second experiment
on a single node of the iPSC/860. Since we are mainly concerned with the computation time for
characterizing the behavior of the CHAOS++ library, the query regions in both experiments wholly
contain all the input satellite images, and the T/O time is not included in these measurements. A
detailed description of the I/O performance of the VIM application using the Jovian library is given
in Bennett et al. [4]. The results from Figure 11 show that good speedup is obtained.

5.4 Image Processing - Image Segmentation

Another application under development is image segmentation. This application segments a given
image into a hierarchy of components based on the border contrast between adjacent components.
The segmentation serves as a preprocessing phase for an appearance-based object recognition system
developed at the University of Maryland [35]. The hierarchy is used by a high-level vision phase
to heuristically combine components from various levels of the hierarchy into possible instances of
objects. Further analysis by shape delineation processes select the combinations that correspond to
the locally best instances of objects.

To be more specific, this image segmentation application first classifies all the pixels in a given
image into components, based on some contrast criterion between adjacent pixels given by the user.
The algorithm then collapses adjacent components into larger components, based on a series of
weaker and weaker criteria on the border contrast between adjacent components. The history of
component collapses is kept as a hierarchy of image segmentations for later use.

In the parallel implementation, the initial image 1s represented as an array regularly distributed
by blocks of columns of pixels across the processors. On each processor, CHAOS++ routines are
used to fetch non-local neighboring pixels into a local buffer, so that the computation for clustering
pixels into components can be carried out locally. A component is then created for each identified
cluster of pixels. Once formed, the components are stored in a local undirected weighted graph on
each processor, with nodes representing components and edges representing component connectivity.
The weight associated with each edge represents the border contrast between a pair of components.
A C++ class is derived from the CHAOS++ Gobject base class to represent components, which
are the graph nodes in the undirected graph.

The component class keeps a list of border objects, each of which contains, along with other
related information, a pointer to one of the adjacent components. These are the weighted edges in
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Figure 12: Performance results for the image segmentation application on the (a) Intel iPSC/860
and the (b) IBM SP-1.

the undirected component graph. After the local component graphs on all the processors are built,
they are used to form a distributed graph. A simple scheme is used to merge and assign overlapping
components to processors to achieve better load balance. and CHAOS++ routines are invoked
to compose local component graphs into a global distributed graph, as described in Section 3.3.2.
The CHAOS++ mapping structure is then constructed on each processor for the distributed graph,
and used to generate a communication schedule. The communication schedule is used for efficient
exchange of component data between real Gobjects and ghost Gobjects when performing graph
contraction. As the graph changes during program execution, CHAOS++ primitives are invoked
repeatedly to modify the mapping structure, and generate new communication schedules.

Figure 12 shows the performance results for segmenting two different images on both the Intel
iPSC/860 and the IBM SP-1. The parallel implementation is based on sequential code that has
not been highly optimized, so only the execution times for the parallel code are shown. The image
segmentation problem has been chosen to challenge the capabilities of the CHAOS++ library, so the
performance of the sequential algorithm is not crucial. In the first experiment, the pixels of a 400x400
image are initially clustered into 7,935 components, connected by 17,816 (undirected) edges, and
the components are used to build a segmentation hierarchy of height five. In the second experiment,
a 512 x 513 image initially generates 22,100 components, connected by 49,549 (undirected) edges,
and the components are used to build a segmentation hierarchy of height nine. Due to insufficient
memory, there is no result for conducting the second experiment on a single node of the iPSC/860.

In the current implementation, newly formed components are allocated dynamically and inserted
into the component graph. On the iPSC/860, however, allocating memory dynamically turns out
to be a very expensive operation, and is responsible for almost 80% of the total running time of
the application. That is the main reason why the SP-1 greatly outperforms the iPSC/860 in both
experiments, especially when the number of components generated from the image is large. The cost
of dynamic memory allocation on the iPSC/860 is also non-linear, meaning that as more components
are allocated, the longer it takes on average to allocate one component. Since using more processors
causes each processor to allocate fewer nodes in the component graph, the super-linear speed-ups
shown in Figure 12 for the iPSC/860 are not surprising.

On the SP-1, since the datasets are relatively small, communication cost becomes a factor as the
number of processors increases and the amount of work assigned to each processor decreases, and
accounts for the non-linear speedup. One other significant feature of the current implementation of
the segmentation algorithm is that no remapping of the distributed component graph is performed,
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once 1t is formed. Currently the input image is initially partitioned, and that partition decides how
the components are distributed among processors. This results in a rather unbalanced work load
among the processors, and also contributes to the non-linear speedups as the number of processors
increases.

6 Related Work

In this section, we briefly discuss other systems from the area of concurrent object-oriented program-
ming, as well as related work on support for distributed pointer-based data structures. Roughly
speaking, there are two types of systems that are relevant.

The first type of system augments an existing language with parallel constructs. Parallelism is
exploited by both a compiler and an associated runtime system. Examples of this type of system,
based on C++, include Mentat [17], CC++ [7], ICC++ [10], C** [24], CHARM [21], and pC++ [26].
Mentat, CC++ and CHARM consider program execution as completely unstructured interactions
among a set of objects and support only asynchronous communication, and this approach suffers
from overhead incurred from either polling or interrupts. ICC++, pC++ and C** provide array-
based collections of objects, and parallel constructs to operate on them. However, the runtime
system of C** assumes a shared-memory or distributed shared-memory architecture, and data fetch
is performed by page faulting through the underlying memory consistency protocol. ICC++ and
pC++ are able to run on distributed memory architectures, but still rely solely on asynchronous
communication. CHAOS++4, in contrast, is a user-level class library, and does not assume any
language or compiler support. After analyzing and optimizing communication patterns, CHAOS++
generates communication schedules to enable collective communication, which ensures that neither
polling nor interrupts are needed at the receiving processors. Communication can thus be performed
efficiently for loosely synchronous applications.

The second type of system is a user-level class library that assumes no special support from
the compiler, just like CHAOS++. Examples include P4+ [30] and LPARX [23]. These libraries
both provide efficient management of array-based parallel constructs distributed across processors.
CHAOS++, however, performs optimization through preprocessing techniques, and provides efficient
support for dynamic distributed data structures, including pointer-based data structures.

Some recent work focuses on support for distributed pointer-based data structures. Gupta [18]
suggests an approach that assigns to every element of a distributed pointer-based data structure a
name known to all processors. The name is based on the position of the element in the data structure,
which is registered with all processors as the element is inserted into the data structure. This naming
convention seriously restricts the way the data structure can be used. For example, new elements
can only be added to the data structure one at a time, not in parallel. This is a serious restriction for
efficient parallel implementations, because it could require many synchronization operations, which
are usually expensive on distributed memory machines.

Carroll et al. [6] propose a composite tree model, which describes a data-parallel computation
as a tree structure. The computation starts at the root of the structure, which, usually in parallel,
invokes methods from its child nodes. The child nodes, in turn, invoke methods from their child
nodes, and so on. Parent nodes then wait for their children to complete, and combine the results
returned by their children nodes to form their results. However, it is not clear how accesses through
pointers of an element of a distributed pointer-based data structure can be implemented under the
composite tree model, other than with fine-grain blocking sends and receives.

Olden [36] is a C-based system that supports recursively defined pointer-based data structures.
In Olden, an application allocates nodes of its pointer-based data structures on the heaps of different
processors, and the runtime system migrates threads of computation to processors that own the heap-
allocated nodes being processed. Parallelism is exploited through concurrent execution of migrating
threads and their continuations. A major difference between Olden and CHAOS++ is the way work
is allocated. In Olden, work follows the data, while in CHAOS++, the required data is copied so
that computation can be carried out locally.
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7 Critique and Conclusions

We have presented a portable object-oriented runtime library that supports SPMD execution of
adaptive irregular applications that contain dynamic distributed data structures. In particular,
CHAOS++ supports distributed pointer-based data structures, in addition to distributed arrays,
consisting of arbitrarily complex data types. CHAOS++ translates global object references into
local references, generates communication schedules, and carries out efficient data exchange. The
library assumes no special compiler support, and does not rely on any architecture-dependent parallel
system features, other than an underlying message passing system. Integration with the CHAOS
runtime library, for array-based adaptive irregular applications has already been accomplished, and
integration with the Multiblock PARTI runtime library, for array-based structured grid applications,
is currently in progress.

We are currently working to create a more robust version of the CHAOS++ runtime library,
so that it can be more effectively used by application developers. One of the major difficulties in
using the current version of the library is the complexity of the user interface. A user is asked to
derive classes from the Mobject base class, and provide implementations for the pack and unpack
functions to support deep copies. Some of this could be automated by a compiler, perhaps with
the help of annotations provided by the user. On the other hand, building a distributed graph
requires some understanding of the way the runtime library works, and extra work from the user
(for example, laying out the Gobjects on the boundaries of the subgraph owned by a processor
in a consistent order, as described in Section 3.3.2). At this point in time, we have yet to find a
more general interface for building distributed graphs. Furthermore, CHAOS++ relies heavily on
C++ virtual function invocations, which are usually somewhat more expensive than normal function
calls. Compiler analysis and optimization that reduces the cost of virtual function invocations could
significantly improve the performance of the CHAOS++ runtime library.

CHAOS++ is targeted as a prototype library that will be used to provide part of the runtime
support needed for High Performance Fortran and High Performance C/C++ compilers. We are
also in the process of integrating CHAOS++ into the runtime software being developed by the
Parallel Compiler Runtime Consortium. The goal of this consortium is to provide common runtime
support for compilers of data parallel languages, through specification of interfaces for data structures
and for routines for deriving and optimizing data movement among processors. Runtime support,
such as that provided by CHAOS++, could then be used by any compiler that understands these
interfaces, allowing the use of multiple runtime support packages (e.g. for coping with different array
distributions) by a single compiler.
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