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Abstract

The accurate and efficient computation of gradients for partially separable functions
is central to the solution of large-scale optimization problems, since these functions are
ubiquitous in large-scale problems. We describe two approaches for computing gradients
of partially separable functions via automatic differentiation. In our experiments we
employ the ADIFOR (Automatic Differentiation of Fortran) tool and the SparsLinC
(Sparse Linear Combination) library. We use applications from the MINPACK-2 test
problem collection to compare the numerical reliability and computational efficiency of
these approaches with hand-coded derivatives and approximations based on differences
of function values. Our conclusion is that automatic differentiation is the method of
choice, providing code for the efficient computation of the gradient without the need
for tedious hand-coding.

1 Introduction

The solution of nonlinear optimization problems often requires the computation of the
gradient V fy of a mapping fo : R™ — . If the number of variables n is moderate, we can

approximate the components of the gradient by differences of function values, for example,

f(z + hie;) — f(2)
h; ’

[V fo(2)]: = 1<i<n, (1.1)

where h; is the difference parameter, and e; is the i-th unit vector. However, for large-scale
problems (even for moderately sized problems with n = 100 variables) use of this approxi-
mation is prohibitive because it requires n function evaluations for each gradient. Another
reason to avoid the use of (1.1) is that truncation errors in this calculation can mislead an
optimization algorithm and cause premature termination far away from a solution. Thus,
algorithms for the solution of optimization problems avoid approximations of the gradient
by differences, and insist on an accurate and efficient evaluation of the gradient.

In this paper we explore the use of automatic differentiation tools for the computation

of V fo when [y : R"™ — R is partially separable, that is, fy can be represented in the form

Jo(z) = Zf:fi(x), (1.2)
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where f; depends on p; < n variables. This class of functions, introduced by Griewank and
Toint [21, 22], plays a fundamental role in the solution of large-scale optimization problems
since, as shown by Griewank and Toint, a function fy is partially separable if the Hessian
matrix V2 fy(z) is sparse.

Algorithms and software that take advantage of the partially separable structure have
been developed for various problems. See, for example, [27, 14, 23, 31, 32, 33, 34]. In these
algorithms the partially separable structure is used mainly to approximate the (dense)
Hessian matrices V2 f;(z) by quasi-Newton methods. Partial separability is also used to
compute the gradient of fy as the sum of the gradients of the element functions f;, but this
is just another method for hand-coding the gradient. In a related paper [11] we discuss the
impact of partial separability on optimization software.

The key observation needed to compute the gradient of a partially separable function
is that if fo : R™ — IR is defined by (1.2), and if the vector-valued function f:R"™ — R™
defined by

Si(z)
fz) = : : (1.3)
fm(2)
then the gradient of fy is given by
Vio(z) = f'(x)e, (1.4)

where f'(z) is the Jacobian matrix of f at @, and e € R™ is the vector of all ones. At
first sight this approach does not look promising because it requires the computation of the
Jacobian matrix f’(z). However, for partially separable functions, f; depends on p; < n
variables, and thus f'(z) is a sparse matrix. We use the sparsity of f/(z) to show that

automatic differentiation tools can compute the gradient V fy so that

T{Vfo(x)} < Q0 T{fo(2)}, (15)
M{Vfo(2)} < QuM{fo(2)}, (1.6)

where T'{-} and M{-} denote computing time and memory, respectively, and Q; and Q,,
are constant. We also show that for partially separable functions that arise in applications,
the constants Q; and Q,, are small and independent of n, in contrast to the use of (1.1).

The approach for computing the gradient of fy using (1.3) and (1.4) was proposed
by Andreas Griewank and can be viewed as a special case of the results discussed by
Griewank [18, Section 2]. Preliminary tests of this approach were done by Bischof and
El-Khadiri [10]. The results in this paper show that this approach is not only feasible, but
highly efficient.

A brief review of automatic differentiation, the ADIFOR (Automatic Differentiation
of Fortran) tool [4, 6], and the SparsLinC (Sparse Linear Combination) library [5, 6] is



provided in the next section. Automatic differentiation techniques rely on the fact that
every function, no matter how complicated, is executed on a computer as a potentially
long sequence of elementary operations such as additions, multiplications, and elementary
functions (e.g., the trigonometric and exponential functions). By applying the chain rule
to the composition of those elementary operations, derivative information can be computed
exactly and in a completely mechanical fashion [19, 28].

In Section 3 we propose two approaches for the computation of the Jacobian matrix
f'(z). The first approach uses the sparsity pattern of f/'(z), graph-coloring techniques, and
the ADIFOR tool to obtain a compressed Jacobian matrix that contains all the information
needed to determine the entire Jacobian matrix. The second approach uses ADIFOR with
the SparsLinC library to produce a sparse representation of the Jacobian matrix without a
priori knowledge of the sparsity pattern. In fact, the sparsity pattern is a byproduct of the
ADIFOR/SparsLinC approach.

Section 4 discusses the formulation of large-scale problems in terms of partially separable
functions, and outlines the problems from the MINPACK-2 [1] collection of large-scale
problems that we use to validate our approach. Experimental results with problems from
the MINPACK-2 collection on Sun SPARC 10, IBM RS 6000 (model 370), and Cray C90
platforms are presented in Section 5.

Our results show that the compressed Jacobian approach with the ADIFOR automatic
differentiation tool generally outperforms difference approximations (to the compressed Ja-
cobian matrix) in terms of computing time. The ADIFOR/SparsLinC approach obviates
the need for the computation of the sparsity pattern and the compressed Jacobian matrix,
but produces slower gradient code in our test problems. This tradeoff between convenience
and cost is not always an option. Using ADIFOR/SparsLinC is the only feasible approach
for applications where it is desirable to relieve the user of the error-prone task of providing
the sparsity pattern or where the assumption that the sparsity pattern of f/(z) is indepen-
dent of z does not hold. For both approaches, (1.5) and (1.6) hold with constants 2, and
Q,,; that are small and independent of n.

In terms of accuracy, both approaches provide the gradient to full accuracy, while ap-
proximations based on differences always suffer from truncation errors and provide, at best,
half the accuracy in the function evaluation. We emphasize that the accuracy of the gradi-
ent in an optimization algorithm is of paramount importance because the gradient is used to

determine the search directions. An inaccurate gradient can easily lead to false convergence.

2 The ADIFOR Tool and the SparsLinC Library

Automatic differentiation [19, 28] (AD) is a chain-rule-based technique for evaluating the
derivatives of functions defined by computer programs. AD produces code that, in the

absence of floating-point exceptions, computes the values of the analytical derivatives ac-



curate to machine precision. AD avoids the truncation and cancellation errors inherent in
approximations of derivatives by differences of function values. Moreover, unlike symbolic
approaches such as Maple, Macsyma, or Reduce, it is applicable to codes of arbitrary length
containing branches, loops, and subroutine calls.

The forward and reverse modes of automatic differentiation for computing the Jacobian
matrix of a mapping f : R™ — IR™ are distinguished by how the chain rule is used to propa-
gate derivatives through the computation. The forward mode accumulates the derivatives of
intermediate variables with respect to the independent variables z, whereas the reverse mode
propagates the derivatives of the dependent variables y = f(z) with respect to intermediate
variables.

Given a seed matrix § with n rows and p columns, the forward mode generates code for

the computation of the directional derivative
I'(2)S. (2.1)

The complexity of the forward mode is rather predictable. If L {f} and M {f} are, respec-
tively, the number of floating-point operations and the amount of memory required by the

computation of f(z), then an AD-generated code employing the forward mode requires

L{f(2)S} <2430 L{f},  MI{f(2)S} < (14p) M{J}.

floating-point operations and memory, respectively, to compute f/(2)S5 (see Griewank [18]).
With the reverse mode, on the other hand, we can compute f'(z)7Q where, Q is a seed
matrix with m rows and ¢ columns. The reverse mode requires the ability to reverse
the partial order of program execution and to remember (or recompute) any intermediate
result that nonlinearly affects the final result. As a result, the complexity of the reverse
mode is harder to predict. If no intermediate values are recomputed, a straightforward
implementation of the reverse mode requires O (L {f}) floating-point operations and up to
O(L{f}+ M{f}) memory, depending on the nonlinearity of the code.

The reverse mode is attractive when m is small. In particular, if m = 1, then f'(z) is
a gradient, and the reverse mode needs only O(L {f}) operations to compute f'(z). The
storage requirement of the reverse mode, however, can be a difficulty because of the possible
dependence on L {f}+ M {f} . Griewank [17] suggested a snapshot approach to circumvent
this difficulty.

There have been various implementations of automatic differentiation; an extensive sur-
vey can be found in [25]. In particular, we mention GRESS [24], and PADRE-2 [26] for
Fortran programs and ADOL-C [20] for C programs. GRESS, PADRE-2, and ADOL-C im-
plement both the forward and reverse modes. In order to save control flow information and
intermediate values, these tools generate a trace of the computation by recording the partic-

ulars of every operation performed in the code. The interpretation overhead associated with



using this trace for the purposes of automatic differentiation, as well as its potentially very
large size, can be a serious computational bottleneck [30]. Recently, a source transformation
approach to automatic differentiation has been explored in the ADIFOR [4, 6], ADIC [9],
AMC [16], and Odyssee [29] tools. ADIFOR transforms Fortran 77 code, ADIC transforms
ANSI-C code, and AMC and Odyssee transform a subset of Fortran 77. ADIFOR and
ADIC mainly use the forward mode, with the reverse mode at the statement level, while
AMC and Odyssee use the reverse mode.

In our work, we employed the ADIFOR tool, which has been developed jointly by Ar-
gonne National Laboratory and Rice University.* Given a Fortran subroutine (or collection
of subroutines) describing a function, and an indication of which variables in parameter
lists or common blocks correspond to independent and dependent variables with respect
to differentiation, ADIFOR produces Fortran 77 code that allows the computation of the
derivatives of the dependent variables with respect to the independent variables.

The workhorse of any mainly forward-mode first-order automatic differentiation ap-
proach, such as employed in ADIFOR or ADIC, for computing the m directional derivatives

in (2.1) is the vector linear combination

k
> ajui, (2.2)
=1

where a; is a scalar, v; is a vector of length p, and k is usually less than 10. By default, this
operation is implemented as a DO loop; and as long as p is of moderate size and the vectors
are dense, this is an eflicient way of expressing a vector linear combination.

The SparsLinC library [5, 6] addresses the situation where the seed matrix S is sparse
and most of the vectors involved in the computation of f'(z)S are sparse. This situation
arises, for example, in the computation of large sparse Jacobian matrices, since the sparsity
of the final Jacobian matrix implies that, with great probability, all intermediate derivative
computations involve sparse vectors as well. SparsLinC implements routines for executing
the vector linear combination (2.2) using sparse data structures [6]. It is fully integrated
into ADIFOR and ADIC and provides a mechanism for transparently exploiting sparsity in
derivative computations. SparsLinC does not require knowledge of the sparsity structure of
the Jacobian matrix; indeed, the sparsity structure of the Jacobian matrix is a byproduct
of the derivative computation. The SparsLinC routines adapt to the particular situation at

hand, providing efficient support for a wide variety of sparsity scenarios.

*See the World Wide Web site http://www.mcs.anl.gov/Projects/autodiff/index.html for additional
information on ADIFOR and ADIC.



3 Computing Gradients of Partially Separable Functions

We compute the gradient of a partially separable function as outlined in Section 1: Given the
element functions fi,..., f,, that define the partially separable function (1.2), we compute
the Jacobian matrix f’(z) of the vector-valued function f : R™ — R™ defined by (1.3).
The gradient V fy(z) of the partially separable function is then obtained via (1.4); that is,
we add the rows of f’(z). In this section we propose two techniques for computing the
Jacobian matrix.

If the sparsity pattern of f'(z) is known, then graph-coloring techniques can be used
to determine a seed matrix S so that the compressed Jacobian matriz f'(x)S contains all
the information needed to determine the entire Jacobian matrix f/(z). The compressed
Jacobian matrix approach has long been used in connection with the determination of
sparse Jacobian matrices by differences of function values; see, for example, [13, 15]. The
compressed Jacobian matrix approach requires the determination of a partitioning of the
columns of f'(z) into structurally orthogonal columns, that is, columns that do not have a
nonzero in the same row position. Because of the structural orthogonality property we can
uniquely extract all entries of the original Jacobian matrix from the compressed Jacobian.

The partitioning problem can be considered as a graph-coloring problem [13]. Given
a graph representation of the sparsity structure of f’(z), these algorithms produce a par-
titioning of the columns of f’(z) into p structurally orthogonal groups by graph-coloring
algorithms for the column-intersection graph associated with f/'(z). For many sparsity pat-
terns, p is small and independent of n. For example, if a matrix is banded with bandwidth
B or if it can be permuted to a matrix with bandwidth £, it can be shown [13] that p < 5.
In our experiments we employ the graph-coloring software described in [12] to determine
an appropriate partition.

In an optimization algorithm we invariably need to compute a sequence {V fo(zx)} of
gradients for some sequence {z;} of iterates. This step requires the computation of a
sequence of Jacobian matrices {f'(2x)}. In most cases we need to do the graph-coloring
only once, since we can specify the closure of the sparsity pattern, that is, a sparsity pattern
that, for every iterate zj, contains the sparsity pattern of {f’(zx)}. If we are not able to
specify the closure of the sparsity pattern, the compressed Jacobian approach requires a
call to the graph-coloring software at each iteration.

By exploiting the capability to compute directional derivatives (2.1), compressed Jaco-
bian matrices can easily be computed via automatic differentiation (for additional details,
see [3]): Given the seed matrix 5, ADIFOR computes the compressed Jacobian matrix
f'(z)S. In contrast to the approximation techniques based on the compressed Jacobian
matrix approach [13, 15], all columns of the compressed Jacobian matrix are computed at
once.

In many situations it is desirable to have a tool for the determination of f'(z) that does



not require knowledge of the sparsity pattern of f'(z). This situation arises, for example,
while developing interfaces to the solution of large-scale optimization problems [11], where
it is desirable to relieve the user of the error-prone task of providing the sparsity pattern.
In these situations, a sparse implementation of automatic differentiation, such as provided
by the ADIFOR/SparsLinC approach, is the only feasible approach.

We use the term sparse ADIFOR for the approach based on the ADIFOR tool employ-
ing the SparsLinC library for the computation of vector linear combinations of derivative
objects. This approach is extremely simple. We run ADIFOR with instructions to generate
calls to SparsLinC. Then, at runtime, we set the seed matrix § to the identity matrix using
the SparsLinC interface routines. No knowledge of the sparsity structure is required. On
the other hand, this approach is likely to be slower than the compressed Jacobian approach
because of the need to maintain dynamic data structures for the representation of the sparse
vectors. We also note that, unlike the compressed Jacobian matrix approach, this approach
is applicable to Jacobian matrices that have a few dense rows; SparsLinC will allocate a

few long vectors for the dense rows and will maintain all others as short vectors.

4 Test Problems

A wide variety of large-scale optimization problems in applications can be formulated as

variational problems where we need to minimize a functional of the form
/’D ¢(z,v,Vv)dz, (4.1)

where D is some domain in R?, and ® is defined by the application. In all cases (4.1) is
well defined if v : D — RP belongs to H'(D), the Hilbert space of functions such that v
and ||Vv|| belong to L*(D).

Finite element approximations to these problems are obtained by minimizing (4.1) over
the space of piecewise linear function v with values v; ; at z; ;, 0 <7 <mny,4+1,0 < j < n,+1,
where z; ; € R? are the vertices of a triangulation of D with grid spacings h, and h,. The
vertices z; ; are chosen to be a regular lattice so that there are n, and n, interior grid
points in the coordinate directions, respectively. Lower triangular elements 77, are defined
by vertices z; ;, zi41,5, 2i j+1, While upper triangular elements 7y are defined by vertices
Zi iy %i-1,j, %,j—1. A typical triangulation is shown in Figure 4.1.

The finite element approximation to (4.1) is defined by the values v; ; of a piecewise

linear functions at z; ;. The values v; ; are obtained by solving the minimization problem

min Z ( fj(v) + ZZ(’U)) v eR™ G, (4.2)
(4,4)

where ffj and fﬁ; are the finite element approximation to the integrals in the elements 77,



Figure 4.1: Triangulation of domain D

and Ty, respectively. This problem can be expressed in partially separable form by setting

f{ﬁ:(v) (3)

f1l{2(v)

The Jacobian matrix of this mapping is sparse, since the element functions [ (v) and f;(v)
depend only on v; j, viy1;, v j4+1 and v; ;,v;—1 ;, v; j_1, respectively, and thus the techniques
presented in Section 2 are directly applicable to the computation of the Jacobian matrix of
this mapping.

There are other ways to express problem (4.2) in partially separable form. For example,
by accumulating the contributions of the lower triangular elements T, and Ty, we obtain
the mapping

f1L,1(”) + fllfl(v)
J(w)= | falv)+ fiav) |. (4.4)

A difference between formulations (4.3) and (4.4) is that the number of element functions
m =& 2n for (4.3), while m = n for (4.4). This implies, in particular, that the number of
groups p determined by the graph-coloring software is likely to be different, and thus the
computing times for the compressed Jacobian matrix may depend on p. In our preliminary
experience, however, the computing time of different formulations did not differ significantly.

We selected six problems from the MINPACK-2 test problem collection to compare
the different approaches for computing the gradient of a partially separable function. The
selected problems are representative of large-scale optimization problems arising from ap-
plications in superconductivity, optimal design, combustion, and lubrication. We give only
a brief description of two of these problems to illustrate the partially separable structure of

these problems. For further information refer to [1].



The Ginzburg-Landau (GL2) problem is of the form (4.1), where v : R* — R*. The first
two components of v represent a complex-valued function ¢ : D +— € (the order parameter),
and the other two components a vector-valued function A : D +— IR* (the vector potential).

This problem has the form

min{f1(¢) + f2(¢, A) : $, A € Hg(D)},

where D is a two-dimensional region,

)= [ {10+ He)t} de.

fgw,A):/D{Hw—w O 42 x 0]}

and & is the Ginzburg-Landau constant.

The minimal surface area (MSA) problem is of the form

min{ f(v):v € K},

where f: K — R is the functional

_ NG
1@ = [ (14 19e@)?)
and the set K is defined by
K = {v € HY(D) : v(z) = vp(z) for = € (92?}

for the boundary data function vp : 9D — IR that specifies the Enneper minimal surface.

These two problems are partially separable, but each code is structured distinctly, result-
ing in a distinctly structured compressed Jacobian in each case (the other four MINPACK-2
problems, SSC, EPT, ODC, and PJB, are all structurally identical to the MSA problem).
For the GL2 problem (where p = 8), the compressed Jacobian turns out to be 50% dense,
whereas for the MSA problem (where p = 3), the compressed Jacobian is almost completely
dense. As we shall see, respectively in Sections 5.2 and 5.3, this variance in densities impacts
the memory requirements and computing time performance of the ADIFOR/SparsLinC ap-
proach relative to that of the ADIFOR approach.

5 Experimental Results

We compare four methods for the computation of the gradient of a partially separable func-
tion: hand-coded derivative (HC), approximation of the compressed Jacobian matrix with
function differences (FD), computation of the compressed Jacobian matrix with ADIFOR
(AD), and computation of the full Jacobian matrix with ADIFOR/SparsLinC (Sparse AD).

10



Our aim is to compare these methods with the cost of computing the function (F) and to
show that in all cases (1.5) and (1.6) hold with constants ©, and ,, that are small and
independent of n.

Experiments were performed on Sun SPARC 10, an IBM RS 6000 (model 370), and a
Cray C90. The Fortran compiler was used with all optimization options turned on.t All
computations were done with 64-bit arithmetic.

The MINPACK-2 problems were used as a test set because the availability of hand-coded
gradients provides a metric in terms of accuracy, computing time, and memory requirements.
The emphasis of our work is to show the effectiveness of automatic differentiation tools for
computing gradients, given that for many problems hand-coding of derivatives is non trivial

and prohibitive in cost.

5.1 Numerical Accuracy

In terms of numerical accuracy, the approaches based on automatic differentiation were
accurate to near machine precision, while the approach based on function differences were
accurate up to at most half of the number of possible significant digits. We do not elaborate
further on this point because this contrast in accuracies between automatic differentiation
and function differences shows consistency with previously published work [3] on the com-

putation of sparse Jacobian matrices with automatic differentiation.

5.2 Memory Requirements

Tables 5.1 and 5.2 present, respectively for the GL2 and MSA problems, the total memory
required for the computation of the function as well as the various gradient methods, for
the case of n = 160,000 variables. The remaining four problems have identical memory
requirements to each other; these are shown in Table 5.3.

We measured memory with the Unix command size ezecutable-file, which reports the
total amount of statically allocated memory (memory requirements that can be assessed at
compile time) needed to load and run the executable. In the case of SparsLinC, where mem-
ory is also allocated dynamically, we call a SparsLinC routine that reports the total amount
of dynamically allocated memory, and we add this to the statically allocated memory.

The AD and FD approaches have similar memory requirements for the gradient com-
putation. In both cases, memory requirements for the compressed Jacobian matrix are
proportional to the product mp, where m is the number of component functions of f, and p
is the number of groups determined by the graph-coloring algorithm. Sparsity pattern and

graph-coloring computations, present in both approaches, require memory proportional to

tOn the Sun, we employed F77 version 1.4 with the -O option; on the IBM, XLF version 3.1.2.3 with
the -O option; and on the Cray, CF'T77 version 6.0.3.20 with the -O inline3 -Oscalar3 -O task0 -O vector3
-Wit“dp” options.

11



Table 5.1: Memory Requirements for GL2 (in Mbytes; n = 160,000)

‘ Platform H F ‘ FD FD/F ‘ AD AD/F ‘ Sparse AD  Sparse AD/F ‘
SPARC / IBM || 2.59 | 31.39  12.1 | 48.13 18.6 38.65 15.0
Cray C90 3.07 | 4276 139 | 59.50 194 59.74 19.5

Table 5.2: Memory Requirements for MSA (in Mbytes; n = 160, 000)

‘ Platform H F ‘ FD FD/F ‘ AD AD/F ‘ Sparse AD  Sparse AD/F ‘
SPARC /IBM || 2.57 | 34.68 13.5 | 33.38 13.0 39.64 15.4
Cray C90 2.99 | 49.19 16.5 | 47.90 16.0 60.37 20.2

Table 5.3: Memory Requirements for SSC, EPT, ODC, or PJB (in Mbytes; n = 160, 000)

‘ Platform H F ‘ FD FD/F ‘ AD AD/F ‘ Sparse AD  Sparse AD/F ‘
SPARC /IBM || 1.29 | 33.38 25.8 | 32.09 24.8 38.55 29.9
Cray C90 1.72 1 4791 279 | 46.61 27.1 59.39 34.9

nnz( f'(z)), the total number of nonzeros in the Jacobian matrix. Each approach also has
some distinct memory requirements which account for the differences between the two in
Tables 5.1-5.3.

For the Sparse AD approach, much of the memory is allocated dynamically and based
on the need to represent nonzero derivative information. Certainly, the memory needed
for representing the sparse Jacobian matrix has a lower bound of nnz(f'(z)). Beyond this,
SparsLinC requires additional memory for internal representations as explained in [8].

The first column in Tables 5.1-5.3 shows the memory required for running the original
function. Memory requirements for the hand-coded MINPACK-2 gradient codes are not
shown separately, but are always between a factor of 1.5-2 times the memory requirements of
the corresponding function. The next three double columns show the memory requirements
of the FD, AD, and Sparse AD approaches in megabytes (Mbytes) and as the ratio of
gradient to function memory requirements. The memory requirements on the SPARC 10
and IBM RS 6000 are identical, while the Cray C90 requires more memory because the
Cray default length for integer variables is 64 bits, whereas it is 32 bits on the workstation
platforms. This is particularly noticeable for the Sparse AD approach, which maintains
integer arrays for sparse vector data structures.

The results in Tables 5.1-5.3 show that the strategy of computing the gradient of a
partially separable function by reformulating the problem as the computation of the sparse

Jacobian matrix of the mapping defined by (1.3) imposes modest memory requirements.

12



The memory requirements can also be measured in terms of the possible range of the
constant ,, in (1.6). The table below shows that €, is a small multiple of p. In these
results we have rounded the coeflicients of p to the nearest integer, since we are interested

only in general trends.

SPARC/IBM Cray C90
FD p<Qu<9 | 2p<Q, <9p
AD 2p<Qy, <8p | 2p< 2, <9p
Sparse AD | 2p < Q. <10p | 2p < Q< 12p

All three approaches are comparable in terms of memory requirements. The worst
performance is obtained for the problems in Table 5.3 because the function codes for these
problems are relatively simple and require only the storage of the vector z. The results
for the GL2 and MSA problems are more representative because these problems have work
arrays in the function code. In general we expect the Sparse AD approach to require less
memory than AD when the compressed Jacobian matrix is sparse. Indeed, the Sparse
AD approach requires about 20% less memory on the workstation platforms for the GL2

problem, where the compressed Jacobian matrix is 50% sparse.

5.3 Computing Time

Figure 5.1 summarizes the GL2 and MSA results for the SPARC 10, IBM RS 6000 and Cray
C90. Each figure shows the gradient-to-function computing time ratio for each of the four
methods for computing the gradient. We have included data for problems with n = 2,500
variables to n = 160,000. The solid line indicates the Sparse AD approach, the dotted
line the AD approach, the dashed line the FD approach, and the dash-dotted line is the
hand-coded derivatives (HC).

The main conclusion that can be drawn from Figure 5.1 is that the gradient-to-function
computing time ratio is independent of the problem size for these two problems. This is
an important aspect of these results, since our main goal is to avoid the cost of n function
evaluations for approximating the gradient by differences of function values. The gradient-
to-function ratios for SparsLinC on the Cray C90 are not shown in Figure 5.1 because
inclusion of these ratios would distort the plots. Table 5.4 show that these ratios, though
larger, are also independent of n.

We are also interested in the ratio of computing times between the various approaches
and their relation to the time required for the coloring preprocessing step. These ratios
appear in Table 5.5 for all the problems under consideration, but only for n = 160, 000.
The plots in Figure 5.1 show that these ratios are essentially independent of the number n
of variables, and thus the results in Table 5.5 are representative for any reasonable number

of variables.
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Figure 5.1: Ratios of computing times between the gradient and the function. FD (dashed),
AD (dotted), Sparse AD (solid), HC (dash-dotted)
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Table 5.4: Gradient-to-Function Runtime Ratios for Sparse AD on the Cray C90

| n ][ 10,000 | 40,000 | 90,000 | 160,000
GL2 || 1,390 ] 1,790 | 1,710 [ 1,790
MSA || 707 721] 722 726

Before we analyze the runtime results, we briefly summarize important features of the
underlying architectures. The SPARC 10 essentially has a scalar processor and a flat mem-
ory hierarchy. Hence, vector operations execute only marginally faster, and memory locality
(that is, the reuse of data and the accessing of adjacent memory locations) is not much of an
issue. In contrast, the IBM RS 6000 architecture employs a superscalar chip and a cache-
based memory architecture. Hence, this machine performs better if executing short vector
operations, since these operations can fill the short pipes and take advantage of memory
locality. On the other hand, indirect addressing, used extensively in SparsLinC and in the
coloring algorithm, while fairly inconsequential on the SPARC, may lead to performance
degradation, as memory locality suffers. The Cray C90 is a vector processor without a cache
and achieves its full potential only when the code exhibits long vector operations. Without
optimization of the source Fortran code, short vector loops and indirect addressing schemes
exhibit much lower performance, since the hardware pipes cannot get filled and the speed
of main memory is much slower than that of the CPU.

Based on the architectures used in our testing, we expect computing times to be stable
and predictable on workstation platforms but expect that vectorization issues will cause a
large variation in computing times on vector architectures. Our experimental results bear
out these expectations.

As expected, the hand-coded derivative code is the fastest on the scalar architectures.
For the results in Table 5.5 we have

T{V fo(z) : HC} < 3T{fo}, (5.1)

where T'{V fo(z) : -} is the time required to compute the gradient of the partially separable
function by a particular method. The above ratio can be expected for well-coded gradient
computations on scalar architectures but requires special techniques on vector and parallel
architectures [2].

On vector architectures we can expect the ratio (5.1) to hold only if both the function
and the gradient evaluation codes vectorize or if neither code vectorizes. An examination
of Cray C90 results shows that only the MSA and ODC function evaluation codes fail to
vectorize, and that the GL2 hand-coded gradient evaluation code is the only HC code that

vectorizes. Our results support this remark because we obtain a high gradient-to-function
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Ginzburg-Landau (GL2) problem

Table 5.5: Coloring-to-Function and Gradient-to-Function Runtime Ratios (n = 160, 000)

Platform H Coloring ‘ HC ‘ FD ‘ AD ‘ Sparse AD ‘

SPARC 10 18.36 2.52 | 12.00 | 8.58 23.50
IBM RS 6000 36.24 1.78 | 12.70 | 7.58 47.30

Cray C90 664.29 | 2.05 | 27.40 | 67.70 1790.00

Minimal Surface Area (MSA) problem

Platform || Coloring | HC | FD | AD | Sparse AD

SPARC 10 718 | 155|498 [ 3.74]  16.30
IBM RS 6000 || 11.62 |[2.09 | 477290 ] 30.20

Cray C90 1257 | 154 | 445 | 3.28| 172.60

Steady State Combustion (SSC) problem

Platform H Coloring ‘ HC ‘ FD ‘ AD ‘ Sparse AD

SPARC 10 4.43 1.28 | 463 | 3.08 18.00
IBM RS 6000 5.58 1.48 | 4.39 | 2.12 26.50

Cray C90 86.51 18.00 | 7.54 | 33.60 902.00

Optimal Design with Composites (ODC) problem

Platform H Coloring ‘ HC ‘ FD ‘ AD ‘ Sparse AD

SPARC 10 5.35 1.28 | 4.79 | 3.37 15.70
IBM RS 6000 7.68 1.43 | 4.55 | 2.56 26.30

Cray C90 10.25 2.09 | 441 | 4.95 77.60

Elastic-Plastic Torsion (EPT) problem

Platform H Coloring ‘ HC ‘ FD ‘ AD ‘ Sparse AD

SPARC 10 13.24 1.59 | 5.99 | 5.67 43.80
IBM RS 6000 23.88 250 | 5.71 | 4.46 87.70

Cray C90 331.98 | 255 | 17.50 | 63.30 2800.00

Pressure in a Journal Bearing (PJB) problem

Platform || Coloring | HC | FD | AD [ Sparse AD

SPARC 10 || 1264 | 1.92 | 582 | 5.06 | 25.20
IBM RS 6000 | 18.24 | 2.13 | 553 | 4.06 | 41.50

Cray C90 || 204.63 | 64.70 | 12.20 | 39.10 | 1260.00

16



runtime ratio only on problems where only the function evaluation code vectorizes (i.e.,
SSC, EPT, and PJB).

The results in Table 5.5 show that the AD approach outperforms the FD approach on
scalar architectures. The performance of the various approaches on vector architectures is
harder to predict as performance depends on the delicate interplay between the code and
the compiler (for examples, see [7, 11]). Note that the results in Table 5.5 show that the
performance of AD is comparable to that of FD on the Cray C90 for those problems (MSA
and ODC) where the function evaluation code fails to vectorize.

Our numerical results also show that the AD approach outperforms the Sparse AD

approach on all the architectures. From the results in Table 5.5 we can observe that
T{V fo(z) : ADIFOR} < K T{V fo(z) : Sparse ADIFOR},

where k satisfies

SPARC 10 IBM RS 6000  Cray C90
3<k<8 6<k<20 15<k<45

In all our experiments with the exception of the GL2 problem, the compressed Jacobian
is almost fully dense. It is not surprising that AD outperforms Sparse AD on these problems,
given that the runtime efficiency of SparsLinC is expected to become apparent for problems
that have much sparser compressed Jacobians. Note that Sparse AD performs much better
on the GL2 problem, where the compressed Jacobian is 50% sparse, compared with the
other problems.

We can compare the performance of the various approaches by computing the range
for the constant €, in (1.5) as a function of p. In these results we have also rounded the

coeflicients of p to the nearest integer.

SPARC 10 IBM RS 6000 Cray C90
FD p<Qr<2p p<Qr <2p p < Qp <6p
AD p<Qr<2p p<Qr<2p p < Qr <20p
Sparse AD | 3p < Qr < 15p | 6p < Qp <30p | 25p < Qr < 930p

The above table shows that in most cases {2 is a small multiple of p.

We note the wide variation in Q, for FD and AD on the vector architecture owing
to the code-dependent effects of vectorization, as already discussed. We also note the
large variation in €, for the Sparse AD results on the SPARC 10. This results from
the way SparsLinC exploits the particular sparsity characteristics of each problem (this
issue is explored in [8]). Finally, we note that the performance of Sparse AD degrades
on vector computers, as a result of pervasive use of indirect addressing and lack of vector
instructions, though this performance could be improved through the use of hardware-

supported gather/scatter instructions.
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Table 5.5 also compares the cost of the graph coloring algorithm with the cost of com-
puting the function. The high relative cost of computing the graph coloring is mainly a
reflection of the low cost of computing the functions for these problems. We can justify this
remark by noting that evaluation of the component functions for the GL2, EPT, and PJB
problems only require the evaluation of a low-order polynomial and, that for these problems,
the coloring-to-function runtime ratio is high. On the other hand, the problems with a low
coloring-to-function runtime ratio are relatively expensive to evaluate; the SSC problem re-
quires the evaluation of the exponential function, while the MSA and SSC problems require
a square root.

Another reason for the high relative cost of computing the graph coloring is that the
algorithm we employ (subroutine DSM from Coleman, Garbow, and Moré [12]) is intended
to produce graph colorings with a small p by employing several heuristics. The runtime of
subroutine DSM could be reduced by a factor of two or more without a substantial increase
in p by only using one of the heuristics. Also note that the graph coloring algorithms share
many of the characteristics of Sparse AD with respect to indirect addressing and memory
locality, and thus the performance of the coloring algorithm deteriorates on the RS 6000
and C90 platforms.

6 Conclusions

We have shown that automatic differentiation outperforms difference approximations of
derivatives and offers high numerical accuracy without the need for hand-coding. The
approach based on the compressed Jacobian matrix with the ADIFOR tool produces code
that is often not more than four times slower than a well-coded hand-derived gradient
code on scalar architectures. This approach, however, requires the sparsity pattern of the
partially separable function.

The approach based on the ADIFOR/SparsLinC tool set is the ultimate in convenience,
as not even the sparsity pattern of the underlying Jacobian matrix is needed. In fact, the
sparsity pattern is a byproduct of the ADIFOR/SparsLinC approach. On the other hand,

this approach is considerably slower, particularly on vector architectures.
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