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Abstract

pC++ is a data parallel extension to C++ that is based on the concept of collections and
concurrent aggregates. It is similar in many ways to newer languages like ICC++, Amelia and
C** in that it is based on the application of functions to sets of objects. However, it also allows
functions to be invoked on each processor to support SPMD-style libraries and it is designed to link
with HPF programs. pC++ currently runs on almost all commercial massively-parallel computers,
and is being used by the NSF Computational Grand Challenge Cosmology Consortium to support
simulations of the evolution of the universe. In this chapter we describe the language and its
performance on a variety of problems.
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1 Introduction

The goal of the pC++ project was to design a simple extension to C++ for parallel pro-
gramming that provides:

e a platform for parallel object-oriented software capable of running without modification
on all commercial MIMD systems;

e an interface to Single Program Multiple Data (SPMD) libraries such as Scalapack++
[6], A++ [18] and POOMA;

e an interface to High Performance Fortran (HPF) [17];
e an interface to control-parallel C++-based languages such as CC++ [5];
e a way to exploit parallel I/O systems and persistent object databases; and

e a complete programming environment including all the tools that users of conventional
C++ systems expect, as well as tools for parallel performance analysis and debugging.

We do not think that pC++, or other object-oriented parallel programming languages, should
be viewed as replacements for Fortran-90 or HPF. Rather, object-oriented parallelism should
be to express those types of parallelism that cannot easily be expressed in these languages. To
accomplish this, pC++ exploits the two definining characteristics of object-oriented design:
encapsulation and inheritance.

pC++ is based on a concurrent aggregate model of data parallelism. This means that
a pC++ program consists of a single main thread of control from which parallel operations
are applied to collections of objects. Each object in a collection is an instance of an element
class. pC++ has two basic extensions to the C++ language: a mechanism to describe how
operations can be invoked over a set of objects in parallel, and a mechanism to refer to
individual objects and subsets of objects in a collection.

pC++ has been implemented on a wide range of commercially available parallel systems;
we describe its performance on such platforms later in this chapter. Other examples of pC++
programs and performance can be found in [10, 11, 8, 3, 12]. Our primary experience with
testing the pC++ ideas on large scale problems has come from our involvement with the
NSF Grand Challenge Cosmology Consortium GC2. This chapter describes some of these
applications. We also discuss two libraries that support parallel I/O and persistent objects
in pC++ programs.

One of the most interesting byproducts of the pC++ project has been a language pre-
processor toolkit called Sage++ [2]. This toolkit has been extended in a variety of ways and
is used for a large number of applications, including the TAU programming environment.

2 History

In 1984 the parallel programming research group at Indiana University, working with the
Center for Supercomputing Research and Development (CSRD) at the University of Illinois,
developed an extension to the C programming language called Vector Parallel C (VPC) [9].
VPC used parallel loops for spawning new threads of control and a vector notation similar to
Fortran-90 for data parallel operations, and assumed a shared memory model of execution.



By 1986 we had become interested in distributed memory multicomputers, and decided to
build a new system based on object-oriented design ideas. Our goal was to implement parallel
control mechanisms by applying member functions to sets of objects. The first problem to be
solved was how to describe a generic set of objects in C++. At the time, the C++ template
mechanism was not yet a complete proposal to the C++ standards committee, although
early public documents such as [19] guided our thinking.

Even had they existed, templates would not have solved all of our problems. To see why,
consider the following definition of a set of objects of type T derived from a templatized
container class Set:

Set<T> S;
Suppose that the set element type T takes the form:

class T {

public:

void foo();

}s
Our desire was to be able to apply the member foo() to the entire set S in parallel with the
expression S.foo(). Unfortunately, this could not be done using the standard overloading
and inheritance mechanisms of C++. Furthermore, because there were no implementations
of templates in C++ at that time, we decided to add an extension to pC++ to represent a
type of class called a collection. Each collection had one built-in “template” parameter called
ElementType. To simplify the compiler, we put the mechanisms for managing a distributed
set of elements into a library called the SuperKernel collection. The way in which these
collection classes are used is described in detail in the next section.

About the time that our first implementation of pC++ for shared-memory multiproces-
sors was complete, the HPF Forum was being established. Because HPF was also a data
parallel programming language, we were convinced that we needed to base the allocation
and data distribution mechanisms for collections on distributed memory systems on the
HPF model. Such a design would help make it possible to share distributed data structures
with HPF implementations (although this idea has never been tested). In retrospect, we
have realized that a standard interface to single-node Fortran-90 is more important support
for the HPF model.

In 1992 ARPA provided the support for a complete redesign of pC++ and a public
release. The final version of pC++ (version 2.0) will be released in early 1996. This chapter
describes this new version of the language.

3 Overview of pC++

pC++ was designed to work on both multiprocessors and multicomputers. We use the HPF
model to describe the way in which a array-like data structure can be distributed over the
memory hierarchy of a parallel computer.

To build a collection of objects from some class type T, which is called an element class*
in pC++, one needs a distribution and an alignment object. The distribution object defines

!n its current implementation, elements of a collection must be of the same type.



a grid and a mapping from the grid to the physical processors on a parallel machine. The
alignment object specifies the shape, size, and the mapping of the element objects to the
grid points. In addition, a processor object of type Processors is needed to represent the
set, of processors available to use. For example:

Processors P;
Distribution D(100, &P, BLOCK);
Align A(20, "[ALIGN(X[i], D[i+10]1)1");

creates a one-dimensional grid of a size of 100 which is mapped to the processors of the
machine by blocks. If there are 20 processors, grid positions 0 through 4 are mapped to
processor 0, positions 5 through 9 are mapped to processor 1, etc. The alignment object
aligns the logical vector X[0:19] with the grid positions D[10:29].

Given a distribution, an alignment and the class type of the element objects, it is easy to
build a collection. The starting point is the SuperKernel collection provided by the pC++
collection library. This collection is the base type for all other collections. It builds arrays
of element objects and provides a global name space for the element objects. Thus, the
declaration:

SuperKernel<T> MyCollection(&D, &A);

creates a collection called MyCollection, consisting of a set of 100 objects of type T dis-
tributed in the manner described above.

The most important feature of a collection is the ability to apply a function in parallel
across all the element objects. For example, if T is defined as:

class T{

public:
void foo();
int x, y, z;
float bar(T &);

}s

a parallel application of foo() to all elements of MyCollection would take the form:
MyCollection.foo() ;

In the case above, foo() has a void result, so the expression MyCollection.foo()
has a void result as well. However, pC++ extends the type system so that, for exam-
ple, MyCollection.x is an object of type SuperKernel<Int>, where Int is a library class
with one integer value. The expression:

MyCollection.x = 2*MyCollection.y + MyCollection.z;

is therefore a parallel computation involving pointwise multiplication, addition and assign-
ment on the members each element of the collection.

Similarly, if t is of type T the expression MyCollection.bar(t) applies bar(t) to each
element of the collection. The result is of type SuperKernel<Float>. Also, if C is another
collection whose size is the same as MyCollection and whose element type is T, the expression
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MyCollection.bar(C)

will apply bar() to the i*® element of MyCollection using the i*® element of C as an argu-
ment.

It is often the case that an operation must be applied to a subset of the elements of a
collection. pC++ extends the Fortran 90 vector notation so that descriptors of the form
base:end:stride can be used to select elements from a collection. For example:

MyCollection[0:50:2] .foo()

will apply foo() to the first 25 even numbered elements of the collection.

To access an individual member of a collection, one can use the overloaded operator ()
which returns a global pointer to an element, i.e. a pointer that can span the entire address
space of a distributed-memory machine. For example:

MyCollection(i)

returns a global pointer to the i*" element in the collection. In this way, any object can have
a global address. The function call:

MyCollection(i)->foo();

is a remote invocation. It sends a message to the processor that contains the i*" element of
MyCollection, and a thread on that processor executes the function?.

Programmers often need to create specialized collections with properties appropriate
for their particularl applications. The task of building a new derived collection is almost
the same as building a derived class in C++. The definition of a collection derived from
SuperKernel takes the form:

Collection MyCollectionType: SuperKernel {
public:

// Public data members duplicated on each processor.

// Public member functions executed in parallel on all processors.
MethodOfElement :

// Data members and member functions here are added to

// the element class.

s

There are two types of data and member functions in a collection definition. Data and
functions labeled as MethodOfElement represent new data members and functions that are
to be added to each element class. Such member functions are invoked just as if they were
member functions of the element class. Data members not labelled as Method0fElement
are defined once on each processor; functions not labeled MethodOfElement are invoked in
SPMD mode.

2Remote invocation of this kind is part of pC++ 2.0, and is not part supported by the current pC++ 1.0
distribution.




3.1 pC++ Run-Time System

pC++ is extremely portable. It currently runs on the Cray T3D, IBM SP2, Intel Paragon,
Meiko CS-2, SGI Power Challenge, TMC CMb5, Convex Exemplar, and networks of work-
stations. The key to this portability is the simple execution model and layered run-time
system. The first run-time layer is machine independent, and defined by the pC++ com-
piler (source to source translator). The compiler generates calls to the C++ class library,
kernel.h. There are two versions of this class library layer, one for SPMD execution and
one for fork/join thread-based execution.

For distributed memory machines, SPMD execution is used, and the pC++ compiler
converts parallel invocations such as

MyCollection.foo();

into loops over the local collection elements (owner computes).

for (i= FirstlLocal(); i >= 0; i = NextLocal(i))
MyCollection_T(i)->foo();
pcxx_Barrier();

The data type MyCollection T is generated by the compiler for the declaration
SuperKernel<T> MyCollection() ;

The generated loop uses the overloaded () operator, provided by the pC++ class library,
to find the *" collection element. After each processor has applied foo() to its local elements,
a barrier synchronization between processors in initiated.

Shared memory machines can use the SPMD model shown above, or the pC++ compiler
can generate a special thread-based run-time interface. A fork/join class library thread
interface replaces the explicit for(; ;) loop with a call to simply execute thread _Fork(...).
Thread_Fork() executes foo() on a set of threads. The abstraction of work is sufficiently
general to permit many different thread packages. An implementation could create a new
thread for each iteration or use a set of persistent threads.

3.2 Tulip

The next portion of the run-time system is the low-level machine-dependent layer, called
“tulip”. Tulip describes an abstract machine, and defines standardized interfaces for basic
machine services such as clocks, timers, remote service requests, and data movement. Tulip
has a C interface, and has no knowledge of pC++ or the class library, which are built atop
Tulip. Therefore, wherever Tulip can be ported, pC++ can run.

Tulip has several basic abstractions:

Contert: An address space. A Unix process on a symmetric multiprocessor would be a
single context. Lightweight threads share a context. A machine such as the SP2 can
support several contexts per node.

LocalPointer: A simple, untyped, memory address. A LocalPointer is valid only within the
Context it was created.



GlobalPointer: The tuple (Context, LocalPointer). A GlobalPointer uniquely identifies any
memory address in the computational hardware.

Those abstractions are used in the following basic functions:

tulip_Put (tulip_GlobalPointer_t destination, char *source,
int length, tulip_ACK_t *handle);

tulip_Get (char *destination, tulip_GlobalPointer_t source,
int length, tulip_ACK_t *handle);

tulip_RemoteServiceRequest(int context, char *buffer,
int length, tulip_ACK_t *handle);

Put () and Get () simply move data between contexts. They are very similar to memcpy (),
except destination and source are global pointers respectively. Furthermore, an acknowledge
handle is provided so the status of the data transfer can be monitored. If the handle is NULL
when the function is called, no acknowledgment is done. The functions are non-blocking, so
that they can be easily integrated with user-level thread packages.

The remove service request mechanism provides asynchronous communication between
contexts. It is particularly useful for bootstrapping, building remote procedure execution for
pC++ (see section Section 3), and transmitting short control messages to other contexts.

The basic abstractions and functions are supported on three architecture models: shared
memory, message passing, and network DMA.

The SGI Challenge and Convex Exemplar are examples of a shared memory machines.
The hardware maintains cache and memory consistency, and communication is done by
simply sharing pointers. In this case, Put() and Get() need not be used, because those
functions move data between contexts. On a shared memory machine, there is usually only
one context. However, if Put () or Get () were used, they would simply be a call to memcpy ()
followed by setting the acknowledge handle to TRUE.

Two examples of message passing machines are the Intel Paragon and IBM SP2. Since
Put() and Get() are one-sided communication primitives, and do not require synchroniza-
tion, either active messages or polling loops must be used to detect when a data movement
request arrives. For Get (), a recv() is posted for the anticipated data, then a data request
message is sent to the remote context (node). When the sender detects the data request
message during a message poll, the data is sent to the awaiting recv without a buffer copy.
Put () uses a similar mechanism, but requires an extra round trip to avoid any buffer copies.
If the message is sent to the remote context “eagerly”, the extra round trip latency is not
incurred, but the messaging system must copy and buffer the data.

The Meiko CS-2 and Cray T3D are network DMA machines. They are not truly shared
memory, since transfers to “remote” memory must be done through special system calls.
On the other hand, there is no synchronization with the remote node when data is moved
with either a load or a store. Get() and Put() can be written as calls to the underlying
vendor-supplied transport functions.

For all machines, a polling loop or interrupt must be used to detect a remote service
request. Currently, Tulip uses a polling loop to detect requests. However, as active mes-



sage layers for machines such as the SP2 become available, Tulip will be rewritten to take
advantage of fast handlers and eliminate the need for polling.

3.3 I/0

pC++/streams is a library which supports a simple set of high level I/O primitives on
pC++ collections. To illustrate its capabilities, we describe how pC++/streams can be used
to checkpoint a collection having variable-sized elements.

Assume our application simulates the behavior of particles in three-dimensional space.
We can model the particles with a one-dimensional distributed array of variable-length par-
ticle lists, each of which keeps track of the particles in a slab of space:

class Position {
double x, y, z;

¥

class ParticleList {
int number0OfParticles;
double * mass; // variable sized
Position * position; // arrays

}s

Collection DistributedArray {
updateParticles();

}s

Processors P;
Align a(12,"[ALIGN(collection[i], template[i])]");
Distribution d(12, &P, CYCLIC);

DistributedArray<ParticlelList> particleArray(&d,&a);
The programmer can write a function to checkpoint the particleArray collection as follows:

#include "pc++streams.h"

void saveParticleArray() {
oStream stream(&d, &a, "myFileOne");
stream << particleArray;
stream.write() ;

}

The first line of saveParticleArray() defines an output pC++/stream called stream, con-
nected to the file myFileOne. The second line inserts the entire particleArray collection
into the buffers of the stream. The third line causes those buffers to be written to the file,
using parallel I/O. The file associated with the stream is closed automatically when the
program block in which the stream was declared is exited.

The programmer would write a function to restore the checkpointed particleArray as
follows:



void loadParticleArray() {
iStream stream(&d, &a, "myFileOne");
stream.read();
stream >> particleArray;

}

pC++/streams also allows selective I/O on individual fields of collection elements:
stream << particleArray.numberOfParticles;

pC++/streams supports I/O on collections with complex elements (e.g. variable-sized el-
ements, tree-structured elements, etc) by giving the programmer a straightforward mech-
anism for defining how these data structures are to be read and written: insertion and
extraction functions. In our example the programmer would define an insertion function for
ParticleLists as follows:

declareStreamInserter (ParticleList &p) {
eltBuf << p.numberOfParticles;
eltBuf << array(p.mass, p.numberOfParticles);
eltBuf << array(p.position, p.numberOfParticles);

}

The array() macro tells pC++/streams that mass and position are dynamically-allocated
arrays of size number0fParticles. Extraction functions are defined similarly. pC++ /streams
is described in more detail in [14].

3.4 Persistence

pC++/persistence is an I/O library supporting persistence for pC++ collections. This
library is currently implemented using the SHORE persistent object system from the Uni-
versity of Wisconsin, Madison [4].

Normally, elements of pC++ collections are transitory, i.e., their data disappears when
the program terminates. In order to preserve transitory data, the programmer must output
that data to a file before the program terminates, using either an I/O mechanism supported
by the operating system or a higher-level library such as pC++/streams.

pC++/persistence allows programmers to define persistent collections, whose elements
can contain persistent data in addition to ordinary transitory data. The persistent section
of each element is automatically preserved across program executions; no application I/O
code is required to save or load this data. A transaction mechanism is supported, allow-
ing programmers to checkpoint persistent data with a single line of code that commits a
transaction. In addition, the persistent part of a collection is concurrently accessible by
multiple pC++ programs, with no explicit code for communication required. Concurrent
access to persistent data can allow simplified programming of concurrent computation and
visualization, computational steering, and modular multi-disciplinary simulations, since no
application code needs to be devoted to I/O or communication of the persistent data.

As an example, we first we define the per-element persistent data using SDL (SHORE
Data Language). For simplicity, our persistent data will consist of just a single long integer
per element, called myPersistentLong:



module MyElement {
interface PersistentElementData {
public:
attribute long myPersistentLong;
}s
}

This SDL specification is processed by the SHORE SDL type compiler, informing SHORE
of the structure of the persistent part of our elements.

We next define an element class MyElement in ordinary pC++. We derive it from the class
PersistentElement, and define an ordinary transient data member (myTransientLong) in
the usual way:

#include "PersistentElement.h"

class MyElement : public PersistentElement{
public:

long myTransientLong;

void P_initialize();

void hello();

I¥

The class PersistentElement contains a member P through which the persistent part of
each element is accessed:

void MyElement::hello() {
printf(" Hello world: %1d %1d",
myTransientLong, P->myPersistentLong) ;
t

The function P_initialize(), defined within MyElement, gives the application programmer
a mechanism for initializing the persistent part of each element. P_initialize() is called
immediately after the persistent part of each element is first created.

void MyElement::P_initialize() {
P.update () ->myPersistentLong = 1234;

}

The call to P.update() above informs pC++/persistence that the persistent part of the
element is to be modified, rather than just accessed.

A persistent collection is defined just like an ordinary collection, except that it is derived
from PersistentCollection:

#include "PersistentCollection.h"

Collection MyCollection: public PersistentCollection {
public:
MyCollection(Distribution *T, Align #*A,
char *persistentCollectionName) ;
MethodOfElement :
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virtual void hello();

I¥

MyCollection: :MyCollection(Distribution *T, Align *A,
char *persistentCollectionName)
: PersistentCollection(T, A, persistentCollectionName) {}

When the programmer instantiates the collection X below, the string myPersistentCollectionName
is passed into the collection constructor, and then to PersistentCollection. This string
identifies a particular database of persistent elements to be associated with the collection.

void Processor_Main(int argc, char **argv){
Processors P;
Distribution T(SIZE, &P, BLOCK);
Align A(SIZE,"[ALIGN(V[i], T[i1)1™);
MyCollection<MyElement> X(&T, &A, "/myPersistentCollectionName");

beginTransaction();
X.hello();
commitTransaction();

}

Changes to the persistent part of a collection must be made within a transaction, initiated by

beginTransaction(). These changes do not become permanent and are not visible to other

applications until the transaction is committed with a call to conmitTransaction(). So to

checkpoint the persistent part of a collection, all that is required is a call to commitTransaction().
pC++/persistence is still under development at the time of the writing of this text;

some details may change and some functionality may be added before the implementation

is complete.

4 An Example: Parallel Sorting

To see how pC++ is used, consider the problem of sorting a large vector of data using a
parallel bitonic sort algorithm. A bitonic sequence consists of two monotonic sequences that
have been concatenated together where a wrap-around of one sequence is allowed. That is,
it is a sequence:

ag, 41,09, . ..,0m

where m = 2" — 1 for some n, and for index positions ¢ and j, with 7 < j, a;,ai41,...,0;
is monotonic and the remaining sequence starting at a(jy1)modn, Where ag follows a,, is
monotonic in the reverse direction.

Merging a bitonic sequence of length k£ involves a sequence of data exchanges between
elements that are k/2 apart, followed by data exchanges between elements that are k/4 apart,
etc. The full sort is nothing more than a sequence of bitonic merges. We start by observing
that a set of two items is always bitonic. Hence for each even 7, the subsequence a; and a;,1
is always bitonic. If we merge these length two bitonic sequences into sorted sequences of
length two and if we alternate the sort direction, we then have bitonic sequences of length
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Figure 1: Data exchanges in the Bitonic Sort Algorithm

four. Merging two of these bitonic sequences (of alternating direction) of length 4 we have
sorted sequences of length 8. The sequence of data exchanges is illustrated in Figure 1.

In pC++, a pure data-parallel version of this algorithm can be built from a collection
List of objects of type Item as shown below. Each item contains an object of type E which
is assumed to be the base type of the list we want to sort:

struct E {
public:

int key;
}s
class Item {
public:

E a;

I¥

The List collection contains one public function sort() and a number of fields and
members that are defined in the MethodOfElement section. Because the parallel algorithms
require parallel data exchanges, we must have a temporary tmp to hold a copy of the data
to be exchanged for each element. In addition, there are two flags, exchangeDirection and
sortDirection which are used to store the current exchange direction and the current sort
order respectively. As can be seen in the figure above, the value of these flags depends on
the location of the element in the list as well as the point in time when an exchange is made.

Collection List: SuperKernel {

public:
void sort();

12



int N; // number of elements
MethodOfElement:
E tmp;
virtual E a;
int sortDirection, exchangeDirection;
void set_sort_direction (int k) { sortDirection = (index1/k)%2; }
void set_exchange_direction(int k) { exchangeDirection = (index1/k)%2; }
void merge (){
if (((sortDirection == exchangeDirection) && (this->a.key > tmp.key)) ||
((sortDirection != exchangeDirection) && (this->a.key <= tmp.key))){
this->a = tmp;

}

}

void grabFrom(j){
if (exchangeDirection == 1) tmp = (*thisCollection) (index1+j)->a;
else tmp = (*thisCollection) (index1-j)->a;

}

I¥

In general MethodOfElement functions are those element-wise operations in an algorithm
that depend on the relation of one element to the whole collection or to other elements in
the collection. For example, the function grabFrom(int j) is a method that when applied
to one element will access the data in another element j positions to the right or left of the
current position. The SuperKernel class provides two additional members, thisCollection
and index!1 which provide a pointer to the containing collection and the position of the
element in the collection, respectively. The function merge () uses the current state variables
sortDirection and exchangeDirection to determine which element of the data to keep
after the exchange step.

The sort () function is then a sequence of merge steps, each of which contains a sequence
of exchanges as shown below. The main program allocates a list of items and then calls the
sort, function.

List::sort(){
int k = 1;
for (int i = 1; i < log2(N); i++){ // merge(i) step
k = 2%k;
this->set_sort_direction(k);
for (int j = k/2; j > 0; j = j/2){ // exchange(j) step
this->set_exchange_direction(j);
this->grabFrom(j) ;
this->merge();
}
}
}

Processor_main(){
Processors P;
int N = read problem size();

13



Distribution D(N,&P,BLOCK) ;
Align A(N,"[ALIGN(X[i],D[i]1)]1");
List< Item > L(&D, &A);

L.sort();

This version of the program works, but has a serious flaw. If the size of the list to be
sorted is NV and there are only P << N processors in the system, the bitonic sort has
parallel complexity O(% log? N, which is far from optimal. To improve the efficiency, we can
build a hybrid algorithm as follows. Let us break the list of N into P segments of length
K = %. We begin the sort by applying a quicksort to each segment, but sorting them in
alternating directions. Now each pair of adjacent sorted segments forms a bitonic sequence
and we can apply the bitonic merge as before. However, at the end of each merge step, the
list in each segment is only a bitonic sequence, not a sorted sequence. We must then apply
a local bitonic merge to sort it. If we rewrite the algorithm above with a Segment class
replacing the Item class and expanding the tmp variable to an array we only need to make
a few modifications to the program. These changes, shown below, consist of inserting the
calls to the local quicksort and local bitonic merge in the sort function. The grabFrom and
merge functions also need to be replaced by ones that can accommodate an array.

// P is the number of elements (processors)
// N is the total number of elements to sort.
// K = N/P is the size of each segment.

class Segment{

public:
E a[K]
quickSort(); // 0(K log(K))
localBitonicMerge (int direction); // 0(X)

s

List::sort(){
int k = 1;
this->quickSort () ;
for (int i = 1; i < log2(P); i++){ // merge(i) step
k = 2x%k;
this—>set_sort_direction(k);
for (int j = k/2; j > 0; j = j/2){ // exchange(j) step
this->set_exchange_direction(j);
this->grabFrom(j) ;
this->merge();

}

this->localBitonicMerge (d);

14



void SortedList::grabFrom(int dist){
E *T;
int offset = (d2)? -dist: dist;
T = &((*ThisCollection) (indexl+offset)->a[0]);
for(int i = 0; i < K; i++) tmp[i] = T[i];
}
void SortedList::merge(){
for (i = 0; 1 < K; i++)
if (((d == d2) && (alil.key > tmp[il.key)) ||
((d '= d2) && (alil.key <=tmp[il.key))){
ali] = tmpl[i];
}
}
}s

Assume that the quicksort computation runs with an average execution time of DK log K
for some constant D, that we can ignore the cost of the barrier synchronization, that there
are P = 2" processors available, and that the size of the list to be sorted is N. The time to
sort is then roughly:

N N N
T(N)= —=Clog’ P+ D= log — + log P
(N) 7Clog +P0gp+og

where C is a constant that depends upon communication speed. Given a sequential com-
plexity of DN log N we see that the parallel speed-up is of the form:

P

Clog? P
L+ Dlog N

Speedup(N, P) =

which, for large NV, approaches P.

This algorithm has been tested on a variety of machines and it is both portable and fast.
Sorting one million items takes 3.56 seconds on a 64 node Paragon and 1.68 seconds on an 8
node SGI Challenge. However, comparing this to the standard system routine gsort reveals
that the speedup is not great. On the same data set with one node of the SGI Challenge,
gsort requires 10.21 seconds. Hence the speed-up of our algorithm is 6.08 on 8 processors.
This value matches the formula above when C = D.

5 The Polygon Overlay Program

The following algorithm is used to implement the polygon overlay code in pC++. Given two
maps A and B as input, map A is divided into smaller maps A,. These smaller maps are
then distributed over the elements of a pC++ collection. If there are N polygons in map
A to be divided and P collection elements, then each element gets N/P polygons, except
element zero, which gets N/P + N mod P polygons (Figure 2).

Map B is duplicated in each element. During a parallel computation, each element finds
the overlay of map A, and map B. In the output stage, the resulting overlay map in each
element is combined with the maps in the other elements to form the final overlay map.
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Figure 2: Polygon map distribution scheme. This shows the distribution of a map consisting
of N = 35 polygons over P = 2 elements. The polygons are numbered (sorted) according to
the order used in the sequential ANSI C implementation. With N/P = 17 and N mod P =1,
element 0 gets the shaded polygons and element 1 gets the unshaded polygons. In our tests
reported in this paper, the load imbalance was generally insignificant.

No inter-element communication is required during the parallel computation and thus the
computation is carried out in the “embarrassingly parallel” fashion. In this algorithm, map
B is not divided and distributed; if it were, it would be difficult for an A, map to know
whether it overlaps with a B; map which is in another element. A more elaborate parallel
algorithm would be required, and inter-element communication would be unavoidable. We
discuss this further later in this section.

The pC++ element class is defined as follows:

class Patch {

public:

polyVec_p leftVec, rightVec, outVec;
Patch() {}

b

where leftVec, rightVec, and outVec are, respectively, pointers to map A, map B, and
their resulting overlay. The pC++ collection is defined as follows:

Collection Overlay : public SuperKernel {
public:

Overlay(Distribution *D, Align *A);
MethodOfElement:

virtual polyVec_p leftVec, rightVec, outVec;

void readMap();

void writeMap();

void distributeMap();
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void findOverlay();

I¥

In this definition, readMap inputs the two polygon maps. Since it is a Method0fElement,
the actual reading is carried out by element zero. After the two maps are read, element
zero calculates the number of polygons all other elements should have and broadcasts the
information. In distributeMap, all other processors then fetch their piece of the first polygon
map and the entire second polygon map from element zero. findOverlay finds the overlay
of A; and B maps. In its pC++ implementation, findOverlay simply calls the original
ANSI C polygon overlay functions based on user-selected options. No modification of the
ANSI C code is needed, except in the case of a modified list-deletion algorithm described in
later in this section.

In writeMap, element zero gathers overlay maps from all the elements. It calls a sorting
routine to sort the polygons in a special order and writes the entire overlay map out. The
sorting can actually be done in parallel (Section 7.1), but since our focus was the paralleliza-
tion of the polygon overlay algorithm itself, we did not parallelize the sorting routine. The
actual implementation of function findQverlay is given in the following piece of code.

void Overlay::findOverlay()
{
double time;
pcxx_UserTimerClear(index1) ;
pcxx_UserTimerStart (index1) ;
if (uselnArea && useOrder)
/* sorted-ordered list-deletion overlay */
outVec = overlayArealinkedOrder (leftVec, rightVec);
} else --+{
---as in sequential code- - -
}
pcxx_UserTimerStop(indexl);
time = pcxx_UserTimerElapsed(indexl);
printf ("Time for element %d : %1f", indexl, time);

}

where pcxx_UserTimer functions clear, start, and stop a timer numbered by the element’s
index. pcxx_UserTimerElapsed reports the elapsed time. The main program is:

void Processor_Main() {
int elem_count = pcxx_TotalNodes();
Processors P;
Distribution D(elem_count,&P,BLOCK) ;
Align A(elem_count,"[ALIGN(X[i],D[i]1)]1");
Overlay<Patch> X(&D,&A);
X.readMap();
X.distributeMap();
X.findOverlay() ;
X.writeMap();
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Number of Processors

Platform 1 2 4 8 16 32 64
Cray T3D 2135.7 | 1143.2 | 590.2 | 299.8 | 151.1 | 75.8
19.9 | 990.5 | 735.7 | 429.6 | 229.6 | 118.2
19.5 10.6 5.7 3.2 2.1 1.5
Intel Paragon | 3782.4 | 1942.4 | 983.4 | 494.9 | 248.1 | 124.2
28.5 | 1414.8 | 1048.7 | 612.7 | 327.6 | 168.8 | 85.6
29.1 14.5 7.6 4.3 2.9 2.0 |1.66
IBM SP-2 1587.7 | 812.1 | 410.4 | 205.7 | 103.3
10.2 | 5544 | 430.1 | 238.8 | 127.6
10.6 5.4 2.9 1.7 1.0
Power Challenge | 1409.8 | 724.8 | 367.6 | 185.1
11.7 | 547.1 | 405.4 | 236.2
11.7 6.6 4.0 2.5
SPARC 10 1562.3
14.0
13.4

Table 1: Time in seconds spent in the findOverlay function. Two maps each containing
about 60,000 polygons (file K100.00 and K100.01) were used as input. For each platform,
results are shown for the naive overlay algorithm first, then for the list-deletion overlay
algorithm, then for the modified list-deletion overlay algorithm.

where pcxx_TotalNodes returns the number of processors used for the computation.

The pC++ code was tested on a variety of platforms including a Cray T3D, an IBM SP-2,
a SGI Power Challenge, an Intel Paragon and a Sun Sparc 10. Two maps each containing
about 60,000 polygons were used as input. Three sets of tests were conducted using the
naive overlay algorithm, the list-deletion overlay algorithm, and a modified list-deletion
overlay algorithm.

The reason that the modified list-deletion overlay algorithm was used was that after
testing the list-deletion algorithm on parallel machines we found it very inefficient for parallel
execution. The list-deletion overlay algorithm is best suited when two maps cover roughly
the same area. Otherwise, extra work is needed for comparing polygons in map A with
polygons in map B in the area where no overlay occurs (see Figure 3). It turned out the
extra work was so significant that the performance of the algorithm virtually degraded below
that of the naive algorithm. Because the polygons were already sorted in all the maps we
used for our tests, we modified the list-deletion overlay algorithm so that it could remember
where in map B the overlay occurred. Comparison involving a subsequent polygon in map
A would start from this location instead of from the beginning of B (see Figure 3). The
benchmark results of the three sets of experiments are shown in Table 1 and Figure 4.

As can be seen in Table 1 and Figure 4, on all the machines we were able to obtain
nearly linear speedups for the naive and the modified list-deletion algorithm. The speedup
curves decreased slightly for the modified list-deletion algorithm as the number of processors
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Figure 3: Comparing the list-deletion with the modified list-deletion algorithm. We are
given two maps A and B. A is indicated by shaded area. Polygons in map A are separated
by solid lines. Polygons in B are separated dashed lines. Assume the polygons are sorted
according to the x coordinates of their upper right corner, the ordering scheme used in the
ANSI C code, so that comparison of the two maps would begin with the polygons in the
lower left corners of both maps. (a) In both algorithms, when the lower left corners of maps
A and B coincide, the loop which compares polygons in B with polygon I in A begins
with the polygon pointed by arrow 1. The subsequent comparisons of polygons in B with
polygon I in A begin with the polygon pointed arrow 2, because the polygon pointed by
arrow 1 has been eliminated in earlier comparisons. Similarly, subsequent comparisons of
polygons in B with polygon 7] in A begin with the polygon pointed arrow 3. (b) In list-
deletion algorithm, when the lower left corners of the maps do not coincide, all comparisons
of polygons in B with polygons I, II, II1] in A begin with the polygon pointed by arrow
1. This is because polygons to the left of map A are never eliminated in the comparison
process. (c¢) In the modified list-deletion algorithm, when the lower left corners of the maps
do not coincide, only comparisons involving polygon I begin with the polygon pointed by
arrow 1. Subsequent comparisons involving 1 and II1 begin with the polygons pointed by
arrow 2 and 3 respectively.
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Figure 4: log(P) vs. log(t) plot. P is the number of processors and t is the execution time in
seconds. The upper four solid lines are log(P) - log(t) curves for the naive overlay algorithm;
the lower four solid lines are log(P) - log(t) curves for the modified list-deletion algorithm;
the four dashed lines are the log(P) - log(t) curves for the list-deletion algorithm.
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increased. This was due to the fact that as workload on each processor decreased, the
overhead became more prominent. The results show that the parallel algorithm we adopted
worked very well for the naive and the modified list-deletion algorithm. The original list-
deletion algorithm is not well-suited for parallel execution, causing the parallelized code to
perform poorly.

One way to parallelize the list-deletion algorithm without modifying the sequential list-
deletion algorithm is to divide B into B, and distribute B, as we did with A;. Assuming after
the division and distribution A; and B, roughly cover the same area, finding the overlay of
them will be straight forward. Once the overlay of A; and B; is found, the collection elements
exchange the part of By where no overly is found, and a second phase of parallel operation
can be carried out. This parallel algorithm requires N phases of parallel operation where N
is the number of collection elements (usually chosen to be equal to the number of processors).
The algorithm also requires that the input polygons be sorted.

On the other hand, if we can assume the input polygons are sorted, we can modify the list-
deletion deletion algorithm slightly to completely eliminate the cost of communication and
achieve a much better result. This was the reason that the modified list-deletion algorithm
was used in our tests. However, it should be noted that the result of the algorithm is a
distributed list of polygons which are locally sorted but not globally sorted. But globally
sorting the polygons is a very simple task. The sorting algorithm described in the previous
section has been applied to a data set of this size and the time to sort it was 0.35 seconds
on an 8 processor SGI power challenge. Hence the execution times in the table above should
have about one third of a second added to account for the final sort.

A large fraction of the code in many parallel applications is devoted to I/O. For example,
in an early version of the polygon overlay program using ordinary UNIX file I/O, 200 lines of
code (approximately 10% of the total), was devoted to I/O. In addition to programming time
overhead for file I/O, there is run time overhead as well; I/O is increasingly being identified
as a bottleneck in parallel applications.

pC++/streams (Section 3.3) can reduce the programming time and run time overheads
associated with file I/O in pC++ applications. Rewriting the original UNIX I/O in the
polygon overlay program using pf-streams reduced I/O code from 200 lines to 70 lines.

6 The Self-Consistent Field Code

Here and in Section 7 we describe our work with with the Grand Challenge Cosmology
Consortium (GC?). This work is abstracted from two longer papers [20] and [13].

One of the N-body codes developed by the GC? researchers is the Self-Consistent Field
(SCF) code, which is used to simulate the evolution of galaxies. It solves the coupled
Vlasov and Poisson equation for collisionless stellar systems using the N-body approximation
approach. To solve Poisson’s equation for gravitational potential:

VEQ(7) = 4mp(F),

the density p and potential ¢ are expanded in a set of basis functions. The basis set is
constructed so that the lowest order members well-approximate a galaxy obeying the de
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Vaucouleurs R'/* projected density profile law. The algorithm used is described in detail in
[15].

The original SCF code was written in Fortran-77 by Lars Hernquist in 1991. In 1993,
the code was converted to Thinking Machines CM Fortran by Greg Bryan. Expirements
conducted by Bryan on the 512-node CM-5 at the National Center for Supercomputing
Applications (NCSA) indicate that with 10 million particles the CMF code can achieve 14.4
Gflops on 512 nodes of the CM-5 [15].

The expansions of the density and potential take the following forms:

p(’f’) = Z Anlmpnlm(,ﬁ)

nlm

nlm
where n is the radial quantum number and / and m are quantum numbers for the angular
variables. Generally, the two sums will involve different expansion coefficients. But the
assumption of bi-orthogonality ensures a one-to-one relationship between terms in the ex-
pansions for the density and potential. The basis sets p,, and @, also satisfy Poisson’s
equation:
V@150 (7) = 47 prien (7)

and are given by:

L K ! 21+3/2
Prim(7) = 57~ ESEE CEH2 (VA Yo (0, 6)
l
r
(bnlm(f') - _mcle+3/2 (f)miﬁm(ea ¢)
r—1
5_7"-i—1

where K, is a number related only to n and [, and C2*3/2(¢) and Y}, (6, ¢) are ultraspher-
ical polynomials and spherical harmonics, respectively. After some algebra, the expansion
coefficients become

1
Anlm = 7 Z mk[(bnlm(frka ek’ ¢k)]*

Inl k
where [,; is a number and my, is the mass of the kth particle. Once the gravitational potential
is found, the gravitational force per unit mass can be obtained by taking the gradient of the
potential and the particles can be accelerated accordingly.

6.1 The pC++ Version of the SCF Code

We design a C++ class called Segment to represent a subgroup of the N particles used in
the simulation. As we have discussed earlier, the major procedure in the SCF code is to
compute the sums for the expansion coefficients A,;,,. Our approach is to first compute local
sums within each Segment object. After this, global sums are formed by a global reduction.
The global sums are then broadcast back to each Segment object where the particles are
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accelerated by the gravitational force. Now Fortran subroutines in the original Fortran code
can be used as member functions of the Segment class, although subroutines involving inter-
element communication and I/O need to be modified. The Fortran subroutines are called
by pC++ through a specially designed Fortran interface [20]. The Segment class is declared
(with many unimportant variables and member functions omitted) as follows:

class Segment {
public:
FArrayDouble x, y, z, vx, vy, vz, ax, ay, az, mass,
plm, clm, dlm, elm, flm, dplm;
double sinsum[Ilmax+1] [Imax+1] [nmax+1],
cossum[1lmax+1] [1max+1] [nmax+1] ;
Segment () ;
void compute_polynomial();
void compute_acceleration();
void update_position();
void update_velocity();

}s

The data type FArrayDouble is defined in the Fortran library; it serves as an interface to For-
tran double precision arrays. The FArrayDobule variables defined above are one-dimensional
arrays that contain the positions, the velocities, the accelerations, and the masses of particles
belonging to a Segment object, and the expansion coefficients and values of the polynomial.
sinsum and cossum contain the local sums and eventually the global sums of the expansion
coefficients. The class member functions call Fortran subroutines: compute_polynomial
computes the polynomials and local sums, compute_acceleration computes the accelera-
tion for each particle, and update_position and update velocity update the positions and
velocities of particles.

The collection that distributes the elements, allocates memory, and manages inter-element,
communication is declared as below. Again, many less important member functions are omit-
ted for brevity:

Collection SelfConsistField : public Fortran {
public:

SelfConsistField(Distribution *D, Align *A);

void InParticles();

void InParameters();

void OutParticles(int nsnap);
MethodOfElement:

virtual void compute_polynomial();

virtual void compute_acceleration();

virtual void update_position();

virtual void update_velocity();

void read_segment();

void write_segment();

}s
The functions declared here are pC++ functions. Their main purpose is to handle I/0.
InParticles, InParameters, and OutParticles read input files and write to output files,
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while read_segment and write_segment are called by InParticles and OutParticles to
perform parallel I/O. Functions that are already defined in element class Segment are de-
clared as virtual functions in this collection declaration. The inherited Fortran collection
is a parent collection which handles inter-element communication. Fortran itself is derived
from the SuperKernel collection.

The main program is:

void Processor_Main() {
elem_count = pcxx_TotalNodes();
Processors P;
Distribution D(elem_count, &P, BLOCK);
Align A(elem_count, "[ALIGN(X[i], D[i])1");
SelfConsistField<Segment> X(&D, &A);
// read initial model
X.InParameters();
X.InParticles();
X.compute_polynomial();
X.ReduceDoubleAdd(offset,variable_count) ;
X.compute_acceleration();
// main loop
for (n = 1; n <= nsteps; n++) {
.update_position();
.compute_polynomial() ;
.ReduceDoubleAdd (offset, variable_count);
.compute_acceleration();
.update_velocity();
.OutParticles(n);

P4 P4 D4 P4 P4

}
}

where ReduceDoubleAdd is a reduction function inherited from SuperKernel. offset is
measured from the beginning of the class Segment to the beginning of the field sinsum, and
variable_count is the total number of array elements in sinsum and cossum. A leapfrog
integration scheme is used to advance particles.

6.2 Benchmark Results

Our experiments with the pC++ SCF code were conducted on a Thinking Machines CM-5,
an Intel Paragon, an SGI Power Challenge, an IBM SP-2, and a Cray T3D. For comparison,
we also ran the CM Fortran SCF code on the CM-5. 51,200 particles were used for the
simulation. The system was allowed to evolve for 100 time steps. The results of these
experiments are listed in Table 2

As can be seen, the SCF code scales up very well on the parallel machines. On the CM-5
the pC++ version is about 1.1 times faster than the CM Fortran code. This is mainly because
the pC++ code used a faster vector reduction routine, while the CM Fortran code used a
scalar reduction routine. The code achieved highest speed—approximately 50 MFLOPS per
processor—on the SGI Power Challenge.
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Number of Processors
Platform 8 16 32 64
Cray T3D 223.0 | 115.3
Intel Paragon 667.3 | 332.5 | 168.5
IBM SP-2 186.9 | 103.5
Power Challenge 116.9 | 58.6
CM-5 (pC++) 45.8
CM-5 (CM Fortran) 50.3

Table 2: Execution time in seconds for evolving a 51,200 particle stellar system for 100 time
steps. The expansions were truncated at nmax = 6 and Imax = 4.

7 The Particle Mesh Code

Another N-body code in the dossier of the GC? group is the Particle Mesh (PM) code [7].
Originally implemented in Fortran-77 and CM Fortran, the particle-mesh method used in
the PM code computes long-range gravitational forces in a galaxy or galaxy cluster system
by solving the gravitational potential on a mesh. The three-dimensional space is discretize
by a three-dimensional grid. An average density for each grid point is then computed using a
Nearest Grid Point scheme, in which the density value at a grid point is the sum of all masses
of the particles nearest to that grid point. Once the density values at the grid points are
known, Fourier transforms are performed to compute the potential values at those points.
The potential values at the grid points are finally interpolated back to the particles, and
the particle positions and velocities are updated. The natural data structures for this are a
one-dimensional particle list and a three-dimensional mesh.

7.1 The Particle List Collection

The particles in the simulation are first sorted according to their affinity to mesh points;
particles closest to a given mesh point are neighbors in the sorted list. The sorted list is then
divided into segments and each segment forms an element of a particle list collection.

There are two approaches that we can follow when dividing the sorted list. There is a
tradeoff between data locality and load balance associated with the two approaches. In the
first approach, the sorted list is evenly divided so that the segments have the same length. In
the second, particles belonging to the same mesh points are grouped into the same segment
and segments will have different lengths.

In the first approach, load balancing is ensured because each processor has the same
number of particles. However, this approach may cause particles belonging to the same
mesh point to be distributed among different elements, thus requiring more inter-element
communication and remote updates. The second approach allows a greater exploitation of
data locality, but there is a potential load balancing problem. As the system evolves, particles
(stars or galaxies) tend to group together into clumps. Consequently, some mesh points may
have 1000 times more particles than other mesh points, and segments that have these mesh
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points will have much longer lengths. Since we usually distribute the collection elements
(in this case segments) evenly across the processors in a parallel machine, the processors
that have those long segments will do more work. We therefore decided to follow the first
approach.

The Segment class is defined as

class Segment {

public:

int particle_count;
FArrayDouble x, mass, g, V;
Segment () ;

}s

where x, mass, g, and v represent the position, the mass, the acceleration induced by gravity,
and the velocity of a particle, respectively.
The ParticleList collection is defined as

Collection ParticlelList : public Fortran {
public:
ParticleList(Distribution *D, Align *A);
void SortParticles();
MethodOfElement:
void pushParticles(Mesh<MeshElement> &G);
void updateGridMass(Mesh<MeshElement> &G);

}s

The function SortParticles() sorts particles in lexicographic order according to their
positions. The particles within each segment are first sorted using the standard C library
quicksort function gsort(). A global parallel sort is then performed using the bitonic sort
of Section 4.

pushParticles() uses the gravitational force to update the positions and velocities of
the particles. The argument passed to pushParticles() is a collection designed for the mesh
data structure (see next subection). The mesh collection is passed to pushParticles() so
that potential values at the grid points can be accessed by particles in the Segment element
and used to update particles’ velocities and positions. The function updateGridMass() is
used to add the mass of a particle to the total mass of the mesh point to which it is closest.
This function first loops through the particles local to a segment and accumulates a local
total mass for each mesh point. It then adds the local total mass to the mesh point’s total
mass by a remote update operation on the appropriate mesh point. Because remote updates
are expensive, the particles are sorted to minimize the number of remote updates.

7.2 The Mesh Collection

The mesh is logically a three dimensional array of mesh points, each containing values for
density and position. Because an FFT is used to solve the gravitational potential equation,
the data structure is designed as a one-dimensional collection, each element of which contains
a slice of the three-dimensional mesh:
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class MeshElement {
public:
double density[x_dim_size] [y_dim_size];
MeshElement () ;
void add_density(double density, int x_zone, int y_zone);

¥

add_density is remotely invoked by Segment elements to deposit mass on grid points.
The collection Mesh is defined as:

Collection Mesh : Fortran {
public:
Mesh(Distribution *T, Align *A);
void computePotential();
MethodOfElement:
void xyFFT_forward();
void zFFT_forward();
void zFFT_backward();
void xyFFT_backward();
void transpose_xy_to_xz();
void transpose_xz_to_xy();

I¥

The function computePotential () computes the gravitational potential using the total mass
at each mesh point. It calls the FFT routines listed under MethodOfElement. The density
distribution is first transformed into the wavenumber domain by FFT along the z, ¥, and
z directions. After solving the Poisson’s equation for the gravitational potential in the
wavenumber domain, the potential (or force components) is transformed back into the spatial
domain.

The FFT transform in the z, y, and z directions is performed by the Mesh collection.
The FFT in the x and y directions is straightforward, since each MeshElement contains an
entire array of mesh points. To perform an FFT in the z-direction, data are transformed
using transpose_xy_to_xz and transpose_xy_-to_xy.

7.3 The Main Simulation Loop

Given these collections, the main body of the simulation can be implemented as follows:

main () {
int num_of_segments = pcxx_TotalNodes();
int mesh_dim_z = 64;
Processors P;

Distribution Dist_PartList(num_of_segments, &P, BLOCK) ;
Align Align PartList(num_of_segments, "[ALIGN(G[il, T[i])]");
ParticleList<Segment> part(&Dist_PartList, &Align PartList);

Distribution Dist_Mesh(mesh_dim_z, &P, BLOCK);
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Number of Processors
Platform 8 16 32 | 64
Cray T3D 33.4 | 23.1
IBM SP-2 81.0
Power Challenge | 30.4 | 16.1
CM-5 (pC++) 134.6
CM-5 (CM Fortran) 20.4

Table 3: Execution time in seconds for evolving a 32,768 particle stellar system for 10 time
steps. A 64 x 64 x 64 grid was used.

Align Align_Mesh(mesh_dim_z, "[ALIGN(G[i], T[il)1");
Mesh<MeshPlane> mesh(&Dist_Mesh, &Align_Mesh);

// initialize particle list

// main loop

for (int i = 0; i < number_of_steps; i++){
mesh.computePotential();
particlelist.pushParticles(mesh);
particlelist.sortParticles();
particlelist.updateGridMass (mesh) ;

}
}

The main loop involves computation on both the Mesh and ParticleList collections. First
the potential is computed in parallel on the grid. Second, the particle velocities and positions
are updated. If particles have moved to new grid points, the appropriate data structures are
then updated. The particles are then sorted, after which the particle masses are accumulated
in their corresponding points for the next iteration step.

7.4 Benchmark Results

Our experiments with the pC++ PM code were conducted on a Thinking Machines CM-5, an
Intel Paragon, an SGI Power Challenge, an IBM SP-2, and a Cray T3D. For comparison, we
also ran the CM Fortran PM code on the CM-5. 32,768 particles were used for the simulation.
The system was allowed to evolve for 10 time steps. The results of these experiments are
listed in Table 3.

As can be seen in the table, the code scales up relatively well on the T3D and Power
Challenge. On the CM-5, the pC++ code is considerably slower than the CM Fortran
code. This is because the CM Fortran code can make use of transpose routines embedded
in an FFT developed by Thinking Machines’ engineers. The pC++ code has complicated
data structures and cannot use those transpose routines. Again, the best performance was
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obtained on the Power Challenge, although this architecture is limited to a small number of
Processors.

8 Conclusion and Project Evaluation

pC++ offers a very simple data-parallel programming model which makes use of the object-
oriented feature of C++. Very few parallel computations have not proven to be well-suited
to this model of computation. However, we have discovered a number of serious limitations
in our system. Some of these can easily be overcome, but others have led our research in
new directions.

The current pC++ compiler is not well suited to support nested data paral-
lelism.

Computations for which the available concurrency is nested or “multi-level” are among
the most interesting. Many of the important problems that confront the GC? effort
involve dynamic, adaptive data structures. More specifically, multi-level, adaptive grid
techniques, which are becoming standard in the simulation world, are not easy to express
without support for dynamic, nested parallelism.

As a simple example, consider the problem of supporting collections of collections in
the runtime environment. Because the current pC++ preprocessor translates the sin-
gle threaded data parallel style into direct SPMD emulation of data parallelism, it is
very difficult to allow nested parallel operations. Our thinking here has been greatly
influenced by the NESL project at Carnegie-Mellon University [1]. This research has
demonstrated that a wide variety of nested parallel computations can be “flattened”
by the compiler and runtime system to produce very efficient code. However, most of
the examples where this works are relatively static in structure; it is not clear how well
this technique works for very dynamic, adaptive computation.

C++ has been a moving target.

The majority of parallel C++ efforts were constructed without thinking about the
impact of the template system and the Standard Template Library (STL). Templates
and the STL have introduced concepts into the C++ programming methodology that
are different from the standard object-oriented concepts that most users understand.
However, the template mechanism in C++4 and the STL have taught us to think about
libraries of “generic functions” that work in harmony with object-oriented design ideas.
Our future work on parallel C++ will embrace these concepts.

C++ users are not willing to accept radical extensions to their programming
language.
While experimenting with parallel programming language ideas is exciting, extensions
to C++ will have little impact unless there is consensus on a very small set of changes
to the language. Users require programming environments that are stable and that are
supported by all vendors. For the future it may be important to design a meta-level
control extension facility for C++ (similar to the Japanese RWPC C++ system [16])
so that language extensions are needed. With this approach, new parallel constructs
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could be added to the language by providing a library that would work with any C++
system.

It is a mistake to design a system that limits the parallel programming paradigms
which can be used.

One of the problems with pC++ is that it supports only one paradigm for writing paral-
lel algorithms. While a data parallel object-oriented style is good for some applications,
it certainly does not cover all applications. For example, it is not very easy to simulate
the concurrency in an operating system with a data parallel language. ICC++ and
COOL are interesting because they mix general parallel control constructs with some
special new object-oriented features. In general, it seems best to provide very simple
primitives on which users can implement a variety of different programming paradigms.
We feel that CC++ does very well in this respect.

Basic C++ optimization is still a major obstacle to performance on most sys-
tems.

One of the most frustrating problems with high performance computing in any language
is the low quality of code optimization compared to Fortran. This is one reason a
clean interface to parallel Fortran is very important. The OOPACK benchmark tests
compilers to see how well the code generators work on programs that are designed
using standard C- and Fortran-like iteration, C++ style type and operator extension
and C++ STL-style iterators. Very few of the high performance systems are able to
optimize the more advanced programming constructs. As we learn to rely on template
based class libraries, good optimization techniques will become more complex and more
important.

The evolution of C++ is driven by standards and ideas from many sources.

In the distributed computing community the Object Management Group (OMG) has
established a standard for distributed object systems called the Common Object Re-
quest Broker Architecture (CORBA). The Object Data Base Group will soon describe
its standards. All of these represent technologies that must be considered when we
think about parallel computation in object-oriented terms.
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