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Abstract

We analyze the Chebyshev iteration in which the linear system involving the split-
ting matrix is solved inexactly by an inner iteration. We assume that the tolerance
for the inner iteration may change from one outer iteration to the other. When the
tolerance converges to zero, the asymptotic convergence rate is unaffected. Motivated
by this result, we seek the sequence of tolerance values that yields the lowest cost. We
find that among all sequences of slowly varying tolerances, a constant one is optimal.
Numerical calculations that verify our results are shown. Our analysis is based on
asymptotic methods, such as the W.K.B method, for linear recurrence equations and
an estimate of the accuracy of the resulting asymptotic result.

1 Introduction

The Chebyshev iterative algorithm [1] for solving linear systems of equations requires at
each step the solution of a subproblem i.e. the solution of another linear system. We
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assume that the subproblem is also solved iteratively by an “inner iteration”. The term
“outer iteration” refers to a step of the basic algorithm. The cost of performing an outer
iteration is dominated by the cost of solving the subproblem, and it can be measured by the
number of inner iterations. A good measure of the total amount of work needed to solve
the original problem to some accuracy € is then, the total number of inner iterations. To
reduce the amount of work, one can consider solving the subproblems “inexactly” i.e. not
to full accuracy. Although this diminishes the cost of solving each subproblem, it usually
slows down the convergence of the outer iteration.

It is therefore interesting to study the effect of solving each subproblem inexactly on the
performance of the algorithm. We consider two measures of performance: the asymptotic
convergence rate and the total amount of work required to achieve a given accuracy e.
The accuracy to which the inner problem is solved may change from one outer iteration
to the next. First, we evaluate the asymptotic convergence rate when the tolerance values
converge to 0. Then, we seek the “optimal strategy”, that is, the sequence of tolerance
values that yields the lowest possible cost for a given e.

The present results, extend those in Giladi [2], [3]. The asymptotic convergence rate of
the inexact Chebyshev iteration, with a fixed tolerance for the inner iteration, was derived
in Golub and Overton [4] (see also [5], [6], [7], [8], [9], [10]). Previous work has mainly
concentrated on the convergence rate, whereas we emphasize the cost of the algorithm.

In section 2, we review the Chebyshev method and present the basic error bound for
the inexact algorithm. Then, in section 3 we evaluate the asymptotic convergence rate
when the sequence of tolerance values gradually decreases to n > 0. In section 4 we seek
the “best strategy” i.e the one that yields the lowest possible cost. In section 5, we obtain
an asymptotic approximation for the error bound when the sequence of tolerance values
is slowly varying. In section 6 we analyze the error in this asymptotic approximation and
present a few numerical calculations that demonstrate it’s accuracy. In section 7 we use
the analysis of section 5, to show that for the Chebyshev iteration, the optimal strategy is
constant tolerance. We also estimate the optimal constant. Then, in section 8 we present
a few numerical calculations that demonstrate the accuracy of the analysis of section 7. In
Section 9, we generalize this result to other iterative schemes.

2 Chebyshev iteration

Chebyshev iteration (see Manteuffel [11]) to solve the real n x n system of linear equations
Az =10 (1)

uses the splitting
A=M— (M - A). (2)



It requires that the spectrum of M~'A be contained in an ellipse, symmetric about the
real axis, in the open right half of the complex plane. We denote the foci of such an ellipse
by [ and u. Furthermore, we assume that M 'A is diagonalizable.

The exact Chebyshev method is defined by

r1 = To + 2y, (3)
Tk4+1 — Tg—1 + wk+1(azk + xp — xk—l), k= 1, 2, (4)
where
MZk:Tk, ’I”k:b—A.Tk, (5)
2 u+1
= — = 6
“Tlrw T uT (6)
c (1)

Wet1 = 24 : (7)

o Ce1 (1)

In (3), the initial iterate z, is given, and in (7), ¢; denotes the Chebyshev polynomial of
degree k.

The inexact Chebyshev method is obtained by solving (5) iteratively for z;. This results
in replacing (5) by

Mz =r+qe, | ll<oklrell, 0 €(0,1). (8)

In the variable strategy scheme the tolerance d; tends to n > 0 as k increases, while in the
constant strategy scheme d, = ¢ is constant.

We denote the error at step k by
er =T — Ty (9)
We also define K, V, ¥ and o; by
K=I-aM™'A, K=VXV~! Y= Diag(o). (10)

We use the same derivation as in [4] to show that when puo; # +1

Vel . pr(h6)

11
| V-leq || = | cosh(kcosh™ )|’ (1)

where § represents a sequence of tolerance values {0x}72,. In equation (11), p is defined by

p=max|e%| where 6; =cosh™ puo;. (12)
j

The function 7(k, §) satisfies the recurrence equation

r(k+1,8) — 2(1 + As)T(k, 6) + 7(k — 1,8) = 0 (13)
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with initial conditions

7(0,6) =1, 7(1,8) = 1+ 2Ad. (14)
The constant A in (13) is given by
alu| | VZIMT LAV ||
p

A=

(15)

k

The bound (11) is the product of two terms: |cosh(kc’(’)sh_1(u))| and 7(k,d). The former
is the bound for the exact algorithm and it is exponentially decaying. The latter is a
monotonically increasing term which accounts for the accumulation of errors introduced by
solving the inner problem inexactly. We shall obtain asymptotic approximations to 7(k, d)
under various assumptions on the sequence J; in order to analyze the performance of the
inexact algorithm.

3 Asymptotic convergence rate

We shall now estimate the asymptotic convergence rate of the inexact Chebyshev algorithm
when the sequence of tolerance values for the inner iteration gradually decreases to 0. Our
goal is to show that then, the asymptotic convergence rate of the inexact algorithm is the
same as that of the exact scheme. This is in contrast to the case of constant tolerance for
which the asymptotic convergence rate of the inexact algorithm is lower than that of the
exact algorithm [4].

We base our analysis on the bound (11). Therefore, we wish to compute

o oFr(k, ) 1/k
: kﬁoo(\cosh(kcosh%u))\) ' (16)

In order to do so, we need to estimate the asymptotic behavior for large k of 7(k, ). By
making mild assumptions on the rate at which §;, — 0, we will show that

k]i_)IIoloT(k,é)l/k =1. (17)

Upon using (17) in (16), we find that the asymptotic convergence rate of the algorithm is

) P
1 = Pe;
Bro0 | cosh(k cosh™ (1)) V/*| ’

(18)

where p. is the asymptotic convergence rate of the exact algorithm.

Equation (17) holds for many sequences & of tolerance values. In order to obtain a
general result, we shall assume only that

| Q

o < (19)
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The positive constant C' in (19) is arbitrary. Hence, if C' > 1 the sequence of tolerance
values can decay quite slowly.

We show that (17) holds under assumption (19) in two steps. First we show that 7(k, d)
n (13), is bounded by the function o (k,4), where o(k, §) satisfies (13) with &, replaced by
o = €. Then, we show that limy_,o o(k, §)/k = 1. As a first step, we prove the following
proposition

Proposition 1 Let 7(k, ) be a solution to (13) and (14) and let o(k, 6) be the solution to
the same equation with 0, replaced by 6. Assume that 8, > 0, and that o(0,6) = 7(0,6).
Then,

o(k,6) —o(k—1,8) > 7(k,8) — 7(k — 1,0) (20)

fork=1,2,... and
o(k, (5) > 7(k,9) (21)

for all k.

We prove this proposition by induction. For £ = 1 we obtain from (14) that

o(1,8) = (1 +2A80) > (14 2Ad) = 7(1, ). (22)
Then, we assume that assertions (20) and (21) are true for all k = 1,2,..., N. In view of
(13) . ) . . . .
o(N+1,0) —c(N,d) =0(N,0) —a(N —1,0) + 2Ady0(N, 0) (23)
and
7(N +1,8) — 7(N,0) =7(N,0) — 7(N — 1,6) + 2A0n57(N, 9). (24)

By the induction hypothesis, o(NV, §)—o(N —1,6) > 7(N,6) — 7(N —1,6) and o(N, ) >
T(N, §). Furthermore, §; > 0y so the right side of (23) is greater than or equal to the right
side of (24). We conclude that

0(N+1a8) —O'(N,S) ZT(N+175) _T(N: 6) (25)
and that o(N +1,0) > 7(N + 1,4).

We shall now obtain the asymptotic behavior of o(k,d) for large £ from (13) with
6 = £. We use the method of [12].

We first replace 7(k,d8) by o(k,é) in (13) and set 6, = C/k. Then we introduce the
stretched variables

z=¢k, o(k,0)= R(x), (26)
to obtain oA
R(z + 2€¢) — 2 (1 - +€6> R(z + ¢) + R(z) = 0. (27)



We seek for R(x) an asymptotic approximation valid for € < 1 of the form

R(z) ~ c(e)e¢\(/§)

(Ko(x) + €/2K1(z) + eKy(z) + 2 Ky(z) + O(e?)). (28)
The functions ¥(z), Ko(x),. .., K3(x) are to be determined so that R(x) satisfies equation
(27). The constant c(e) is to be determined so that R(z) is independent of e. After
substituting (28) into (27), we express each side of the resulting expression in power series
in ¢'/2 assuming that (x + €), Ko(x + 2¢), Ko(z + €), Ki(z + 2€).... can be expanded in
Taylor series in powers of e. Then, we equate the coefficients of each power of €'/2 on the left
side of the resulting expression, to the same power of €'/ on the right side. The coefficients
of € and of €%/2, yield the following equations for 1(x, §) and Ky(x,§) respectively:

0 Ko(a)u (o) =0, (29)

_QCAKofW(‘”) + Ko(2)¥ (2)° + 20/ () K () + Ko(z)y"(z) = 0. (30)

Upon solving (29) for ¢ we find

¥(z) = 2v20Az. (31)

Introducing the right side of (31) into (30) and solving the resulting equation for K we
obtain

r \1/4
KO:D<20A> . (32)

To find the constant D in (32) we could match (28) to another expansion which satisfies
the initial conditions (14). However, the value of D is unimportant for our purposes since
limy,_, o, DY* = 1.

We substitute (31) for ¢ and (32) for K into (28) for R. Then, we use the change of
variables (26) to obtain

1/4
o(k, §) ~ c(e) D (&) (VICBE, (33)

To make the right side of (33) independent of €, we require that c(e) = ¢~'/*, and we obtain

X O\
O'(k, 5) ~ D <m> 62 QCAk. (34)
Therefore, A
lim o(k,d)* = 1. (35)

k—00

In a realistic numerical computation d; is bounded below by the machine precision 7.
Moreover, the analysis of the iteration with d;, = J reveals that if § > )y, is sufficiently small,
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the performance of the inexact algorithm is for all practical purposes indistinguishable from
that of the exact algorithm. Indeed, solving (13) with 0 = 0 yields

7(k,8) = sinh(k®(3)) + e +*0), (36)

1+ e—®0©)
where
B(5) = log (1 L AS+/(1 1 0A) — 1) . (37)

It follows from (16), (18) and (36) that the asymptotic convergence rate is

pee?® ~ pe(1+V2A6), §<1. (38)

The number N (e, 3) of outer iterations required to achieve an accuracy e with tolerance

is approximately
loge

log (pe(l + 2A3)) .

N(e,d) ~ [ (39)

Hence, if 1/2A4 < 1073 [log pe|, the inexact scheme requires no more than one more iteration
per thousand than the exact scheme. The difference is undetectable when N (e, 0) = O(100).

This leads us to evaluate the asymptotic convergence rate when 6 — n and n > 0. To
obtain the behavior of o(k, §) in (13) for large k, when n < 6 < £ + 1, we introduce (26)
into (13) to obtain (27) and seek an expansion for R(x) of the form

R(z) ~ c(e)e " (Ko(z) + €Ky (x) + O(2)). (40)
We introduce (40) into (27) to obtain, after some manipulation, equations for ¢ and Kj:
e’ —2(1+ An) +e ¥ =0, (41)
2A
2Sinh(ww)Kﬂ,w + (djm COSh(d}x) - TC) KO =0. (42)

Then, we solve (41) and (42) and substitute the results into (40) to obtain, with ®(n)
defined in (37), c(e) = e A¢/5mh®M) and D a constant

U(k, 5) ~ DkAC/Sinh@('r])ekq)(n). (43)
Hence,
Jim o (k, Sk = 2™, (44)

In view of (38) and (44) the asymptotic convergence rate is the same as that with x = 7.

The results (34) and (43) of this formal analysis can be made rigorous. We summarize
the above analysis in the following theorem:

Theorem 1 Assume that a linear system of equations is solved to accuracy €, using the
Chebyshev iteration, with a variable strategy {0x}. Assume that 6y — n with n > 0 and
that n < &y < C/k + n for some positive constant C. Then, the asymptotic convergence
rate of the Chebyshev iteration with the variable tolerance is the same as the asymptotic
convergence rate of the scheme with the fixed tolerance 7.



4 The optimal strategy problem

Motivated by the result of section 3, we now wish to find the “best” sequence of tolerance
values for the inner iterations. More precisely, we seek the sequence of tolerances that
yields the lowest possible cost for the algorithm.

To formalize this problem, we let § = {J;}52,, be a sequence of tolerance values. The
jth component of §, d;, is the tolerance, required in the solution of the subproblem at outer
iteration j. Therefore §; € (0,1) and the number of inner iterations at step j is [%1'
In this estimate, p is the convergence factor of the method which is used in the solution of
the subproblem. Then, we define N(¢,d) to be the number of outer iterations needed to
reduce the initial error by a factor ¢ when the problem is solved with strategy 4. It follows
that the total number of inner iterations required to achieve this accuracy e is proportional

to
N(e,0)—1

Ce,d)= > —logd;. (45)

J=0
Our objective is to minimize C(e, d ) with respect to 9.

We consider the set S of slowly varying strategies

! 5//
82{6 |0 =0(Bk), 0< B <<1, YV >0: %’F:O(l) and §(0) > 6(x) 277}
(46)
In (46), the function d(z) is assumed to be twice continuously differentiable and ¢’ denotes

it’s derivative. The condition %’ = O(1) ensures that §(5k) varies slowly as a function of k

if < 1.

In order to simplify the analysis, we use the fact that

N(e,é)—l N(é,d)
Y (~logd;) ~ — / log §(Bt)dt,
§=0 0
and redefine the cost as Need)
Cle,6) = — / " og 8(Bt)dt. (47)
0
We can now restate the problem as follows. Find 6* € S such that
C(e, 0%) = min C(e, 9). (48)

5 Error bound for slowly varying strategies

Now we shall approximate the error bound (11), under the assumption that 6 € S. First,
we obtain an asymptotic approximation for 7(k, d), valid for < 1. To emphasize the fact
that 7(k,d) depends on 3, we denote it 7(k, d, 3).
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To simplify the analysis we assume that the function §(x) is constant on [0, 3]. This
assumption is not very restrictive since it requires only that we change the value of dy to
equal ;. Moreover, since J is slowly varying the impact of this change on the cost is
negligible.

The method we use is similar to the W.K.B method [13] for linear ordinary differential
equations with a small parameter, and the ray method Keller [14] for linear partial differ-
ential equations with a small parameter. These methods have recently been adapted to
linear difference equations with small parameters [12], [15].

We now obtain an approximate solution to equation (13) when §; = 6(8k) belongs to
S. Since we are looking for an asymptotic expansion of 7(k, d, §) for small 3, we introduce
the new scaled variables

x = Pk, R(z,6,0)=r1(k,?,p0). (49)
Upon performing the change of variables (49) in (13), we obtain

R(z + 3,9,8) =2(1 + Ad(z))R(z,,3) — R(x — 3,9, 5). (50)

We seek an asymptotic expression for R(z,d, §) for small 3, in the form
R(z,8,8) ~ e?@VBK (z,6) + BK, (x,8) + B Ka(x,8) +...]. (51)
The functions ¢(z, ), K(z,d), Ki(z,d)... are to be determined to make R satisfy (50).

Substitution of (51) into (50), and multiplication by e~%/? yields
Wt BV @N/B(K (1 + 3,6) + BK (x + B,0) +...) =

2(14+ Ad(2))[K(x,0) + BK;(z,0) +...]—
e~ W@V e=BN/B (K (1 — B8,6) + 8K, (z — B,6) +...). (52)

We now express each side of (52) in powers of 3, assuming that ¢ (x + 3,9), ¥(z — 3,9),
K(x + 3,9), etc.. can be expanded in Taylor series in powers of 3. Then, we equate
coefficients of powers of 3. The coefficients of 3° and of 3! yield

e®r —2(1+ Ad(z))e¥ +1 =0, (53)
(N
tanh ¢, Ko + 2K = 0. (54)

Solving (53) for 1, yields
Ya(x,0) = ©(9), (55)

with ®(0) given by (37). Integrating (55) yields, with a a constant of integration

W(z,8) = + /O " B(6(1))dt + a. (56)



We now rewrite (54) as
Ky coshtpy e

K~ sinhe, 2 (57)
Integrating (57), with b a constant of integration, gives
K(z,6) = —" | (58)
VIsinh(ys (2, )]
Now, we use expression (55) for 1, in (58) to obtain
b
K(z,0) = (59)

(1+Ad(z))* — v+

To obtain the leading order term in 7(k,d, 3), we substitute the two values (56) for v
into (51) for R and add the two terms. Then, we use the result in (49) and set = Sk to
find

(k. 5, 8) ~ K(8k, 8)(Aeb Jo " 200 | po—3 [ 26wy (60)

Here ®(0) is defined in (37) and K(x,0) is given by (59). The constants A and B are
determined to make (60) satisfy the initial conditions (14):

B 1 1+2A6(0) R RO R
4= 2sinh[L [ D(5(¢))d] ( K(3,9) k00 )0 P Foa A OV

K(0,9)

Since 6(x) is constant on [0, 5], (59) shows that K(0,d) = K(3,J) and %foﬂ@(é(t))dt =
®(5(0)). We substitute (61) into (60) to obtain, after some manipulation,

7(k, 5, 8) ~ fj{(fO’fa f? ll - 6_24,(5(0)) sinh (% / ” q)(é(t))dt) + e%ff’“wt»dt] . (62)

When 6(z) = 6 is constant, (55) implies that 1, = 0 and (54) shows that K is also
constant. Hence, (62) simplifies to the exact solution (36) of (13) and (14) when 0 = ¢ is
a constant.

The exponentially decaying term in (62) can be neglected after a few outer iterations.
Then we set s =t/ in (62) and introduce the function

o (k, 5) = l;((‘if’(;;) . eiw(o)) sinh ( / ‘ @(5(53))ds> . (63)

Now, we approximate 7(k, ) by o(k,d), and the bound for the error in the right hand side
of (11) becomes

B o(k,8)pk
B(k,0) = | cosh(k cosh™ (1))’

In the next section, we shall analyze the validity of the approximation (64).

(64)
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6 Validity of the asymptotic expansion

Now we shall show that the leading order expression for 7(k,d), given by (62), is indeed
asymptotic to 7(k, ) as 3 — 0. We denote this expression by 7(k, ) and define the residual
associated with it by r(k, d):

r(k,8) = 7(k + 2,6) — 2(1 + AS(B(k +1)))7(k +1,06) + 7(k, 5). (65)

To evaluate r(k, ) we substitute (60) for 7(k,d) into (65) and then expand ¢ and K in
Taylor series, with remainders up to order 5° and 32, respectively. We use (59) and (56)
in the resulting expression to obtain, after some manipulation,

ik, 8)| < B2Melo ®@BOE > g (66)
Here M = O(n~*/*) for all § in S and is independent of k and 3.
The error in the asymptotic approximation, e(k,d) = 7(k,d) — 7(k, 0), satisfies
e(k+2,0) —2(1+A§(B(k+1)))e(k +1,0) + e(k,6) = r(k,0). (67)

This equation is obtained by subtracting (13) from (65). The initial conditions for e(k, ¢)
are

e(0,9) = e(1,6) =0. (68)
Our goal is to show that for any constant C' and all £ < C
6(]{3,5) _ 2
T(k,é)‘_o(ﬁ) as [ —0. (69)

To estimate the left side of (69), we obtain an explicit formula for e(k,d), by solving
(67) and (68). We use the method of reduction of order [13]. Specifically, we seek a solution

of the form
e(k,0) = zx7(k, 9), (70)

where 7(k,0) is the solution to equation (13), (14) and zj is to be determined. Upon
substituting (70) into (69) we find that (69) will hold if

2| = O0(8%), as B —0. (71)

We obtain an expression for x; by substituting (70) for e(k,d) into (67). Then, we
eliminate 7(k + 1, ) from the resulting expression by using (13) and we find that

T(k +2,0)(zk42 — Tet1) — 7(k, ) (@41 — zk) = (K, 0). (72)

Now, we introduce
Xk = Tp4+1 — Tk (73)

11



into (72) to obtain a linear first order equation for Xj. The initial conditions (68) yield
To=x1 =0, — Xy =0. (74)

The solution of (72) and (74) is

1 k—1

= E LT S (1, 6)r(+1,6). (75)

=0

Xk

We take the absolute value of each side of (75) and use (66) to obtain

efokCD(J(ﬁt))dt k11, 6)
7(k,6) = r(k+1, §)

Xy < M

Here ®(4) is defined in (37).

In lemma 1 we shall show that Zle % is bounded by a constant independent on

k and (. In lemma 2 we shall show that for a non-increasing strategy 6(x) in S

oo ®(6(8t)dt
<P

RGN i

where the constant P is independent of £ and 3. We now use these bounds in the right
side of (76) and conclude that for all £ > 1

[ Xx| < OB, (78)
where the constant C' is independent of k£ and 3.

Equation (73) and the condition for z; in (74) determine zj through

k-1
j=1

To derive the bound (71) for |xy|, we take the absolute value of each side of (79) and use
(78) to obtain
k| < KCB?. (80)

We summarize the above analysis in the following theorem:

Theorem 2 Let 7(k,0) satisfy (13) and (14). Let 7(k, 0, 3) be the expression on the right
side of (62). Assume that 6(x) is a non-increasing strategy and that 6(x) € S with S defined
in (46). Then,
7(k,0) — 7(k, 6, 3)
7(k,0)

Furthermore, the coefficient of 3% in (81) is bounded by a linear function of k.

=0(8) as B—0. (81)

12



We now briefly discuss the validity of the approximation (63). When 6 = 5 is constant,
(63) is exact up to an exponentially decaying term, and it is very accurate after a few
iterations. When § is not a constant, the approximation is based on (62), which is valid for
B < 1 and k = o(?). Therefore, the accuracy decreases as the number of outer iterations
k — oo, and for a fixed k, increases as 3 — 0. At the end of this section we present a few
numerical calculations that demonstrate the accuracy of the expansion for a few variable
strategies in S. As we shall see, even for large values of k, it is very accurate.

Lemma 1 Let 7(k,0) satisfy (13) and (14). Then

T(j + 1,96) . )
——= > 14+ 2A ) >0, 82
7(4,9) (B4), J (82)
and
k 1

> 1.
FlTk-l—l 5) 2nA L= (83)

Proof: Inequality (82) is shown by induction. For j = 0 it follows from initial conditions
(14). Now assume by induction that (82) holds for all j =0,..., N — 1. Then from (13)

T(N +1,9) _ T(N —1,9)

(V. 9) 2(1+ A§(BN)) — ~(N,9) (84)
By the induction hypothesis
_T(N —1,96) S -1 > 1 (85)

T(N,§) — 14+ 2A6(B(N —1))
We use (85) in (84) to complete the induction.

In order to prove (83), we recall from (46) that §; > 1 and we use this bound in (82)
to obtain

7+ 1,9) :
— 7 >1+42A > 0. 86
9 " 9
Furthermore, we note that
7 T(0,9) 7(4, 6)
ll;[jr(lJrl,(S) Tkt 1,0) (87)
We use (86) in (87) to obtain
. 1 k+1—j
7(4,9) < . (88)
T(k +1,96) 1+ 2An
It follows that \ i
7(j,9) 1
< e 89
;T(,é)_;(l—i—QAn)J (89)

Inequality (83) follows from inequality (89).
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Lemma 2 Let 6(x) be a non-increasing strateqy such that 6(x) € S, with S defined in
(46). Then

oo @(6(80)dt
— <P 90
T(k,8) (90)
where the constant P is independent of k and (.

Proof: We note that when 6(z) is a non increasing function of z, it follows from the
monotonicity of ®(4) in (37) that

[ @60 < 3 0 (5(59). o)

We introduce the right side of (91) into (90) and use (37) for ®(z), to obtain

eJo 20 1A (1+ AG(B5) + /(1 + Ad(84))* — 1)
7(k,0) = 7(k,9) . .

We now seek a lower bound on 7(k,d). In view of the left condition in (14), we can
write write 7(k,d) as the product

7(k,0) = pop1---pr-1, k>1, (93)
where G+ 1.6)
Ty +1, :
=" > 0. 94
=y 7 %4

It follows from (13) and (14) that p; satisfies the equation

. 1 .
pi =2(1+A0(Bj)) — — j=1, (95)
Pi-1
with
po =14 2A5(0). (96)

To obtain a lower bound for the product in (93), we introduce the sequence pj, k =
0,1,2,... which satisfies

e < pr, k>0. (97)
The number pj; is computed with the aid of the intermediate quantities pj ;, 7 =0,...,k
as follows:
Pro = 1+ 2A5(Bk), (98)
1
Pr; = 2(1+ Ad(Bk)) — P 1<) <k (99)
kyj—1
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We define

oh = i (100)
In order to demonstrate (97), we show by induction on j that for all 0 < j < k
by < i (101)

For j = 0 it follows from (96), (98) and the fact that §(z) is non-increasing that
Pro=142A8(8k) < 1+2A6(0) = po. (102)
Now, we assume that (101) is true for all j = 0,...,1 — 1. Then, it follows from (95), (99)
and the fact that §(x) is non-increasing that
1

< 21+ AJ()) - — =t (103)
Pri—1 Pi-1

pra = 2(1 + Ad(Bk)) —

The next step in the proof is to evaluate pj explicitly and obtain a lower bound for
it. This is done by solving the non-linear recurrence equation (99) for pj ;, subject to the
initial condition (98). We solve this equation with a method analogous to the one described
in section 16.7 of [16] and obtain

25

Prj = S=As0GH) 1 n +1+A8(Bk) - S, j=>1, (104)
STAS(GR) (1T AR T
where
S =/(1+ Ad(Bk))? — 1. (105)
From equation (105) S > A§(Sk) so that
S — AS(Bk)
— < 1. 106
U< S Ak © (106)

Furthermore, it follows from (105) and the definition of 7 in (46) that

1 1 ’
(1 + 23(3K) + 5 (1 Ny (—An)2> = 1o

where the equality on the right defines the constant y. We use (107) and (106) in (104)
and obtain, in view of (100),

28
> - > 1. 1
Py = 1+Mk+1+A5(ﬂk) S, k> (108)
Further manipulation of (108) yields
© > (14 Ad(Bk) +S) (1 s 25 k> 1 (109)
Pe = A+ 1+M0Bk)+S) “ =
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Finally, we note that 1/(1 + p*) < 1 and 2S/(1 + A§(Bk) + S) < 1, where the latter
inequality follows from (105). We use these bounds in (109) and use (97) to get

Pk > (1 + AS(BK) + /(1 + Ad(BK))? — 1) (1=p"), k>1. (110)

We are now ready to prove the lemma. First, we substitute the right side of (93) for
7(k,0) in (92). Then, we use (110) and (96) to find

oJ @680t L 1+25(0) + V(L +A5(0)2 -1 kﬂl 1
r(k,0) 1+ 2A6(0) Sl

(111)

The infinite product [132; ;= is convergent because 332, y/ < co. Hence, the right side

of (111) is bounded by a number P which is independent of § and k.

We now present a few numerical calculations that demonstrate the accuracy of the
expansion derived in section 5. First, we solve (13) for 7(k, d, 3) by iteration and then we
compute the approximate solution o(k,d) given by (63), for all 2 < k& < 2000. We present
the relative error in this approximation.

We use strategies from the three parameter family

A
5k:W+na k>1, 0y =0. (112)
The minimal tolerance in (112) is = 107'2. In all our calculations &; > 1 and for all
practical purposes 1 can be neglected. The value of parameters A and -y is fixed at 1. The
parameter B and the value of 3 vary from one calculation to the other. The value of A in
(13) is set to 37. We performed analogous calculations with larger values of A and with
v = 1.5 and obtained similar results.

In table 1, we present the maximum with respect to k, of the absolute value of the
relative error in percent. Each entry in this table corresponds to a calculation with a
different strategy. The strategy is determined by the parameters B and (. Figure 1 depicts
the relative error in percent between o(k, 0) and 7(k, d, 3), for all 2 < k < 2000. Each graph
corresponds to different values of B and 3. We note that the approximation is accurate
even for large values of k.

7 Constant strategy is optimal

Now, using (47) and (64) we seek the optimal strategy for the Chebyshev iteration. The
numbers N (¢, 0) and C(e, §) in (47), are hard to determine precisely. Therefore, we introduce
the quantities Np(¢,6) and Cg(e, 0), which are the number of outer iterations required to
reduce the error bound (64) to € and the associated cost, respectively. The following
theorem shows that a constant strategy is optimal.
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Relative error in (%)

Relative error in (%)

B =1.01, beta = 0.1000
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Figure 1: The relative error |7(n,d, 3) — o(n,d)| / |7(n,d, B)| in (%) for 2 < n < 2000. Each
graph corresponds to different values of B and f.
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B\B | 1 | .01
1.01 | 0.74 [ 0.05
1.10 | 0.74 | 0.05
1.50 | 0.74 | 0.05
2.00 |0.73|0.05
5.00 |0.72|0.07
10.00 | 0.71 | 0.07
100.00 | 0.70 | 0.11

Table 1: The maximum over 2 < n < 2000 of |7(n,d, 8) — o(n, )|/ |T(n,d, 3)| in (%).

Theorem 3 Suppose that a linear system of equations is solved to accuracy € by the Cheby-
shev iteration using inner iterations with a sequence of tolerances {0} in S. There exists

a constant strategy 3((5, €), for which the cost is smaller, i.e.

CB (6, 5) S CB (6, 5)

Proof: Given the variable strategy ¢ and the accuracy € used in the solution of the linear

system, we define the associated constant strategy ) (0, €)

A 1 (o0 @(5(8))dt
d(,e) =@ ( N (e,9) :

In Lemma 3, we show that Ng(e, 0) < Ng(e, 6). Therefore,

A

Np(e,0) . . . N
Cp(e,0) = —/0 log ddt = —Np(€,0) logd < —Npg(e, ) logé.

In Lemma 4, we show that X
— log 5NB(6, 5) < CB(G, 5)

Using (115) in the right hand side of (114), proves the theorem.

Lemma 3

A

Ng(e,6) < Ng(e, d)

Proof: By definition of Ng(e, ) the bound for the error B(k, ) in (64) satisfies

B(Npg(€,0),0) <e.
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Therefore, to prove (116) it is sufficient to show that after Ng(e, d) outer iterations, the
bound for the error associated with the variable strategy is greater than the one associated
with the constant strategy. Hence we need to show

B(Ng(e, 6),6) > B(Ng(e, 0),6). (117)
We see from (64) that (117) is equivalent to the inequality
U(NB(€7 5)76) > O-(NB(G: 6)78)7 (118)

where o is defined in (63). To prove (118) we begin by rewriting expression (63) for o(k, d)
with k£ = Ng(e, 0),

o(Np(e,6),6) = 1= e—2¢’(5(0)) K ?(30(6535 ):9) Ginh ( /0 ol (I)(é(ﬂt))dt) . (119)

Then, we note from (37) that ® is monotonically increasing and that for all non-negative
x, 6(0) > 6(x) from (46). Therefore,

) Ng(e0)
0(6) = 2 T < a0, (120
2, 2 (121)

1+ e %00) = 14 g0

Furthermore, we see that K(8Ng(€,d),0)/K(0,d) > 1 from equation (59). Using this and
(121) in the right hand side of (119) we obtain

o(Ng(€, d),0) >

. N AR TCIE) AN .
15 oo b (NB(G’(S)(M ( N (e, 0) =o(Nale,9),0). (122)

Lemma 4 X
— 10g5NB(6, 5) S CB(G, 5)

Proof: The definition (37) of ® shows that ®~1(z) = %. Therefore,

d? _ _
e (— log @ 1(:13)) = (cosh(z) —1)™' >0
and — log®~!(z) is strictly convex on the interval {®(d(z)) | 0 < z < Np(e,6)}. It follows
from Jensen’s inequality that .
—logd =

o ( ONB(e,J)(I)(é(IBt))dt) 3 _ [N og &L (5(8t))dt _ Cp(e,0) (123)

NB(6,5) o NB(G, (S) - NB(G, (S)
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Multiplying (123) by Ng(e, d) proves the lemma.

We now show how to estimate the optimal constant 6. We note from (64) that for any
iteration NV

N o < .
B(N,§) <2 p Slnh(N‘Ii(f)) ~ 9N llog p+®(3)Re(cosh=" ()] (124)
| cosh(V cosh™ (u))]

Then, by equating the right side of (124) to € and using (37), we obtain

Ny(e,d) ~ _ log2 — loge 1 . (125)
Re(cosh™ (i) — log p — cosh™ " (1 + AJ)

An estimate of the cost is then

5 —log d(log 2 — loge)
CB(C, (5) ~ 3 =) =~
Re(cosh™ (i) — log p — cosh™ (1 + AJ)

(126)

The right side of (126) can be minimized easily with respect to § using a standard min-
imization technique. The original variational problem (48) is thus reduced to a simple
optimization problem. Since B(N, 3) approximates a bound for the error, the tolerance
obtained by this method will be a lower bound for the optimal tolerance. The estimation
of the optimal constant depends on the parameters y and p in expression (126). These are
often determined adaptively while solving the system [17].

8 Numerical calculations

We now present a few numerical calculations that verify the analysis of section 7. In
each experiment, we solve a linear system with Chebyshev iteration to accuracy e, using a
variable strategy 6. Then, we solve the same system with the associated constant strategy
5(0,€), where 6 is defined in (113) with Ng(e, 6) replaced by N (e, §). We recall that N(e, 8)
is the exact number of outer iterations required to achieve an accuracy €, when solving the
problem with strategy 6. This number is obtained from our numerical experiment. Our
goal is to verify that the predictions of lemma 3 and theorem 3 hold in practice.

In section 4 we define the cost at outer iteration j by using

—logd;

12
"oz (127)

for the number of inner iterations required to achieve accuracy d; instead of [%gg‘;ﬂ. Here,
p is the convergence factor for the inner iteration. If p is close to 1, then the relative error
in using (127) is usually small and the cost (45) is truly proportional to the total number

of inner iterations. In this case, we expect good agreement between the analysis and
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the numerical calculations. Moreover, we expect some fluctuations around the predicted
behavior when p < 1. We covered both cases in our experiments.

We solve the symmetric system

Az = b, (128)
arising from the central difference discretization of the operator
d2
—ﬁ + (8 SiIl(lO.’L‘) -+ 1)0, (129)
x

in the interval [0, 1] with homogeneous Dirichlet boundary conditions. The right side b in
(128) is chosen at random. The splitting matrix M is obtained from the discretization of
the operator

o +C, (130)
with homogeneous Dirichlet boundary conditions. The mesh parameter in this discretiza-
tion is A = 1/100. The tolerance for the outer iteration is ¢ = 107'2. The initial iterates
for both the inner and outer iterations are 0.

In all our experiments, we use strategies from the family (112). The values of v and A
are fixed at 1. The parameter B and the value of 3 vary from one experiment to the other.
For each variable strategy 4, the associated constant strategy 5 is computed using (113)
with Np(e, d) replaced by N(e,0). We note from (113) that ® depends on A. We evaluate
A exactly but find that § is not very sensitive to the value of A. We performed calculations
with various values of C in (129) and (130) and we shall report on a representative sample
obtained with C' = 30.

We use two methods for the inner iteration. The symmetric Gauss Seidel, with the
convergence factor 0.993, close to 1, and the symmetric successive over relaxation method
[18] (S.S.O.R) with the smaller convergence factor 0.925. In the S.S.O.R iteration, the
relaxation parameter w is the optimal parameter w* of S.O.R. In each experiment, we
record the number of outer iterations and the total number of inner iterations for the
variable and constant strategy cases.

Tables 2-5 correspond to the case where the inner iteration is symmetric Gauss Seidel.
In table 2 we report the difference in the total number of inner iterations between the
variable strategy case and the associated constant strategy case. All entries in the table
are in (%) and are computed from
Nin(€,8) — Nin(e,0)

- % 100. (131)
Nm(G, (S)

Here Nj,(€,0) is the total number of inner iterations performed when solving the system
to accuracy € with strategy 9.

Each entry in table 2 corresponds to a different strategy. The strategy is determined
by the parameters B and (3. Note that not all strategies are slowly varying since § <« 1
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in the two rightmost columns of that table. The important thing to note in table 2 is
that all entries are positive. Therefore, the number of inner iterations associated with
the variable strategy is greater than or equal to the number of inner iterations with the
constant strategy. Hence, there is agreement with Theorem 3.

In table 3, we present the difference in the number of outer iterations between the
variable strategy case and the constant strategy case i.e. N(¢,6) — N(¢,0). We see that all
entries are non-negative and there is very good agreement with Lemma 3.

In table 4 we present the total number of inner iterations with the associated constant
strategy. The lowest number of inner iterations is found at the top left entry. This entry
corresponds to the lowest tolerance for the inner iteration. Table 5 presents the total
number of outer iterations. We see that the top left entry maximizes the number of outer
iterations. Hence, among all strategies considered in this table, the strategy which yields
the lowest convergence rate also yields the lowest cost.

Tables 6 and 7 present the difference in number of inner and outer iterations, respec-
tively, when the inner iteration is S.S.O.R. Since the convergence factor is not close to 1
some fluctuations from the predicted behavior are expected. Indeed, two entries in table
6 are negative. However, the fluctuations are small and the constant strategy performs
essentially as well as the variable one.

In our numerical calculations we have used both slowly varying strategies, § = .1, and
“rapidly” varying ones, # = 2 <« 1. Although our theory was developed for slowly varying
strategies, the conclusion of theorem 3 is found to hold for all the strategies considered.

9 Generalization to other iterative procedures

We now consider a general iterative algorithm in which, at iteration k£, a subproblem is
solved by an inner iteration to accuracy J,. The norm of the error at step k, ey, satisfies
the relation

Cp+1 — p(k,aco, 0 )ek. (132)

In (132), p(k, xg, 8 ), the convergence factor at step k, depends on the initial iterate xy and
on the sequence of tolerance values 6. We assume that p(k,zg,d ) is a product

p(k,x0,8 ) = ef(k,mo)eg(%)’ (133)
with
S, = e%. (134)

Hence, the only tolerance upon which p(k,zo,6 ) depends is &, the tolerance at outer
iteration k. Furthermore, the dependence of p(k,zg,d ) on d; is the same at each iteration
of the algorithm. We can prove a result similar to the one of section 7 for an iteration
satisfying (133).
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B\ 1] 5 1 2
1.01 |4.18[4.07 | 5.23 | 6.00
1.10 | 2.11 | 8.54 | 10.23 | 11.66
1.50 |2.92|5.02 | 6.07 | 6.51
2.00 |0.02|5.93 | 6.77 | 7.18
500 |0.85|1.85 | 8.46 | 2.38
10.00 | 0.81 | 8.30 | 9.29 | 3.34
100.00 | 1.00 | 2.57 | 3.29 | 3.85

Table 2: The difference in number of inner iterations (N, (e,d) — Nin(e, 6))/Nin(e, ) in
(%). The tolerances 0y and ¢ are defined by (112) and (113), respectively. Inner iteration

is symmetric Gauss Seidel.

B\B [1]5]1]2
101 |21 |11
110 | 1]2]2]2
150 |1 1]1/1
200 | 0]1]1]1
500 [0 |0 |1]0
1000 |0 | 1]1]0
100.00 | 0 | 0 (0|0

Table 3: The difference in number of outer iterations N(e,d) — N(e, 5). The tolerances
dr and 6 are defined by (112) and (113), respectively. Inner iteration is symmetric Gauss

Seidel.

B\B | 1 5 1 2
1.01 | 42327 4786 | 5219 | 5814
1.10 | 4310 | 4792 | 5159 | 5685
1.50 | 4458 | 5144 | 5369 | 6203
2.00 | 4666 | 5143 | 5571 | 6324
5.00 | 5199 | 6208 | 6444 | 7447
10.00 | 5697 | 6722 | 7167 | 8093
100.00 | 8660 | 9423 | 10228 | 11137

Table 4: The number of inner iterations Nj, (e, d) with & given in (113). Inner iteration is

symmetric Gauss Seidel.
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B\B [1][5[1]2
1.01 (37|24 |21 |19
1.10 | 36|23 |20 18
1.50 [31|22|19 |18
2.00 282018 |17
500 | 211816 |16
10.00 | 18 | 16 | 15 | 15
100.00 | 15 | 14 | 14 | 14

Table 5: Number of outer iterations N(e,d) with é given in (113). Inner iteration is

symmetric Gauss Seidel.

B\ | 1 5 1 | 2
1.01 | 2.36 | 8.60 |4.29 ] 8.62
110 | 548 | 6.21 [8.15|3.77
1.50 | 2.26 | 3.66 |4.34 | 3.42
2.00 | 098 | 3.43 |4.79 | 4.76
500 | 0.64 | 5.87 |4.64|5.44
10.00 | —0.77 | —0.67 | 5.93 | 0.14
100.00 | 0.42 | 0.60 |0.78 | 1.03

Table 6: The difference in number of inner iterations (Nj,(€,d) — Nin(e, 6))/Nin(e, ) in
(%). The tolerances 0y and ¢ are defined by (112) and (113), respectively. Inner iteration

is S.S.O.R.

B\g

1.01
1.10
1.50
2.00
2.00
10.00
100.00

Coo0 oo~ N

OO~ = NN

O M N =

OO - NN

Table 7: The difference in number of outer iterations N (e, d) — N (e, 5). The tolerances 6y
and ¢ are defined by (112) and (113), respectively. Inner iteration is S.S.O.R.
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Theorem 4 Consider an iterative algorithm in which at step k, a subproblem is solved
by inner iteration to accuracy O. Assume that the norm of the error satisfies (132), with
p(k,x0,8 ) of the form (133). Assume that g(¢) is a convex non decreasing function. Let
€(N,d ) be the reduction of the error after N outer iterations. Then, for any variable
strateqy & and any number of outer iterations N, there exists a constant ) (N, ) = et 0)
with the following properties.

1. After N outer iterations with the constant tolerance ) (N, 8 ) for the inner iteration,
the error is reduced by exactly (N, d ).

2. The cost (45) of performing N outer iterations with the constant tolerance 5(N, 8 )
is lower than the cost of performing N outer iterations with the variable tolerance 4.

In other words, for such an iteration a constant strategy is optimal.

Proof: From (132) and (133) we find that after N outer iterations of the algorithm with
the variable tolerance , the error is reduced by

(N, 8 ) = N = Xily ha0) 3070 9(n), (135)
€o
Let
(N6 )=g* (“Tg((b’“)> and §(N,8 ) = PO, (136)

Then, it follows from equations (132) and (133) that after N iterations with the constant
strategy 0(NN,d ) the error is reduced by

N _ eszz_ol f(k,zo) exp (Nz_:lg o gfl (M)) =€¢(N,d ). (137)

€o j=0 N
The right hand side of equation (137) is exactly €(NV,d ).

Using (45) and (136) we find that the cost associated with N steps of the constant
tolerance iteration is

Cle,6) = —Ng~ (%W) , (138)
while the cost associated with the variable tolerance is
N-1
- o (139)
k=0

Now, the right side of (138) is no greater then the right side of (139) since g is convex.

The error bound (64) for the Chebyshev iteration is analogous to (135) with the sum

over g(¢) replaced by an integral and the term i 1(k:20) replaced by a function F(k, x),

independent of . Hence, theorem 3 is essentially a continuous version of theorem 4. The
proof of the former is complicated by the presence of the amplitude term (59) in (63).
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A

In this appendix, we derive an expression for the residual defined in equation (65) and
obtain a bound for it. We find it convenient to work with the stretched variable z of
equation (49). Hence, we change variables in equation (65) and also center the differences
in that equation around z to obtain

In equation (140) 7(z, 9, 8) = 7(k,0) so that

(2,5, 8) = K(z) (Aewg) + Be"’”ﬂ(”) , (141)

where 1(z) and K(z) are defined in equations (58) and (56), respectively. We expand in
the resulting expression, (z + 3,90), ¥(x — 3,0), K(z + ) and K(x — () in Taylor series
with remainder. We expand v up to order 3% and K up to order 32. Upon collecting
coefficients of equal powers in 3 and using equations (53) and (54) we obtain the following
expression for the residual

r(e—B8,6,8) = 6 (AeF (S + 68§ + 8S]) + B (ST + 8S; +55;)) . (142)

In equation (142),

e 2 (Kl Rute,p) - D 4 L), (143

S;— = ¢®®) (Rl(x,ﬂ)K’ (ac) w> + e~ (@) (—Rg(i,ﬂ)K’ (x) + o (x)ff (V2)> ’
(144)

5t = w0 BEK @) | s B ) a5)

2 2
In equations (143)-(145) ®(z) is defined in equation (37) and the points v, vy satisfy

r<n<z+fp, z-F<r<uz (146)

Furthermore, the functions R;(z, ) and Rs(z, 3) are defined by

Ri(z.0) = 2 gh) + (cbéx) + §<I>" (m)) %& (147)
_®" T ! Y 2 es?



In equations (147) and (148) the points 7;, 7o satisfy
r<m<z+p, z-FB<n<uaz (149)

The point &; is between 0 and ﬁ(QT(:”)+§<I>" (m1)) and &, is between 0 and ,H(CI’T(‘”)— %@" (72))-
The terms S} in equation (142) are obtained from the corresponding terms S} in equations
(143)-(145), by replacing ®, ' and ®” by —®, —®’ and —P"” respectively.

Upon introducing expressions (143)-(148) into equation (142) we find after some ma-
nipulations that

B o _ _ I(_'Il(ﬁl _
v@—ﬂﬁﬂgﬁﬂwmm+3xyhm@RK+K@+kﬂ+mﬂm¢+jrq B’K"R),
(150)
where ~ ~ _ ~ ~
(D” @I @Il eé‘ (D’ 2@!!
— - (252 ) & = f— -, 151
R 6+<2+56)2,|ﬂ Ay +0°% (151)

The terms K', K", ®,®" in equations (150) and (151) denote the maximum over all z of
the functions |K'|,|K"|, |®|, |®"| respectively. In order to obtain bounds for these maxima,
we evaluate the derivatives of K(x,6) and ®(z, ) using equations (37) and (59) to obtain

_ —A (1+A(x)) §(x)

K'(z) =, (152)
2((1+A6(x))° —1)"

K () = 2AT L AS@) 8 (@) (AT () + AL+ Ad@)O" () (5
4((1+A5($))2—1)4 2((1+ Ad(x))2 — 1)1
oL Ad'(z)
éu%_¢ﬂ+AM@V—1’ (154)
and
o @) (AG'(2))*(1 + Ad(2)) (155)

T nop -1 (A1

Upon manipulating the expressions on the right hand side of equations equations (152)-
(155) we obtain the following bounds

o] < 32, (156)
®(z)' | < 55(8” +‘65(2;,2(1+A)2, (157)
K| < 30 (5% ot (15%)
1 < g (Gear D )



In these expressions, 7 is the lower bound on §(x) defined in equation (46). Now, we recall

from equation (46), that “Z((f)) and Jéz,z) are bounded for all z. Upon introducing these

bounds in the right hand side of equation (150) and performing the change of variable
x = [k we obtain

r(k,8)| < B>Medo 2600 5 (160)
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