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Abstract

Partial Redundancy Elimination (PRE) is a general
scheme for suppressing partial redundancies which en-
compasses traditional optimizations like loop invariant
code motion and redundant code elimination. In this
paper we address the problem of performing this op-
timization interprocedurally. We use interprocedural
partial redundancy elimination for placement of com-
munication and communication preprocessing state-
ments while compiling for distributed memory parallel
machines.

1 Introduction

Partial Redundancy Elimination (PRE) is a well known
technique for optimizing code by suppressing partially
redundant computations. It encompasses traditional
optimizations like invariant code motion and redun-
dant computation elimination. It is widely used in
optimizing compilers for performing common subex-
pression elimination and strength reduction. More re-
cently, it has been used for more complex code place-
ment tasks like placement of communication state-
ments while compiling for parallel machines [12, 15].

A number of schemes for partial redundancy elimina-
tion have been proposed in literature [10, 11, 20, 19, 25],
but are largely restricted to optimizing code within a
single procedure. All these schemes perform data flow
analysis on Control Flow Graph (CFG) of the proce-
dure. In this paper, we address the problem of per-
forming partial redundancy elimination interprocedu-
rally. There are several difficulties in extending the ex-
isting intraprocedural algorithms for application on a
full program, rather than a single procedure. First, a
full program representation is required which will allow
efficient data flow analysis, while maintaining sufficient
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precision to allow useful transformations and to ensure
safety and correctness of transformations. Renaming of
formal parameters across procedures must be correctly
done while propagating data flow information. Call-
ing context of procedures must be correctly accounted
for, also correctness and safety must be maintained if a
procedure is called at multiple sites with different sets
of parameters.

We have developed an Interprocedural Partial Re-
dundancy Elimination algorithm (IPRE). Our method
is applicable to arbitrary recursive programs and arbi-
trary control flow within each procedure.

We have used interprocedural partial redundancy
elimination for optimizing placement of communication
statements and communication preprocessing state-
ments in distributed memory compilation. We have
implemented our scheme using the the existing For-
tran D compilation system [17] as infrastructure. We
have shown significant performance gains by optimizing
placement of communication preprocessing statements.

The rest of this paper is organized as follows. In
Section 2, we discuss how interprocedural partial re-
dundancy elimination is required for placement of com-
munication statements and communication preprocess-
ing statements while compiling for distributed memory
parallel machines. In Section 3, we briefly review an in-
traprocedural partial redundancy elimination scheme.
The program representation used in interprocedural
data flow analysis is stated in Section 4. Interprocedu-
ral partial redundancy elimination is presented in Sec-
tion 5. In Section 6, we present experimental results to
evaluate the effectiveness and cost of our scheme. In
Section 7, we mention related work. We conclude in
Section 8. Intraprocedural partial redundancy scheme
is presented in the appendix.

2 Distributed Memory Compilation

In compiling programs for execution on distributed
memory parallel machines, an important considera-
tion is optimizing commumcatlon between processors.
Since the existing machines have relatively large com-
munication latencies, communication overhead can be
reduced if message aggregation is done, i.e. each pro-
cessor sends a small number of large messages. There
are several cases in which the set of data elements to be
communicated between the processors cannot be deter-
mined at compile-time. This can happen because data



Real X(m), Y(m)
Integer IA(n)

! data arrays
! indirection array

forall 1

X(i)

1,n
X(i) + Y(IA(D)

C Build the required schedule

DS = Sched(.. parameters ..)

C Communicate data using the schedule build above

Call Data_Move(Y,DS)

do 10 i = 1, nlocal
X(i) = X(i) + Y(IAldocal(i))

Figure 1: Compiling an parallel loop which accesses data through an indirection array. Sequential code is shown

in the left and SPMD code is shown in the right.

is accessed using indirection arrays, data distribution
may not be known at compile-time, number of proces-
sors on which the program is to be run is not known
till runtime or due to the presence of symbolic loop
bounds and strides in a parallel loop. In these cases,
communication can be optimized by placing a prepro-
cessing statement, which determines the set of data
elements to be communicated between the processors
at runtime. The preprocessing statement stores this
information in a data-structure called communication
schedule [24]. A collective communication routine then
performs the data movement, using the information in
the communication schedule. This ensures that for a
parallel loop, each processor packages the set of data
elements 1t wants to send to any other processor in a
single message.

In Figure 1, we show how SPMD code can be gen-
erated for the given loop in which data is accessed
through an indirection array (TA). A communication
schedule is generated by a call to Sched, which ana-
lyzes the contents of array TA to determine the exact
communication required. The required data elements
are sent or received by the Data_Move primitive.

The reason for separation of these two phases of
communication is that the result of preprocessing can
be used for communicating several times. Compiler
analysis has been developed for analyzing the data
access patterns associated with a given parallel loop
and 1nsert1ng calls to appropriate communication pre-
processing routines and collective communication rou-
tines [2, 3, 9]. After such an initial analysis at a sin-
gle parallel loop or a single procedure level, placement
of these statements must be optimized interprocedu-
rally. Large scientific and engineering applications of-
ten present opportunities for reusmg communication
schedule several times and it is important to do this
optimization to obtain reasonable performance. We,
therefore, identify two optimization problems, commu-
nication schedule generation placement and communi-
cation placement. Partial redundancy elimination can
be applied interprocedurally for solving both these op-
timization problems. Partial redundancy elimination
encompasses loop invariant code motion and redundant
code elimination and has been widely used intraproce-
durally to improve the runtime performance of codes.
We believe that it can be applied interprocedurally
to optimize placement of communication preprocessing
statements and communication statements.

3 Intraprocedural Redundancy
Elimination

The details of interprocedural redundancy elimination
we present are derived from the intraprocedural node
based method of Dhamdhere [10], also referred to
as Modified Morel Renvoise Algorithm (MMRA). De-
tailed data flow equations and the meaning of the terms
used are given in the appendix. All terms used are for a
particular computation, e.g AVIN¢(¢) is the availabil-
ity of the computation C at the beginning of node 3.
Whenever there is no scope for ambiguity, the subscript
is dropped (as in the equations given in this paper).

PRE considers subexpressions or computations as
candidates for placement. Transparency of a basic
block means that the none of variables involved in the
computation are modified in the basic block. Based
upon transparency, two properties, availability and par-
tial availability are computed for beginning and end
of each basic block (denoted respectively as AVIN,
PAVIN, AVOUT and PAVOUT for each basic block).
Availability of a computation at a point p in a proce-
dure means that this computation is currently placed
at all the paths leading to p and if this computation is
placed at p, it will have the same result as the last com-
putation on any of the paths. Partial availability is a
weaker property, which means that the computation is
currently placed on at least one control flow path lead-
ing to p and if it is placed at p, it will have the same
result as the last computation on at least one of the
paths. A computation placed at p is partially redun-
dant if it is partially available at p.

Next, for each basic block in the program, proper-
ties PPIN (possible placement at the beginning) and
PPOUT(possible placement at the end) are computed.
PPIN reflects the fact that it i1s feasible and profitable
to hoist the computation occuring in this node (or a
computation which has been hoisted into this node).
PPOUT indicates that it is safe to place the computa-
tion at the exit of this node. INSERT determines if a
computation is to be inserted at the end of the a block
as a result of the optimization and DEL determines if
the computation in this node has become redundant
and can be deleted.

4 Program Representation

4.1 Definition

We assume that a variable is either global to the entire
program or is local to a single procedure. We further



assume that all parameters are passed by reference. We
do not consider the possibility of aliasing in our discus-
sion.

Each procedure has one or more return statements,
which end the invocation of this procedure. We define
a basic block to consist of consecutive statements in
the program text without any procedure calls or return
statements, and no branching except at the beginning
and end. A procedure can then be partitioned into a
set of basic blocks, a set of call statements and a set of
return statements. Each call statement is a call site of
the procedure invoked there. In general, a procedure
can be invoked at several call sites in the program.

For the purpose of performing interprocedural PRE
on the full program, we have defined the following rep-
resentation. Intuitively, the idea is to construct blocks
of code within each procedure. A block of code com-
prises of basic blocks which do not have any call state-
ment between them. In the directed graph we define
below, each edge e corresponds to a block of code B(e).
The nodes of the graph help clarify the control flow re-
lationships between the blocks of code.

Full Program Representation: (FPR) is a di-
rected multigraph G = (V| E), where the set of nodes
V consists of an entry node and a return node for each
procedure in the program. For procedure 7, the entry
node is denoted by s; and the return node is denoted
by r;. Edges are inserted in the following cases:

1. Procedures ¢ and j are invoked by procedure k at
call sites cs; and ess respectively and there is a path in
CFG of k from c¢s; to cso Which does not include any
other call statements. Edge (r;, s;) exists in this case.
This edge is said to be assoaated] with call site cs; at
its start and with call site csy at its end. The block of
code B(e) consists of basic blocks of procedure k& which
may be visited in any control flow path p from c¢s; to
¢Sy, such that the path p does not include any other
call statements.

2. Procedure i invokes procedure j at call site e¢s and
there is a path in CFG of ¢ from the start node of
procedure 7 to ¢s which does not include any other call
statements. In this case, edge (s;, s;) exists. This edge
is said to be associated with call site cs at its end. The
block of code B(e) consists of basic blocks of procedure
¢ which may be visited in any control flow path p from
start of ¢ to cs, such that the path p does not include
any other call statement.

3. Procedure j invokes procedure i at call site e¢s and
there is a path in CFG of j from call site ¢s to a return
statement within procedure j which does not include
any other call statements. In this case, edge (75, ;) ex-
ists. This edge is said to be associated with call site cs
at its start. The block of code B(e) consists of basic
blocks of procedure j which may be visited in any con-
trol flow path p from ¢s to a return statement of j, such
that the path p does not include any call statements.

4. In a procedure ¢, there is a possible flow of control
from start node to a return statement, without any
call statements. In this case, edge (s;, ;) exists. The

Program Foo
a=1
Doi=1, 100
Call P(a,b) ...csl
Call Q(¢) ...cs2
Enddo
Call Q(a) ...c83
Call P(a,c) ...cs4
if cond then
Call Q(a) ...c8H
Endif
Call R(a,c) ...csb
End

Procedure P(x,y)
Sched(x,y)
..other computations ..

End

Procedure Q(z)
7= ...

End

Procedure R(y,z)
Sched(y,z)
..other computations ..

End

Figure 2: An Example Program. A call site number is
marked for each call site

block of code B(e) consists of basic blocks of procedure
1 which may be visited in any control flow path p from
start of 7 to a return statement in 7, such that the path
p does not include any call statements.

An example program and its FPR are shown in Fig-
ures 2 and 3 respectively In Figure 3, the blocks
of codes B(4), B(9) and B(11) comprise of all basic
blocks in procedures P, Q and R respectively. Block of
code corresponding to all other edges comprise of basic
blocks from the main procedure. e.g. B(1) comprises
of statement “a = 1” and the loop header, B(2) com-
prises of the end of the do loop and the loop header.

A block of code is a unit of placement in our anal-
ysis, 1.e. we initially consider placement only at the
beginning and end of a block of code!. Note that a ba-
sic block in a block of code may or may not be visited
along a given control flow path from source to sink of
the edge, and similarly, a basic block may belong to
several blocks of code. This is taken into account dur-
ing intraprocedural analysis done for determining final
local placement, which we discuss in Section 5.5.

The availability of the following information is as-
sumed during our interprocedural analysis phase. For
each edge in F'PR, we compute all the variables which
are modified in the block of code corresponding to this
edge. This information is used by the TRANS, func-

1This is different from intraprocedural PRE in which place-
ment is considered at beginning and end of node (basic block) of
the graph.



Procedure Entry Node

Procedure Return Node

- J

Figure 3: FPR for Program in Left. Edge numbers and
call sites at which edges start/end (whenever applica-
ble) are marked in the Figure.

tion defined later. For each procedure in the program,
we also compute the list of variables modified by the
procedure or any of the procedures invoked by this pro-
cedure. In absence of aliasing, this information can
easily be computed by flow-insensitive interprocedural
analysis in time linear to the size of call graph of the
program [7]. This information is used by the CMOD,,
function defined later.

4.2 Candidates for Placement

We consider only the placement of pure functions. A
pure function takes a number of parameters as input
and produces a single result or output, without any
side-effects or change in the value of inputs. In gen-
eral, any subexpression can also be viewed as a pure
function. In practice, one may want to focus on place-
ment of only certain high cost functions, like commu-
nication statements and communication preprocessing
statements in the case of distributed memory compila-
tion.

A particular invocation of a pure function 1s consid-
ered for hoisting out of the procedure only if none of the
parameters of the pure function is modified along any
path from the start of the procedure to this invocation
of the pure function and the invocation of pure function
is not enclosed by any conditional or loop. (This can
be generalized by considering slice of the pure function,
but we do not discuss this possibility here). A particu-
lar invocation of a pure function is referred to as can-
didate if 1t 1s considered for interprocedural placement.
We refer to the list of parameters of this pure function
as the list of influencers of the candidate.

5 Interprocedural Partial Redundancy
Elimination

We now present the IPRE scheme we have developed.
We use the terms edge and the block of code corre-
sponding to it interchangeably in this section.

Given the full program representation we described
in Section 4, the major difficulties in applying data
flow analysis for PRE are:

1. A procedure having a candidate for placement (or
a procedure invoking such a procedure) may be invoked
at multiple call sites with different sets of actual pa-
rameters, leading to different sets of influencers. (e.g.
in the code shown in Figure 2, procedure P is invokes
at two call sites with different parameters). While con-
sidering placement of the candidate outside the pro-
cedure it is originally placed, it must be ensured that
only the computation of the candidate with correct set
of influencers is visible during each invocation of the
procedure.

2. For placement of a candidate at a certain point in
a certain procedure, besides safety and profitability of
the placement, 1t is also required that all influencers
of the candidate are visible inside that procedure, i.e.
each of them is either a global variable, a formal pa-
rameter or a local variable. (e.g. in the code shown in
Figure 2, no placement will be possible inside proce-

dure Q).
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Figure 4: Lattice used in the data flow problems

3. If a procedure is invoked at several call sites in
the program, our program representation shows paths
from edges ending at a call site calling this procedure to
the edges starting at other call sites for this procedure.
(e.g. in Figure 3 there is a path from edge 6 to edge 9
to edge 2. Edge 6 ends at call site csh whereas edge 2
starts at call site cs2). These paths are never taken and
the data flow analysis must not lose accuracy because
of such paths in the graph.

4. Transparency of blocks of code cannot be deter-
mined before starting the solution of data flow equa-
tions, since it is not known what are the local variables
which need to be unmodified for the propagation of
data flow information.

5.1 Lattice for Data Flow Problems

We assume that the result of the computation of a can-
didate is always placed in a global store, i.e. it is not
passed along as an actual parameter at the call sites.
Consider a procedure p which has a candidate C for
placement and is invoked at call sites ¢s; and csy with
different sets of parameters. Our scheme cannot place
this candidate at a point from which there are paths
leading to ¢s; and css and these paths do not have
any further computation of C. This restriction must be
incorporated while propagating availability and while
considering locations for possible placement (PPIN and
PPOUT). If a candidate is available or if its placement
is possible, it is always with a list of influencers, which
will be used in placing the computation (i.e. if it is
decided that the candidate is to be placed at this loca-
tion).

For this purpose, we use a three-level lattice for the
data flow problems. The lattice is shown in Figure 4.
Each middle element in the lattice refers to a list of
influencers, i.e. Infl; = < vy,vs,...,v, >. We define
the following functions on this lattice: V and A are
standard binary join and meet operators. For ease in

presenting our data flow equations, we use \/ and A as
confluence join and meet operators i.e. for computing
join and meet respectively over a set of elements. — 1s
a unary operator which returns T when applied to a
list of influencers and L when applied to T or L. W is
a binary non-commutative operators whose definition
is as follows:

TwWax =T
Infl; W 2 = Infl;
Ll wWxr ==

5.2 Terminology

We further use the following terms to describe the data
flow equations in this paper. We had defined our pro-
gram represenation earlier in Section 4. In our Full
Program Representation (FPR), the entry node corre-
sponding to the main procedure is referred to as BEGIN
node in the graph and similarly, the return node cor-
responding to the main is referred to as the END node
in the graph.

The set of procedure return nodes is represented by
R and the set of procedure entry nodes is represented
by £. Consider an edge ¢ = (v,w). The source node
of e (i.e. the node v) 1s also referred to as So(e) and
the sink node of e (i.e. the node w) is also referred to
as Si(e). We use pred(e) to refer to the set of edges
whose sink node is v. We denote by succ(e) the set of
edges whose source node is w.

If the sink of the edge e is a procedure entry node,
then the call site with which the edge e is associated at
its end is denoted by Si'(e). We use succ(e) to refer
to the set of edges which are associated with the call
site Si'(e) at their start. Alternatively, if the source
of the edge e is a procedure return node, then the call
site with which the edge e is associated at the start
is denoted by So’(e). We refer by pred'(e) the set of



edges which are associated with the call site So'(e) at
their end.

Consider any edge e whose source is a procedure en-
try node. The set cobeg(e) comprises of edges whose
source 1s the same as the source of edge e. If an edge
e has a procedure return node as the source and if es
is the call site with which the edge e is associated at
its start, then the set cobeg(e) comprises of the edges
which are associated with the call site s at their start.

Next, consider any edge e whose sink is a procedure
return node. The set coend(e) comprises of the edges
whose sink 1s the same as the sink of the edge e. If an
edge e has a procedure entry node as the source and if
cs 1s the call site with which the edge e is associated at
its end, then the set coend(e) comprises of edges which
are associated with the call site e¢s at their end.

The sets pred(e), pred'(e), succ(e), succ'(e), cobeg(e)
and coend(e) for edges in the Graph shown in Figure 3
are shown in Figure 5.

At any call site cs, the set of actual parameters
passed is ap.s and the j'* actual parameter is ap.s(j).
The set of formal parameters of the procedure invoked
at the call site ¢s is fp.s. (Clearly, this set is the same

for all call sites which invoke this procedure). The j*
formal parameter is denoted by fp.s(j). The set of
global variables in the program is gv.

5.3 Availability and Partial Availability

The equations for computing availability and partial
availability are given in Figure 7. In computing avail-
ability, all unknowns are initialized with T. This state
means that the candidate may be available, but we do
not yet know what will be the list of influencers if it
is available. Bottom element in the lattice means that
the candidate is not available.

Initially, the local data flow property ANTLOC(?)
of the edges in the graph is determined. (For a block
of code, ANTLOC means that there is a definition of
this candidate inside the block.) In Section 4.2, we had
discussed how procedures are marked with candidates
for placement. Consider an edge 7 whose source is a
procedure entry node s,. If a candidate C is marked
for placement from the procedure p with the list of
influencers Infl., we set

ANTLOCc(i) = Infl,

In all other cases, ANTLOC(?) is set to L.

The following functions are used in our data flow
equations. TRANS,[Infl;] of an edge e in the graph re-
turns the list Infl; if none of the influencers in the list
Infl; 1s modified in the block of code associated with
this edge. If any of these influencers is modified, this
function returns L. TRANS.[T] and TRANS,[L] are
defined to be T and L respectively. For a call site cs
which invokes procedure p, CMOD[Infl;] returns the
list Infl; if none of the influencers in the list Infl; 1s mod-
ified by the procedure p (or by a procedure invoked by
p). Otherwise CMOD;[Infl;] returns L. CMOD,[T]
always returns T and CMOD,[L] always returns L.
OCR¢/(cs) determine if the procedure p (or any proce-
dure invoked by p) includes any occurrence of the can-
didate C. (Clearly, this will be the same for all call sites
which call procedure p). Whenever there is no scope for
ambiguity, we drop the subscript C. OCR(cs) returns
T or true when there is an occurrence of the candidate

in the procedure p and L (or false) when there is no
occurrence of the candidate at procedure p.

For renaming of formal parameters at call sites, we
define two functions RNM1,; and RNM2., (see Fig-
ure 6). Suppose a candidate is available at a call site
cs with a list of influencers Infl;. The function RNM1,,
determines if this candidate can be available inside the
procedure invoked at ¢s, and if so, with what list of in-
fluencers. If any of influencers is neither a global vari-
able nor an actual parameters at c¢s, RNM1,, returns
1, otherwise, each actual parameter in the list is re-
placed by corresponding formal parameter. RNM1,.,[T]
and RNM1.4[L] are defined to be T and L respectively.
Suppose a candidate is available at the return of a pro-
cedure and let ¢s be one of the call sites which invoke
this procedure. RNM2.s; determines if this candidate
will be available after the entry of the edges which start
at call site es. If any of the influencers of the candi-
date inside the procedure is neither a global variable,
nor a formal parameter, then RNM2., returns L. Oth-
erwise, each formal parameter is replaced by the actual
parameter at call site cs.

The equations for propagation of availability can be
explained as follows (see Figure 7). Consider an edge
e whose source is a procedure entry node. A candi-
date will be available at the entry of this edge e if the
following holds: This candidate should be available at
the exit of any edge p which ends at this procedure
entry node (i.e. p € pred(e)), and furthermore, after
renaming (i.e. applying RNM1g;:(,)), the list of influ-
encers with which the candidate is available should be
the same for all such edges.

If an edge e has a procedure return node So(e) as
source, e is associated with call site So’(e) at its start.
The set pred(e) comprises of edges whose sink is node
So(e) and the set pred’(e) comprises of edges which are
associated with the call site So’(e) at their end. Note
that even if the candidate is available at the end of all
the edges p’ (p’ € pred’(e)) and none of the influencers
i1s modified inside the procedure, the candidate may not
be available inside the procedure. This can happen for
two reasons, all influencers of the candidate may not
be visible inside the procedure, or the procedure may
be invoked at multiple call sites and the candidate may
not be available at other call sites.

If there is no definition of the candidate in the pro-
cedure (CMODg,(.) does not return L), then AVIN(e)
is determined by AVOUT at the edges belonging to
pred’(e). If there is any definition of the candidate in
the procedure, then AVIN(e) is determined by AVOUT
at the edges belonging to pred(e). Note that this step
preserves calling context of the procedure, i.e. accu-
racy in data flow analysis is not lost if a procedure 1is
invoked at multiple call sites.

Equation 4 determines availability of a candidate at
the end of an edge or block of code. If there is a com-
putation of the candidate in the edge with list of influ-
encers Infl;, then AVOUT 1s Infl; if none of the influ-
encers is modified along this edge. If there is no com-
putation inside the edge (i.e. ANTLOC is L), then the
computation is available at the exit of the edge only if
it is available at the entry of the edge and if none of
the influencers is modified along the edge.

In computing partial availability, all unknowns are



e | pred(e) | pred’(e) | succ(e) | succ’(e) | cobeg(e) | coend(e)
T - - 1 5 T T2
2 9 ) 4 ) 2.7 1,2
3 9 7 4 6,10 3 3
4| 123 ) 5,6,10 : 4 4
5 4 1,2 9 2,7 5 5
6 4 3 9 8 6,10 6
7 9 5 9 3 2,7 7
8 9 6 11 12 8 8,10
9 5,6,7 - 2,37 - 9 9
10| 4 3 11 12 6,10 8,10
11 8,10 - 12 - 11 11
12 11 8,10 - - 12 12

Figure 5: pred(e), pred'(e), suce(e) and succ’(e) sets for Graph in Figure 3
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Figure 6: Renaming functions

initialized with L. The equations for computing par-
tial availability (Equations 5 and 6) are very similar
to corresponding equations for computing availability,
except that join operator is used instead of meet oper-
ator.

The role of partial availability is to suggest profitabil-
ity of transformations, it does not effect correctness and
safety of transformations. Partial availability does not
always guarantee that redundant code motion will not
occur. We have therefore, used a simple method for de-
termining partial availability, which may not always be
accurate. Inaccuracy comes in for two reasons. CMOD
and TRANS, functions return L whenever one of the
influencers 1s modified in one of the basic blocks, this
basic block may not occur in all the control flow paths
taken. Secondly, calling context is not always preserved
in propagating partial availability information. Precise
computation of partial availability can be expensive, it
will require a detailed representation like Myer’s Super-
Graph [22] and use of stacks and/or graph reachability
for preserving calling context [23]. Our computation
of partial availability still allows loop invariant code
motion and redundant computation elimination. Some
other optimizations which can be obtained by suppres-
sion of partially redundant computations may not be
achieved because of this simple solution.

5.4 Data Flow Analysis for Placement

The data flow equations for determining placement of
computations are shown in Figure 8. We briefly explain
some of the key terms in these equations.

In computing PPIN in the intraprocedural case, the
product term PPOUT + AVOUT ensures availability
of the candidate at the entry of the node in the op-
timized program. PPOUT means that the candidate
will be available as a result of the placements deter-
mined by the scheme. AVOUT means that the candi-
date is available in the original program. In the inter-
procedural case, the same candidate can be available
with more than one list of influencers. In computing
PPIN in the interprocedural scheme, we use the term
PPOUT W AVOUT (Equation 8). If PPOUT is set
to a list of influencers Infl; then, after the placement
determined by the scheme, the candidate will be avail-
able with set of influencers Infl;, even if 1t is available
with a different list of influencers before the optimized
placements. If PPOUT is 1 and AVOUT is Infl;, then
the candidate will be available with the same set of in-
fluencers Infl; even after the placement.

The rational behind the equation for determining
INSERT is as follows. We decide to insert a candidate
with the set of influencers Infl; at the end of a block of
code e, if PPOUT (e) is Infl;, AVOUT(e) is not Infl; and
either PPIN(e) is not Infl; or one of the influencers in
the list Infl; is modified in this block of code. The term



1 if So(e) is BEGIN node
/\ red(e’ (RNMISZ'/( ) [AVOUT(]))] ) if 50(6) eé&
AVIN(e) = ciESDsﬁ,fe)[/\p,emd,’}e) AVOUT(p')] if (So(e) € R) A (= OCR(So'(e))) (3)
RNMZSOI(e)[/\pEpTEd(e) AVOUT(p)] if (So(e) € R) A (OCR(S0'(e)))
AVOUT(e) = /\cecoend(e) ( TRANS.[ANTLOC(¢) W AVIN(¢)]) 4)
1 if So(e) is BEGIN node
Vo epred(e) ( RNM1g;) [PAVOUT(p)]) 1f So(e) €
PAVIN(O) = { Chibpac. IV, epre dp( JPAVOUT(p)] it (Solc) € R) A (=OCR(S(e))) (3
RNMZSO’(@)[vpepred(e) PAVOUT(p) ] 1f (So(e) € R) A (OCR(So'(e)))
PAVOUT(e) = TRANS.[ANTLOC(e) & PAVIN(e)] (6)
Figure 7: Data Flow Equations for Availability and Partial Availability
1 if Si(e) is END node
B /\sesucc(e) (RNM2g,:(5) [PPIN(s)]) if Si(e) €
PPOUT(e) = CMODsi(6)[ A, suce(e) PPIN(S)] if (Si(e) € ) (~OCR(S7(e))) (7)
RNMlSi’(e)[/\sesucc(e) PPIN(s)] if (Si(e) € &) A (OCR(Si'(e)))
TEMP1(:) = /\cecobeg(e) (ANTLOC(¢) W TRANS.[PPOUT(¢)])
TEMP2(:) = PPOUT(:) ¥ AVOUT(%)
1 if So(e) is BEGIN node
PAVIN(e) A TEMPI1(e) A
pepred(e) ( RNMISZ'/(p) [TEMPQ(])) ] ) if SO(@) c £
PPIN(e) = PAVIN(e) A TEMPI1(e) A . (8)
( (CMODSO’(e)[/\p'epred’(e) TEMP2(p')]) if (So(e) € R) A (= OCR(S0'(e)))
PAVIN(e) A TEMPI(e) A
( RNM2g,(c )[/\pepred (€) TEMP2(p) 1)) if (So(e) € R) A (OCR(Sd'(e)))
INSERT(e) = PPOUT(e) A =(PPOUT(e) A AVOUT(e)) A (9)
(=(PPIN(e) APPOUT(e)) V-TRANS.[PPOUT(e)])
DEL(e) = ANTLOC(e) A PPIN(e) (10)

Figure 8: Data Flow Equations for Placement

- (PPOUT(e) A AVOUT(e)) will return T whenever
PPOUT(e) and AVOUT(e) are not set to the same list
of influencers Infl;.

In determining placement (PPIN and PPOUT), we
preserve the calling context of the procedures by using
a simple method, the same that we used for computing
availability. It can be shown that the safety of place-
ment is maintained through this method.

Lemma 1 Consider any procedure p such that the pro-
cedure p or any of the procedures invoked by it do not
have any occurrence of the candidate C. Let cs be one

of the call sites which call procedure p. Let PPIN be
Infl; for any edge starting at call site cs and, further,
let there be no modification to any of the influencers in
the call to procedure p. Then, no placement of the can-
didate will be done in any block of code inside call to
procedure p.

The initial value of the PPIN and PPOUT are set to
T. The desired solution is the largest solution and can
be found by iterative method.



5.5 Final Local Placement

We have so far considered the block of code associated
with a single edge of FPR as the unit of placement.
The final placement of the candidates which have to be
inserted depends upon further intraprocedural analysis
and is not necessarily at the end of blocks of code.

Consider an edge e for which INSERT(e) is true. A
number of edges end the same procedure return node or
the same call site as the edge e and INSERT may not be
true for all of them. Since all these edges have the same
succ(e) and succ’(e) sets, they have the same value of
PPOUT(e) and AVOUT(e). Therefore, the difference
in the value of INSERT(e) comes because of the differ-
ence in the value of PPIN(e) or TRANS.[PPOUT(e)].
For determining the final placement, the control flow
graph is traversed backwards from the call site ¢s or the
procedure return statement. Along any such traversal
path, we identify the first basic block which belongs to
the blocks of code for which INSERT is true but does
not belong to the blocks of code for which INSERT is
not true. Let b; be such a basic block and let b5 be its
successor which belongs to the block of code for which
INSERT is true. A new basic block is inserted between
the basic blocks b; and b5 and the candidate is inserted
in this new basic block. It can be shown that the fol-
lowing property is maintained by this scheme.

Lemma 2 No wnsertion is made in any block of code

for which INSERT s L.

Using the above two lemmas, the correctness and
safety properties of the interprocedural scheme can be
established in the same way as the correctness and
safety of the original intraprocedural scheme [20].

Theorem 1 (Correctness) After insertion of new
computations, the computation of the candidate C be-
comes redundant in an edge satisfying ANTLOC, =
Infl; and PPIN. = Infl;.

Theorem 2 (Safety) Consider any edge of FPR in
which a new computation C 1s inserted. Fvery path
starting from sink of this edge includes a computation
which will be deleted, before including any edge in which
a new occurrence of this computation will be added.

The solution of data flow properties for the program
shown in Figure 2 is shown in Figure 9. The optimized
program is shown in Figure 10.

6 Discussion
6.1 Effectiveness of the Scheme

We have implemented a preliminary version of our
scheme using the existing Fortran D compilation sys-
tem developed at Rice University [17] as the neces-
sary infrastructure. We studied the effectiveness of our
scheme in compiling an Euler solver for unstructured
grids [8], a code which accesses data through indirec-
tion arrays in parallel loops. The existing compiler for
irregular applications [9, 14] generated calls to PARTI
routines for communication preprocessing and collec-
tive communication [24], but did not perform any in-
terprocedural placement of these statements.

The performance achieved by the compiled code (be-
fore interprocedural optimizations) and the code af-
ter interprocedural optimizations is presented in Fig-
ure 11. The experimental results show that interproce-
dural placement of communication preprocessing state-
ments is a must for obtaining reasonable performance.
When the program is run on a small number of proces-
sors, the communication cost is small and therefore, the
performance difference made by interprocedural place-
ment of communication statements is small. However,
when the same data is distributed over a large number
of processors, the communication time becomes a sig-
nificant part of the total execution time of the program.
Then, performing interprocedural placement of com-
munication statements also makes a substantial differ-
ence on the total execution time of the program.

6.2 Cost of the Scheme

There are two issues in evaluating the cost of our
scheme: the number of edges in the graph constructed,
and the number of iterations required for data flow
equations to be solved. In the worst case, each proce-
dure may contribute edges quadratic in the number of
statements in the program. In practice, we expect this
to be much smaller than the number of basic blocks in
full program, e.g. the Euler code we experimented with
had 9 procedures, and a total of 1400 lines of code. The
resulting graph had 16 edges, whereas the total number
of basic blocks in the program was 117. In future, we
plan to do this measurement for a number of different
codes.

The number of iterations required for data flow equa-
tions to converge is, in the worst case, proportional to
the number of edges in the graph. If the number of
egdes in the graph is small, the time required for solu-
tion will be small.

7 Related Work

We are aware of two efforts on performing interproce-
dural partial redundancy elimination. Morel and Ren-
voise briefly discuss how their scheme can be extended
interprocedurally [21]. Their solution is hueristic in
nature, and no formal details are available for their in-
terprocedural scheme. Their work is restricted to the
programs whose call graph is acyclic. They also do
not consider the possibility that the procedure having
a candidate for placement may be invoked at multiple
call sites with different set of parameters and do not
maintain accuracy of solutions when procedures are in-
voked at multiple call sites.

Knoop et al. extend a scheme for performing ear-
liest possible code motion interprocedurally [18]. The
main limitation of their work is that if any of the influ-
encers of a candidate is a formal parameter, then the
candidate is not considered for placement outside pro-
cedure boundary (since no renaming of influencers is
done). In the example presented in this paper, as well
as in the Euler code we used for our experiments, their
scheme will not perform any code motion. They do
not consider the possibility of using any compact rep-
resentation for the full program. Also, we believe that
our effort is the first one to report an implementation
and application of interprocedural partial redundancy
elimination. In our earlier work, we had outlined using
interprocedural partial redundancy elimination for dis-



Edge AVIN AVOUT | PAVIN | PAVOUT | PPOUT PPIN DEL INSERT
1 1 1 1 L < a,b> 1 1 <a,b>
2 <a,b> L <a,b> <a,b> <a,b> | <a,b> 1 L
3 1L 1L 1L 1L < a,c> 1L 1L < a,c>
4 L <z,2y> | <7T,¥> <z, y> <z2y> | <zTyy> | <zT,Yy> L
5 <a,b>| <a,b> | <a,b> | <ab> | <a,b> | <a,b> L 1
6 <a,c> | <a,c> | <a,c> <a,c> 1 < a,c> 1 1
7 <a,b> | <a,b> | <a,b> | <a,b> | <a,b> | <a,b> 1 1
8 1L 1L 1L 1L < a,c> 1L 1L < a,c>
9 €L €L €L L €L €L €L €L
10 <a,c> L <a,c> <a,c> <a,c> | <a,c> 1 L
11 1L <y,z> | <y, z> <y, z> <y,z> | <y,z> | <y,z> 1L
12 <a,c> | <a,c> | <a,c> <a,c> 1L <a,c> 1L 1L

Figure 9: Solution of Data Flow Properties for the Graph

Program Foo
a=1
Sched(a,b)
Doi=1,100

Call P(a,b)
Call Q(¢)

Enddo

Call Q(a)

Sched(a,c)

Call P(a,c)

If cond then
Call Q(¢)
Sched(a,c)

Endif

Call R(a,c)

End

Procedure P(x,y)
..other computations ..

End

Procedure Q(z)
7= ...

End

Procedure R(y.z)
..other computations ..

End

Figure 10: Optimized Version of Program. Note that further Intraprocedural Analysis is required at call sites csl

and cs6 to determine final placement

tributed memory compilation [1], but no formal details
of the scheme or empirical evaluation was presented.

We compare our work with efforts on other flow-
sensitive interprocedural problems. Several different
program representations have been used for different
flow-sensitive interprocedural problems. Myer has sug-
gested concept of SuperGraph [22] which is constructed
by linking control flow graphs of subroutines by insert-
ing edges from call site in the caller to start node in
callee. The total number of nodes in SuperGraph can
get very large and consequently the solution may take
much longer time to converge. Several ideas in the de-
sign of our representation are similar to the ideas used
in Callahan’s Program Summary Graph [6] and Inter-
procedural Flow Graph used by Soffa et al. [16]. FIAT
has been introduced as a general framework for per-
forming interprocedural analysis [13], but is more tar-
geted towards flow-insensitive problems. Interval based
approach for solving interprocedural data flow equa-
tions has been investigated in [4]. Recompilation in a
compiler performing interprocedural analysis has been
investigated in [5].

8 Conclusions

In this paper we have addressed the problem of per-
forming partial redundancy elimination interprocedu-
rally. This problem was initially motivated by the
problem of placement of communication preprocess-
ing statements in distributed memory compilation. We
have developed an interprocedural partial redundancy
elimination (IPRE). Our algorithm is applicable on ar-
bitrary recursive programs.
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Appendix
A.1 Intraprocedural Partial Redundancy
Elimination

The first partial redundancy elimination scheme was
presented by Morel and Renvoise [20]. This scheme has
been further extended and refined by Dhamdhere [10
Drechsler [11], Knoop et. al. [19] and Sorkin [25
The details of interprocedural redundancy elimination
we present are derived from the intraprocedural node
based method of Dhamdhere [10], also referred to as
Modified Morel Renvoise Algorithm (MMRA). The
data flow equations used in the scheme are presented in
Figure 12. The terms used in the data flow equations
are explained below.

Local data flow properties:
ANTLOC(7): Node 7 contains an occurrence of com-
putation C not preceded by a definition of any of its
operands.
COMP(z): Node ¢ contains an occurrence of compu-
tation C not followed by a definition of any of its
operands.
TRANS(7): Node 7 does not contain a definition of any
operand of computation C.

)

Global data flow properties:

AVIN(7)/AVOUT(i): Computation C is available at the
entry/exit of node 1.

PAVIN(:)/PAVOUT(i): Computation C is partially
available at the entry/exit of node i.
PPIN(¢)/PPOUT(7): Computation of C may be placed
at entry/exit of node 1.

Hpepred(i)AVOUT(P) otherwise

AVIN(i) = {

AVOUT(i) = COMP(i) + TRANS(i).AVIN(s))

false if ¢ is entry block

PAVIN(:) = { Zpepred(i)PAVOUT(p) otherwise

PAVOUT(i) = COMP(i) + TRANS(i).PAVIN(i)

PPIN(i) = PAVIN(i). (ANTLOC(i) +
TRANS(i) . PPOUT(i))

Hpepmd(i)(PPOUT(p) + AVOUT(p)).

if 1 1s exit block

. false
PPOUT(:) = { HsGsucc(i)PPIN(s)) otherwise

INSERT(i) = PPOUT(i) . ~AVOUT(i).
(=PPIN(i) + —~TRANS(s))

DEL(i) = ANTLOC(i).PPIN(i)

Figure 12: MMRA scheme for Intraprocedural Partial
Redundancy Elimination

DEL(i): Occurrence of C in node i is redundant
INSERT(7): A computation of C should be placed at
the exit of node 1.

We now briefly explain the rational behind the key
equations. A computation is available at the entry of a
basic block if it is available at the exit of all the prede-
cessor basic blocks. A computation is available at the
end of a basic block if 1t is available at the beginning
of the basic block and none of the operands are mod-
ified in the basic block, or, alternatively, there is an
occurrence of this computation in this basic block, not
followed by any definition of the operands. A compu-
tation is partially available at the entry of a basic block
if 1t 1s partially available at the exit of at least one pre-
decessor block. The equations for placement can be ex-
plained as follows. In computing PPOUT, the [] term
ensures safety in placing an expression at the exit of the
node. The [] term in computing PPIN ensures avail-
ability of the expression at the entry of this node in
the optimized program. The term PAVIN determines
the profitability of hoisting a computation out of this
node. This term avoids redundant code hoisting for al-
most all cases for any real program, however, it does
not guarantee. In the original MMRA scheme [10], an
additional term is used to further prevent redundant
code hoisting, this term still does not guarantee that
no redundant code hoisting occurs. For simplicity, we
do not include this additional term in our presentation.

false if ¢ is entry block



