AUTO94P: An Experimental
Parallel Version of AUTO

Fusebius Doedel
Xianjun Wang

CRPC-TR95599
May 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Revised: January, 1996. Also available as CRPC-95-3
from the Center for Research on Parallel Computation at
the California Institute of Technology.

AUTO94P :
An Experimental Parallel Version
of AUTO

X. J. Wang and E. J. Doedel
January 19, 1996

CRPC-95-3
Center for Research on Parallel Computing

California Institute of Technology
Pasadena CA 91125

Abstract

A detailed description is given of the parallel algorithms used in
AUTQO94P, an experimental parallel version of the software AUTO for
the numerical bifurcation analysis of systems of ordinary differential
equations. Timing results and user instructions for the Intel Delta are
included. The sequential version of the software, AUTQ94, is fully
described in [8]. For a related tutorial paper see [5, 6].

1 Introduction

In this report we give a detailed presentation of the parallel algorithms used
in AUTO94P, an experimental version of the software package AUTO for
the bifurcation analysis of systems of ordinary differential equations. The
latest version of the standard sequential software, AUTQ94, is described in
[8], where user instructions and many illustrative examples are given. A
description of the numerical algorithms used in AUTO, as well as related
algorithms, can be found in [5, 6]. To obtain a copy of AUTO94 or for
information on AUTO94P send email to doedel@cs.concordia.ca.

We consider the first order system of ordinary differential equations [6].

du

E :f(ua)‘)v (1)

where ¢ € [0,1],u € R™ and A € R™, subject to boundary conditions
b;(ug,ur, A) =0, 1=1,2,--+ ny, (2)

and integral constraints

1
/0 Qi(uv)‘)dtzoa i:1727"'7nq' (3)

In order for the above problem to be well posed, it is necessary that n), =
ny + ny, —n + 1. In this case there will be one free parameter, so that
the equations will normally yield curves of solution. An efficient sequential
numerical algorithm for solving the above ODE system is described in [6].
The corresponding algorithm was implemented in AUTO86 [7] as well as in
the more recent AUT094 [8]. More precisely, define a mesh

{0:t0<t1<"'<t]\7:1}, AtjEtj_H—t]', (0§]§N—1), (4)

and for each j introduce the Lagrange basis polynomials

{wj7i(t)}7 j:071727"'7N_17 520,1,2,--',771, (5)
defined by
m t—1., & Y
+. _ ¢
wm(t) = H —t ‘ _] 5 tj+;l_‘ = t]‘ —|— —At]'. (6)
k=0,k#i Uit T Ui+ L m

3

The collocation method now consists of finding

=Y wii(t)uy s, (7)
=0
such that

p;’(zj,i):f(pj(zj,i)v)‘)a Z.:1727"'77’)17 j:071727"'7N_17 (8)

where in each subinterval [t;_1,1;] the points {z;;}, are the zeros of the
mth degree Legendre polymonials relative to that subinterval. With the
above choice of basis, u; and u;, « are to approximate the solution () of
the continuous problem at ; and T%Hl respectively. The discrete boundary

conditions are b;(p1(0), pn(1),A) = O,mi =1,2,---,ny, ie.,
bi(uo,uN,)\) :0, = 1,2,---,nb. (9)

The integrals can be discretized by a quadrature formula. In view of the
discretization of the differential equation (1), the natural choice is the com-
posite quadrature formula obtained by approximate integration over each of

the subintervals [t;_1,;]. This gives
N-1 m
ZZ zqk J+#7)‘):07 k=1,2,--+ n,, (10)
7=0 =0

where the quantities w;; are the Lagrange quadrature coefficients. Apart
from a scaling factor these are independent of j. Since pseudo-arclength
continuation, see [5, 6, 11] for details, is used for the computation of branches
of solutions to (1), we need to adjoin the equation

02 /Ol(u(t) ot tio(1)dt + 021 = Xo) Ao — As = 0, (11)

where (wug, Ao) is the previously computed point on the solution branch and
(1o, Ao) is the normalized direction of the branch at that point. Upon dis-
cretization the pseudo-arclength equation becomes

N-1 m

ZDIDD wj,i(“j+,;l—' - (UO)]‘+#’)*("20)]‘+;—' +03(A = Xo)"ho — As = 0. (12)

7=0 =0

]
H
[N
I
z
N
I
E
w
jos} @ | W
w N | [P

[]
H
(63
]
o

]
H
>
L]
L]
>
\‘
=] 8] [g] 2] 8] 8] [#]
~ a I

|ng]] [es)
el el Talle] [el o] e | 2]

Figure 1: Structure of the Jacobian matrix J

The complete set of discrete equations for taking one step along a branch
of solutions therefore consists of solving the system of mnN 4+ ny +n, + 1
nonlinear equations (8)-(12) for the unknowns {u; i} € R™N+" X ¢ R™.
This is done by a Newton or Newton-Chord iteration. After linearization
via Newton’s method the matrix JJ in Figure 1 is obtained. This matrix is
structured and sparse with borders at the bottom and on the right. The
corresponding linearized system has the form

Jr = f. (13)

The linearized system (13) is solved in AUTO several times during each
Newton step when computing solutions of ordinary differential equations.
Moreover, the entire computation for a given problem can take many steps.
When the problem size is big, solving the linearized system (13) becomes the
dominant computation of the AUTO package. Practical results show that
AUTO often spends more than 70% of its total computation on setting up
and solving the linearized system. This percentage increases as the problem

size increases. Thus efficiently solving this system is important, both on
sequential and parallel machines.

We shall only consider direct methods here, as opposed to iterative meth-
ods. Direct methods are generally more efficient and robust for the case of
ordinary differential equations. More importantly, our direct solvers produce
asymptotic-stability and bifurcation information as a by-product. In Sec-
tion 2 a parallel direct solver for the linearized system (13) that does not use
pivoting is described. Without a pivoting strategy the algorithms simplify
considerably. However, in practical problems pivoting is frequently necessary
to maintain numerical stability. Thus, in Section 3, the parallel algorithm is
generalized to include pivoting. Both Sections 2 and 3 include timing results.
Some implementation issues are addressed in Section 4, and details on how
to use AUTO94P are given in Section 5.

begin
Partition strategy
Condensation of parameters.
Nested dissection.
Solving the small system.
Backsubstitution process one.
Backsubstitution process two.
end

Table 1: Outline of the Parallel Algorithm without Pivoting

2 A Parallel Sparse Solver without Pivoting

The parallel algorithm consists the following parts: partition strategy, con-
densation of parameters, nested dissection, solving the small system and two
backsubstitution processes. We describe the parallel design of each part be-
low. In particular, we stress the communication scheme of the algorithm. In
this section we do not consider any pivoting strategy in the Gauss elimina-
tion process. Pivoting will be considered in Section 3. The communication
scheme will be illustrated in graphic charts for the special case of 8 proces-
sors, although it applies to any number of processors. The outline of the
algorithm is shown in Table 1.

2.1 Partition Strategy

To achieve load balance, data should be distributed as evenly as possi-
ble, because the performance of a parallel algorithm for distributed mem-
ory systems is largely influenced by it. Consider the sparse linear system
(13), whose Jacobian matrix .J is shown in Figure 1, with right hand side
[= (F, Fy, - Fs, FC)T. Assume the total number of processors is P,
here P = 8. We define one data unit as {A;, B;,C;, F;, D, FC}, where
v = 1,2,---,8. Our partition strategy is given below. Similar to dense
matrix LU-decomposition, we partition the Jacobian matrix J and the right

PO P1 P7

{A1,B1,CL1F1D,FC} {A2B2C2F2D,FC} | * * v vt {A8,B8,C8,F8,D,FC}

Figure 2: Data Distribution for the Sparse System

hand side f into P data groups. Each data group contains k (here k = 1)
data units. In case the number of data units is not divisible by P, some data
groups contain k + 1 data units. Thus the difference between any two data
groups is at most one data unit. The best case is no difference at all, but we
cannot always get perfect balance. The distribution of the Jacobian matrix
J in Figure 1 and the right hand side f is shown in Figure 2. Note that the
matrix D and F'C in Figure 1 are shared by all processors. This means that
each processor keeps a copy of D and FC.

2.2 Condensation of Parameters

After distribution of the sparse matrix J and the right hand side f, each
processor holds one part of the matrix J and of the right hand side f. The
Gauss elimination procedure for the Jacobian matrix .J can be applied con-
currently in each of the processors, since no communication occurs until the
bottom of the sparse matrix .J is reached. At the bottom, we need two types
of communications to update the C;’s, D and F(C' in all processors. The
first communication type is for updating the C’s, because the right part of
C'; in node p; overlaps with the left part of C;1; in node p;y1. The second
communication type is for updating D and F'C, because they are shared by
all nodes. Updating the C;’s is done in two steps. In the first step, odd nodes
send messages to even nodes; in the second step even nodes send messages
to odd nodes. The communications between odd and even nodes are indi-
cated in Figure 3. Note that there are only two startup times for the entire
communication. This communication is scalable [10] since it is independent
of the number of nodes. The communication cost is the same, roughly two
startup times, no matter how many nodes are used in the computation. More

Figure 3: Communications between Odd and Even Nodes

e N

/

a
=
a
W

.
g

Figure 4: Recursive Doubling for 4 Nodes

precisely, assume the total number of nodes 1s P, and define the following set

Ir = {0,1,2,---,P—1} (14)
LP = {172737"'71092 P} (15)

and map My : Ip — Bp where set Bp = {odd, even}. My can be formulated
as
odd if mod(1,,2) =0

even if mod(i,,2) =1

Mofi) = {

where 1, € Ip. Table 2 outlines the communication between neighboring
nodes. To update D and FC, a global sum is needed. This is done by a
recursive doubling procedure [4], which takes logy P steps, where P is the
total number of nodes. The recursive doubling procedure is shown in Figure
4, where only four nodes are used for simplicity. Depending on the outcome
of the final sum, we use two types of recursive doubling. One is where the

9

begin
if (My(i,) == odd && 1, < P — 1) then

else

endif
if (Mo(i,) == even && i, < P — 1) then

else

endif

end

send the data to my right neighbor node 7, + 1

receive the data from my left neighbor node ¢, — 1

send the data to my right neighbor node 7, + 1

receive the data from my left neighbor node ¢, — 1

Table 2: Neighboring Node Communications

left most node holds the final results, as shown in the left part of Figure
4, where node pg holds the final result. The other is where the right most
node holds the final results, as shown in the right part of Figure 4, where
ps3 holds the final results. To outline the recursive doubling procedure in our
implementation, define the set B = {T, F'} and maps M_,e,,, M,44 such that

Modd:]pXLp—>B
Meven:]PXLP—>B

More precisely,

Modd(ipv Zp) = {

if mod(tam,,
if mod(z1am

(i
(i
(i
(i

if mod(tam,,

if mod(tam,,

Meven (i, Ip) - = {

where tam, = 21;—13_1 N Ip. Further define maps

otherwise

: 21 if g, 42 e]
Nadd(lp) = { pr 1 Zp P

10

2) =0
»2) =1
9) =1
2) =0

(16)
(17)

(18)

(19)

(20)

for [,:=1,2,---,log; P do begin

if (Modd(ipy lp) == T) then
send data to node N,4q(p,1,)

endif

if Meyen(ip,1l,) ==T) then
receive data from node Neyen (4, 1)
do the summation

endif

end

Table 3: The Recursive Doubling Algorithm

,— 2=l i, — 21 € [p

Nevenlins) = { e (21)

otherwise
where () means undefined. Table 3 shows the outline of the recursive dou-
bling in our implementation. After condensation of parameters, the Jacobian
matrix .J in Figure 1 becomes the one shown in Figure 5. The shaded areas
in Figure 5 will be considered below in the nested dissection process. Table
4 is an outline of the condensation of parameters process.

2.3 Nested Dissection

After condensation of parameters a nested dissection [9] procedure is used.
Here we consider nested dissection without pivoting. The communication
scheme for the pivoting case is different, and described in Section 3. Extract-
ing the shaded areas in Figure 5, we obtain the matrix shown in Figure 6.
Here Ay, Ay, Cq,Cy and B are in one processor. The notation Cy/C; in Figure
6 means that (5 is in node p; and C; in node p;y1, wherez = 0,1,---,6. The
idea is to reflect the fact that € is the same as C, but that they are in differ-
ent processors. It needs to be mentioned that the values of Ay, Ay, Cy, Cy and
B are not the same for different nodes although we use the same notations
for all nodes. We use a recursive doubling procedure for the nested dissec-
tion process. Thus, when the total number of processors is 8, the number

11

"
)"
)"
n N
"
="
="
)"

BN RIENNI

illllllli

Figure 5: The Jacobian .J after Condensation of Parameters

begin

{for each node p; € Ip do in parallel }

set D and FC to zero if p; > 0

otherwise keep them unchanged

for £ :=0,1,---, Max(k) do begin

do Gauss elimination

end

update Ci’s via neighboring node communication

update D and FC by recursive doubling procedure
end

Table 4: Outline of the Condensation of Parameters without Pivoting

12

PO PO/PL pypp P2P3 P3/P4 P4Ps P5iP6 PeiP7T P7

‘ Cc1 ‘ ‘CZC].‘ ‘02/01‘ ‘02101‘ ‘02/01‘ ‘02/01‘ ‘02/01‘ ‘CZ/Cl‘ ‘ c2 ‘ @

Figure 6: Initial State of the Nested Dissection

13

Figure 7: Busy Nodes during Each Recursion Level

of the recursion levels is 3. Figure 7 shows the busy nodes for each recur-
sion level. At the first level, the communication is between two neighboring
nodes. For example, in Figure 6, A; in node pg is sent to node p;, because
the Gauss elimination of Ay in p; needs information from A, in pg. A similar
communication has to be done for the B’s, C;’s and F;’s. At the first level
of the recursive procedure, all nodes are working. After the elimination at
the first level, the matrix is as shown in Figure 8, where the shaded areas
denote fill-in. At the second level, half of the nodes will be idle, while the
other half is doing eliminations. The situation is graphically illustrated in
Figure 7. At the second level, communication is not between neighbors only;
instead a group of nodes communicates with each other. The number of
nodes participating in the communication in each group is 2°=' 4 1, where
k is the recursion level. Figure 8 shows the communication scheme. After
the elimination at level 2, the matrix is shown in Figure 9. Level 3 is similar
as level 2, except the number of nodes in each communication group is more
than before. The final state, after the nested dissection has been completed,
is shown in Figure 10.

2.4 Solving the Small System

The shaded area in Figure 10 is a relatively small square matrix. It is gen-
erally nonsingular. This square matrix with the corresponding right hand
side is solved by Gauss elimination with complete pivoting. The solving of
the square system is done by one node, here node p;. The shaded area C in

14

Figure 8: Initial State of Level 2

15

H
=
Q
Y
O
H
N

Figure 9: Initial State of Level 3

16

CE
©

Figure 10: Final State after the Nested Dissection

17

Figure 11: Broadcast Solution from the Small System

po in Figure 10 has to be sent to node p7, before node p; can compute the
solution of the small system.

2.5 Backsubstitution

After solving the small system, we can obtain the solution for the full ma-
trix shown in Figure 6 by a backsubstitution process. In order to do the
backsubstitution, the solution of the small system has to be sent to all other
nodes. This can be done by a broadcast from node p;. Figure 11 shows the
broadcast. After the broadcast, we can do the backsubstitution in each node
concurrently, and hence compute the solution of the nested system. In order
to obtain the solution of the full system (13), another backsubstitution has
to be done. This final backsubstitution process does not need any communi-
cation and can be done concurrently in all nodes. The full solution has now
been obtained, but it is scattered over all the nodes. Thus a concatenation is
needed. This concatenation process is identical to that in the pivoting case,
and will be described in Section 3.7.

18

2.6 Timing Results

AUTO94P without pivoting has been tested on the Intel Hypercube and
Mesh machines. The numerical timing results reported here were obtained
on the Intel Delta; 512 Intel iPSC/860 nodes connected by a mesh network.
The example used for the numerical experiments is tim.f, a demo in AUT094,
which is useful for timing purposes. It defines a simple first order system of
ordinary differential equations with boundary conditions. The dimension of
the system is a variable. The parameter NDIM (dimension of the system)
may be assigned by any even value within the modifiable limit NDIMX [8].
The system of the equations is

uy = us (22)
uy = —)\Zﬁ (23)

where u; € R, uy € R", n = NDIM/2 and X is the continuation parameter.
The boundary conditions are

U1 0

U1 0
The starting solution at A = 0 is uy(z) = ug(z) = 0, x € [0,1]. There are no
integral conditions except a pseudo-arclength integral, which is always there.
The computation is such that for each run of the problem, there will be 10
decompositions and 10 backsubstitutions in the linear equation solver. We
use the efficiency formula (26) and the relative efficiency formula (27) below

to measure the performance. Assume that the execution time for one node
is Ty and T), for P nodes. We define the efficiency, denoted by 5, as follows

T
= 26
N T, (26)
and the relative efficiency as
mT,,
. = , 27
0 T (27)

where T,,, T, are the execution times obtained by using m,n nodes, respec-
tively.

19

2.6.1 Timing Results Including I/O Time

Timing results in this section include “I/O time”. Specifically, all execution
times in the following tables are taken from the first node (node pg). The
first node does all the I/O operations, thus its execution time is a little longer
than that of other nodes.

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.113E4-03 1 100%

2 0.611E402 1.85 92.47%
4 0.359E4-02 3.15 78.69%
8 0.222E4-02 5.09 63.63%
16 0.138E4-02 8.19 51.18%
32 0.116 402 9.74 30.44%
64 0.103E4-02 10.97 17.14%

Table 5: Without Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.603E4-03 1 100%

2 0.316E4-03 1.91 95.41%
4 0.168E4-03 3.59 89.73%
8 0.944E4-02 6.39 79.85%
16 0.5584-02 10.81 67.54%
32 0.332E4-02 18.16 56.76%
64 0.268E4-02 22.50 35.16%

Table 6: Without Pivoting 1: NDIM=24, NTST=64, NCOL=4, NMX=10

20

2.6.2 Timing Results Excluding I/O time

Timing results in this section do not include “I/O time”. The execution time
in the following tables is the first node’s execution time minus the “average
I/O time”. The average 1/0O times for all tables in this section are shown in
Table 8. For simplicity, we do not count the work-load difference between
nodes, which also affects the execution. The average I/O time is calculated
by the following formula

) Tmznzmum + Tmazimum
Taverage - 9 (28)

21

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.562E4-03 1 100%

16 0.306E24-03 1.84 91.83%
32 0.176£4-03 3.19 78.83%
64 0.106E4-03 5.30 66.27%

Table 7: Without Pivoting 1: NDIM=48, NTST=64, NCOL=4, NMX=10

| In Table | Minimum I/O time | Maximum I/O time | Average 1/O time |

9 1.00 3.50 2.25
10 1.00 3.50 2.25
11 3.00 7.00 5.00

Table 9: Without Pivoting 2: NDIM=12, NTST=64, NCOL=4, NMX=10

Table 8: Without Pivoting: Average I/O Time

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.111E403 1 100%

2 0.589E4-02 1.88 94.23%
4 0.337E4-02 3.29 82.34%
8 0.199E+4-02 3.58 69.72%
16 0.116 402 9.57 59.81%
32 0.935E4-01 11.87 37.10%
64 0.805E4-01 13.79 21.55%

22

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.601E4-03 1 100%

2 0.314E4-03 1.91 95.70%
4 0.166F4-03 3.62 90.51%
8 0.923E+4-02 6.51 81.39%
16 0.536£4-02 11.21 70.08%
32 0.310E4-02 19.39 60.58%
64 0.2461£4-02 24.43 38.17%

Table 10: Without Pivoting 2: NDIM=24, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.557E403 1 100%

16 0.301E4-03 1.85 92.52%
32 0.171E4-03 3.26 81.43%
64 0.101E4-03 5.51 68.93%

Table 11: Without Pivoting 2: NDIM=48, NTST=64, NCOL=4, NMX=10

23

begin

Partitioning strategy

Condensation of parameters with pivoting.

Nested dissection with pivoting.

Solving the small system.

Backsubstitution of the nested dissection.

Backsubstitution of the condensation of parameters.
end

Table 12: Outline of the Parallel Algorithm with Pivoting

3 A Parallel Sparse Solver with Pivoting

The top level of the parallel algorithm outlined in Table 12 is similar to that
in Section 2.

We show the parallel design of each part of Table 12, except that we do
not repeat the partitioning strategy. We present the communication schemes
in graphic charts with emphasis on pivoting. To avoid duplication, we do not
repeat parts similar to those in Section 2, particularly for the condensation
of parameters. Although the ideas are illustrated for the case of 8 processors,
the communication scheme applies to any number of processors.

3.1 Pivoting Strategy

To enhance numerical stability [1, 12], we use restricted row and column
pivoting in our parallel algorithm. During the condensation of parameters
process, we use a pivot search window at each elimination step. In Figure 12,
the pivot window for A; is the shaded area. The corresponding pivot window
in nested dissection is shown in Figure 13. It needs to be mentioned here
that the pivot window in the nested dissection does not reside in a single
node, but rather resides either in two neighboring nodes or in two nodes
at distance 2, where k is the current recursion level. Thus, during any
recursion level of the nested dissection, say level k, message passing between

24

Figure 12: The Pivot Window for A;

Al A2 |~ P

Pi1 | A1 A2

Figure 13: The Pivot Window for Nested Dissection

25

P«1— a1 A2

Figure 14: Communication within the Pivot Window

two nodes at distance 2* is needed. The information exchanges are indicated
in Figure 14. The efficiency of the above pivoting strategy is obviously better
than complete row and column pivoting, due to the restriction of the search
region.

3.2 Condensation of Parameters

Starting from the initial state of the Jacobian matrix, as shown in Figure
1, condensation of parameters transforms the matrix into the form shown in
Figure 15. As in Section 2, the elimination process is done concurrently in
each processor, except at the bottom of the Jacobian matrix .J. The commu-
nications at the bottom have been described in Section 2.2. The difference
here is that, during the elimination process in each node, a local pivot within
the pivot window mentioned in section 3.1 is searched. In addition, the com-
munications at the bottom of the Jacobian matrix .J are delayed until the
nested dissection process in order to improve the degree of parallelism. With
the above communication delay, we save two start-up times. More precisely,
assume that T is the start-up time for each simple communication and that
a global sum takes a factor of logs P times a simple startup time, where P is
the total number of processors. We roughly save the following communication
time in the condensation of parameters process:

Tsave = (1092 P+ Q)Ts

26

]

DDDDDDDDDf

Figure 15: The Jacobian J after Condensation of Parameters

27

begin
{for each node p; € Ip do in parallel}
set C'; D and F'C to zero if p; > 0
otherwise keep them unchanged
for £ :=0,1,---, Maxz(k) do begin
{Pivoting strategy and Bookkeeping}
do pivot search
do index exchange
do elimination
end
end

Table 13: Outline of the Condensation of Parameters With Pivoting

Here P is the total number of nodes. Table 13 is an outline of the condensa-
tion of parameters process.

3.3 Nested Dissection

The nested dissection plays an important role in the full algorithm. It is
complicated in the sense that both pivoting and elimination are not local.
They both require communication between specified nodes. Assume that
P is the total number of nodes allocated to a task. We know that each
node p; has a unique processor identification number. We denote this node
identification number by ped;. This pid; is typically assigned by the operating
system, depending on the system. Assume Ip, Lp are defined as before and
define the following set

B = {T,F} (29)
PID = {pid; | i€ Ip} (30)
(31)

28

It is convenient, and necessary in practice, to map the system assigned PID
to individually organized Ip. One can define the map as

My : PID — Ip (32)

One way to construct the map is to sort all pid; in PID in nondecreasing
order and renumber each element by an integer starting from zero. Depending
on the application, the construction of the map is often done differently. To
better describe the communication method, we need to define some maps.
The first two are M;,7 = 1,2 such that

M;:IpxLp— B i=1,2 (33)

We define the two maps as follows.

: _ () =
Mi(ip, 1) = { Fif mod(iam,,2) = (34)
. B T if mod(iam,,2) =
My(ip, 1) = { Fif mod(iam,,2) = (35)
where, as before, .
. i
tamy, = {%—Pil}ﬁ]p (36)
Secondly, define N;,z = 1,2 such that
NZ'ZIPXLP—>IP (37)
We define N;,z = 1,2 as follows.
: a2t it 42 e Tp
N(ip, bp) - = { 0 otherwise (38)
. B i, — 27t ifg, -2t e [p
Nolip,Ip) - = { otherwise (39)

where () means undefined. Now we can describe the algorithm in two parts.
Part one is outlined in Table 14 and part two in Table 15. Below we de-
scribe our communication mechanism graphically. The nested dissection is
carried out in a way similar to the recursive doubling procedure described

29

begin
{for each p; € Ip do in parallel}
for k:=0,1,---, Maxz(k) do begin
{Pivoting strategy and Bookkeeping}
{Here pivot search is local}
do pivot search
do elimination
end
end

Table 14: Nested Dissection Process 1

before. During each level of recursion, half of the total number of nodes are
idle. Assume that the total number of data units, defined in Section 2.1, is
24. After the data distribution over 8 nodes described in Section 2 each node
holds 3 data units We first look at what happens in any one of the nodes,
say in p;. This part of the algorithm is outlined in Table 14. The elimination
in each node is sequential. For now, we don’t consider shared data, such as
the matrix D and the vector F'C. The result of the elimination is shown in
Figure 16 to Figure 18. The shading denotes fill-in due to the elimination
and pivoting. So far, there is no communication yet. Now we look at part
two of the nested dissection corresponding to the outline in Table 15. After
each node finishes the first part of the nested dissection outlined in Table
14, extracting the unfinished part shown in Figure 19 in each node, we have
the situation shown in Figure 20. Since we have 8 nodes, the number of
recursion levels is 3. In Figure 20, we have also shown the communications
during level 1 of the recursion. Note that the communications from conden-
sation of parameters have been merged here in order to improve the degree
of the parallelism. All communications indicated by an arrow arc are done in
parallel. In other words, they only need one start up time T plus the time
to send or receive certain data between any two nodes. The pivot window
covers neighboring nodes for level 1 but not in levels 2 and 3, as one can see
from Figures 21 and 22. In total we need 3 startup times to complete the

30

begin
{for each node p; € Ip, do the following in parallel}
{Here pivot search is not local}
for k:=1,---,max(k) do begin
for [, := 1 to log; P do begin
if (Mq(7,,1,) ==T') then
Search local pivot element PV}
receive PIV; from node Ny(iy,[,)
Determine PIV = max(PIV;y, PI1V;)
if (PIV == PIV;) then
send pivot row to node Ny(¢,,1,)
else
send current row to node Ni(i,,1,)
endif
do eliminations
endif
if (My(i,,1,) ==T') then
Search local pivot element PV,
send local pivot row to node Ny(i,,1,)
if (PIVy! = PIV) then
receive pivot row from node Ny(7,,1,)
else
receive current row from node Ny(i,,[,)
endif
do eliminations
endif
end
end
end

Table 15: Nested Dissection Process 2

31

,,,

- =—pivot window

(A1] | [A2] | inPionly
[AL] | [A2]
Al A2
cI] [C2] [C2] [CA]

Figure 16: The Initial State in Node p;

] ==A
ST
next pivom

Figure 17: The Intermediate State in Node p;

32

~!
I

R
U

Figure 18: The Final State in Node p;

~] unfinished part

Figure 19: Enclosed in the Dashed-line Box is the Unfinished Part

33

elimination for 8 nodes. The elimination result and the communications are
indicated for each level of the recursive process in Figure 20 to Figure 22.
The final result is indicated in Figure 23. The shared data, such as the
matrix D and the vector F'C, are updated by a global sum similar to Figure
4. Note that only the last node holds the global sum of D and FC', as will
be explained below.

3.4 Solving the Small System

After the nested dissection, we need to solve a relatively small square system
described in Section 2.4. In Figure 23, we send 4 from node py to node
pr as indicated in Figure 24. We can extract the square system enclosed
by a big dashed line box as indicated in Figure 25 in node ps. The shaded
area implicitly represents the Poincaré map that is needed in AUTO [6]. This
small square system is solved by node p; using complete pivoting. Thereafter
node p; broadcasts the solution to all the other nodes as indicated in Figure

26. The outline for this is in Table 16.

3.5 Backsubstitution for the Nested Dissection

After solving the small square system with complete pivoting, we need to do
backsubstitution. There are two backsubstitution processes. The first one is
associated with the nested dissection process. The second one is associated
with condensation of parameters. The first one is a recursive procedure
similar to the nested dissection. It requires log; P levels or steps. The
number of working nodes here is reversed compared with that of the nested
dissection. The busy nodes are indicated in Figure 27 level by level. Initially,
only one node works. Thereafter the number of working nodes is doubled
with each increase of the recursion level. At each level some communications
are needed as will be illustrated by pictures. The algorithm is outlined below.
Assume the maps M;(i,,1,),: = 1,2 are defined as in (34). Define sets
Nb;(ip,1,) C Ip,i = 1,2 such that

Nbi(ip, 1) = {iy | Mi(ipl,—1)=T and I,>1} (40)
Nba(in, 1)) = {iy | Mi(ipl,+ 1) =T and 1, <P—1} (41)

The backsubstitution process is now outlined in Table 17. The backsubsti-

34

[(e i
,,,,,,,,, < T pivot window
clel] | LR
el @
(ol 2 w
e
@ e
(p7
N[cl] [c2]

Figure 20: Level 1

35

Figure 21: Level 2

36

\\\\\

\\\\\\

i

pivot window

\\\\\\\\\\\\\\\\\\\

Figure 22: Level 3

37

)

)

)

pO

- pl

p2
p3

1 p5

N . e I - @
e T
H e
e e
I e
T -
- T
e
777777777777777777 p2
,,,,,,,,,,,,,,,,,,,, y
e
p6
”””””””

Figure 23: The Final Result of the Nested Dissection Process

38

p6

p7

Figure 24: Send ¢; from Node pg to Node p;

39

]
A e Y e
,,,,,,,,,,,,,,,,,,,,,,, e N
Sy N o
;e =

Figure 25: The Square Matrix Enclosed in the Solid-line Box

e

Figure 26: Broadcast of the Partial Solution from Node p; to All Other Nodes

40

pO

- pl
Lp2
. p3

. p5
. p6
L p7

begin
{ for each node i, € Ip do }
if (¢, == 0) then
send data to the last node 1p_;
endif
if (i, ==ip_1) then
recelve data from node ¢g
Solve the small system by
Gauss elimination with complete pivoting
endif
if (¢, ==ip_1) then
broadcast the solution
else
receive the solution
endif

end

Table 16: Solving the Small System

(P6) '~ level 3

Figure 27: Busy Nodes for Each Level during Backsubstitute

41

begin
{ for each 7, € Ip do in parallel}
for [, :=log, P,---,1,step — 1 do begin
if (Mi(¢,,1,) ==T') then
if (I, < P —1) then
receive solution from nodes Nby(i,,[,)
endif
do local backsubstitution only in the last block row
if (I, > 1) then
send the solution to the
following nodes Nby (i, [,)
endif
endif
end
do the backsubstitution for the remaining block rows locally
end

Table 17: Backsubstitution Process 1

42

p0
pl
p2
p3

p5
p6

p7

Figure 28: Backsubstitution Level 1

tution process can be interpreted graphically as follows. After broadcasting
the solution from the small square system, we can obtain part of the solution
corresponding to the shaded triangular area in node p3 in Figure 28. In order
to solve the part of the solution corresponding to the shaded triangular area
in nodes p; and ps, we need to send the solution from node ps to node p; and
to node ps as shown in Figure 28. This completes level 1 in the backsubsti-
tution process. Similarly one can complete level 2 as indicated in Figure 29.
No communication is needed for level 3.

3.6 Backsubstitution for the Condensation of Param-
eters

After the above backsubstitution process associated with the nested dissec-

tion, one can obtain the whole solution of the linearized system in parallel

as indicated in Figure 1. This part of the computation does not involve any

communication. It is a simple backsubstitution that we omit describing here.
The outline can be found in Table 18.

3.7 Merging the Solutions

So far we have computed the solution to the system indicated in Figure
1. However, the solution is still scattered over all nodes, and we need to

43

-~y
,,,,,,,,,,,,,,,,,,,,,,, [J "« <
e 1 . [
e]

Figure 29: Backsubstitution Level 2

begin
{ for each ¢, € Ip do in parallel}
backsubstitution locally in each node ¢,
end

Table 18: Backsubstitution Process 2

44

)
- pl
- p2
P

. P5
. p6
- p7

concatenate them. This is done by a global operation as indicated in Figure
30. Tt consists of two steps. The first step is to let node py collect all solutions

ai:
aiz
s

\
|

=

N—

)

Figure 30: Concatenation of the Solutions

from the other nodes, the second step is to broadcast the full solution.

3.8 Timing results

AUTO94P with pivoting has been tested on the Intel Hypercube and Mesh
machines. The numerical timing results reported here are obtained on the
Intel Delta. We use the same example as in Section 2 for the timing purpose
here. The efficiency formula (26) and the relative efficiency formula (27) are
used to measure the performance.

45

3.8.1 Timing Results Including I/O Time

Timing results in this section include 1/O time. Specifically, all execution
times in the following tables are taken from the first node (node 0). The first
node does all the AUTO I/O operations. Thus its execution time is a little
longer than that of other nodes.

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.14816E+03 1 100%

2 0.76882E+02 1.92 96.36%
4 0.41966E+02 3.53 88.26%
8 0.24917E+02 5.95 74.33%
16 0.16852E+02 8.79 54.95%
32 0.12519E+02 11.83 36.98%
64 0.11386E+02 13.01 20.33%

Table 19: With Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.29486E+03 1 100%
2 0.15434E+03 1.91 95.52%
4 0.82070E+02 3.59 89.82%
8 0.46864E+02 6.29 78.65%
16 0.34325E+02 8.59 53.69%
32 0.21596E+02 13.65 42.67%
64 0.19698E+02 14.97 23.39%

Table 20: With Pivoting 1: NDIM=12, NTST=128, NCOL=4, NMX=10

46

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

2 0.30752E+03 1 100%

4 0.16642E+03 1.85 92.39%
8 0.93223E+02 3.30 82.47%
16 0.62372E+02 4.93 61.63%
32 0.44666E+02 6.88 43.03%
64 0.36942E+02 8.32 26.01%

Table 21: With Pivoting 1: NDIM=12, NTST=256, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.86821E+03 1 100%
2 0.43959E+03 1.98 98.75%
4 0.22831E+03 3.80 95.07%
8 0.12090E+03 7.18 89.77%
16 0.69891E+02 12.42 77.64%
32 0.43812E+02 19.82 61.93%
64 0.33428E+02 25.97 40.58%

Table 22: With Pivoting 1: NDIM=24, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

4 0.45262E+03 1 100%
16 0.13188E+03 3.43 85.80%
32 0.83715E+02 5.41 67.58%
64 0.57496E+02 7.87 49.20%

Table 23: With Pivoting 1: NDIM=24, NTST=128, NCOL=4, NMX=10

47

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.47475E+03 1 100%
32 0.16136E+03 2.94 73.55%
64 0.11212E+03 4.23 52.93%

Table 24: With Pivoting 1: NDIM=24, NTST=256, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.77154E+03 1 100%
16 0.40720E+03 1.89 94.74%
32 0.22908E+03 3.37 84.20%
64 0.14745E+03 5.23 65.41%

Table 25: With Pivoting 1: NDIM=48, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

16 0.79527E+03 1 100%
32 0.43987E+03 1.81 90.40%
64 0.26383E+03 3.01 75.36%

Table 26: With Pivoting 1: NDIM=48, NTST=128, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

32 0.84541E+03 1 100%
64 0.50268E+03 1.68 84.09%

Table 27: With Pivoting 1: NDIM=48, NTST=256, NCOL=4, NMX=10

48

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

2 0.14787E+04 1 100%
4 0.75186E+03 1.97 98.34%
8 0.39168E+03 3.78 94.38%
16 0.21482E+03 6.88 86.04%
32 0.12844E+03 11.51 71.95%

Table 28: With Pivoting 1: NDIM=48, NTST=32, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

16 0.15305E+04 1 100%
32 0.88878E+03 1.72 86.10%

Table 29: With Pivoting 1: NDIM=96, NTST=32, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H
| 64 | 0.10121E+04 | 1 | 100% |

Table 30: With Pivoting 1: NDIM=96, NTST=64, NCOL=4, NMX=10

49

3.8.2 Timing Results Excluding I/O Time

Timing results in this section do not include “I/O time”. The execution time
in the following tables is the first node’s execution time minus the “average
I/O time”. We use formula (28) to calculate the the average 1/0O time. The
average 1/O times for all tables in this section are shown in Table 31. For
simplicity, we do not consider work-load difference between different nodes.
This also makes the execution time differ from node to node. The average
I/O times for all tables in this section are shown in the Table 31 below.

| In Table | Minimum I/O time | Maximum I/O time | Average I/O time ||

32 1.01 1.88 1.45
33 1.89 3.65 2.77
34 3.72 6.94 5.33
35 1.87 3.83 2.85
36 3.59 7.25 5.42
37 9.53 15.02 12.27
38 1.88 4.09 2.99
39 3.89 7.01 5.45
40 7.09 13.67 10.38
41 13.81 30.23 22.02
42 3.4 7.1 5.25
43 13.47 13.47 13.47

Table 31: With Pivoting: Average I/O Time

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.14671E+03 1 100%

2 0.75432E+02 1.94 97.25%
4 0.40516E+02 3.62 90.53%
8 0.23467EA+02 6.25 78.15%
16 0.15402E+02 9.53 59.53%
32 0.11069E+02 13.25 41.42%
64 0.99360E+01 14.77 23.07%

Table 32: With Pivoting 2: NDIM=12, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.29209E+03 1 100%

2 0.15157E+03 1.93 96.35%
4 0.79300E+02 3.68 92.08%
8 0.44094E+02 6.62 82.80%
16 0.31555E+02 9.26 57.85%
32 0.18826E+02 15.52 48.49%
64 0.16928E+02 17.25 26.96%

Table 33: With Pivoting 2: NDIM=12, NTST=128, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

2 0.30219E+03 1 100%
4 0.16109E+03 1.88 93.80%
8 0.87893E+02 3.44 85.95%
16 0.67042E+02 4.51 56.34%
32 0.39336E+02 7.68 48.01%
64 0.31612E+02 9.56 29.87%

Table 34: With Pivoting 2: NDIM=12, NTST=256, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Speed-up ‘ Efficiency H

1 0.86536E+03 1 100%
2 0.43674E+03 1.98 99.07%
4 0.22546E+03 3.84 95.95%
8 0.11805E+03 7.33 91.63%
16 0.67041E+02 12.91 80.67%
32 0.40962E+02 21.13 66.02%
64 0.30578E+02 28.30 44.22%

Table 35: With Pivoting 2: NDIM=24, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

4 0.44720E+03 1 100%
16 0.12646E+03 3.54 88.41%
32 0.78295E+02 5.71 71.40%
64 0.52076E+02 8.59 53.67%

Table 36: With Pivoting 2: NDIM=24, NTST=128, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.46248E+03 1 100%
32 0.14909E+03 3.10 77.55%
64 0.99850E+02 4.63 57.90%

Table 37: With Pivoting 2: NDIM=24, NTST=256, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

2 0.14757E+04 1 100%
4 0.74887E+03 1.97 98.53%
8 0.38869E+03 3.80 94.91%
16 0.21183E+03 6.97 87.08%
32 0.12545E+03 11.76 73.52%

Table 38: With Pivoting 2: NDIM=48, NTST=32, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

8 0.76609E+03 1 100%

16 0.40175E+03 1.91 95.34%
32 0.22363E+03 3.43 85.64%
64 0.14200E+03 5.40 67.44%

Table 39: With Pivoting 2: NDIM=48, NTST=64, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

16 0.78489E+03 1 100%
32 0.42949E+03 1.83 91.37%
64 0.25345E+03 3.10 77.42%

Table 40: With Pivoting 2: NDIM=48, NTST=128, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

32 0.82339E+03 1 100%
64 0.48066E+03 1.71 85.65%

Table 41: With Pivoting 2: NDIM=48, NTST=256, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H

16 0.15252E+04 1 100%
32 0.88351E+03 1.73 86.31%

Table 42: With Pivoting 2: NDIM=96, NTST=32, NCOL=4, NMX=10

H Number of Nodes ‘ Execution time ‘ Relative Speed-up ‘ Relative Efficiency H
[64 | 0.99863E403 | 1 | 100% |

Table 43: With Pivoting 2: NDIM=96, NTST=64, NCOL=4, NMX=10

| Type

‘ Syntax

Description

synchronous

csend(Type,Data,Len,Node,Pid)

send a message and
wait for completion

crecv(Type,Data,lLen)

receive a message and
wait for completion

asynchronous | Msgld=isend(Type,Data,Len,Node,Pid) | send a message

MsgType=irecv(Type,Data,Len) receive a message

done or not

msgdone(Id) determine message

msgwait(Id) wait for message

to complete

Table 44: Primitives on the Gamma and Delta machines

4 Implementation Notes

4.1 Introduction

The two sparse linear solvers described in Sections 2 and 3 are inplemented
in AUTO94P. The initial implementation of AUTO94P was done on the
Gamma machine, an Intel Hypercube machine with 64 Intel iPSC/860 nodes.
Thereafter it was ported to the Delta system, an Intel mesh machine with
512 iPSC/860 nodes. Communication between the processors on both ma-
chines is done by message passing. Communication can be either synchronous
(blocking) or asynchronous (nonblocking). Some of the basic communication
primitives on these machines [2, 3] are shown in Table 44.

4.2 Node Organization

Assume that the number of nodes is fixed. Each node has a unique identifier,
which is used as an address in the exchange of messages. In our implementa-
tion, the nodes are organized as a one dimensional grid. User identification
for each node is then a number p between 0 and P —1, where P is the number
of nodes. We assume that the number of nodes is a power of 2, because the
initial implementation was done on the Intel Hypercube machine where the
number of nodes allocated is always a power of 2.

H)

4.3 1I/0O Strategy

Since in our case all nodes share a common 1/0 file and because the common
file can be very big for a large size problems, our policy is to let all nodes
do the reading concurrently. Each node has its own file pointer, so that
they don’t affect each other. For writing, we only allow one node to do the
operation, simply because we only need one output file. Here we assigned
node pg to do all writing. Thus the total execution time for node pg is longer
than that of all the other nodes. More precisely, the 1/O control is as follows.
Each node maintains its own file pointer. File access requests are honored on
a first-come, first-served basis. If two nodes write to the same place in the
file, the second node overwrites the data written by the first node. Because
the nodes do not have to communicate with each other, the best performance
is obtained.

4.4 Interface Routines

In order to facilitate porting AUTO94 to other systems, a set of interface
routines is provided. The idea is to separate the system dependent primi-
tive calls, so that porting can focus on the interface, assuming organization
of the communication scheme is preserved. In principle, one only needs to
concentrate on this set of interface routines. Depending on the particular
multicomputer system, one may need to synthesize some of the primitives
in our implementation. Refer to the appropriate system manual to find
out how to do this. A possible simple case is that only the syntax of the
primitives needs changes, with little consideration of their semantics. Since
multicomputer systems, especially distributed memory systems, may differ
significantly both in architecture and in system software, an absolutely iso-
lated interface is hard to provide. But our interface does separate the prim-
itives that have to be changed when porting to other systems. Depending
on the network structure or the way the processor elements are connected,
the current communication organization may not be the best suitable to that
particular system, and hence the performance may be affected.

56

5 How to Run AUTO94P

5.1 Overview

This section describes how to install AUTO94P on delilah.cesf.caltech.edu
and how to run it on deltal.cesf.caltech.edu. The first machine is a SunOS
UNIX workstation and the second is the Intel Delta. We also assume the
parallel Fortran compiler is the cross compiler for 1860 microprocessor from

the Portland Group (Release 3.0). The instructions below must be accurately
followed.

5.2 Installation
AUTOY4P is packed as a tar file auto94p.tar. 7. Atter obtaining auto94p.tar. 7,

put it in the home directory.

1. Uncompress auto94p.tar.Z by typing
uncompress auto94p.tar

2. Unbound auto9/p.tar by typing
tar xvfo auto.tar
This will create a directory auto9/p containing the AUTO files.

3. Enter the directory SHOME/auto9)p, and type
make
to compile the entire package.

4. Remove unnecessary files by typing
make clean

The above four steps will complete the installation of AUTO94P.

5.3 How to Run AUTO0O9%4P

We use the demo exp.f from AUTO94 to illustrate how to run AUTO94P on
the Delta.

1. Compile exp.f on delilah.cesf.caltech.edu.

2. Transfer exp.exe, r.exp.1, r.exp.2 from delilah.cesf.caltech.edu to deltal.ccsf.caltech.edu.

57

3. Load exp.exe on deltal.ccsf.caltech.edu.

A detailed description follows.

Compile: The compilation should be done on delilah.ccsf.caltech.edu. First
copy exp.f, r.exp.1, r.exp.2 from SHOME/auto9)p/demos/exp to
SHOME/auto94p/work by typing
cp $HOME /auto94p/demos/exp/*exp* $HOME /auto94p/work
Then enter the work directory by typing
cd $SHOME /auto94p/work
Then modify the Makefile under directory $SHOME/auto9p/work.
Specifically, replace the line

SRC = name

by

SRC = exp

Finally compile exp.f by typing
make

This will generate exp.exe.

Transfer: In directory $HOME/auto9)p/work on delilah.ccsf.caltech.edu,
type
ftp deltal.ccsf.caltech.edu
then enter the login name and the password.
Use binary mode for the transfer by typing
bin
Finally do the following
put exp.exe
mput r.*
put fort.003
Note that fort.003 is an empty file that must be created.

Load: Login on Delta by typing
telnet deltal.ccsf.caltech.edu
After entering the login name and the password, type
cp r.exp.1 fort.002
Now the first run of exp.f is ready.
To load exp.exe to a 2x2 mesh (4 nodes), type
mexec “-t(2,2)” -f exp.exe

28

Save fort.007, fort.008, fort.009 as p.exp, q.exp, d.exp respectively, by
typing

cp fort.007 p.exe

cp fort.008 q.exe

cp fort.009 d.exe

This completes the first run. To do the second run, type

cp r.exp.2 fort.002

cp q.exp fort.003

To load exp.exe to a 2x2 mesh, type

mexec “-t(2,2)” -f exp.exe

Append fort.007, fort.008, fort.009 to p.exp, q.exp, d.exp respectively
cat fort.007 >> p.exp

cat fort.008 >> q.exp

cat fort.009 >> d.exp

This completes the second run.

29

References

1]

[6]

[7]

[10]

U. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of
Boundary Value Problems for Ordinary Differential Fquations. Prentice
Hall, Englewood Cliffs, NJ, 1988.

Intel Corporation. “Touchstone Delta Fortran System Calls Reference
Manual”. Technical report, Intel Corporation, 1991.

Intel Corporation. “Touchstone Delta System User’s Guide”. Technical
report, Intel Corporation, 1991.

Eric F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag,
1994.

E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis
and Control Of Bifurcation Problems, Part 17. Int. J. Bifurcation and
Chaos, 3:493-520, 1991.

E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis
and Control Of Bifurcation Problems, Part 11”. Int. J. Bifurcation and
Chaos, 4:745-772, 1991.

E. J. Doedel and J. P. Kernévez. “AUTO: Software for Continuation
and Bifurcation Problems in Ordinary Differential Equations”. Tech-
nical report, Applied Mathematics, California Institute of Technology,
Pasadena, CA 91125, May 1986.

E. J. Doedel, X. J. Wang, and T. F. Fairgrieve. “AUTQ094: Software for
Continuation and Bifurcation Problems in Ordinary Differential Equa-
tions”. Technical report, CRPC-95-1, Center for Research on Parallel
Computing, California Institute of Technology, Pasadena, CA 91125,
1995.

J. A. George. “Nested Dissection of a Regular Finite Element Mesh”.
SIAM J. Numer. Anal., 10:345-363, 1973.

Anshul Gupta and Vipin Kumar. “Scalability of Parallel Algorithms for
Matrix Multiplication”. Technical Report Technical Report TR 91-54,

60

[11]

[12]

Department of Computer Science, University of Minnesota, Minneapolis,

MN 55455, November 1991.

H. B. Keller. “Numerical solution of bifurcation and nonlinear eigenvalue
problems”. In Applications of Bifurcation Theory, pages 359-384. Aca-
demic Press, New York, N.Y.; 1977. P. H. Rabinowitz, ed., Mathematics

Research Center Publication 8.

Marcin Paprzyck and lan Gladwell. “Solving Almost Block Diagonal
Systems on Parallel Computers”. Parallel Computing, North-Holland,
17:133-153, 1991.

61

