Automatic Data Layout for
Distributed Memory Machines

Ulrich Kremer

CRPC-TR95559-S
October 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

RICE UNIVERSITY
Automatic Data Layout

for Distributed Memory Machines
by
Ulrich Kremer
A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
APPROVED, THESIS COMMITTEE:

Ken Kennedy, Noah Harding Professor
Computer Science
Rice University

John Mellor-Crummey, Faculty Fellow
Computer Science
Rice University

Keith Cooper, Associate Professor
Computer Science
Rice University

Robert Bixby, Professor
Computational and Applied Mathematics
Rice University

Dan Sorensen, Professor
Computational and Applied Mathematics
Rice University

Houston, Texas

October, 1995

Automatic Data Layout
for Distributed Memory Machines

Ulrich Kremer

Abstract

The goal of languages like Fortran D or High Performance Fortran (HPF) is to provide
a simple yet efficient machine-independent parallel programming model. Besides the
algorithm selection, the data layout choice is the key intellectual challenge in writing
an efficient program in such languages. The performance of a data layout depends on
the target compilation system, the target machine, the problem size, and the number
of available processors. This makes the choice of a good layout extremely difficult for
most users of such languages.

This thesis discusses the design and implementation of a data layout selection
tool that generates Fortran D or HPF style data layout specifications automatically.
Because the tool is not embedded in the target compiler and will be run only a few
times during the tuning phase of an application, it can use techniques that may be
considered too computationally expensive for inclusion in today’s compilers.

The proposed framework for automatic data layout selection builds and examines
explicit search spaces of candidate data layouts. A candidate layout is an efficient
layout for some part of the program. After the generation of search spaces, a single
candidate layout is selected for each program part, resulting in a data layout for the
entire program. A good overall data layout may require the remapping of arrays
between program parts. A performance estimator based on a compiler model, an
execution model, and a machine model is used to predict the execution time of each
candidate layout and the costs of possible remappings between candidate data layouts.
The machine model uses the novel training set approach which determines the costs
of arithmetic operations and simple communication patterns.

In the proposed framework, instances of NP-complete problems are solved during
the construction of candidate layout search spaces and the final selection of candidate

layouts from each search space. Rather than resorting to heuristics prematurely,

the framework capitalizes on state-of-the-art 0-1 integer programming technology to
compute optimal solutions of these NP-complete problems.
A prototype of the data layout assistant tool has been implemented. Experiments

indicate that good data layouts can be determined efficiently.

Acknowledgments

I 'am very grateful to my thesis advisor Ken Kennedy for his encouragement and advice
all through my graduate career. I feel privileged that he gave me the opportunity to
work with him in an excellent research environment. I wish to thank my other thesis
committee members Robert Bixby, Keith Cooper, John Mellor-Crummey, and Dan
Sorensen for their time and support. In particular, John was always willing to listen
to ideas and gave me important guidance, and Bob provided me with insights into
the world of 0-1 integer programming. I also would like to thank Geoffrey Fox who
showed me what scientific computing is really all about.

Throughout graduate school I have been fortunate to meet and enjoy the com-
pany of some excellent researchers and good friends. Vasanth Bala, Jaspal Subhlok,
Marina Kalem, Willy Zwaenepoel, Kathryn McKinley, Mary Hall, Ervan Darnell,
Paul Havlak, Alan Carle, and Laura Arbilla gave me much needed advice particu-
larly during my first years at Rice. I will always remember the basketball games in
the unairconditioned Rice gymnasium (you had to keep running if you wanted to stay
cool) or the late night programming sessions just before an upcoming site visit (this
was the time when I started to appreciate the caffeine content of a Dr.Pepper soda).

Chau-Wen Tseng, Seema Hiranandani, Ravi Mirchandaney, Jerry Roth, René
Rodriguez, Mike Paleczny, Kathi Fletcher, Reinhard von Hanxleden, Nat MclIntosh,
Lisa Thomas, Vikram Adve, Sandhya Dwarkadas, Alan Cox, Dejan Mircevski, Nenad
Nedeljkovic, Ajay Sethi, Debbie Campbell, Kevin Curetonk, Chuck Koelbel, (Mootaz)
Elmootazbellah Elnozahy, Pete Keleher, Karim Esseghir, John Carter, Joe Warren,
and Marcelo Ramé became fellow graduate students or colleagues a few years later. In
particular I would like to thank Chau-Wen and Seema for all the compiler discussions
and suggestions regarding places to go for lunch, Reinhard and Nat for being great
office mates, the ’59—er club (Jerry, René, and Mike) for sharing my age bracket,
Debbie for proof reading drafts of papers written in nearly perfect Anglisch, Kevin for
managing the D System and helping me out so many times during my implementation

work, Lisa for not contributing any research ideas to my thesis and keeping my spirits

up, and Joe for many competitive tennis matches. All these people made my life so
much more enjoyable. Thanks a lot, guys!

I also would like to mention a very important institution, the graduate student
deli and bar at Rice commonly referred to as Valhalla. It provided me with my staple
food, the Valhallawich, a sandwich immune to changes in quality and consistency over
the years (a Valhallawich is arguably the bottom element in the lattice of sandwiches).

My deepest gratitude, however, is reserved for those to whom this thesis is dedi-
cated: my parents and my wife Devyani. Devyani had to endure many of my thesis
induced mood swings, ranging from workaholic to high-performance couch potato.

Thank you very much for sticking with me and helping me through all this.

For Mom, Dad, and Devyani

Abstract

Contents

Acknowledgments

List of Illustrations

Introduction

1.1 Background

1.2 Thesis e

1.3 Contributions

1.4 Overview. e

Background

2.1 HPF Data Layout Directives

2.2 0-1 Integer Programming

Related Work

3.1 Automatic Data Layout
3.1.1 Static Data Mappings
3.1.2 Static and Dynamic Data Mappings

3.2 Performance Estimation 00 0L

Framework for Automatic Data Layout

4.1 ADI Example Program o0

4.2 Program Partitioningo oo

4.3 Layout Search Spaces Construction
4.3.1 Alignment Analysis Lo oo
4.3.2 Heuristics for Alignment Analysis
4.3.3 Distribution Analysis o0
4.3.4 Heuristics for Distribution Analysis
4.3.5 Example

i

v

U W N = =

o O

11
12
12
17
23

viil

4.4 Performance Estimation 0L 95
4.4.1 Training Setso %)
4.4.2 Performance Estimation Framework 56
4.4.3 Experimentso 60

4.5 Data Layout Selection L. 63
4.5.1 Problem Formulation 63
452 Exampleo o 64
4.5.3 NP-completeness Proof 64
4.5.4 Polynomial Time Solution for Special Case 72
4.5.5 0-1 Integer Programming Formulations 76

Experimental Results 82

5.1 Efficiency of 0-1 Integer Programming Formulations 82
5.1.1 Description of Experiments 82
5.1.2 Discussion of Results 85

5.2 Quality of Generated Data Layouts 86
5.2.1 Prototype Implementation 86
5.2.2 Description of Experiments 92
5.2.3 Discussion of Resultso 0 oL 99

Conclusions and Future Work 101

6.1 Framework for Automatic Data Layout 101
6.1.1 Fixed Problem Size and Number of Processors 102
6.1.2 Explicit Search Spaces Construction 103
6.1.3 Optimal or Near-Optimal Solutions to NP-complete Problems 103
6.1.4 Static Performance Estimation 104

6.2 Experimental Results 00000 105

6.3 Future Worko 105
6.3.1 Data Layout Selection 105
6.3.2 Interprocedural Analysiso 106
6.3.3 Distributed Shared Memory Systems 106
6.3.4 0-1 Integer Programming 106

Bibliography 107

Al
A2
A3
A4

X

117
Correctness of 0-1 Alignment Problem Formulation 117
Correctness of 0-1 Remapping Constraints 118
Exhaustive Search Spaces for BLOCK Distributions 120
Experimental Results 00000 123
A4l Adi. . oo 123
AA4.2 Erlebachero o 126
AA43 Tomcatv oL 128

1.1

2.1

4.1
4.2

4.3
4.4

4.5

4.6
4.7
4.8
4.9
4.10

4.11

4.12
4.13

Illustrations

Automatic data layout as part of a data layout assistant tool
HPF Data Layout Specifications

ADI integration kernel with computation illustration
Example output of the proposed framework for automatic data layout
for the ADI integration kernel. The left hand side shows a static
column-wise data layout, and the right hand side shows a dynamic
layout that performs transposes between the sweeps along rows and
columns.
Result of the program partitioning step
Alignment conflict resolution of an example CAG as a 0-1 integer
programming problem oL oo
Inter-dimensional alignment information lattice for two arrays a and
b. Both arrays have two dimensions. Each conflict-free CAG is shown

with its corresponding node partitioning. The bottom element of the

lattice is the CAG without edges, i.e., the partitioning {a; |az |b1 |b2}.

Heuristic (driver routine) for inter-dimensional alignment analysis
Heuristic for partitioning of phases into conflict-free sets.
Heuristic for importing candidate alignments.
Heuristic to determine sets of orientations
Possible partitions of k objects representing pxp*p*...xp=1p
PLOCESSOTS .« o v v o v i e e e e e e e e e
Example computation phase with triangular iteration space and
canonical alignment00 o Lo
Exhaustive candidate data layout search spaces for 8 processors
Algorithm to determine the communication for processor k for a

candidate data layout and its phase

29

30
32

38

39

43

44

46

48

23
o4

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21
4.22

4.23

5.1
5.2

Screen snapshot of performance estimator applied to a point-wise
red-black relaxation node program with column-wise data layout . . .
PCFG and DLG for the ADI kernel example. To simplify the
example, we assume that there are only two candidate data layouts in
each search space. Weights in the DLG represent static performance
estimates of overall execution times. Node weights are not shown.
Unlabeled edges have zero weight. T is the cost of performing a single
array transpose, and max is the number of iterations of the outermost
loop of the ADI integration kernel.
Sample costs for g(B),

B=(vyV-vyVus) A (moyVuaVog) A (v VosV-wog) oo
A solution for ¢g(B),

B=(vyV-vyVus) A (moyVuaVog) A (v VosV-wog) oo
Example loop summary DLG. The layout search spaces for the first
two phase in the loop body are assumed to have three candidate
layouts. The search space for the third phase is assumed to have two
layouts. e
Example branch summary DLG. The layout search spaces for the
entry and exit phase are assumed to have three candidate layouts.
The phases in the true and false branches are assumed to have two
candidate layouts in their search spaces.
Example DLG for outermost program level. The candidate layout
search spaces are assumed to have three and two layouts for the first

two phases and the third phase, respectively.

Layout constraints for the first three phases of our ADI kernel example.

Two node-based remapping constraints formulations for the node 4,
representing the first layout in the fourth phase of our ADI kernel
example. . . .
Edge-based remapping constraints formulations for the edge x3
representing a remapping between the second and fourth phase of our

ADI kernel example. L

Structure of training set for arithmetic operations
Structure of training set for high latency, unit stride shift

communication pattern for iPSC/860 or Paragon

xi

61

65

70

71

73

74

75
7

79

80

89

2.3

5.4

3.5

5.6

5.7
5.8

5.9

5.10

5.11

xil

Structure of training set for low latency, unit stride shift
communication pattern for iPSC/860 or Paragon 90

Results generated by training sets for shift communication pattern for

8 processors on iPSC/860 91
Structure of training set for unit stride broadcast communication
pattern for iPSC/860 or Paragon 91

Results generated by training sets for unit stride broadcast

communication pattern for different numbers of processors on iPSC/860 92

Example test case for ADI with three possible data layouts 93
Measured and estimated execution times for Adi kernel with problem

size 256 x 256, double precision 95
Measured and estimated execution times for Erlebacher with problem

size 64 x 64 x 64, realo 96
Measured and estimated execution times for Tomcatv with problem

size 128 x 128, double precision (Note the different time scales) . .. 97

Measured and estimated execution times for Shallow with problem

size 384 x 384, realo 99

Chapter 1

Introduction

1.1 Background

Distributed-memory multiprocessors provide the necessary scalability to solve many
large scientific problems in physics, chemistry, and biology. These problems are usu-
ally so computational or memory intensive that they cannot be solved using today’s
single-processor architectures. Typically, distributed-memory multiprocessors pro-
vide a message passing programming model which requires explicit management of
parallelism and local name spaces. As a consequence, most programmers find these
machines extremely hard to use. In addition, once a program has been written in this
model, porting it to another architecture is a tedious task at best.

The goal of High Performance Fortran (HPF) is to provide a machine-independent
parallel programming model for scientific problems. HPF augments Fortran with
statements that allow the programmer to specify the layout of the program’s data. A
data layout is a mapping of array elements onto the local memories of a distributed-
memory machine. The compiler uses this mapping to partition the arrays across
the local memories of the distributed-memory machine and to generate message-
passing code based on the array partitioning. Porting a HPF program from one
target machine to another is accomplished by a single recompile. However, to ensure
good performance of the ported code on the new architecture, the user may have to
modify the data layout specifications since many compiler decisions are driven by the
data layout specified in the program.

While HPF supports a single name space programming model, the choice of an
efficient data layout is still left to the user. The quality of a data layout depends
not only on the target distributed-memory architecture, but also on the target HPF
compiler, the problem size, and the number of processors available. The option of
remapping arrays at specific points in the program makes the choice of an efficient

data layout even harder.

Besides the algorithm selection, the data layout choice is the key intellectual step
in writing an efficient HPF program. Although finding an efficient data layout fully
automatically may not be possible in all cases, HPF users will need support during
the difficult data layout selection process. In particular, this support is necessary if
the user is not familiar with the characteristics of the target HPF compiler and target
architecture, or even with HPF itself. Therefore, tools for automatic data layout and
performance estimation will be crucial if the HPF is to find general acceptance in the

scientific community.

1.2 Thesis

This thesis discusses techniques for automatic data layout for regular problems in
an interactive data layout assistant tool. The envisioned tool will analyze Fortran
programs and will generate efficient HPF data layout specifications. The application
scenario for the data layout assistant tool is shown in Figure 1.1. Typically, regular
problems represent data objects as dense arrays as opposed to a sparse representation.
Regular problems allow the compilation system to determine the communication re-
quirements and to perform a variety of program optimizations at compile time. Our
automatic techniques assume that different data layouts can be specified for different
program sections. We envision the data layout assistant tool to be used to generate
a first data layout for a sequential Fortran program without data layout statements,
or to extend a partially specified data layout in a HPF program to a completely
specified data layout. The data layout is optimized for a target compiler, a target
distributed-memory machine, a problem size, and a number of available processors.

This implies that these entities have to be known at tool invocation time.

Thesis Data layouts of high quality can be generated efficiently for reqular problems

in the context of an automatic data layout assistant tool.

Since the data layout assistant is not part of a compiler, and will run only a few
times during the tuning process of a program, it can use techniques that may be
too computationally expensive to be included in a compiler. Note that an automat-
ically generated data layout can be used for different problem sizes and numbers of

processors, although its quality may be suboptimal.

(Fortran program)

= = regular problems
Partial datalayout specifications | « dynamic remapping allowed

= Invoked only afew times

Data Layout

Assistant = Not part of the compiler

=> Can use expensive techniques

(HPF program)
with
Tota datalayout specifications

Target HPF
Compiler

Target Machine
Object Code

Figure 1.1 Automatic data layout as part of a data layout assistant tool

1.3 Contributions

Our new framework for automatic data layout consists of two phases. The first phase
gathers information about the program and its data usage, resulting in partitioning
of the program into program segments and sets of explicit search spaces of candidate
data layouts for each such segment. A data layout for a program segment is a mapping
of every array referenced in the segment onto the target architecture. The mapping
is defined in two stages, typically referred to as “alignment” and “distribution”. A
candidate data layout is an efficient data layout for some part of the program. The

goal of the first phase is to identify potential points of data remapping and to restrict

the sizes of the candidate data layout search spaces without missing any promising
candidates. The second phase predicts the performance of each candidate layout and
selects the combination of data layouts that will result in the best overall performance
for the entire program.

The explicit construction of candidate data layout search spaces for each program
segments and the static evaluation of each candidate in the search spaces are the basis
for user interaction with the envisioned data layout assistant tool. The user will be
able to browse through the search spaces of candidate layouts with their predicted
performances and insert new candidate layouts into or delete candidate layouts from
the search spaces.

Rather than resorting to heuristics prematurely, our work capitalizes on 0-1 in-
teger programming technology to compute optimal solutions for two NP-complete
problems in our framework [LC90a, Kre93b|. Experiments indicate that through the
use of the latest and most powerful general purpose techniques for linear and inte-
ger programming, computing the optimal solution of the two NP-complete problems
is efficient in practice in the context of a programming environment. All encoun-
tered instances of the two NP-complete problems were solved in a matter of seconds
[BKK94, KK95]. Contrary to the common belief in the compiler and programming
environment community, this new result suggests that not all NP-complete problems
encountered in compilers or programming environments may have to be approximated
using heuristics. In cases where optimal solutions cannot be determined within an
acceptable time bound, 0-1 integer programming technology can be used to produce
efficient approximate solutions.

Another unique aspect of the framework is its new approach to performance es-
timation. To predict the performance of each candidate data layout in the search
space of a program segment, a compiler model is used to determine the computation
and communication that would be generated by the target compiler, if the program
segment were compiled under the candidate layout. The compiler model ignores com-
putations and communications that are not crucial for the overall performance of the
compiler generated code. Based on the resulting information, an execution model and
target architecture machine model computes the overall execution time. The machine
model uses our training set approach [BFKK91, HKK*91].

A prototype based on our framework has been implemented as part of the D sys-
tem [ACG194]. Experiments showed that through the use of 0-1 integer programming

and our new approach to performance prediction, good data layouts can be deter-

mined efficiently. Our automatic data layout framework is a big step towards making

distributed-memory multiprocessors truly usable.

1.4 Overview

A short introduction to High Performance Fortran and 0-1 integer programming can
be found in Chapter 2. Techniques for automatic data layout have been investigated
for nearly a decade. Chapter 3 contains a discussion of different formulations of the
data layout problem and their proposed solutions.

Our framework for automatic data layout consists of four steps. Each of these steps
is discussed in detail in Chapter 4. In the first step the input program is partitioned
into program segments (Section 4.2). For each such program segment, the second step
constructs a search space of promising candidate layouts (Section 4.3). A candidate
layout for a program segment is a mapping of every array referenced in the segment
onto the target architecture. Heuristics are used to generate the candidate layout
search spaces. In the third step each candidate layout is evaluated in terms of its
estimated execution time (Section 4.4). In addition, costs of possible remappings
between candidate layouts are determined. The performance estimation is based on
a compiler model, execution model, and machine model. Based on the estimated
candidate layout costs and costs of possible remappings between candidate layouts, a
single candidate layout from each search space has to be selected such that the overall
cost is minimal. This selection process is performed in the fourth and last step of our
framework (Section 4.5).

In order to be able to evaluate the efficiency and quality of our framework for
automatic data layout, a prototype data layout assistant tool has been implemented.
Chapter 5 describes the prototype implementation and shows that the prototype tool
is efficient and generates data layouts of high quality. A summary of the contributions

of this thesis and a discussion of future work can be found in Chapter 6.

Chapter 2

Background

The goal of languages such as High Performance Fortran (HPF) and Fortran D is
to provide a machine-independent programming model that supports fine-grain data
parallelism found in scientific codes. Section 2.1 reviews the data layout directives of
HPF relevant to our work on automatic data layout. The HPF language specification
document contains a full language description [Hig93].

Some problems encountered in our framework for automatic data layout have
been shown to be NP-complete. As part of this thesis we have translated instances
of these NP-complete problems to instances of 0-1 integer programming problems.
This translation allows us to solve our NP-complete problems optimally or compute
approximations efficiently by taking advantage of the latest technology in 0-1 integer
programming.

An introduction to 0-1 integer programming and a discussion of the state-of-the-

art integer programming technology is presented in Section 2.2.

2.1 HPF Data Layout Directives

The task of distributing data across processors can be approached by considering the
two levels of parallelism in data-parallel applications. First, there is the question of
how arrays should be aligned with respect to one another, both within and across
array dimensions. We call this the problem mapping induced by the structure of the
underlying computation. It represents the minimal requirements for reducing data
movement for the program, and is largely independent of any machine considerations.
The alignment of arrays in the program depends on the natural fine-grain parallelism
defined by individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual
parallel machine. We call this the machine mapping caused by translating the problem
onto the finite resources of the machine. It is affected by the topology, communica-

tion mechanisms, size of local memory, and number of processors of the underlying

machine. The distribution of arrays in the program depends on the coarse-grain
parallelism defined by the target parallel machine.

HPF provides data layout specifications for these two levels of parallelism using
TEMPLATE, ALIGN, DISTRIBUTE, and PROCESSORS statements. A template is an ab-
stract problem or index domain; it does not require any storage. Each element of
a template represents a unit of computation. The TEMPLATE statement declares the
name, dimensionality, and size of a template.

The ALIGN statement maps arrays onto templates. Arrays mapped to the same
template are automatically aligned with each other. Alignment can take place ei-
ther within a dimension (intra-dimensional alignment) or across dimensions (inter-
dimensional alignment). The alignment of arrays to templates is specified by place-
holders I, J, K, ... in the subscript expressions of both the array and template.

In the example below,

REAL X(N,N)
'HPF$ TEMPLATE A(N,N)
'HPF$ ALIGN X(I,J) WITH A(J-2,I+3)

A is declared to be a two dimensional template of size N x N. Array X is then aligned
with respect to A with the dimensions permuted and offsets within each dimension.

After arrays have been aligned with a template, the DISTRIBUTE statement maps
the template to the finite resources of an abstract machine. An abstract machine is
a rectilinear processor arrangement with a name, rank, and number of processors in
each dimension. A PROCESSORS statement defines an abstract machine. Distributions
are specified by assigning an independent attribute to each dimension of a tem-
plate. Predefined attributes are BLOCK and CYCLIC(i), where i is the block size
of a block-cyclic distribution. The symbol “+” marks dimensions that are not dis-
tributed. Choosing the distribution for a template maps all arrays aligned with the

template to an abstract machine. In the following example,

'HPF$ TEMPLATE A(N,N), B(N,N)

'HPF$ PROCESSORS PROCS(4)

'HPF$ DISTRIBUTE A(*,BLOCK) ONTO PROCS
'HPF$ DISTRIBUTE B(CYCLIC(1),*) ONTO PROCS

distributing template A by (*,BLOCK) results in a column partition of arrays aligned
with A. Distributing B by (CYCLIC(1),*) partitions the rows of B in a round-robin

P1
: : : : P2
2 : : : P3
Ml | iy
: : /3 R 1
| P 12
: P3
Pa

TEMPLATE REAL X(8,8) DISTRIBUTE DISTRIBUTE
A(8,8) ALIGN X(I,J) A (+,BLOCK) A(CYCLIC(1),%)
WITH A(J-2,I+3) ONTO PROCS ONTO PROCS

Figure 2.1 HPF Data Layout Specifications

fashion among the processors. These sample data alignment and distributions for the
case N=8 are shown in Figure 2.1.

HPF supports dynamic remapping, i.e., the data layout of arrays can change
during the execution of the program. REALIGN and REDISTRIBUTE statements are
used to specify remappings. In contrast to their “static” versions, realignment and
redistribution statements are executable statements and not declarative.

We should note that the goal in designing HPF is not to support the most general
data decompositions possible. Instead, the intent is to provide decompositions that
are both powerful enough to express data parallelism in scientific programs, and
simple enough to permit the compiler to produce efficient programs. The design of
HPF has been influenced by languages such as FORTRAN D [FHK90], CM FORTRAN
[TMC89], Kart [KM91], and Vienna Fortran [CMZ92].

2.2 0-1 Integer Programming

Integer programming can be used to solve many real world problems that require the
management and efficient use of scarce resources to improve productivity. Examples
of such problems are VLSI circuit design, airline crew scheduling, and communication
and transportation network design. An instance of an integer programming problem
consists of a set of variables, a set of inequality and equality constraints, and an
objective function. A solution of the integer programming instance assigns integral

values to all variables such that the objective function is maximized or minimized

while all constraints are respected. If the integrality restriction is relaxed for some
variables, the problem is called a mized integer programming problem.

A 0-1 linear integer programming problem is a special case of an integer program-
ming problem where variables can only be assigned the integral values 0 or 1, and all
constraints are linear functions of the variables. Solving a 0-1 integer programming
problem has been shown to be NP-complete. In this thesis we will refer to a 0—1 lin-
ear integer programming problem as a -1 problem. An in-depth discussion of integer
programming can be found in [NW88].

For decades, the integer and combinatorical optimization community has been
working on methods to solve integer programming problems fast in practice. The
ability to solve integer programming problems has been remarkably improved over
the last five to ten years, particularly 0—1 problems such as those being generated
by our framework for automatic data layout. The basic technique for solving in-
teger programming problems is to apply intelligent branch-and-bound using linear
programming at the nodes. Important improvements have occurred in three areas.
First, linear programming codes are on average approximately two orders of magni-
tude faster than they were five years ago, particularly for larger problems [Bix94].
Combined with the improvements in computing speed over that same period these
codes represent an approximate four orders of magnitude improvement in our ability
to solve linear programming problems.

The second major development is in so-called cutting-plane technology. Motivated
by work of Dantzig, Johnson and Fulkerson in the 50’s [DFJ54], Padberg, Groetschel
and others have shown how cutting-plane techniques could be used to strengthen the
linear programming relaxations of many 0-1 integer programming problems [PR91].
The strengthening is effected by studying the facets of the underlying polytope gen-
erated by the convex hull of 0-1 solutions. Knowledge of these facets leads to subrou-
tines for recognizing inequalities violated by the current fractional solution. These
violated inequalities can then be added to the linear programming formulation in lieu
of branching.

The third major area of improvement has come in the application of parallel pro-
cessing to handle the branching when cutting planes do not succeed in sufficiently
strengthening the linear programming formulation. Parallelism is particularly ap-
propriate for current cutting-plane methods because cuts are computed not only at
the root node but at all nodes in the branching tree. The extra computation at the

nodes has the effect of making the computations sufficiently coarse grained that com-

10

munication costs need not be significant. The most striking example of an integer
programming success story exploiting all of the above advances is the recent work of
Applegate, Bixby, Cook and Chvatal in which a 4461 city traveling salesman problem
was solved to exact optimality using a complex branch-and-cut code running on a

network of up to 60 loosely connected workstations [ABCC93].

11

Chapter 3

Related Work

Compiling a single name space program for a physically distributed-memory architec-
ture requires the mapping of the program’s data and computation onto the processors
of the target machine. If there is a mismatch between the data mapping and the com-
putation mapping, i.e., the data needed for a computation is not assigned to the same
processor as the computation, communication will be necessary. A good data and
computation mapping minimizes the performance loss due to communication and
maximizes load balancing.

The problem of automatic data and computation mappings for scientific applica-
tions have been discussed extensively in the literature. We will focus our discussion
on compile-time approaches that map elements of dense arrays to processors, and
that use single loop iterations as the basic units of computation. Other approaches
may map parts of high-level data structures such as trees or lists, or low-level data
structures such as memory pages or cache lines to processors. Computation mappings
in other approaches may be based on fine-grain computations such as single floating
point operations, or coarse-grain tasks consisting of entire subroutines.

The proposed solutions for automatic data layout and computation mapping for
dense arrays differ significantly in the assumptions that are made about the input
language, the possible sets of data and computation mappings, the compilation sys-
tem, and the target machine architecture. For instance, the input language may be a
functional or imperative language, the data and computation mappings may be cho-
sen from a restricted set or be rather general, the compilation system may perform a
variety of different optimization transformations or only a few basic optimizations, or
the target machine may support a SIMD or MIMD parallel programming model, or
a shared-memory parallel programming model. Corresponding to its set of assump-
tions, each approach uses a different representation and formulation of the data and
computation mapping problems.

Since performance tradeoff decisions are crucial in the selection process, per-

formance models to estimate the qualities of the considered data and computation

12

mappings are a central component of every automatic data layout and computation
partitioning approach. The performance models used have to be precise enough to
distinguish all data and computation mapping alternatives of the particular approach.

Most previous approaches to automatic data layout and computation partitioning
have been developed as part of an optimizing compiler, i.e., have been designed as
an optimization pass in the compiler. As a consequence, the design of the automatic
partitioning pass has to guarantee an acceptable response time since the pass is in-
voked during every compile. Typically, a response time may be considered acceptable
if it is in the order of seconds or a few minutes, but not in the order of hours. In
contrast, automatic data layout techniques outside of a compiler, i.e., as part of a
data layout tool may not be subject to the same time constraints.

In this thesis we have developed a framework for automatic data layout for Fortran
programs designed to be used in an interactive data layout assistant tool. Instead
of assuming a fixed compilation system, the framework can be retargeted for differ-
ent compilers. This is done by changing parameters of the compiler model in the
framework’s data layout performance estimator. The framework generates HPF or
Fortran D style data layout directives. Data layouts are optimized for a target com-
piler, target machine, problem size, and number of available processors. The target
machine is assumed to support a MIMD programming model.

A detailed discussion of some of the related work on automatic data and compu-
tation mapping, and source-level performance estimation is given below. Since this
thesis deals mainly with the data mapping problem, i.e., assumes that the computa-
tion mapping is induced by the data mapping, we will emphasize the data mapping

aspects of the related approaches discussed in the literature.

3.1 Automatic Data Layout

The division of the related work into static and dynamic mappings is more a historic
one. In general, finding a single data layout for the entire program is considered a

simpler problem than allowing dynamic changes of the data mapping.

3.1.1 Static Data Mappings

Some early work on static data and computation mapping used data dependence

information to determine whether a communication-free partitioning of the iteration

13

space of a single loop nests was possible [RS89, D’H89, HA90]. The communication-
free computation mapping induces the corresponding data mapping.

The majority of approaches emphasize the data mapping view of the mapping
problem. The decomposition of the data mapping into alignment and distribution lead
to a two step strategy, where alignment analysis is followed by distribution analysis
[AKLS88, Wei9l, LC90a, LCI1b, GBI1, GB92b, Who92a, CGST93]. Since alignment
and distribution decisions may be mutually dependent, performing distribution after
alignment may lead to inferior results. To avoid this problem, some approaches
consider alignment and distribution at the same time [Kef93, GAL95].

Crystal

Li, Chen, and Choo investigated techniques for automatic data layout as part of the
Crystal compiler and language project at Yale University [CCL89, LC90a, LCI1b,
LC91a, LCI0b]. Crystal is a high-level, purely functional language. It does not con-
tain statements that specify the data layout. The goal of the Crystal compiler is
to generate efficient SPMD node programs with explicit communications or synchro-
nization for a variety of massively parallel machines. In the following, we will only
discuss the aspects of the project that relate to automatic data decomposition.

The automatic data layout algorithm used by Crystal works only on single proce-
dures. A procedure is first partitioned into separate groups of computations, called
phases, based on the flow of values in the subroutine. Alignment and distribution
analysis is performed for each phase in isolation, resulting in a single data decompo-
sition scheme for the phase. Finally, the data layout schemes of the different phases
are merged.

Most of the published work concentrates on the problem of finding a static align-
ment for a single phase. A possible phase merging algorithm is only sketched. In the
remainder of this section we will assume that we only deal with a single phase.

The alignment algorithm performs inter-dimensional alignment, followed by intra-
dimensional alignment. The index domain of arrays are mapped onto the single,
common index domain of the phase based on four simple types of alignment functions,
namely permutation, embedding, shift, and reflection. Permutation and embedding
are inter-dimensional alignment functions that map dimensions of the array onto
the dimensions of the common index domain. In a permutation, the array and the

common index domain have the same number of dimensions. The alignment function

14

is a permutation of the dimensions of the array. If the index domain has more
dimensions than the array, the embedding maps each dimension of the array onto
a distinct dimension of the common index domain and specifies the location of the
induced subspace in the common index domain. In particular, diagonal embeddings
are possible. Shift and reflection are intra-dimensional alignment functions of the
form g(i) = i - comnst and g(i) = - 1i, respectively.

The inter-dimensional alignment problem is modeled as a graph problem. An
undirected, weighted graph, called the component affinity graph, is constructed based
on normalized reference patterns in the source program. Fach dimension of an array
that is referenced in the phase is represented by a node. There is an edge between two
nodes if the subscript expressions of the corresponding dimensions are affine, i.e. have
the form 1 and i + const, where const is a small constant. Edges that are generated
by the same reference pattern and are incident to the same node are assigned a
weight €, a small positive integer. All other edges have weights equal to 1. The
alignment algorithm partitions the component affinity graph into n disjoint subsets
of nodes, where n is the maximal number of dimensions of an array referenced in the
phase. The goal is to find a partitioning that minimizes the overall sum of weights
of edges between nodes in distinct partitions. Note that edges between partitions are
alignment requests that cannot be satisfied. The solution of this alignment problem
is shown to be NP-complete [LC90a]. The intra-dimensional alignment algorithm is
based on the affine reference patterns and is straight forward.

In the next compiler step the functional program is transformed into an imper-
ative program that allows multiple assignments into the same memory location in
order to ensure efficient reuse of memory. Subsequently, calls to communication rou-
tines are inserted based on pattern matching using a parameterized layout scheme
that distributes all dimensions of the common index domain. Hence the program
is ‘compiled’ only once for a whole family of distribution schemes. For each com-
munication routine a cost function is available that is parameterized with respect to
the chosen distribution, problem size, and machine characteristics. The distribution
strategy with the minimal cost is selected. Once a distribution strategy is chosen,
redundant communication is eliminated.

A prototype of the compiler has been implemented as part of Li’s Ph.D. thesis at
Yale University. Experimental results are reported for a heuristic algorithm that per-

forms inter-dimensional alignment on a set of randomly generated component affinity

15

graphs [LC90a]. Distribution analysis has not been implemented. The distribution

strategy is read in at runtime [Li92].

Parafrase-2

Gupta and Banerjee at the University of Illinois at Urbana-Champaign developed
techniques for automatic data layout as part of a compiler based on the Parafrase-
2 program restructurer [GB90, GB91, GB92b]. The compiler takes Fortran 77 as
input and generates SPMD node programs with explicit communication. The com-
piler performs alignment and distribution analysis based on constraints for each single
statement in the program. Constraints represent properties of the data layout and are
associated with a quality measure. Constraints that reflect the alignment of arrays in
a statement are either satisfied or not. The quality measure is a penalty function rep-
resenting the cost for the case that the arrays are not aligned. Constraints that reflect
the distribution of aligned arrays have parameterized execution time cost functions as
their quality measures. The parameters include the problem size, and number of pro-
cessors and distribution schemes used in each dimension. The automatic techniques
handle cyclic, block, and block-cyclic distributions. In addition, partial replication of
arrays is considered. Scalars are assumed to be replicated. With the problem size and
machine size known at compile time, the system selects a decomposition scheme that
allows arrays to be distributed across a two-dimensional processor grid. The optimal
number of processors in each distributed dimension is selected automatically. The
compiler does not perform inter-procedural analysis. A single, static decomposition
scheme is derived for the entire program, i.e. dynamic realignment or redistribution
are not supported.

The compiler performs alignment analysis based on Li’s and Chen’ s approach
[LC90a]. The communication cost of each statement with an array reference is ex-
pressed as a function of the machine size, number of processors in each dimension, and
the method of partitioning, namely block or cyclic. The functions try to reflect the
effects of loop transformations and communication optimizations, such as message
vectorization and aggregation, on the communication costs of a single statements.
Each function represents a constraint for the statement. In the next step, the best
distribution scheme for each distributed dimension is determined for a default num-
ber of processors. The distribution schemes considered are block (continuous), cyclic,

and block-cyclic with different block sizes. The best resulting scheme is parameter-

16

ized with respect to the processor number in each dimension and the optimal number
of processors in the two grid dimensions is computed. Finally, the compiler checks
whether array replication is profitable.

The automatic techniques have been implemented as part of Parafrase-2. They
have been applied to five Fortran programs, namely one routine from the Linpack
library (dgefa), one Eispack routine (tred2), and three programs from the Perfect Club
Benchmark Suite (trfd, mdg, flo52) [Clu89]. In the study, all the steps of the described
automatic data layout techniques were simulated by hand. A distributed memory
compiler is not part of Parafrase-2. Actual performance figures for the generated
data layout schemes are only given for tred2 on an iPSC/2 hypercube system. The

automatic layout performs well compared to three other data mappings.

ALEXI

Wholey at Carnegie Mellon University [Who92a, Who91] developed a compiler for the
high-level, block structured, non-recursive language ALEXI. Communication and par-
allelism is expressed explicitly by primitive operations that are similar to Fortran90
array constructs and intrinsic communication functions. The work concentrates on the
problem of deriving a good data layout scheme automatically without the knowledge
of the problem and machine size at compile time. Dynamic realignment or redistri-
bution is not considered, but inter-procedural performance analysis is performed.

Alignment analysis is done at compile time based on the approach by Knobe,
Lukas, and Steele [KLS90]. Distribution analysis is performed at run-time. Each
primitive operation is associated with a cost function that computes the execution
time of the operation under a given distribution, problem size, machine size, and
machine topology. Given these parameters, the overall execution time of the program
is determined by adding up the costs for each primitive operation. The performance
estimation does not deal with the case where communication and computation over-
laps. The search space is restricted to non-cyclic, block distributions. A hill climbing
search method generates the search space of the possible number of processors in each
dimension of the virtual processor array. The algorithm returns the distribution, ma-
chine size, and topology with the minimal estimated execution time.

A prototype ALEXI compiler has been implemented. Based on simulations of
some kernel routines on different distributed memory machines, the performance of

the routines with the automatically generated data layouts is shown to be supe-

17

rior to the performance of the routines under some straight-forward data mappings.
The performance of automatically determined data layouts has not been compared
with the best data layout possible [Who92b]. The precision of the performance es-
timation technique in terms of the relative performance of different data layouts is
demonstrated by comparing the estimated costs with the actual execution times of a

simplex program on a CM-2.

ASPAR and P°C

ASPAR is a compiler for the C language developed by the ParaSoft corporation
[IFKF90]. P3C is a research Pascal compiler designed and implemented at the Tel-
Aviv University by Gabber, Averbuch, and Yehudai [GAY91]. Both systems generate
SPMD node programs that contain calls to communication library routines. The
compilers perform only a simple form of program analysis to generate the correct
communications. The set of possible data decomposition schemes is small. Inter-
procedural analysis is performed. The P?C has been tested on several programs with
good results. Performance numbers of the ASPAR system are only reported for a

conjugate gradient program.

3.1.2 Static and Dynamic Data Mappings

Dynamic data mappings allow the remapping of data at specific points in the pro-
gram. The identification of program segments in which data can be statically mapped,
and the accurate modeling of the potential remapping costs make the dynamic data
mapping problem harder than the static problem. The smallest possible statically
mapped program regions may be single statements [KN90, CGST93, Phi95], loop
nests [AL93, LT93, AGGT94, NDG95, PB95], or groups of statements or loop nests
for which it can be shown that remapping between them can never be profitable
[SSP*95]. The approaches for dynamic data mappings differ in the set of static map-
pings considered for each program region and in the techniques used to perform the
final selection among the considered candidate mappings.

A unique aspect of this thesis is its efficient formulation of two NP-complete au-
tomatic data layout subproblems as 0-1 integer programming problems. The choice
of the particular integer programming formulation is the crucial step for achieving
good performance. Although using exact solutions for NP-complete problems is a

rather new idea, a few researchers have already recognized the potential benefits of

18

using 0-1 integer programming or general integer programming as part of a compiler
or programming environment. Pugh developed a dependence analysis test, called
the Omega Test based on an integer programming algorithm [Pug91]. Using integer
programming for instruction scheduling under resource constraints for super-scalar
machines has been discussed by Feautrier [Fea94] and Ning, Govindarajan, Altman
and Gao [NG93, AG94, AGGY5]. Integer programming techniques in the context of a
distributed-memory compiler have been discussed by Phillipsen [Phi95] and Garcia,
Ayguadé and Labarta [GAL95]. The latter two works have been based on our expe-
rience with 0-1 integer programming for efficient solutions of NP-complete problems
in an automatic data layout tool [BKK94, KK95].

Compass

Albert, Knobe, Lukas, Natarajan, Steele, and Weiss discuss automatic data layout as
part of the design and implementation at Compass of SIMD compilers for Fortran 77
extended by Fortran 8x array features [AKLS88, KLS88, KLS90, KN90, Wei91]. The
target machines are the Connection Machine CM-2 and the MasPar MP-1. Automatic
data layout is an integral part of these compilers.

Arrays are aligned by mapping them onto virtual processors based on their usage
as opposed to a their declared shape. The latter mapping is referred to as the canon-
tcal mapping. Fach virtual processor holds at most a single element of each array.
The alignment algorithm performs intra-dimensional alignment and inter-dimensional
alignment using similar techniques as Li and Chen. However, inter-dimensional per-
mutations are not supported. Arrays may be mapped differently in different sections
of the program [KN90]. The described techniques work only on single procedures.
However, they handle complex control flow.

Since the CM-2 supports the concept of virtual processors through its program-
ming environment, data alignment is sufficient to specify the data layout. In contrast,
the MasPar machine does not support virtual processors. The virtual processors have
to be mapped onto the physical processors explicitly [Wei91].

The alignment algorithm is based on the usage patterns of arrays and Fortran 8x
array sections in the source program. FEach pattern generates allocation requests,
called preferences, that indicate the optimal layout of the arrays relative to each other
[KLS88, KLS90]. An identity preference exists between corresponding dimensions of

a definition and a use of the same array. It describes a preference to allocate identical

19

elements of the array on the same processors for the two textual occurrences. A true
dependence exists between the definition and the use that generate the identity pref-
erence. A conformance preference is introduced between corresponding dimensions of
textual occurrences of different arrays if they are operated on together. It indicates
a preference to allocate corresponding elements of distinct arrays on the same pro-
cessor. An independence anti-preference is associated with a single dimension of an
array occurrence. It expresses the preference to allocate the array dimension across
the processors in order to exploit the data parallelism in this dimension. More re-
cently, Knobe, Lukas, and Dally introduced the concept of a control preference. A
control preference exists between the corresponding dimensions of an array in a con-
ditional expression and an array occurrence in an operation that is control dependent
on this expression [KLD92].

The preferences of the program are represented by the undirected preference graph
where the arcs correspond to the preferences and the nodes are dimensions of tex-
tual occurrences of arrays and array sections. Each edge is labeled with a cost that
reflects the performance penalty that occurs if the preference is not honored, i.e. not
honoring identity and conformance preferences may lead to communication while un-
honored independence anti-preferences potentially reduce the exploitable parallelism.
The cost functions take the structure of the program into account. Conflicting align-
ment requirements can only occur in strongly connected components of the preference
graph. To locate the cycles, a spanning tree is constructed, using a greedy algorithm
that chooses the next arc to add by finding the highest cost arc that is not already
processed. If a cycle-creating arc induces a conflict, the corresponding preference
will not be honored [KLS90]. Knobe and Natarajan have extended this algorithm
to optimize the communication resulting from unhonored identity and conformance
preferences [KN90].

For the MasPar machine, the data allocation functions generated by the data
optimization component have to be transformed from mappings based on virtual pro-
cessors to mappings based on physical processors. Weiss discusses three distribution
schemes, namely cyclic (horizontal), block (vertical), and block-cyclic distributions
[Wei9l].

Most of the described work has been implemented as part of the CM-2 and MP-1
Fortran compilers developed at Compass. The authors report significant performance
improvements of up to a factor of 60 due to using the compiler generated data mapping

instead of the naive, canonical mapping. The performance numbers are given for a

20

few computational kernels that were hand-compiled and hand-simulated on the CM-2

and MP-1. Performance figures of actual runs are not reported.

Projects at RIACS, Xerox PARC, and MIT

Chatterjee, Gilbert, Schreiber, and Teng discuss a framework for automatic align-
ment in an array-based, data-parallel language such as Fortran90 [CGST93, CGST92,
GS91]. They provide algorithms for automatic alignment of arrays in a single basic
block. Each intermediate result of a computations in a basic block is assigned to a
temporary array. This allows intermediate results to be mapped explicitly. The basic
block may contain explicit communication such as transposes, spreads, or reductions.
Alignment functions for each of the array dimensions are restricted to linear functions
of a single, distinct induction variable. Diagonal alignments are not possible.

A weighted directed acyclic graph (DAG) represents the computation in each basic
block. Internal nodes represent operations and are labeled with names of temporary
arrays. Edges are directed from the nodes representing the operands to the node
representing the operator. Fach edge is labeled with a nonnegative integer w equal
to the size of the data object at its source. A position space models all possible
alignments of an array onto a template (HPF terminology). A distance d(p,q) between
two positions p and q is a nonnegative number describing the cost per unit data
of changing positions from p to q. Different distance metrics d are used to model
communication characteristics of the target machine. Distance metrics cover machine
topologies such as grids, rings, and fat-trees.

Alignment analysis is done in two separate steps. Inter-dimensional (axis) align-
ment and stride alignment is performed, followed by offset-alignment. Each step uses
a different distance metric d. If the arrays at the sink and source of an edge in the
DAG cannot be aligned, a communication cost of w * d(p,q) will occur, assuming
the sink and source arrays are at position p and q, respectively, and w is the edge
label. A solution to the alignment problem minimizes the cost of all edges that are
not aligned.

The authors discuss a variety of distance metrics and give asymptotically efficient
solutions to the corresponding alignment problems. Algorithms are given for solving
the alignment problem for a DAG where the alignment of the arrays at the leaf nodes
is given as input (fixed-source variant) or has to be chosen by the algorithm (free-

source variant). The complexity of the algorithms depend on the characteristics of

21

the metric used and the structure of the DAG, namely whether it is a forest or not.
Some variations of the problem are shown to be NP-complete. The authors show how
to extend their approach for single basic blocks across basic blocks. Their technique
uses traces and a combination of free-source and fixed-source alignment algorithms.

The presented work is a big step towards the theoretical foundation of the align-
ment problem and discusses a variety of algorithms for its solution. The algorithms
handle dynamic realignment. However, it is not clear, how these algorithms will work
on real application programs. Experimental results on the applicability and efficiency
of the algorithms, and efficiency of their produced alignments using real programs are
not reported. Many of the listed examples are rather contrived.

Introducing temporary arrays has the advantage that intermediate values are
named and therefore can be mapped explicitly to avoid an inefficient mapping due to
the owner computes rule. This is often referred to as "relaxing the owner-computes
rule”. In the SIMD model of execution, array temporaries must be introduced by
the compiler for intermediate values [CGST93]. The possibility of using these tempo-
raries to relax the owner computes rule comes therefore ‘for free’. This is not true for
the compilation for MIMD machines with scalar node processors. The node compiler

will generate the necessary temporaries.

SUIF

Anderson and Lam discuss a compiler algorithm for automatic data and computa-
tion mapping for dense matrix computations [AL93]. The input programs consist
of generally nested loops with explicit parallelism. Each loop can be either a forall,
doacross, or sequential loop. Loop bounds and array subscripts are assumed to be
affine functions of the loop indices and symbolic constants.

The focus of their work is on finding an efficient data and computation mapping
onto a virtual processor array. Such a mapping can be referred to as a data and
computation alignment. They do not address issues related to distribution, such as
load balancing, finding the right block size for block-cyclic distributions, or determin-
ing the number of physical processors for each distributed dimension. However, their
work handles data and computation alignments that may change dynamically., i.e.,
are not the same for the entire program.

A central tool in their approach is a mathematical formulation of the problem of

finding communication-free, static data and computation alignments for a single loop

22

nest or groups of loop nests. Their formulation of the alignment problem considers
dimensional and stride alignments. Offset alignments are done in a separate step.
Constraints for the data and computation alignments are expressed through require-
ments for the kernel of the linear functions that represent the data and computation
mappings. The kernel computation is based on an iterative method that successively
match the mutual constraints of the data and computation mappings. The result of
the kernel computation is the set of all communication-free alignments.

If communication-free alignments can only be found if all data and computations
are mapped to the same processor, i.e., if only a trivial communication-free alignment
can be found, constraints that enforce the sequential execution of loops that carry
cross-iteration dependences (doacross loops) are removed. The resulting relaxed sys-
tem is solved for communication-free alignments. Any non-trivial communication-free
solution of the relaxed system corresponds to an alignment that will require nearest-
neighbor communication and will result in a pipelined execution.

Anderson’s and Lam’s algorithm for automatic data layout and computation parti-
tioning considers dynamic data remapping. The program is represented as a weighted,
undirected graph where the nodes correspond to loop nests and edges represent possi-
ble data remappings between loop nests. The node weights are estimated loop execu-
tion counts and the edge weights are the combination of worst-case approximations of
the actual communication costs and the probabilities that the data remappings will
actually occur. The performance model for remappings does not take different distri-
butions into account. Anderson and Lam show that their problem representation of
dynamic data layout and computation partitioning is NP-hard.

The algorithm for dynamic data layout and computation partitioning uses a
heuristic. The greedy algorithm tries to join loop nodes that are connected by a
remapping edge in order to eliminate possible remapping costs. Edges are visited in
the order of decreasing weights. The algorithm works in a bottom-up fashion, starting
with innermost loops first. Two candidate loop nodes at the current level are merged
into a single component if the performance of the joined nodes is higher than the
performance of the individual nodes including the remapping costs. Once two nodes
have been joined at a level, they are considered a single component for all subsequent
levels.

After the greedy algorithm terminates, the entire graph is partitioned into com-
ponents, and data and computation mappings for each component have been deter-

mined. Since the data and computation mappings only specify which array elements

23

and iterations are local to a single processor, a last step is needed to determine the
actual virtual processor on which the data and computation are mapped. This last
step is referred to as orientation and displacement computation. A greedy algorithm

is used to match as closely as possible the orientations between components.

Paradigm

Palermo and Banerjee extend previous work on automatic data layout by Gupta and
Banerjee to handle dynamic remapping (see Section 3.1.1). Their approach is based
on a hierarchical decomposition of the program into components such that remapping
is profitable only between these components [PB95]. Each decomposition step consists
of splitting a single component into two subcomponents if the best static data layout
for the entire component has a higher cost than the sum of the costs for the best data
layouts for each subcomponent. The splitting step does not consider the remapping
costs between components. However, the splitting process is stopped once the cost of
a component is below a predefined threshold.

The program decomposition algorithm uses a directed graph that is built based
on the best static data mapping for the entire program. Nodes in the communication
graph represent single program statements and edges correspond to data flow depen-
dences between statements. Edges are weighted by the communication costs induced
by the initial static data mapping. A maximal cut algorithm determines the split
point in a communication graph. This process is repeated until splitting is no longer
profitable.

After the program has been recursively decomposed, redistribution costs are es-
timated and all encountered components and subcomponents are represented in a
single, acyclic graph, the phase transition graph. The result of the solution of a single
shortest path problem over the phase transition graph yields the final data layout for
the entire program.

The described algorithms does not perform interprocedural analysis. It is not

clear how their work can be extended to handle control flow such as branches.

3.2 Performance Estimation

Performance is the most important issue for programs running on parallel platforms.
Some applications are executed on a parallel machine mainly because of the amount

of main memory that such machines provide. However, the majority of applications

24

try to achieve a significant reduction in execution time as compared to a sequential
execution.

Parallel machines are complex and expensive computing resources. The ability
to predict the performance of an application without actually executing it on the
parallel machine is crucial to make efficient use of the expensive resource. Performance
models are used to predict the benefits of parallel execution for an application, to tune
the performance of a parallel application, or to allow compilers to choose between
different code improvement transformations. These different application scenarios
impose different requirements on the performance models, in particular with respect
to the precision of the generated estimates.

Performance models that support benefit analysis can be used to ”recruit” new
users for a specific parallel architecture [P1JJ88] or to predict the scalability of a par-
allel application under varying machine and problem parameters [Tol95]. Decisions
to improve program performance require knowledge about the performance charac-
teristics of the program. Interactive programming tools may use dynamic profil-
ing and/or static performance estimation to identify code segments critical for the
overall program performance [AMCA*95, MCAK94, HKTW94, Ree94]. This infor-
mation can be used to guide the user’s program tuning efforts or to direct more
aggressive compile-time analysis and code improvement techniques to the identified
performance "hot spots”. Compilers use static performance models to predict the
performance benefits of program transformations including automatic data layout
[GB92a, WLI1, CMT94, CGST93, Wan94]. Different transformations require differ-
ent performance estimation accuracy.

In this section we will focus on a discussion of performance models that can be
used to support automatic data layout at the program source code level. Static per-
formance estimation models are crucial components in every automatic data layout
approach. Performance models are needed at different levels of program and sys-
tem abstractions. The resulting performance estimates have to be precise enough to
distinguish the data layouts considered by the corresponding automatic data layout

approach.

IBM’s Static Performance Estimation for High-Level Languages

Wang has developed a framework for static performance prediction for high-level lan-

guages such as HPF running on superscalar-based, parallel machines [Wan93, Wan94].

25

The goal of the performance estimation is to support the selection of optimizing trans-
formations for different target machines.

In a first step, the framework maps high-level language statements into low-level
machine instructions. This mapping takes into account common compiler back-end
optimizations such as sum-reductions, common subexpression elimination, invariant
code motion, loop unrolling, and branch optimization. In a second step, a machine
dependent cost model determines a symbolic cost function for the low-level instruction
stream. The cost model uses a machine model and data dependence information to
simulate instruction scheduling algorithms common for superscalar architectures. If
communication instructions are present, communication and synchronization costs
are represented in the computed performance expression. There is no compiler model
to simulate high-level optimization transformations in response to a particular data
layout selection. Wang assumes that this information is input to his framework.

The overall cost function for a program is determined as follows. First cost func-
tions for straight line code, i.e., code without branches or loop structures are com-
puted. Then, based on performance expressions for straight line code, performance
estimates for loop structures and branches are computed. The resulting performance
expressions may contain symbolic variables representing control information or other
unknowns.

Wang’s approach tries to eliminate the propagation of errors due to insufficient
control flow information and allows the symbolic comparison of performance expres-
sions. In addition, ”sensitivity analysis” can be applied to performance expressions
to identify variables that have the greatest impact on the overall performance. Non-
sensitive variables may be eliminated from a performance expression without signifi-
cant loss of performance prediction accuracy.

The framework has been implemented for straight-line code. Unfortunately, ex-

perimental data to verify the accuracy and efficiency has not been provided.

Superb-2

Chapman, Fahringer, Blasko, Herbeck, and Zima at the University of Vienna pro-
pose automatic data decomposition as part of the interactive parallelization system
SUPERB-2 [CHZ91, CH91, FBZ92]. SUPERB-2 takes Fortran 77 programs as input
and generates SPMD node programs with explicit communication. Their approach

is based on Gupta’s and Banerjee’s work at Illinois (see Section 3.1.1). In addition

26

to the statement level pattern matching, high-level pattern matching is used to iden-
tify specific computations in the program such as stencil computations and matrix
multiply. Information about the implementation of these computation patterns on
the target machine is stored in a knowledge data base. A ‘weight finder’ locates
the portions of the code that contribute the most to the overall execution time of
the program. The effort to find a good data layout is concentrated on these crucial
regions. Static performance estimation is used to evaluate the data mappings in a
search space of reasonable data layouts.

The proposed tool is currently being implemented at the University of Vienna.
A prototype performance estimator has been implemented. [FBZ92, Fah92]. No

experimental results have been published.

Syracuse’s Performance Interpretation Engine

Parashar, Hariri, Haupt, and Fox present an interpretive approach for performance
prediction in a high performance computing environment [PHHF94]. An ”interpreta-
tion engine” uses information about the target machine and the program character-
istics to determine different performance metrics such as estimated execution time,
estimated communication and computation times. The authors introduce a system
abstraction methodology to characterize the behavior of the target system in a hi-
erarchical fashion. The program is represented in a way that allows performance
prediction based on the system abstraction.

Their framework for performance prediction is designed to support (1) application
design such as choosing a good parallel algorithm, (2) compiler directive selections
such as automatic data mapping, (3) general performance debugging, and (4) experi-
mentation with different systems and run-time parameters. The framework has been
implemented in the context of the HPF/Fortran90D compiler developed at Syracuse.
Experiments show that the implementation was able to predict the execution times
of a set of Fortran90D programs and program kernels on the iPSC/860 within 20%
of their measured values, assuming that the array sizes, loop bounds, and branch
conditions are known or provided at compile time.

The precision of the HPF /Fortran90D performance framework is very impressive.
One main reason for this is that the the HPF/Fortran90D compiler only exploits ex-
plicit FORALL parallelism and generates loosely synchronous SPMD node programs

for such programs. The execution of a loosely synchronous program can be described

27

as a sequence of computations and communication phases. Although this fact made
the estimation process much easier than for programs that can only be represented by
a more general task graph, estimating the cache performance of the iPSC/860 remains
a difficult problem. Unfortunately, the authors do not give a detailed description of
their approach to modeling the memory hierarchy.

Using off-line benchmarking routines to estimate the system performance in terms
of basic computation and communication operations is not a new idea [BFKKO91].
What is new is the representation of the system characteristics in an abstract hier-
archy. This representation should allow the performance framework to pick the right
level of system and application abstraction for different performance prediction goals.
For instance, choosing a good parallel algorithm or choosing a good data mapping
may have different performance estimation precision requirements. The performance
framework may be able to support both, each on its most efficient level of abstraction.

The paper does not contain a validation of the different abstraction levels.

28

Chapter 4

Framework for Automatic Data Layout

The framework for automatic data layout consists of four steps. In the first step
the input program is partitioned into program segments. For each such program
segment, the second step constructs a search space of promising candidate layouts. A
candidate layout for a program segment is a mapping of every array referenced in the
segment onto the target architecture. Heuristics are used to generate the candidate
layout search spaces. In the third step each candidate layout is evaluated in terms
of its estimated execution time. In addition, costs of possible remappings between
candidate layouts are determined. The performance estimation uses a compiler model,
execution model, and machine model. Based on the estimated candidate layout costs
and costs of possible remappings between candidate layouts, a single candidate layout
from each search space has to be selected such that the overall cost is minimal. This
selection process is performed in the fourth and last step of our framework.

In the remainder of this section each of the four steps is discussed in more detail.

A small program kernel will serve as an example to illustrate each of the four steps.

4.1 ADI Example Program

The following example illustrates the framework for automatic data layout. Figure 4.1
shows an Alternating Direction Implicit (ADI) integration kernel. ADI integration is
a technique frequently used to solve partial differential equations (PDEs).

The execution of the ADI integration kernel consists of a repeated sequence of
forward and backward sweeps along rows, followed by downward and upward sweeps
along columns. For the sweeps along the rows, a row layout has the best performance.
The same holds for a column layout for the column sweeps. Transposing the arrays
between the all row and all column sweeps eliminates communication within the
sweeps. In contrast, choosing the same data layout for both, row and column sweeps
will avoid communication between the sweeps but will make communication necessary

either in the row or column sweeps. The best data layout choice will depend on the

29

REAL c(N, N), a(N, N), b(N, N)
/I READ (c, a, b)

DO iter =1, max
/I Forward and backward sweeps along rows

DOj=2,N
DOi=1,N [==-z----z---D-o-oDDDDtE
¢,) =c(i, j) - c(i,j - 1) * ai, j) / b(i, j - 1) IR =
b(i, j) = b(i, j) - &, j) * &, j) / b(i,j - 1)
ENDDO
ENDDO

c(i, N) = c(i, N) / b(i, N)
ENDDO

I J
\ \
I J
\ \
DOi=1,N } }
I J
I J
\ \

DOj=N-1,1,-1
DOi=2,N [==-z----z---D-o-oDDDDtE
c(i,j) = (c(i,j) -ali,j+ 1) * ci,j + 1))/ b(i,)
ENDDO
ENDDO

/I Downward and upward sweeps along columns
DOj=1,N
DOi=2,N
ofi,J) = (i,) - ofi - 1,) * a(i,) / b(i - 1,]) i b
b(i,) = b(i,) - ali, §) * a(i,§) /b - 1,]) i ¥
ENDDO

ENDDO

DOj=1,N
(N, j) =c(N,j)/b(N, j)
ENDDO

DOj=1,N Vil Vi Vi
DOi=N-1,1,-1 LI L TP TP
c(i,j)=(c(i,j)-ali +1,j) * c(i +1,j)) /b,)
ENDDO
ENDDO

ENDDO

1/ WRITE (c, b)

Figure 4.1 ADI integration kernel with computation illustration

speed of the communication hardware and software of the target distributed-memory
machine, and the ability of the compiler to exploit pipelined parallelism efficiently.
In addition, the performance characteristics of the underlying 1/O system has to be
considered since the program performs read and write disk accesses. Finally, the
actual size N of the arrays and the number of available processors may influence the
data layout choice. Figure 4.2 shows two different data layout specifications that may
be generated by our automatic data tool assistant tool. The left hand side shows a
static, column-wise data layout. The right hand side depicts a dynamic data layout

where transpose operations will be performed between the row and column sweeps.

30

REAL ¢(N, N), a(n, N), b(N, N) REAL ¢(N, N), a(n, N), b(N, N)

/I Static column-wise layout

IHPF$ TEMPLATE X(N, N)

'HPF$ ALIGN c(i, j), a(i, j), bi, j) WITH X(i, j)
'HPF$ DISTRIBUTE X(*, BLOCK)

/I Dynamic row and column-wise layout
IHPF$ TEMPLATE X(N, N)

IHPF$ DYNAMIC X

IHPF$ ALIGN c(i, j), a(i, j), b(i, j) WITH X(i, j)
'HPF$ DISTRIBUTE X(*, BLOCK)

DO iter = 1, max DO iter = 1, max
/I Forward and backward sweeps along rows /I Forward and backward sweeps along rows
'HPF$ REDISTRIBUTE X(BLOCK, *)

/I Downward and upward sweeps along columns /I Downward and upward sweeps along columns
'HPF$ REDISTRIBUTE X(*, BLOCK)

ENDDO ENDDO

Figure 4.2 Example output of the proposed framework for automatic data
layout for the ADI integration kernel. The left hand side shows a static
column-wise data layout, and the right hand side shows a dynamic layout
that performs transposes between the sweeps along rows and columns.

4.2 Program Partitioning

The first step partitions the program into code segments, called program phases.
In our framework, data remapping is allowed only between phases. A good phase
definition tries to identify operations on arrays between which remappings may be
profitable. In languages such as Fortran 90, array statements, FORALL statements,
and DO loops can be used as a basis for a phase definition. The following phase

definition worked well on all programs in our test suite of Fortran 77 programs.

Definition 4.1 A phase is the outermost loop in a loop nest such that
the loop defines an induction variable that occurs in a subscript expression

of an array reference in the loop body.

This operational definition does not allow the overlapping or nesting of phases.
Other strategies for identifying program phases are a topic of future research. For

instance, two adjacent phases can be merged into a single phase if remapping can

31

never be profitable between them. Sheffler et al. describe techniques to perform such
phase merges [SSPT95]. Transformations to improve phase recognition are beyond
the scope of this thesis.

The phase structure of the program is represented in the phase control flow graph
(PCFG), an augmented control flow graph [ASU86] where each phase is represented
by a single node, called a phase node. Structured control flow between phases such as
loops and branches are represented by special nodes in the PCFG. The graph is an-
notated with branch probabilities and loop control information. Branch probabilities
can either be supplied by the user or are determined based on a guessing heuristic.

Figure 4.3 shows the partition of our ADI kernel example into phases. The result-
ing PCFG has eight phase nodes. Fach phase node is labeled with the set of arrays

referenced in the corresponding phase.

32

REAL ¢(N, N), a(N, N), b(N, N)

/I READ (c, a, b)

DO iter =1, max
/I Forward and backward sweeps along rows

DOj=2,N 2
DOi=1,N
c(i,j)=c(i,j)-c(,j-1)*al,j)/b,j-1)
b(i, j) =b(, j) - al, j) * ai, j) / b(i, j - 1)
ENDDO

ENDDO

DOi=1,N 3
c(i, N) =c(i, N) / b(i, N)
ENDDO

DOj=N-1,1,-1 4
DOi=2,N
c(i,j) = (c(i,j)-a(i,j +1)* ci,j + 1))/ b(,)
ENDDO
ENDDO
/I Downward and upward sweeps along columns
DOj=1,N 5
DOi=2,N
c(i,j)=c(i,j)-ci-1.j)* al,j)/b(i-1,j)
b,) = b(i, j) - a(i. j) * a(i, j) / b(i - 1.)
ENDDO
ENDDO

DOj=1,N 6
c(N, j) =c(N,)/ b(N, j)
ENDDO

DOj=1,N 7
DOi=N-1,1,-1
c(i,j)=(c(,j)-ali +1,j) * c(i +1,j)) / b(i, j)
ENDDO
ENDDO

ENDDO

Figure 4.3 Result of the program partitioning step

33

4.3 Layout Search Spaces Construction

The second step of our framework for automatic data layout constructs explicit search
spaces of candidate data layouts for each phase. Promising candidate layouts for a
phase are generated based on their expected performance as part of an efficient data
layout for the entire program.

A data layout in HPF is defined in two stages, typically referred to as alignment
and distribution. Arrays are aligned relative to each other by specifying a mapping
of their elements to the same array of virtual processors, called a template. Every
array element aligned with a template is mapped to a real processor by distributing
the template onto the processors of the target architecture.

The use of explicit search spaces is an important design decision in our framework
for automatic data layout. Explicit alignment search spaces allow the framework to
postpone the evaluation of an alignment candidate until all distribution candidates
are known. Therefore, promising alignment candidates are not eliminated prema-
turely, but are evaluated in combination with the selected candidate distributions. In
addition, explicit search spaces provide a natural basis for user interaction. The user
can browse through the search spaces and influence the selection process by adding
or deleting candidate data layouts.

Our framework determines a single template for the entire program based on the
maximal dimensionalities and maximal dimensional extents of the arrays in the pro-
gram. All alignments and distributions are specified based on this program template.
Corresponding to the two stage mapping, the framework first builds search spaces
of promising candidate alignments for each phase. If arrays have fewer dimensions
than the program template, alignment analysis may generate different embeddings
for the arrays. Then, distribution analysis uses the alignment search spaces to build
candidate data layout search spaces of reasonable alignments and distributions for

each phase. Alignment and distribution analysis is discussed in the next two sections.

4.3.1 Alignment Analysis

Alignment analysis takes the phase control flow graph as input and generates explicit
alignment search spaces for each phase. Heuristics have to be used to determine
a reasonably sized set of alignment candidates that will guarantee a good overall

performance for most applications.

34

Alignment analysis is done in two stages. First, only alignment preferences be-
tween arrays are considered. In the second stage, each array is mapped onto the
unique program template such that the relative alignment preferences are respected.
The second stage of the alignment mapping is called orientation [AL93].

This section discusses basic operations that are needed to identify and represent
relative alignment preferences, to detect and resolve conflicting relative alignment
preferences, and to compare relative candidate alignments. The comparison of align-
ment candidates is important in order to avoid redundant alignment information in
the alignment search spaces. In addition, some methods for orientation selection are
discussed.

The basic operations and methods form the building blocks for implementing
different heuristics and strategies for the alignment search space construction. The
heuristic implemented in our prototype tool is discussed in Section 4.3.2.

There are two types of alignment preferences, namely inter—dimensional and
intra—dimensional alignment [LC90a, KLS90, CGST93]. The current framework does
not perform intra-dimensional alignment analysis, i.e., assumes canonical offset and
stride alignments. The discussion of the basic operations will be restricted to inter-

dimensional alignment preferences.

Identification and Representation of Relative Alignment Preferences

A central representation for the relative, inter-dimensional alignment problem is the
weighted, undirected component affinity graph (CAG) introduced by Li and Chen
at Yale University [LC90a]. It represents the alignment preferences of arrays that
are coupled in a computation. A d-dimensional array is represented in the CAG by
d nodes, one node for each dimension. Alignment preferences between dimensions
of distinct arrays are represented as edges between the corresponding nodes. The

weights of the edges reflect the relative importance of alignment preferences.

Detection of Relative Alignment Conflicts

Assume that d is the dimensionality of the program template. A solution to the
inter-dimensional alignment problem is a partitioning of the nodes in the CAG into
d partitions such that no two nodes representing dimensions of the same array are in
the same partition. A CAG contains a conflict if there is a path between two nodes

that represent distinct dimensions of the same array. The definition of a conflict does

35

not allow diagonal alignments such as aligning a one-dimensional array with the main
diagonal of a two-dimensional array. The test for alignment conflicts is linear in the

size of the CAG, since it involves solutions of reachability problems between nodes in

the CAG.

Relative Alignment Conflict Resolution

A conflict implies that every solution of the corresponding inter-dimensional align-
ment problem will have alignment preferences that cannot be satisfied. A good so-
lution tries to minimize the weights of the edges that cross partitions and therefore
cannot be satisfied. Li and Chen showed that finding the optimal solution for the
inter-dimensional alignment problem is NP-complete [LC90a]. Instead of using a
heuristic, the current framework formulates the inter-dimensional alignment problem
as an efficient 0-1 integer programming problem. Section 2.2 constrains an introduc-

tion to integer programming and 0-1 integer programming.

Alignment Conflict Resolution as a 0—1 Problem

This section describes the translation of an instance of the inter-dimensional align-
ment problem into an instance of a 0-1 integer programming problem with linear
constraints. Note that there are many possible translations. Experiments showed
that our formulation is very promising. A proof of the correctness of our formulation

is provided in the appendix.

Definition 4.2 An instance of the inter-dimensional alignment prob-
lem with d dimensions consists of finding a d-partitioning of an undi-
rected, weighted component affinity graph (CAG) such that the sum of

the weights of the edges that cross distinct partitions is minimized.

Definition 4.3 An instance of the 0-1 problem consists of a set of vari-
ables X, a set of linear constraints over the variables in X, and a linear
objective function with domain X. A solution to an instance of the 0-1
problem is a function sg; : X — {0, 1} that minimizes (or maximizes) the

objective function while respecting the constraints.

In the following, we will discuss the translation of a d-dimensional alignment

problem into a 0—1 problem. We will assume that all arrays represented in the CAG

36

have d or less dimensions. Let a; be the node in the CAG that represents the i-th
dimension of array a, 1 < ¢ < dim(a), where dim(a) denotes the number of dimensions
of array a. Each such node is represented by d variables or switches in X, a;;, € X,
1 < k < d. The switch a;; will be on if and only if the node a; belongs to the k-th
partition in the final solution. Let e = (a;,b;) be an edge in the CAG. Each edge e
is represented by d variables or switches in X, a$b§’f€ € X, 1 <k <d. In the final
solution, the switch a$b§-’f€ is on, if and only if the sink and the source of the edge e
belong to the same partition.

There are two types of constraints. Node constraints ensure that any solution is a
d-partitioning of the CAG, and edge constraints identify edges with source and sink

nodes in the same partition.

Node constraints: To ensure that an array dimension is in exactly one partition,

constraints of the form Ei:l a;r = 1 (typel) are introduced for each node a;. Two
dimensions of the same array must not be in the same partition. This property
is enforced by the following constraints, one constraint for each pair of an array a
and a partition k, 1 < k < d: Z?ZL(G) air < 1 (type2). Note that in the case of
an embedding of array a, dim(a) < d, some partition k& will not contain any CAG
node associated with a. There are |N| node constraints of typel and d|Arrays| node
constraints of type2, where N is the set of nodes in the CAG, and Arrays is the set
of arrays represented in the CAG.

FEdge constraints: The formulation of the inter-dimensional alignment problem uses

counting arguments on the number of incoming and outgoing edges of nodes in the
CAG. For each node «;, constraints are introduced for incoming and outgoing edges.
The translation requires a directed graph. The particular direction of edges in the
CAG is irrelevant for the correctness of the formulation. However, the direction in-
fluences the form and number of edge constraints, and therefore has an impact on the
performance of the generated 0-1 problem instance. An edge direction normalization
step ensures that for any pair of arrays (a, b), all edges between nodes that represent
a dimension of ¢ and a dimension of b have the same direction, e.g., are all oriented
“from a to b”.

Let SRC(b,a;) denote the set of all nodes b; that represent a dimension of array
b and there is an edge from b; to a;. For each k, 1 < k < d, and each non-empty
set SRC(b,a;), IN-constraint of the form Y=, csre(,a:) b$a‘g,]f < a; are introduced.

Let SIN K (a;,c) denote the set of all nodes ¢; that represent a dimension of array ¢

37

and there is an edge from a; to ¢;. For each k, 1 < k < d, and each non-empty set
SINK (ai, c), OUT-constraint of the form 3=, cs/n i (as,c) a$c§’fC < a;), are introduced.

The total number of edge constraints is O(2d|E|), where F is the set of edges in
the CAG. Each edge occurs in exactly two constraints, a IN-constraints of its sink
node and a OUT-constraints of its source node. To be more precise, the number of
edge constraints is the number of nonempty SRC and SIN K sets, multiplied by d.
In the worst case, each SRC and SIN K set contains only one edge, resulting in 2d| F|
edge constraints.

Figure 4.4 shows the constraints resulting from the translation of an example CAG
with an alignment conflict into a 0-1 problem. The CAG was generated for a loop
with a two-dimensional program template. Therefore, conflict resolution requires a
minimal cost two-partitioning of the example CAG. Edge weights are not shown here
since they are only relevant for the objective function and not for the constraints. The
graph below the CAG in Figure 4.4 is not actually generated during the translation

process, but illustrates our 0—1 formulation.

Objective function: A solution of the 0—1 problem formulation of the inter-dimensional

alignment problem mazimizes the following objective function under the given con-
straints:

d
>y a$b;],i werght (a;,b;) .

(as,bj)eE k=1

The switch a$b§’7C is on, if and only if the corresponding edge is inside a partition.
A solution maximizes the edge weights inside a partition and thereby minimizes the

edge weights across different partitions.

Comparison of Relative Alignment Preferences

The inter-dimensional alignment information of a conflict-free CAG can be repre-
sented as a partitioning of its nodes. FEach partition in the partitioning repre-
sents a connected component in the CAG. The set of all possible conflict-free, inter-
dimensional alignments of a set of arrays forms a semi-lattice [Hec77]. The bottom
element of the lattice is the CAG that contains no alignment information, i.e., the
graph contains no edges and therefore its partitioning consists of partitions that con-
tain only single nodes. Figure 4.5 shows an example lattice for two two-dimensional

arrays.

38

| NODE Constraints |
DO i=1,n
y(i, 1) =x(i, 1) + x(1, i) Each node isin exactly one partition
ENDDO

Y11+ Y12 = 1 Yor+ Yoo = 1

@ @ X1+ X12 =1 Xpp+ Xy =1

@ @ Two dimensions of the same array must
not be in the same partition
CAG Yiut Y¥a1 1 Yo+ ¥y <1
<

X0+ %91 S 1 Xpp+ Xpp <1

[EDGE Constraints]

An edgeisswitched on IFF
the source and sink are switched on

IN-constraints:

11 21 12 22
X 33y11 +x $yllf Y11 X $y12 +x “'JSy12 <Y
OUT-constraints:

1 21
x$y1y <xpp xByIy <xpp

21 22
xBy1y <xp1 xBypH <xpp

Figure 4.4 Alignment conflict resolution of an example
CAG as a 0-1 integer programming problem

The partial order C defined over the set of conflict-free CAGs is that of partitioning
refinement. Assume that C AG; and C AG, are two conflict-free CAGs, then CAG; C
CAG, if and only if the node partitioning of C'AG; is a refinement of the node
partitioning of C'AG,. A partitioning X is a refinement of a partitioning Y, if for each
partition € X there is a partition y € Y, such that x C y. Assuming that partitions
are implemented using hashing, and the elements in X and Y are tagged with their
partition membership, then the test “X is refinement of Y” is linear in practice in
the number of elements in all partitions of X. In other words, the complexity of

computing CAG; C C'AG, is linear in practice in the number of nodes in C AG;.

39

{ag by | & bp} {aa by | &b}

G—® | | & & | @ 0| 6 ®

® ® ® ®
{ab lalbd] [{al @bt lby| |{alaeb b |[{ab|alb

@ ®

{aq| a | by | b}

Figure 4.5 Inter-dimensional alignment information lattice for two arrays

a and b. Both arrays have two dimensions. Fach conflict-free CAG is shown

with its corresponding node partitioning. The bottom element of the lattice
is the CAG without edges, i.e., the partitioning {ay |az |b1 |b2}.

The test for CAGy C C'AG, allows the direct comparison of the alignment infor-
mation in two CAGs. Other operations on the semi-lattice are the meet operation
CAG, 1 CAG; and the join operation C AG; U C AG5. Both operations can be im-
plemented efficiently.

A meet operation of two CAGs determines the CAG that represents the weak-
est alignment information that contains the alignment information common to both
operand CAGs. In other words, CAG; I C'AG, determines the intersection of the
alignment information in the two operand CAGs. Since intersecting two conflict-free
alignments cannot introduce a conflict, the result of the meet operation is always a

unique, conflict-free CAG.

40

A join operation of two CAGs determines the CAG that represents the weak-
est alignment information that contains the alignment information in both operand
CAGs. Note that such a CAG may not exist since the two operand CAGs may have
conflicting alignment information. In other words, C' AG,UC AG; computes the union
of the alignment information in C'AG; and C'AG5 if the union does not have conflicts.

If a conflict-free union exists, then the resulting CAG is unique.

Orientation Selection

A conflict-free CAG represents relative inter-dimensional alignment preferences of
arrays. A final stage is needed to determine the orientation of the CAG relative to
the unique program template. An orientation of a conflict-free CAG maps the CAG’s
connected components, i.e., the sets of a ligned array dimensions to the dimensions
of the program template. For a d-dimensional program template and a conflict-free
CAG with d connected components, there are d! possible orientations.

Any orientation of a conflict-free CAG satisfies the alignment preferences repre-
sented in the CAG. However, in the presence of dynamic realignment, the orientation
of two distinct CAGs may influence the potential remapping costs between the two
alignments. Therefore an algorithm is needed that matches the orientations of the

CAGs in the alignment search spaces as closely as possible.

4.3.2 Heuristics for Alignment Analysis

The goal of alignment analysis is to determine a promising set of candidate alignments
for each phase. In most cases, an exhaustive alignment search space will not be
possible. Heuristics are needed that restrict the search space sizes and at the same
time avoid the elimination of promising alignment candidates. In this section, we
will give examples of such heuristics. The heuristics use the basic operations of our

framework.

CAG Construction

The edge weights in the CAG reflect the relative importance of alignment preferences.
The basic operation of alignment conflict resolution assumes that edge weights reflect
the cost that will occur if the associated alignment preference cannot be satisfied.
Therefore, conflict resolution tries to minimize the sum of edge weights that cannot

be satisfied (see Section 4.3.1). Typically, edge weights represent communication

41

costs in some performance model. The choice of a performance model is compiler and
machine dependent.

Performance models at this level typically do not consider array distributions. If
a distribution maps misaligned dimensions to the same processors, no communication
is needed.

An edge in the CAG may represent multiple occurrences of the same alignment
preference in the program. If the compiler allows the caching of communicated values,
only a single communication may be needed to satisfy all occurrences of the same
alignment preference. In this case, the edge weight will be the same for one or more
occurrences of the alignment preference. If the caching of the communicated value
is not possible, or the compiler does not support value caching, each communication
has to be accounted for separately, resulting in an edge weight that is the sum of all
individual communication costs of each occurrence.

Our sample heuristic to determine the CAG edge weights assumes an advanced
compilation system that performs communication value caching and uses the owner-
computes rule for computation mapping [Tse93]. The target machine is assumed to
be a MIMD target architecture. Our sample performance model is pessimistic since
it assumes that unsatisfied alignment preferences will always lead to communication.

In contrast to the original definition of a CAG by Li and Chen [LC90a], the heuris-
tic uses a directed CAG while computing the edge weights. The edge directions keep
track of the flow of values due to the owner-computes rule. If the same alignment
preference is encountered, the heuristic checks whether the preference has the same
direction as the one already represented in the CAG. If the directions are not identi-
cal, the edge weight is increased by the estimated communication cost and the edge
direction is reversed. If the directions are the same, the CAG remains unchanged.
The estimated communication cost models the volume of the communication, i.e.,
corresponds to the size of the array that has to be communicated. Due to the owner-
computes rule, a communicated array is at the source of edges in the CAG. Once edge

weights have been determined, edge directions in the resulting CAG are removed.

Alignment Search Space Construction

There are many possible heuristics to construct the alignment search spaces for each
phase. In this section, we will discuss one heuristic in more detail. The overall outline

of our heuristic is shown in Figure 4.6.

42

The alignment search spaces are initialized with the undirected, weighted CAGs
of their phases. If a CAG has inter-dimensional alignment conflicts, the conflicts are
resolved and the resulting CAG is used for the initialization. After initialization,
the phases are partitioned into classes such that their merged CAGs are conflict-free.
Each class of phases is represented by its merged, conflict-free CAG. The current
prototype uses a greedy strategy to determine the single phase CAG to be merged
next. The algorithm visits the phases, i.e., the nodes in the PCFG in reverse postorder
(rPOSTORDER) [Hec77], and merges their CAGs as long as no conflict is detected.
Once a conflict is encountered, a new class is created and initialized with the CAG of
the single phase that led to the conflict. The greedy merging procedure is resumed
based on this new class. The partitioning algorithm terminates after all phases have
been visited. The algorithm is shown in Figure 4.7.

The main step of our heuristic to construct alignment search spaces for each
class consists of exchanging alignment information between different phase classes by
inserting corresponding alignment candidates into their alignment search spaces. The
heuristic is shown in Figure 4.8. An ¢mported alignment candidate is the result of the
optimal embedding of the source CAG into the sink CAG of the import operation.
The import process merges the CAGs of the source and sink class of the import
operation after increasing the edges weights of the source CAG by some constant
factor. The edge increase guarantees that the alignment preferences of the source
CAG will dominate the alignment preferences of the sink CAG. This is important if
the merged CAG has an alignment conflict. The imported alignment candidate is the
alignment scheme resulting from solving possible conflicts in the merged CAG, and
restricting the resulting alignment information to those arrays that are referenced in
the sink class of the import operation.

If the phase partitioning has p classes, then each final class alignment search
space can have at most p candidates. In order to avoid duplication of alignment
information, the imported alignment candidate is only inserted into the search space
if its alignment information is not weaker or equal to any alignment information
already in the search space. The sizes of the final search spaces can be further
reduced if alignment candidates are joined that do not contain conflicting alignment

information.

43

Algorithm ALIGN

Input: PCFG G=(N, E), with phase nodes, DO nodes, and IF nodes
Qutput: Alignment candidate search spaces for each phase node in the PCFG

for each phase node P; in the PCFG do
local; = create_CAGs (F;) // builds the set of CAGs for phase P,
if has_conflict? (local;) then
local; = resolve_conflicts (local;) [/ conflict-free CAGs for single phase
endif

endforeach

// Heuristic to determine node partitioning of phase nodes in conflict-free
// CAG (See Figure 4.7).
call PART_PCFG (node partitioning)

// Heuristic to generate candidate alignment search spaces for each phase.
// Phases in the same partition are treated as a unit since they do not

// contain conflicts (See Figure 4.8).

call IMPORT_ALIGNMENTS (node partitioning)

// Heuristic to generate orientations of relative candidate alignments
// (See Figure 4.9).
call ORIENTATION_SELECTION (node partitioning)

// Convert each candidate alignment of a partition into a candidate
// alignment of each phase in the partition.

call GENERATE_PHASE_ALIGNMENTS (node partitioning)

Figure 4.6 Heuristic (driver routine) for
inter-dimensional alignment analysis

44

Algorithm PART _PCFG (node partitioning)

Input: PCFG G=(N, E), and for each phase the set of conflict-free CAGs
that represent the inter-dimensional alignment requirements of
the phase

Qutput: Partitioning of the phase nodes in the PCFG such that there
are no interdimensional alignment conflicts between CAGs of phases
in the same partition.

// Determine conflict-free partitions of phase nodes in a greedy fashion.
// The minimal number of conflict-free partitions is not guaranteed.

// Determine an rPOSTORDER of the phase nodes in the PCFG such that
// indices of nodes inside a loop are smaller than the indices of the

// nodes following that loop [KZBG88|

node partitioning = () CURRENT_PART = {)
=1
while 1 < |N| do
CURRENT_PART = {i}; current_part_CAGs = local;; conflict-free = true
while conflict-free and i + 1 < |N| do
current_part_CAGs = merge (current_part_CAGs, local;;1)
if has_conflicts? (current_part_CAGs) then
conflict-free = false
else
CURRENT_PART = CURRENT_PART U {i + 1}
endif
=141
endwhile
node partitioning = node partitioning U { CURRENT_PART }

endwhile

Figure 4.7 Heuristic for partitioning of phases into conflict-free sets.

45

Algorithm IMPORT_ALIGNMENTS (node partitioning)

Input: Partitioning of phase nodes into sets of conflict-free phases. Phase
nodes in the same partition are treated as a unit, i.e., represented
by the same CAG.

Qutput: Candidate alignment search spaces for each partition in the input
node partitioning.

increment = 100 // weight increment for imported CAG
// Initialization of search spaces
foreach partition in node partitioning do
build the conflict-free CAG representing the partition
initialize the alignment search space of the partition with its CAG
endforeach
foreach pair (part;, part;) of distinct partitions in node partitioning do
// import alignment scheme of partition i into partition j
weighted CAG =
merge (increase_weights (CAG (part;), increment), CAG (part;))
if has_conflicts? (weighted_CAG) then
weighted CAG = resolve_conflicts (weighted CAG)
endif
foreach candidate_alignment CAG in alignment search space of part; do
compare_result =
compare_alignments(weighted CAG, candidate_alignment CAG)
case compare_result of
WEAKER or EQUAL: exit innermost foreach
STRONGER:
replace candidate_alignment_ CAG by weighted_ CAG in search space
exit innermost foreach
NEITHER:
if comparison with last candidate_alignment CAG in search space then
add weighted CAG to search space
endif
endcase
endforeach
// import alignment scheme of partition j into partition i
weighted CAG =
merge (CAG (part;), increase_weights (CAG (part;), increment))
...analogue to above import process ...
endforeach

Figure 4.8 Heuristic for importing candidate alignments.

46

Algorithm ORIENTATION _SELECTION (node partitioning)

Input: Node partitioning with relative alignment search spaces
Output: Set of orientation for each candidate alignment in
the relative alignment search spaces of phase partitions

// Determine common relative alignment information in each search space
foreach partition part; do

meet; = [| candidate alignments in search space of part;
endforeach

foreach pair (part;, part;) of distinct partitions in node partitioning do
// Determine partial orientations for each pair of partitions
meet = meet; [1meet;
if is_bottom? (meet) then
skip // no common relative alignment preferences
else
determine orientation for meet
extend orientation of meet to all candidate alignments in the
search spaces of part; and part;
insert resulting orientation into the set of orientations for
each candidate alignment in part; and part;
endif
foreach candidate alignment do
if set of orientations is empty then
determine canonical orientation for the candidate alignment
endif
endforeach
endforeach

Figure 4.9 Heuristic to determine sets of orientations

47

Orientation Selection

In the presence of alignment conflicts, the relative alignment heuristic will construct
multiple candidate alignment search spaces, one for each phase partition. Figure 4.9
shows a sample heuristic that generates a set of orientations for each candidate align-
ment in the alignment search spaces.

The sample heuristic identifies common alignment preferences in each search space
and across search spaces. Array dimensions that are part of the common alignment
preferences are mapped to the same template dimensions. If the partial orientations
do not induce unique total orientations for each candidate alignment, a canonical
orientation scheme is used to map the remaining array dimensions to template di-
mensions.

As the result of the sample heuristic, the final candidate alignment search spaces
have an entry for each relative alignment and each orientation in its computed set of
orientations. Other heuristics may use a greedy algorithm, for instance, to propagate

orientations from the most frequently executed phases to less frequently executed

phases [AL93].

4.3.3 Distribution Analysis

Distribution analysis is performed after alignment analysis. A candidate distribution
maps each template dimension either by BLOCK or CYCLIC(1) onto the target architec-
ture, or replicates or localizes the template dimension. If a dimension is distributed
across processors, a candidate distribution specifies the number of processors in each
distributed dimension. Different heuristics can be used to determine a suitable set of
promising distribution candidates. Once the distribution candidates have been deter-
mined, the cross product of alignment candidates and distribution candidates defines

the candidate data layout search spaces for each phase.

Exhaustive Search Space for BLOCK Distributions

Although the search space of possible distribution candidates may be large in general,
there are cases where using an exhaustive distribution search space is feasible. In this
section we will discuss the sizes of exhaustive distribution search spaces for BLOCK

distributions.

48

Lemma 4.1 Let d denote the number of dimensions of the program
template. Assuming that at least one dimension has to be partitioned,

the number of possible dimensional partitionings, part, is

d d p
partzz) =2=1

=1 L

@) @)

ollcl[c

—— |
[——————

|
v
|
v
|

Figure 4.10 Possible partitions of k objects
representing p * p * p * ... * p = p¥ processors

Proof The index i keeps track of the number of dimensions to be partitioned. For

)

choices of ¢ dimensions out of d dimensions.]

any given ¢, | <t < d, there are

Lemma 4.2 Let procs denote the number of processors used. Assume
that the number of processors is a power of some prime number p, i.e.,
procs = p*. Assuming that at least one dimension is partitioned, the
number of distribution schemes for a d-dimensional program template,

size, 18

49

Proof The index ¢ keeps track of the number of dimensions to be partitioned.
There are k — 1 possible choices to place a partition for p* processors to create two

groups of processors as shown in Figure 4.10. For any given i, 1 <1 < d, there are

)

choices of ¢ — 1 slots out of & — 1 possible slots to divide the number of processors
into ¢ distinct, non-empty groups, each assigned to one distributed dimension. Note
that the number of choices is 0 if ¢ > k. The resulting values for size form a Pascal’s

triangle. (]

The following table gives the values of size for different numbers of processors
used and program templates of up to seven dimensions. The number of processors is

assumed to be a power of two, i.e., procs = 2*.

#dimensions
#procs

1 2 4 5 6 7

4 1 3 10 15 21 28
8 1 4 10 20 35 56 84
16 1 5 15 35 170 126 210
32 1 6 21 56 126 252 462
64 17 28 8 210 462 924
128 1 8 36 120 330 792 1716
256 1 9 45 165 495 1287 3003
512 1 10 55 220 715 2002 5005
1024 |1 11 66 286 1001 3003 8008

For example, if the program template has three dimensions and there are 64
available processors, the exhaustive distribution search space has 28 distribution can-
didates. Depending on the number of alignment candidates in the alignment search
spaces, an exhaustive distribution search space is feasible. For a fixed number of
template dimensions, the size of the exhaustive candidate distribution search space

is polynomial as shown in Lemma 4.3.

20

Lemma 4.3 Let d be constant. Then size = @(kd_l) *

Proof Define constant c as d — 1.

(k—l—c) _ (et 1 f[(k+i) o

c c k! c!

TSL * (k+¢)° = O(k%)

c!

1 C [+
T > 7 « k¢ = Q(k°)
Substituting d — 1 for ¢ in Q(k°) < T < O(k°) yields the claimed result. O

The presented results are also applicable for the case where the number of proces-
sors is a power of some integer value 7, and ¢ is considered a unit of processors that
must not be further partitioned. In other words, the number of processors can be a
power of some integer value that must not be factorized itself.

Similar results can be obtained if the number of processors is a power of some
prime number multiplied by another, distinct prime number. The analysis for this

case can be found in the appendix in Section A.3.

Exhaustive Search Space for BLOCK and CYCLIC(1) Distributions

In this section we will discuss the sizes of exhaustive distribution search spaces for

BLOCK and CYCLIC(1) distributions.

Lemma 4.4 Let procs denote the number of processors used. Assume
that the number of processors is a power of some prime number p, i.e.,
procs = p*. Further assume that at least one dimension is partitioned
and each partitioned dimension can be either distributed by BLOCK or
CYCLIC(1). Then the number of distribution schemes for a d-dimensional

program template, size, is

d. d k—1
size:ZT*(,)*(.)
=1 2 l_]‘

*0@, O, and Q denote asymptotically tight bounds, asymptotically upper bound, and asymptotically
lower bound, respectively [CLR90].

ol

Proof The index i keeps track of the number of dimensions to be partitioned. For

)

choices to divide the number of processors into ¢ distinct, non-empty groups, each

any given 2, | < < d, there are

assigned to one distributed dimension. Each group can be either partitioned using a
BLOCK or CYCLIC(1) distribution. There are 2¢ possible combinations of BLOCK and
CYCLIC(1) distributions for ¢ groups.]

The following table gives the values of size for different numbers of processors
used and program templates of up to seven dimensions. The number of processors is

assumed to be a power of two, i.e., procs = 2*.

#dimensions
#procs
1 3 4 5 6 7
4 2 18 32 50 72 98
8 2 12 38 88 170 292 462
16 2 16 66 192 450 912 1666
32 2 20 102 360 1002 2364 4942
64 2 24 146 608 1970 5336 12642
128 2 28 198 952 3530 10836 28814
256 2 32 258 1408 5890 20256 59906
512 2 36 326 1992 9290 35436 115598
1024 |2 40 402 2720 14002 58728 209762

4.3.4 Heuristics for Distribution Analysis

A dimension of the program template can either be distributed by BLOCK or CYCLIC(i),
or can be localized. CYCLIC(i) distributions are mainly used to improve load bal-
ancing. A cyclic distribution may require more communication than a corresponding
block distribution due to the difference in their induced surface to volume ratios.
However, in the cases where load balancing is an issue, the improved load balancing

due to a cyclic distribution typically justifies the additional communication costs.

52

The blocking size 1 in the CYCLIC(1) distribution allows the specification of a cyclic
distribution that represents a tradeoff between communication and load balancing.

The heuristics for the construction of candidate distribution search spaces can be
roughly divided into two classes, exhaustive and constructive. Exhaustive heuristics
try to approximate the exhaustive set of all possible distributions of the program
template. An approximation is a subset of candidate distributions that can be con-
sidered a sparse representation of the exhaustive set. Constructive heuristics choose
distribution candidates based on the alignments in the alignment search spaces. A
performance model is needed to distinguish the qualities of possible candidate layouts.
Each layout consists of a candidate alignment and a possible candidate distribution.

In this section we will discuss an exhaustive sample heuristic. The heuristic does
not consider replication or cyclic distributions with a blocking size other than 1.
We will abbreviate CYCLIC(1) as CYCLIC. Heuristics to determine blocking sizes for
block-cyclic distributions are beyond the scope of this thesis.

Our sample heuristic classifies each dimension of the program template as cyclic
or blocked. A dimension of the program template is cyclic if there is a phase in the
program that performs a triangular computation along the dimension. If such a phase
does not exist, the template dimension is considered blocked.

In order to classify the dimensions of the program template, the alignment candi-
dates in the alignment search spaces of every phase have to be visited. In the example
shown in Figure 4.11, the alignment search space is assumed to have only a single
entry, namely the canonical alignment.

In the example in Figure 4.11, the first and second dimensions of the program
template are classified as cyclic, and the third dimension is considered blocked due to
the shape of array A’s region accessed in the triangular loops ¢ and j.

Depending on the system or user specified maximal number of candidate layouts
for any search space, and the precision of the performance estimator to evaluate
candidate data layouts, the heuristic selects uniformly spread candidate distributions
in the exhaustive distribution search space.

If a dimension has been classified as cyclic, CYCLIC and BLOCK distributions for the
dimension are inserted into the search spaces. The size of the exhaustive distribution
search space for the case where all dimensions are classified as cyclic is discussed in
Section 4.3.3. The performance estimator of the system determines an upper bound

on the granularity of the search space. For instance, if the estimator is not able

23

TEMPLATE PROG_TEMPLATE(N, N, N)
ALIGN A(l,J K) WITH PROG_TEMPLATE(l, J, K)

K~
do 10 k=1,N |¢J
do 10 j=1,N
do 10 i =j, N
10 AG K=, ..

A

Figure 4.11 Example computation phase with
triangular iteration space and canonical alignment

to distinguish two similar candidate distributions, then only a single representative
distribution should be added to the search space.

4.3.5 Example

Figure 4.12 shows the final candidate data layout search spaces for our example ADI
kernel introduced in Section 4.1. The example kernel has a two-dimensional program
template of size V in each dimension. Since there are no inter-dimensional alignment
conflicts between relative alignment preferences of the phases, all phases are merged
into the same phase partition. As a result, the same canonical orientation is chosen
for all alignment candidates and each alignment search space contains only a single
candidate.

The heuristic for distribution analysis described in Section 4.3.4 classifies both
dimensions of the program template as blocked since the program does not contain
any triangular loops. Figure 4.12 depicts the exhaustive candidate layout search
spaces for a target machine with 8 processors. Every search space has four candidate
layouts. Each candidate layout only specifies the data mapping of arrays referenced
in its phase. For example, the candidate layout search spaces of phases 3, 6, and 8

do not contain mapping information for array a.

o4

PCFG

TEMPLATE PROG (N, N)
ALIGN c(I,J), a(l, J), b(l, J) WITH PROG(l, J)

DISTRIBUTE PROG (BLOCK, *) DISTRIBUTE PROG (*, BLOCK)
ONTO PROCS ONTO PROCS
PROCESSORS PROCS(2, 4) PROCESSORS PROCS(4, 2)
DISTRIBUTE PROG (BLOCK, BLOCK) DISTRIBUTE PROG (BLOCK, BLOCK)
ONTO PROCS ONTO PROCS

I
I
I
I
I
I
I
I
i
PROCESSORS PROCS(8) PROCESSORS PROCS(8) |
I
I
I
I
I
I
I

Candidate Layout Search Spaces

Figure 4.12 Exhaustive candidate data
layout search spaces for 8 processors

)

4.4 Performance Estimation

After the generation of the data layout search spaces each candidate data layout is
evaluated in terms of its expected execution time for its phase. In addition to the
phase execution times, execution time estimates are needed for possible remappings
between candidate data layouts. The static performance estimator does not need
to predict the absolute performance of a given data layout to assist automatic data
layout, even though it is desirable. Instead, the estimator should accurately predict
the performance relative to other data layouts.

The performance of a candidate layout for a phase depends on the compiler that
is used to generate the executable for the target architecture, and on the performance
characteristics of the target architecture itself. Therefore, a source-level performance
estimator is needed that can target different compilers and architectures. One of
the main contributions of this thesis is a new approach to source-level performance
estimation. The approach is based on so-called training sets [BFKK91, HKK*91] and

efficient compiler, execution, and machine models.

4.4.1 Training Sets

A training set is a collection of kernel routines that measure the cost of various com-
munication and computation patterns. The results of executing the training sets on
a parallel machine are summarized and processed for use by the performance estima-
tor. By utilizing training sets, the performance estimator achieves both accuracy and
portability across different target compilers and machine architectures.

There are two types of training sets, compiler-level and machine-level training
sets. A compiler-level training set consists of program kernels such as stencil compu-
tations and matrix multiplication written in Fortran. The training set is converted
into message-passing Fortran using the target compiler and executed on the target
machine for different data layouts, numbers of processors, and array sizes. Estimating
the performance of a phase under a given data layout requires matching the compu-
tation in the phase with kernels from the training set. In contrast, a machine-level
training set is written in message-passing Fortran. A machine-level training set con-
tains individual computation and communication patterns that are timed on the
target machine for different numbers of processors and data sizes. To estimate the
performance of a message-passing program, the performance estimator can simply

look up results for each computation and communication pattern encountered.

26

In summary, instead of using a general theoretical performance model, training
sets probe the underlying system for its performance characteristics. The training
set method provides a natural way to respond to changes in the target compiler as
well as the target machine — simply rerun the training sets with the new compiler
on the new target machine to initialize a new performance estimator. In contrast, if
a general theoretical model is used, changes to the target hardware/software system
will nearly always require changes to the performance model itself, a tedious task at
best.

Although the use of training sets simplifies the task of performance prediction
significantly, its complexity now lies in the design of the training sets themselves.
Training sets should cover all computation and data movement patterns that will
allow the performance estimator to extract the performance characteristics of the

target hardware/software system.

4.4.2 Performance Estimation Framework

If a phase matches a program kernel in a compiler-level training set, a single table
lookup provides the estimated performance for the candidate data layout. Since it
is not possible to incorporate all possible computation patterns in a compiler-level
training set, the performance estimator will encounter code fragments that cannot
be matched with existing kernels. To estimate the performance of these codes, the
performance estimator relies on its compiler model, execution model, and machine
model.

The compiler model and machine model generate information that is used by
the execution model to determine the overall performance of a code fragment at
the Fortran source level. The models have to be mutually calibrated in order to
allow efficient and accurate performance estimation. An overview of the compiler
model, execution model, and machine model is given below. A detailed discussion
of the models implemented in our prototype layout assistant tool can be found in
Section 5.2.1.

Compiler Model

The compiler model determines where and what kind of communication will be
generated for a given candidate data layout and its phase. The compiler model is

parameterized with respect to the transformations and communication optimizations

57

Message Vectorization

Input: A candidate data layout for a phase, the phase, and the dependence
graph of the phase

Output: A set of pairs (q,A), indicating that processor q must send the
section A of data that it owns to processor k, and the loop level at
which the communication occurs

for each statement do
Let def(X) be the section of the LHS array X that is written and owned by the
kth processor
for each RHS array reference Y do
Let use(Y) be the section of the RHS array Y that is needed to compute the
elements of def(X)
Define commlevel of a true dependence to be:
level of dependence, if loop-carried
common nesting level of src and sink of dependence, if loop-independent
Let 1max = max(commlevels of all true dependences with Y as sink reference)
Let fruse(Y) be the section use(Y) “translated” to the level 1lmax
Let Y$(q) denote the section of array Y owned by processor g
Then, the set of all (q,A) pairs is given by
[@)] a# k. A= Y$(a) N fluse(Y) , A # 6},
with the communications occurring at loop level 1max
endfor
endfor

Figure 4.13 Algorithm to determine the communication for
processor k for a candidate data layout and its phase

28

that may be performed by the target compiler. The compilation process needs to be
simulated for performance purposes only. Special cases that have only a small impact
on the the overall performance, but must be handled by a real compiler in order to
generate correct code, may be ignored in the performance estimation compiler model.
For instance, the compiler model may ignore code that is generated for boundary
processors in parallel loops.

Since candidate data layout search spaces may be large, the efficient simulation
of the compilation process is crucial for the overall efficiency of our framework for
automatic data layout. A central problem during compilation is the placement and
optimization of communication. Early compilation approaches first inserted so-called
run-time resolution code for each array reference into the program. When executed,
this code performs the necessary communication for a single array reference. Based on
the run-time resolution program, the compiler tried to optimize the communication
through source-level transformations [ZBG88, CK88, RP89|. This early compilation
method is hard to simulate efficiently.

We have developed a new compilation approach that allows the analysis and opti-
mization of communication at an abstract level without source-level transformations.
The approach is based on data access summary information such as data access de-
scriptors (DAD [Bal90]) or regular section descriptors (RSD [Cal87]) to determine
what data has to be communicated, and on the dependence graph to determine when
the data can be communicated [AK87, Wol89]. Figure 4.13 shows the message vec-
torization algorithm that moves communication out of loop nests as far as possible
[BFKK90]. A similar algorithm has been proposed by Gerndt [Ger90].

Tseng extended our basic compilation approach and showed that it is flexible
enough to accommodate other communication optimizations such as message aggre-
gation, message coalescing, and coarse-grain pipelining [Tse93]. He also showed that

in practice message vectorization is a highly effective communication optimization.

Execution Model

Once locations and types of compiler generated communications are known for a
candidate layout and its phase, an execution modelis used to estimate the performance
effects of synchronizations induced by the communications. Communication inside a
phase may lead to a pipelined execution of the loop. Communication outside of the

phase may result in a loosely synchronous execution scheme [FJL*88]. In addition,

29

special communication patterns may be recognized that represent global operations
such as reductions. Based on the synchronization schemes and the costs for simple
communication patterns and basic computations, the execution model determines the
overall cost estimate for a candidate layout and its phase.

In a loosely synchronous program, all processors operate in a loose lockstep, con-
sisting of alternating phases of parallel asynchronous computation and synchronous
communication. The performance of the overall program can be estimated by pre-
dicting the cost of the node program that operates on the largest local data segment.
This performance model assumes that the largest segment has the highest computa-
tion and communication costs and therefore represents the “critical path” in a loosely
synchronous execution of the entire program. The computation and communication
costs for the largest local data segment are just added up to determine the overall
phase performance.

Performance prediction of a pipelined phase execution is more complicated than
in the loosely synchronous case. Execution models that can estimate pipelines of
different granularity have been discussed in the literature, for instance in [MCAK94,
PSCB94]. The actual choice of a particular pipeline model will depend on the desired
accuracy.

A detailed discussion of the execution model used in the prototype implementation

of our layout assistant tool can be found in Section 5.2.1.

Machine Model

The actual costs of communication operations and basic computations for the target
machine architecture are determined by a machine model. The machine model may
be based on machine-level training sets or on other performance models, such as the
models discussed by Gupta and Banerjee [GB92a] or Fahringer and Zima [FZ93].
Training sets of global communication operations can be used to estimate the cost of
remappings between candidate data layouts.

A computation training set measures the execution times for arithmetic operations
and intrinsic functions for different data types and memory access patterns. Memory
access patterns try to capture the impact of the memory hierarchy on the execution
time of the operation. For instance, an arithmetic operand may be in a register, in

cache, or out of cache.

60

A communication training set for a basic communication pattern comm such as
shift, broadcast, or send/receive typically generates a cost table that represents

a cost function of the form
C 08t comm : (Fprocessors x #transmitted bytes) — execution_time

To improve the overall accuracy of performance prediction, additional parameters
may be considered in the cost functions. For example, a cost function may also be
parameterized with respect to the memory stride of the transmitted data.

A communication training set for a global data remapping operation such as
transpose may be parameterized with respect to the source and destination data
layout of the remapping operation in addition to the array size, the array data type,
and the number of available processors.

Executing the machine-level training sets generates cost tables in so-called raw
data files. These files have to be read and processed by the data layout assistant
tool at tool invocation time. Since the amount of data in the raw data files may
be large, a compact internal representation is desirable or even necessary. We have
experimented with the chi-square fit method [PFTV88] to approximate cost functions
represented by raw data files. If the communication cost function can be decomposed
into piece-wise linear functions, the chi-square fit method can be used to approximate
each of the linear functions [BFKK91]. Other approximation methods may represent
only a subset of the data points from a raw data file in an internal cost table. Linear

interpolation can be used for data points between defined entries in this cost table.

4.4.3 Experiments

To evaluate the effectiveness of our training set approach, we have implemented a per-
formance estimator for loosely synchronous SPMD node programs. The performance
estimator was implemented as part of the ParaScope interactive parallel programming
environment [BKK*89].

Since the estimator takes programs with explicit communication as input, a com-
piler model is not necessary. Given a node program, the estimator’s execution model
computes the largest local segment for the specified problem size and number of
available processors. The execution model performs a tree walk over the abstract
syntax tree (AST [ASU86]) of the program. The program may only contain struc-

tured control flow. If a control-flow branch is visited, the user is queried for the

61

Paraicope Editor perf_demo/tests/rb.col1.64.16.f
search | analyze variables | transform parallel estimate compile
A
c
. | do & & = 1, cpciles] berformance o
C Compute values of RED points
c)) Select program segment to be analyzed by clicking
do 21 1 =1, mysize, 2 on the boundary simts defining the segment
do 268 j =1, ub, 2
waldi, 3 = a * (wval(i, j - 1) + va
28 continue First stmt ->| [1168] do 5 k = 1, cycles
21 continue
do 31 i = 2, mysize, 2 Last stmt =
do 38 j = 2, ub, 2 >
wal(i, j) = a * {(val({i, j - 1) + va " "
20 continue | Estimate Performance || Clear Selections
31 continue
C Execution time estimate of segment = B.88e-82 secs
C Communicate with neighbors % of time spent in Communication = 76.62 ¥
c
call comm(val, me, left, right)
C
C Compute values of BLACK points
C
do 41 i = 1, mysize, 2
do 48 j = 2, ub, 2
val(i, j) = a * (val({i, j - 1) + wvall{i - 1, j) + val{i, j + 1) + val(i + 1, j))
48 continue
41 continue
do 51 1 = 2, mysize, 2 Editing perf_demo/tests/rb.col.64.16.f
do 58 j =1, ub, 2
va](g, j),: 3% (val(i, § - 1) save! | edit | view | search | file |
g? CDE%?;LQUE subroutine conm{val, me, left, right)
C integer me, left, right
. . . integer rc
g Communicate with neighhors integer b, ub, alaplb, alapub, nysize, mysized

call comm(val, me, left, right)
continue

parameter (1b = 1, ub = 4, olaplb = @, olapub = 5}
parameter (mysize = B4, mysized = 4}
real*d val{l:imysize, olaplb:olapub)

common /#press/ nocare, norder, nonode, ihost, ialnod, ialprc

C
De| iy Exchange boundary columns with left and right neighbors
C
prev loop | next Toop prev dep next dey re o= ksvuri(val({lb, 1bd, 4, 4, mysize, left, 1)
type sroi___) sink{hold) W rc = kxvrea({val(lb, olapub), 4, 4, nysize, right, 1)
rc = ksvwri(val({lb, ub), 4, 4, mysize, right, 2}
Dutput walli, i) val(i, i) { rc = kxvrealval(lb, olaplb), 4, 4, nysize, left, 2)
Anti wal{i, ji val{i, j) i return
True val{i, j) val{i, j) [end
output wal(i, j) val{i, j) {
Anti val{i, J) val{i, J) (F=a=
True walli. i1 yalli. i1 (% - = 1

Figure 4.14 Screen snapshot of performance estimator applied to a

point-wise red-black relaxation node program with column-wise data layout

62

branch probabilities. If a computation or communication pattern is encountered, the
cost of the pattern is determined using the machine-level training set, and the result
is added to the overall estimated execution time of the node program [BFKKO91].

The estimator’s machine-level training sets contain communication patterns that
call EXPRESS routines [EXP89]. EXPRESS is a portable communication library
similar to PVM [GBD%94] and MPI [GLS94]. The estimator predicts the perfor-
mance of node programs with calls to EXPRESS communication routines. A snap-
shot of the estimator applied to a point-wise red-black relaxation code is shown in
Figure 4.14.

The machine-level training set has proved quite precise for the NCUBE-1 and the
iPSC/860, especially in predicting the relative performance of different data layouts.
For the red-black relaxation code shown in Figure 4.14, the predicted execution times
for a static column-wise data layout and a static two-dimensional block-wise data
layout were within 10% of the actual execution times. For the example code, the best
data layout choice depends on the problem size, data type, and number of processors
used. For smaller problem sizes, the one-dimensional column-wise layout is more
efficient due to the smaller number of messages. However, for bigger problem sizes, the
two-dimensional block-wise layout is superior since less data has to be communicated
and load balancing is better. For varying problem sizes, the “crossover points” of the
two data layouts were determined with high accuracy [BFKK91, Kre93a].

It is important to note that the estimator was developed for training-set evalua-
tion purposes only. The machine model in our prototype data layout assistant tool
described in Section 5.2.1 uses different machine-level training sets and does not share

any code with the estimator discussed in this section.

63

4.5 Data Layout Selection

As the result of the performance estimation step, performance numbers in terms
of relative execution times are available for all candidate data layouts and possible
remappings between layouts. In the last step of our framework for automatic data
layout, a single candidate layout has to be selected from each search space of each
phase such that the resulting set of candidate layouts has minimal overall cost. The
overall cost is determined by the costs of each selected candidate layout and the
required remapping costs between selected layouts. Note that the optimal data layout
for a program may consist of candidate data layouts that are each suboptimal for their
phases.

We will show in Section 4.5.3 that the data layout selection problem as formulated
in the Section 4.5.1 is NP-complete. In Section 4.5.4 we will discuss a special case
where the problem can be solved in polynomial time in the sizes of the data layout
search spaces. Instead of relying on heuristics to approximate the optimal solution in
the general case, the data layout selection problem is translated into a linear 0—1 inte-
ger programming problem and solved optimally. Different 0-1 integer programming

formulations are discussed in Section 4.5.5.

4.5.1 Problem Formulation

The data layout selection problem is modeled as an optimization problem over the
data layout graph (DLG). The DLG is a weighted, directed graph. The graph has one
node for each candidate data layout. Edges represent possible remappings between
candidate data layouts. Nodes and edges have weights representing the overall cost of
each layout and remapping, respectively, in terms of execution time. The costs reflect
the frequencies or probabilities of phase execution. The phase execution frequencies
are provided in the PCFG.

The DLG construction assumes that only a single copy of an array can exist at
any time during program execution, unless the array is replicated due to multiple
ownership. This restriction can be relaxed by adding additional remapping edges.
The placement of these remapping edges is a topic of future research. The discussed
formulation of the data layout selection problem as an optimization problem over
the DLG does not model the possible overlap of communication and computation

between phases.

64

A data flow problem over the PCFG is solved to determine the data layouts that
can reach each single phase. The proposed data flow problem is similar to the reaching
definitions [ASU86] and reaching decomposition problems [Tse93]. If a data layout of
phase; reaches phases, then the DLG contains edges between every node representing
a candidate data layout in the search space of phase; to every node representing a

candidate data layout in the search space of phase,.

4.5.2 Example

The example ADI program kernel introduced in Section 4.1 has a two-dimensional pro-
gram template of size N in each dimension. The alignment analysis builds alignment
search spaces that map the three arrays a, b, and ¢ canonically onto the program
template as described in Section 4.3.2. To simplify the example, we assume that dis-
tribution analysis generates only one-dimensional BLOCK distributions, i.e., there are
only two candidate data layouts for each phase, namely a row layout (BLOCK,*) and
a column layout (*,BLOCK). The resulting data layout graph is shown in Figure 4.15.
The edges represent possible remappings of arrays between candidate data layouts.
To model the effects of the iterative loop, the data layout graph contains edges be-
tween the layouts of the seventh phase and the second phase. The node and edge
weights are the estimated costs for phase execution and remapping, respectively, in
terms of execution time, multiplied by their predicted execution frequencies. The cost
for transposing a single array is denoted by T. max is the number of iterations in the
iterative loop.

To solve the data layout selection problem, a single candidate data layout must be
chosen for each phase such that the overall cost of the selected layouts is minimal. The
overall cost of a set of selected layouts is the sum of the weights of their representing
nodes and the weights of all edges between these nodes. The solution requires that

the value of T and max are known. As shown in the next section, the

4.5.3 NP-completeness Proof

For the purposes of this discussion, programs are assumed to have no loops or
branches. Therefore, the PCFG consists of a linear sequence of phase nodes, Py, ... P,,
with no control flow between phases. Showing that the restricted problem is NP-

complete implies that the general problem is NP-complete as well.

65

@’ Y

g‘U

@ @Y

Q'U

1 row layout —= remapping of - -= remapping of
1 column layout c,aandb candb
= remapping of a

PCFG DLG

Figure 4.15 PCFG and DLG for the ADI kernel example. To simplify the
example, we assume that there are only two candidate data layouts in each
search space. Weights in the DLG represent static performance estimates of
overall execution times. Node weights are not shown. Unlabeled edges have
zero weight. T is the cost of performing a single array transpose, and max is

the number of iterations of the outermost loop of the ADI integration kernel.

66

Let V denote the set of variables in the program, V = {vy,...v,}. Let p; denote
the variables referenced in the i-th phase P;, i.e. p; C 2¥,1 < ¢ < n. For each P,
there is a set of candidate data layouts D; = {d},... d'"'}. Note that two phases may
have a different number of candidate data layouts. A single candidate data layout

= {dm,. .
v € p;i = {vj,,...v5, }.

The cost of executing phase P; under the data layout d¥ € D; is denoted by

dqu‘},l < k < my, is a set of layouts, one layout for each variable

¢(P;,d¥). The remapping cost from one data layout scheme to another can be defined
based on the remapping costs of each individual variable common to both schemes.
Let d? and dtﬁ be two candidate data layouts for phase P, and phase Pg, respectively.

The remapping cost is given below:

c(d37dtﬁ) = Z (d;mdti)v

v Epalpg

where ¢(d?;,d%;) is the cost for remapping the single variable v;.
Let fi : pp — {1,...n} be a mapping that determines for each variable v € p; the
phase that most recently referenced v before P,. If no such phase exists, then f;(v)

has the value :. A data remapping of v may occur between phase P, (,) and phase F.

Definition 4.4 An instance of the data layout selection problem con-
sists of a program with a linear sequence of n phases, a set of program
variables V' = {vy,...v,}, sets p; and D; for each phase P;, and cost func-
tions ¢(P;, d;), d; € D;, and c(dyj,dy,(v,);) for each v; € p; and d; € D;,
with 1 <i<nand1<j5 <.

Definition 4.5 A solution of an instance of the data layout selection
problem is a set {dy,ds,...d,} of data layout schemes d; € D;,1 <1 < n,
such that

Selod) + 3 Y dldsdy)

=1 =1 v; €Ep;
is minimized, where ¢(d;;,d;;) is 0. Note that this implies not associating

any cost with an initial data layout.

The data layout selection problem is an optimization problem. We will prove that

the corresponding decision problem DYN-REMAP (k) is NP-complete.

67

Definition 4.6 DYN-REMAP(k) represents a decision problem defined

as follows:

DYN-REMAP(k) := set of all instances of the data layout selection prob-
lem such that there exists a set of data layouts {dy,ds,...d,}, d; € D;,;1 <

t < n, with a cost less or equal to k, where k is a non-negative integer.

Definition 4.7 Aninstance of the 3 Conjunctive Normal Form Satisfiability

Problem consists of a boolean expression B in conjunctive normal form,

where F; = I} VI2V 2, 1 <17 <t and each literal is a variable or its

negation in the set of variables V = {vy,...v,}.

The decision problem 35AT is represented as follows:

3SAT := set of all instances of the 3 Conjunctive Normal Form Satisfiability
Problem for which there exists a truth value assignment w : V' — {true, false}

such that B evaluates to true under w.
Theorem 4.1 DYN-REMAP(k) is NP-complete.

Proof The proof consists of two parts. Lemma 4.5 shows that DYN-REMAP (k) is
in NP. Lemma 4.6 states that 3SAT can be reduced to DYN-REMAP (k) in polynomial
time. Since 3SAT is NP-complete, DYN-REMAP (k) has to be NP-complete.]

Lemma 4.5 DYN-REMAP(k) is in NP,

Proof Let {dy,ds,...d,},d; € D;;1 <1 < n, be aset of data layouts for an instance
of the data layout selection problem, one data layout for each phase in the program.
The overall cost of this set can be computed in polynomial time. Therefore it can be

verified in polynomial time whether a given set of data layouts has a cost smaller or

equal to a given cost k. Hence, DYN-REMAP(k) is in NP.]

Lemma4.6 3SAT can be reduced in polynomial time to DYN-REMAP (k).

63

Proof Part 1 of the proof defines the function ¢ that maps an instance B of
the 3SAT problem onto an instance g(B) of the DYN-REMAP(0) problem. Part 2
contains the proof that B € 3SAT & ¢(B) € DYN-REMAP(0). Finally, Part 3 shows

that ¢ can be computed in polynomial time.

Part 1: Let B be an arbitrary instance of the 3 Conjunctive Normal Form Satisfiability
Problem, B = Al_;(I} VI?V [?). g maps the instance B to an instance of the data

layout selection problem as follows:
o V ={vy,...v.}, i.e. the sets of variables are the same.
e Each clause Fj is represented by a distinct phase P, 1 < <.

o p; = {v; | I¥ is a literal of variable v;, 1 < k < 3}, where 1 <7 < t. Note
that |p;| < 3.

e Bach variable v € p; has 2 possible data layouts, called T and F. D; contains 2!?!
candidate layouts, one layout for each possible combination of the single variable
layouts. In other words, each d; € D; represents a truth value assignment w;

for all variables in p;:

(v;) true ifd; =T
w;(v;) = .
! false ifd;; =F

o Assume D; = {d},... d"}.

d*

P

C(PZ

) = 0 if F; is true under the truth value assignment represented by d¥ ,
| 1 otherwise

?

where] <:<tand 1<k <m.

e Assume df; € d¥ € D; and df,'] € d% € Dy, where i = f;(v;).

iy Qyrs)
Jrd 1 otherwise

o(dt g) = { 0 if both data layouts are identical

In other words, c(dfj,df,/j) = 0 if and only if no remapping of v; is required

between the two data layouts.

69

Note that there are at most eight data layouts for each phase. An example of the

application of ¢ to an instance of 3SAT is discussed in the next section.
Part 2a: Claim: B € 3SAT = ¢(B) € DYN-REMAP(0).

Proof: Let w : V — {true,false} be a truth value assignment that satisfies the
problem instance B. There is exactly one data layout scheme in each phase P; of
g(B) that represents w restricted to the variables in p;. Call this data layout scheme
di. Forall i, 1 <i <t ¢P,d) = 0. Since w specifies a unique data layout for
each single program variable v; € V, redistribution between the set of data layouts
{d},d,, ... d}} does not occur. Therefore the set has an overall cost of 0. Hence g(B) €

DYN-REMAP(0).
Part 2b: Claim: g(B) € DYN-REMAP(0) = B € 3SAT.

Proof: Let {dy,ds,... d;} be a set of data layouts, one data layout for each phase P;,
with an overall cost of 0. Therefore no remapping can occur between the data layouts
and each data layout d; has to represent a truth value assignment that satisfies Fj.
Hence, there exists a unique truth value assignment w that satisfies all F;, 1 <7 <t.

The existence of such a truth value assignment means that B is in 3SAT.
Part 3: Claim: ¢g(B) can be computed in polynomial time.

Proof: The collection of functions f; can be computed in O(t r), where ¢t and r are
the number of phases and program variables, respectively.
There are at most 8 data layouts per phase. Therefore there are at most ¢ * 8 data

d¥) for the entire program. For each data layout d¥ of

27

layout costs of the form ¢(F;
phase F;, at most 3 * 8 remapping costs for individual variables v; € p; of the form
c(dfj, df,’]) have to be computed, resulting in at most 3 * 8% remapping costs for each
phase and at most ¢ x 3 * 82 for the entire program. Hence, ¢ can be computed in

polynomial time.

O

Example Reduction

The function g maps the instance B = (v1V—w2Vuz) A (mo1VogVog) A (v1VosV-vy)
of the 3SAT problem into an instance of the decision problem DYN-REMAP(0) as

follows:

70

G FH @D @D @) @ @ p{vv,v)

P~ { Vi Yy V4}

P~ { Vi Vg V4}

cost of remapping is0

C) cost of layout isO

L__' cost of layoutis1 ~ -------- cost of remapping is1

Figure 4.16 Sample costs for ¢(B),
B = (‘Ul V o) V ‘U3) N (_"Ul V (%) V ’04) N (‘Ul V U3 V _"U4)

o V= {vla U2, U3, ‘U4}

e There are three phases, P;, P;,and Ps;. The ordering of the phases is given by

their indices.
¢ D1 = {'017'027'03}7 P2 = {'017'027'04}7 and p3 = {'Ula‘U37‘U4}-

o Dy = {{(v1, F'), (v2, F'), (3, F) }, {(v1, I), (v2, F), (vs, T) }, { (w1, F), (v2, T), (vs, F)
{(v1, F), (02, 1), (v,)}, {(v1, 1), (02,), (03, F) }, {(v1, 1), (02, F), (03, 1)},
{(v1, 1), (v2, 1), (03, F)}, {(v1, 1), (02, 1), (vs, 1)} },
Dy = {{(vi, £), (02,), (04, 1)}, {(v1, F), (v2, 1), (v,)}, { (w1, 1), (v2, 1), (04, F)
{(v1, 1), (02, 1), (va,)}, {(v1, 1), (02, £7), (04, F) 1, { (w1, 1), (02, F7), (04, 1)},
{(v1, 1), (v2, 1), (va,)}, {(v1, 1), (02, T), (v, T)} }, and

71

FEED @ @ @ @ pE{v, v,V

FrA) EFD E1H (ETD) TFR TTT p2={V1,V2,V4}

FFF) FF1) 1P (F1T (tFr7) (019 (1) p3:{V1,V3,V4}

cost of remapping is0

C) cost of layout isO

L__' cost of layoutis1 ~ -------- cost of remapping is1

Figure 4.17 A solution for g(B),
B = (‘Ul \/_“02 \/'03) A (_“Ul \/’UQ\/‘U4) A (’Ul \/‘U3V_“U4)

D3 = {{(th)v(U37) (047)} {(Ulv) ('U37) (047)} {(Ulv) ('037T)7('U47F)}7

{('UlvF)v('U&) (047)} {(Ula) ('037) (U47)} {(Ulv) ('037F)7('U47T)}7
{('UlvT)a(vi%)(047)} {(Ulv)('037)(047)}}

e The costs for the data layouts for the phases and the costs for remapping of
individual variables is shown in Figure 4.16. Individual remapping costs are
only shown for dj € Ds, d = { (v1,T), (vs3, F), (vq, F) }. Each edge in the
graph represents a cost function value c(dg], dkg(vj)j), J € {1,3,4}.

Figure 4.17 shows a solution s to the example data layout selection problem,
s = {di,d},d3} € DYN-REMAP(0). Note that all costs are 0. The corresponding
truth value assignment is {(vy,true), (va,true), (vs,false), (v4,false)}. This

truth value assignment satisfies B.

72

4.5.4 Polynomial Time Solution for Special Case

In some cases, the solution to the data layout selection problem can be determined
in polynomial time. For instance, assume that the PCFG contains only structured
control flow such as loops and branches, and each data layout candidate specifies
the layout of every array in the program. In addition, subgraphs in the PCFG that
represent branches have unique entry and exit phase nodes. We will show that in this
case the data layout selection problem can be solved in polynomial time in the sizes
of the candidate layout search spaces. The main idea is to decompose the data layout
selection problem into subproblems that can be solved as single-source shortest path
problems [CLR90]. The “length” of a path includes the weights on the nodes and the
weights of the edges along the path.

The PCFG is decomposed in a hierarchical fashion, from innermost to outermost
loop or branch levels. The possible contributions of each loop or branch to the solution
of the data layout selection problem for the entire program is summarized in special
DLGs, called loop DLGSs or branch DLGs. The summary DLGs are computed based
on the DLGs of the subgraphs in the PCFG that correspond to the control flow
structures. A summary DLGs represent its control flow structure on the next higher
loop or branch level. The DLG for the entire program is constructed bottom-up,
based on the summary DLGs and the DLGs for the phases at each loop or branch
level.

Each summary DLG has a unique set of entry and exit candidate layout search
spaces. The requirement that each branch must have a unique entry and exit phase
in the PCFG is a sufficient condition for this property. Edges between entry and exit
candidate layouts are weighted by the cost that will occur if the control flow structure
is entered using the entry layout and left using the exit layout. In addition, each edge
is annotated with its associated minimum cost path in the DLG of its control flow
structure.

The construction of the loop summary DLG is illustrated in Figure 4.18. The loop
structure DLG is only an intermediate step in computing the loop summary DLG.
The weight of an edge in the summary DLG from a candidate layout of the first phase
(entry layout) to a candidate layout of the third phase (exit layout) is the result of
computing the shortest path in the loop structure DLG from the entry layout to the
exit layout, and adding the cost of remapping between the exit and entry layout. Note

that the edge weights in the loop structure DLG reflect the frequencies of execution.

73

A dynamic programming solution of the single-source shortest paths problem for a
directed acyclic graph is described in [CLR90]. The time complexity of the algorithm
is linear in the number of edges in the graph. Let k£ denote the maximal number of
layout candidates for each phase and p the number of phases. The number of edges
in the loop structure DLG is O(pk?). For each entry candidate layout, a single single-
source shortest paths problem has to be solved. The solution provides the shortest
paths from the entry candidate layout to each exit candidate layout. As a result, the

overall complexity of constructing a loop summary DLG is O(pk?).

entry candidate layouts

@'U

N-1 exit candidate layouts

e A
PCFG loop structure DLG loop summary DLG

Figure 4.18 Example loop summary DLG. The layout search spaces for
the first two phase in the loop body are assumed to have three candidate
layouts. The search space for the third phase is assumed to have two layouts.

The construction of a branch summary DLG is shown in Figure 4.19. As during the
construction of the summary loop DLG, & single-source shortest paths problems are
solved, one for each entry candidate layout in the branch structure DLG. However, to
compute the weight of an edge in the branch summary DLG, the costs of the distinct

shortest paths from an entry candidate layout to an exit candidate layout through the

74

true and false branches are summed up. The overall time complexity of constructing
a branch summary DLG is O(pk?).

Once the hierarchical algorithm reaches the outermost nesting level, a single single-
source shortest path problem is solved to compute the overall solution. Artificial entry
and exit nodes are introduced to the outermost DLG. The artificial nodes and their
adjacent edges have zero weight. This last step is shown in Figure 4.20. The time
complexity to solve a single single-source shortest paths problem is O(pk?*). Note that
each summary edge is annotated with its cost and associated minimum cost paths.
Based on this information, the shortest path in the outermost DLG determines a

minimal cost path for the DLG of the entire program.

P entry candidate layouts

exit candidate layouts

PCFG branch structure DLG branch summary DLG

Figure 4.19 Example branch summary DLG. The layout search spaces for
the entry and exit phase are assumed to have three candidate layouts. The
phases in the true and false branches are assumed to have two candidate
layouts in their search spaces.

Theorem 4.2 Assume that the PCFG contains only structured control

flow such as loops and branches, and each data layout candidate specifies

75

the layout of every array in the program. In addition, assume that sub-
graphs in the PCFG that represent branches have unique entry and exit
phase nodes. The data layout selection problem for the resulting DLG can
be solved in polynomial time in the sizes of the candidate layout search

spaces.

@. entry node

exit node

1

PCFG outermost DLG

Figure 4.20 Example DLG for outermost program level. The candidate
layout search spaces are assumed to have three and two layouts for the first
two phases and the third phase, respectively.

Proof

Without loss of generality, we assume that each candidate layout search space has
exactly k candidate layouts. Let p denote the number of phases in the PCFG for the
entire program. The hierarchical algorithm described in this section visits each edge
in the DLG at most k& times. The worst case occurs if the edge is part of a loop or
branch structure DLG and therefore k single-source shortest paths problems have to
be solved. Each summary step substitutes a DLG subgraph by a summary DLG that

has at most half as many edges. As any original edge, each newly introduced edge

76

will be visited at most & times. Therefore, the overall time complexity of the entire

algorithm is

> Ok —pk2 = O(2 pk®)
=0

4.5.5 0-1 Integer Programming Formulations

This section discusses the details of translating an instance of a data layout selection
problem and its data layout graph (DLG) into an instance of a 0-1 integer program-
ming problem with linear constraints, or -1 problem for short. An overview of 0-1
integer programming can be found in Section 2.2.

For the purpose of this discussion, we assume that the input program has n phases,
Py, ... P,. The corresponding DLG has m; nodes for each phase z, 1 <7 < n. Each
node in the DLG represents a particular candidate data layout that specifies the

alignment and distribution of all variables referenced in the phase.

Definition 4.8 An instance of a 0-1 problem consists of a set of variables
X, aset of linear constraints over the variables in X, and a linear objective
function with domain X. A solution to an instance of the 0—1 problem is
a function sg; : X — {0,1} that minimizes the objective function while

respecting the constraints.

There are many possible translations of the data layout selection problem into an
equivalent 0—1 problem. The resulting 0—1 problem instances may differ significantly
in the time needed by an integer programming tool to compute an optimal solution.
In this section we will discuss three different translations. Experimental results for
the three formulations and a general-purpose integer programming tool are presented
in Section 5.1.

All three translations introduce a variable for each node and edge in the DLG.
These variables can be thought of as switches that are on if and only if the represented
nodes or edges are part of a solution of the data layout selection problem. The set X
is the union of two sets of variables, X = Xjspout U Xyemap. Xiayour contains a single
switch for each node in the DLG, and X4, has one switch for each edge. The switch
i € Xiayour represents the k-th node of the :-th phase. The switch T:Z,i € Xremap

7

P 44 e X1t Xp =1

=)

R Xy Lclalbl xy, Xop* Xpp =1

N

X1 X3 Xgp* X3 =1

@'U

1 rowlayout [——J column layout

Figure 4.21 Layout constraints for the first
three phases of our ADI kernel example.

represents the remapping edge between the [-th node of phase 7 and the k-th node of
phase .

Similar to the variable set X, the set of constraints is partitioned into two classes.
Constraints that ensure the selection of only a single node for each phase are called
layout constraints. Remapping constraints guarantee that all remapping edges be-
tween selected nodes are considered, i.e. are also selected. The three translations
differ only in the formulation of their remapping constraints.

All three translations define their layout constraints as follows. For each phase ¢,
1 <1 < n, there is a constraint of the form

m;

Z T =1
k=1

In other words, exactly one switch has to be on for each phase and all other switches
for the phase have to be off. The layout constraints for the first three phases of our
ADI kernel example DLG (Figure 4.15) are shown in Figure 4.21.

Two translations base their remapping constraints formulation on a counting ar-
gument over the number of incoming and outgoing edges of each node in the DLG.
We will refer to these translations as node-based formulations. In contrast, the third

translation introduces a pair of constraints for each edge in the DLG. It is therefore

78

referred to as an edge-based formulation. The different remapping constraints are
discussed in detail in the next section.
A solution of an instance of the generated 0-1 problem minimizes the following

objective function under the layout and remapping constraints:

> ik coStiagour (Tik) + > zl; o8t remap ("’/’fllc) ’

IikeXlayout l‘?llceXremap

where costiqyout and cost,cpq, represent the node and edge weights of the data layout
graph, respectively.
Remapping Constraints Formulation

The node-based formulations introduce two types of remapping constraints for each
node in the data layout graph, namely IN-constraints and OUT-constraints. The

edge-based formulation has a pair of constraints for each edge in the DLG.

Compact node-based formulation: Define P:" as the set of phases that contain source

nodes of edges with sink nodes in phase P;. For the node represented by z;; and all

incoming edges with nodes in phases P;, IN-constraints of the form

m;

SN ah = au |2

jepini=1

are generated. In other words, if switch z;; is on then exactly |Pi"| switches repre-
senting incoming edges from phases in F; must be on. If x; is off then all incoming
edge switches have to be off.

Similarly, define P?* as the set of phases that contain sink nodes of edges with

source nodes in phase F;. For the node represented by z;; and all outgoing edges with

nodes in phases P;, OUT-constraints of the form

m]/
k. out
> 2w =z [B
j/epiout =1
are generated. In other words, if switch z;; is on then exactly |P?*| switches repre-

senting outgoing edges from phases in P; must be on. If x;; is off then all outgoing

edge switches have to be off.

79

21, 22 _
21 X2 | | %41 T X417 *m
21, 22 31, 32 _
X1 * Xg1 *Xa1 t X1 = 2%y
31, .32 _
IN constraint *31 , *32 Xg1 T Xa1 T X1
! _
IN constraints
P
OUT contraint OUT contraint
41, 4 _ 41 . 41 _
X51 * X5p = Xgq X51 T X52 = Xg1
1 rowlayout 1 column layout .
compact & = disaggregated
formulation emeping of — ~= remepping o formulation
c,aandb candb
= remapping of a

Figure 4.22 Two node-based remapping constraints formulations for the
node x4 representing the first layout in the fourth phase of our ADI kernel
example.

Disaggregated node-based formulation: For the node represented by x;; and all in-

coming edges with nodes in the same phase j as their sources, IN-constraints of the

form
my

il _
E Tig = Tik
(=1

are generated. In other words, if switch ;1 is on then exactly one switch representing
an incoming edge from phase j must be on. If z; is off then all incoming edge
switches have to be off.

Similarly, for the node represented by z;; and all outgoing edges with nodes in

the same phase j’ as their sinks, OUT-constraints of the form

m

ik
Z 'Ij’l’ = Tk
I'=1

are generated. In other words, if switch ;. is on then exactly one switch representing

an outgoing edge to phase 7 must be on. If z;; is off then all outgoing edge switches
have to be off.

80

The node-based remapping constraints formulations for the node representing the
first candidate layout in the fourth phase of the ADI integration example, x4, are
listed in Figure 4.22.

Edge-based formulation: For each edge rf]l in the DLG the pair of constraints

6 gl Jl
Tip+xj > 2y and vy +xg <1+ xy,

are introduced. These two constraints model the constraint z; z; = 3:;7,1 which is
non-linear and therefore cannot be used in our 0-1 problem formulation. A pair of
edge-constraints for a single edge in our example DLG for the ADI kernel is shown
in Figure 4.23.

X2

@'U

Xp +%gg > 2%
P,
22
Xgp *Xg S 140

1 clalb

[rowlayout 1 column layout

= remapping of a

Figure 4.23 Edge-based remapping constraints formulations for the edge

222 representing a remapping between the second and fourth phase of our

ADI kernel example.

A correctness proof of the three remapping constraints formulations can be found
in the appendix in Section A.2. The compact and disaggregated node-based formula-
tions differ in the number and size of individual constraints. Typically, the compact
formulation will have fewer constraints with more variables than the disaggregated
formulation. However, the constraints of the disaggregated formulation are tighter in

the sense that a single set of disaggregated IN or OUT constraints imply the validity

81

of the corresponding set of compact constraints, but not vice versa. For instance, in
the example shown in Figure 4.22, if switches z3], 232, and x4, are on and switches x5
and 732 are off, the compact IN constraint is satisfied, but the corresponding set of
disaggregated IN constraints are not. Experiments based on the different formulations

are discussed in Section 5.1.

82

Chapter 5

Experimental Results

Experiments were conducted to show that our framework is efficient and can be used
to generate good data layouts. In order to verify the quality of data layouts generated

by the framework, a prototype data layout assistant tool has been implemented.

5.1 Efficiency of 0—1 Integer Programming Formulations
5.1.1 Description of Experiments

The efficiency experiments of the different 0-1 integer programming formulations for
the data layout selection problem are based on ERLEBACHER, a 500 line benchmark
program written by Thomas Eidson at the Institute for Computer Applications in
Science and Engineering (ICASE). The program performs 3-dimensional tridiagonal
solves using Alternating Direction Implicit (ADI) integration. The code contains
computational wavefronts across all three dimensions. Array kill analysis was per-
formed by hand and arrays were renamed and replicated appropriately. The resulting
program contains 40 phases and 25 arrays. There are arrays with one, two, and three
dimensions.

ERLEBACHER has a three-dimensional alignment space. For our experiments, we
assume that alignment analysis and distribution analysis generate seven candidate
layouts for each phase, one layout for each possible combination of distributed di-
mensions. However, if a phase contains only one-dimensional arrays, its candidate
search space has only four layouts since some layouts are the projection of two dis-
tribution schemes. The corresponding data layout graphs with different weights were
generated by hand. Weights were chosen to model different communication costs
and the presence or absence of compiler optimizations. For instance, a compiler may
be able to generate a coarse-grain pipelined loop if the data layout induces cross-
processor dependences [Tse93]. Whether the compiler performs such an optimization

or not is represented by different weights of the nodes and edges in the DLG.

83

We wrote a tool that generates the three different 0-1 problem formulations dis-
cussed in Section 4.5.5 for an input DLG. The tool was written in Scheme, a dialect
of Lisp [Dyb87]. The sole purpose of this tool was to provide a testbed to determine
the efficiency of the different 0—1 problem formulations. The following table shows

the sizes of the automatically generated 0-1 problem instances:

compact | disaggregated
node-based | node-based | edge-based
#layout variables 253 253 253
#remapping variables 2133 2133 2133
#constraints 485 715 4306

For the experiment, 6 compact node-based, 12 disaggregated node-based, and 6
edge-based 0-1 problem formulations were automatically generated by the tool from
different input DLGs. Each of the 0-1 problem instances was solved by CPLEXT,
a state-of-the-art linear integer programming tool and library, partly developed by
Robert Bixby at Rice University [Bix92].

a general-purpose branch-and-bound code for mixed integer programming. Being

CPLEX includes an implementation of

general purpose, this code does not exploit the structural properties of our particular
0-1 problems.

The following table gives the solution times in seconds of the 24 0-1 problem
instances using CPLEX on a SPARC-10. A “+” indicates that CPLEX took more
than 30 minutes. The reported averages exclude experiments that took longer than

30 minutes. Note that some experiments took more than 4 hours.

compact disaggregated

node-based node-based edge-based
best worst avg. | best worst avg. | best worst avg.
8.2 * 292 | 26 4.8 3.8 * * *

The experiments show that the disaggregated node-based formulation can be
solved by the general-purpose CPLEX in less than 4 seconds on average. For one

0-1 problem instance of the disaggregated formulation, CPLEX determined the op-

TCPLEX is a trademark of CPLEX Optimization, Inc.

84

timal solution in 2.6 seconds. CPLEX did not take longer than 4.8 seconds on any of
the twelve disaggregated 0—1 problem instances.

The improvement between the compact node-based and the disaggregated node-
based formulations is subtle, but fundamental. The disaggregated formulation is
perhaps less elegant, and certainly larger. It is also equivalent to the node-based
formulation when integrality is imposed. However, when integrality is relaxed, it pro-
vides a much better approximation of the polytope of 0—1 solutions. The extra cost in
the size of the linear programming relaxations is more than compensated for by the
improved integrality properties of these relaxations. The edge-based formulation can
be viewed as initial attempts to find cutting planes. It has yet to be proven that these
inequalities are indeed independent of the inequalities in the disaggregated formula-
tion. In addition, no studies have yet been made of the quality of these inequalities,
that is, of the dimension of their intersection with the underlying polytope. Such
research is outside of the scope of this thesis.

In order to assess the scalability of the disaggregated node-based formulation, four
different DL.Gs based on Erlebacher were generated by hand. The DLGs correspond
to programs consisting of multiple copies of the Erlebacher code. Remapping edges
between individual copies were either introduced only for the four main, 3-dimensional
program arrays (decoupled version), or for all arrays in the program (coupled version).
The DLGs of the coupled versions contain more edges than of the decoupled versions.
Typically, the additional edges in the DLGs of the coupled versions span across multi-
ple phases due to the use of replicated and renamed array variables in our Erlebacher

code. The resulting sizes of the 0—1 problem instances and their solution times using

CPLEX on a SPARC-10 are given below.

3 copies, 120 phases | 5 copies, 200 phases
coupled decoupled | coupled decoupled

#number of variables 8668 7438 14950 12490
#number of constraints 2689 2227 4663 3739
solution times (seconds) 115 34 357 87

In Section 4.3.1 we have shown how the problem of relative alignment conflict
resolution can be translated into a 0—1 integer programming problem. Evaluating the
efficiency of our 0-1 alignment conflict resolution formulation based on real program

examples is difficult. It is our experience that inter-dimensional alignment conflicts

85

are not very common. Since the structure and number of variables and constraints is
similar for both 0-1 problems, we expect the efficiency of the 0-1 conflict resolution
formulation to be comparable to the efficiency of the disaggregated node-based for-
mulation of the data layout selection problem for CAGs and DLGs of roughly equal

sizes.

5.1.2 Discussion of Results

0-1 integer programming is NP-complete. Therefore, it is unrealistic to expect a
solution for all instances in minimal computation time. However, for instances of our
framework’s two 0-1 problems that occur in practice, the experiments indicate that a
general-purpose integer programming tool can compute optimal solutions with good
efficiency.

The efficiency of the solution of our 0-1 integer programming problems can be
improved on by developing special purpose solvers that exploit the particular struc-
tures of the 0—1 problem instances at hand. Recent experience with other NP-hard
problems formulated as 0-1 integer programs — principally the TSP — indicate that
a careful study of structure of the particular integer program can lead to very effec-
tive practical procedures. CPLEX is also designed to be applied as a callable library
of linear-programming routines that can be conveniently built into a branch-and-cut
code using cutting plane methods, such as a special purpose solver for the data layout
selection problem or the inter-dimensional alignment problem. The development of
such special purpose solvers is beyond the scope of this thesis.

In addition, exploiting the parallelism in the branch-and-bound nature of the
solution process will allow additional, substantial efficiency improvements.

If the efficiency of the solution process is still not acceptable, or if an optimal so-
lution is not desired, the 0—1 problem formulations can be used to implement efficient
heuristics for potentially suboptimal solutions. By computing both upper and lower
bounds during the branch-and-cut solution process, a solver can determine the first
feasible solution found within some predefined percentage of optimal. Another pos-
sible heuristic can be implemented by a solver that returns the best feasible solution
within a predefined time limit. In this case, the computed bounds will provide an
estimate of the solution quality.

In summary, state-of-the-art integer programming technology allows the efficient

solution of practical instances of the two 0—1 problems of our framework in the context

86

of a data layout assistant tool. A “fire wall” can be built into a practical solver to
terminate the solution process after a predefined time limit. If an optimal solution is

not found within the time limit, the solver returns the best feasible solution found.

5.2 Quality of Generated Data Layouts

To show that our framework can be used to generate efficient data layouts, we have
implemented a prototype data layout assistant tool based on our framework. The
prototype tool was applied to four programs and program kernels, and the automati-
cally generated data layouts were compared with the best possible data layout choice.

The prototype and our experiments are discussed below.

5.2.1 Prototype Implementation

A prototype data layout assistant tool has been implemented as part of the D system
[ACG194]. The prototype is a batch system. It takes Fortran 77 programs as input
and generates Fortran D data layout specifications for each phase in the program.
The prototype tool performs only intra-procedural analysis. Non-linear control flow
in input Fortran programs is restricted to Do loops and If statements.

The phase control flow graph (PCFG) is built based on the operational phase def-
inition presented in Section 4.2. Do nodes and If nodes are annotated with loop con-
trol information and branch probabilities, respectively. The current implementation

assumes that each outgoing edge from a If node has the same execution probability.

Search Space Construction

The alignment analysis performance model and the heuristic for alignment search
space construction are discussed in Section 4.3.2. Distribution analysis generates ex-
haustive search spaces of only one-dimensional BLOCK distributions. This restriction is
due to the fact that the compiler model implementation mimics the program analysis
steps in the Fortran D prototype compiler which does not support multi-dimensional
distribution [Tse93]. Note that since the current prototype generates exhaustive
search spaces for one-dimensional BLOCK distributions, the orientation selection is
trivial due to the symmetry between orientations and distribution candidates. For
instance, in the two-dimensional case, the candidate layout resulting from a trans-
posed orientation and distribution by row is the same as from a canonical orientation

and distribution by column.

87

Performance Estimation

The implemented performance estimator does not use compiler level training sets. In
this section we discuss the compiler, execution and machine model of our prototype

layout assistant tool.

Compiler Model

The prototype’s compiler model supports the simulation of communication opti-
mizations such as message vectorization, message aggregation, and message coalesc-
ing. Flags are used to enable or disable individual communication optimizations. For
phases where each processor takes part in the computation, the compilation process
is simulated for a single, non-boundary processor. If a phase is executed by only a
single processor or pair of processors, for instance due to boundary computations,
the simulation is done for the boundary processor or processors. As the result of the
compiler simulation, each loop nesting level in a phase is annotated with information

about the required communication at that level.

Execution Model

The execution model uses this communication information to detect processor
synchronization. Phases are classified as either pipelined, loosely synchronous, or
reductions. The current prototype can only handle single statement reductions.

For a loosely synchronous phase the estimated communication and computation
costs are added up for the processor with the largest local segment involved in exe-
cuting the phase.

For a pipelined phase the innermost level that carries a true dependence deter-
mines the granularity of the pipeline. This level is referred to as the pipeline_level.
The computation estimate for a single pipeline stage, Tsiq4¢, 1s the cost for a sin-
gle iteration at the pipeline level. Let outer_iterations denote the number of stages
executed by each processor. The execution time for the entire pipeline, Tipetine, 15
determined by the time needed by the last processor to finish all its stages and by
its starting delay relative to the first processor. While the last processor executes its
stages, we assume a complete overlap between communication and computation, i.e.,
the actual observable message latency is assumed to be zero. However, communica-

tion overhead may occur for each stage due to operations such as message copying.

Tlow latency

The communication overhead 70.2% *

for zero latency pipeline communication and

88

Thigh latency

Tugh for pipeline communication with fully observable latency are determined

Thigh latency

A is used to compute the starting delay of

based on separate training sets.

the last processor. Our overall performance model is similar to the model described

by Mellor-Crummey, Adve, and Koelbel [MCAK94]. We compute T},perine as follows:

Tpipeline = (#pTOCGSSOTS —_ 1) * (Tstage + T}Ligh latency) +

comm

’ R - low latenc
outer_tterations % (Tsqqe + To0% #Y)

For a reduction phase, the kind of reduction operation, for instance min, max, or
sum, and its data type is determined. Since the current prototype assumes the owner-
computes rule, the overall cost is the sum of a single local computation and the global

reduction operation. The costs of global reductions are determined by training sets.

Machine Model

The identification of basic computations is based on the phase’s abstract syn-
tax tree representation (AST [ASUS86]). Performance estimates for basic computa-
tions and communication patterns are based on machine level training sets for Intel’s
iPSC/860 or Paragon. A general discussion of machine level training sets can be
found in Section 4.4.2.

The current machine model implementation uses more than 100 training sets that
measure basic computations such as real and double floating point operations, and
basic communication patterns such as nearest neighbor communication (shift), sin-
gle send/receive pairs, broadcasts, reductions, and transpose operations. For each
communication pattern there are training sets for different numbers of processors,
different memory access patterns, and different observable message latencies. The
current implementation distinguishes between a unit or non-unit stride memory ac-
cess pattern, and high or low latency messages. A non-unit memory access pattern
usually requires message buffering. Low latency message costs are used to estimate

low latency ;

the communication costs 7' in pipelined phases where computation and com-

comm

Thigh latency

A for loosely

munication can be overlapped. In contrast, message costs
synchronous phases are based on high latency training sets.

The communication pattern training sets are based on calls to Intel’s native com-
munication library. The training sets can be compiled and executed on Intel’s family
of distributed-memory multiprocessors. Training set node programs are compiled

using the highest level of optimization (if77 —04).

89

Figure 5.1 shows the structure of the arithmetic training set. For each arithmetic
operation and data type there is separate timing loop in the training set. Arithmetic
operations include intrinsic functions. The measured memory access patterns are
based on one-dimensional array accesses with unit stride. As a result, most array
accesses will be in cache. The cost function generated by the arithmetic training set

used in our prototype tool is optimistic in the sense that it assumes in cache accesses.

C — << determine loop overhead >> —
timeLoopOverhead = dclock()
do iter = 1, maxiter

enddo
timeLoopOverhead = (dclock() — timeLoopOverhead) / maxiter

C — << determine cost of addition >> —
do iter = 1, maxiter
x(iter) = x(iter) 4+ y(iter)
enddo

time = (dclock() — time) / maxiter — timeLoopOverhead

Figure 5.1 Structure of training set for arithmetic operations

The structures of the training sets for unit stride nearest neighbor shift com-
munication patterns with high latency and low latency are shown in Figure 5.2 and
Figure 5.3, respectively. The resulting cost functions and cost functions for the cor-
responding non-unit stride training sets are shown in Figure 5.4. The cost functions
were generated by executing the training sets on 8 processors. Note that due to cache
effects, communication costs can vary significantly for only slightly different message
sizes.

Figure 5.6 shows the cost functions generated by the training sets for broadcast
communication patterns with unit stride memory accesses on 2, 4, 8, 16, and 32
processors. The structure of the training sets is shown in Figure 5.5.

In the current prototype, the raw training set data is represented internally as
cost tables. Linear interpolation is used if a requested data point has no entry in the
cost table.

time = dclock()

do iter = 1, maxiter
if (my$p .gt. 0) then
— << send message of length “bytes” to left neighbor >> —
call csend(115, x, bytes, my$p—1, my$pid)
endif
if (my$p .1t. nprocs—1) then
— << receive message of length “bytes” from right neighbor >> —
call crecv(115, y, bytes)
endif
enddo

time = (dclock() — time) / maxiter

Figure 5.2 Structure of training set for high latency, unit stride
shift communication pattern for iPSC/860 or Paragon

— << computation to hide message latency >> —
time2 = dclock()

< computation Compyyeriap >

time2 = dclock() — time2

time = dclock()

do iter = 1, maxiter
if (my$p .gt. 0) then
— << send message of length “bytes” to left neighbor >> —
call csend(115, x, bytes, my$p—1, my$pid)
endif

< computation Compyyeriap >

if (my$p .1t. nprocs—1) then
— << receive message of length “bytes” from right neighbor >> —
call crecv(115, y, bytes)

endif
enddo
time = (dclock() — time) / maxiter — time2

Figure 5.3 Structure of training set for low latency, unit stride
shift communication pattern for iPSC/860 or Paragon

x 10° Training Set for SHIFT Patterns (8 Processors)

oo
1

~
T

(2]
T

high latency, non-unit

ol
T

low latency,
non-unit

w
T

high latency, unit

Execution Time in Micro—Seconds
B
T

N
T

[
T

low latency, unit

0 | | | | | | |
0 1 2 3 4 5 6 7

Message Size in Bytes 4

Figure 5.4 Results generated by training sets for shift
communication pattern for 8 processors on iPSC/860

time = dclock()

do iter = 1, maxiter
if (my$p .eq. 0) then
— << processor #0: broadcast message of length “bytes” >> —
call csend(115, x, bytes, —1, my$pid)
else
— << receive message of length “bytes” from processor #0 >> —
call crecv(115, y, bytes)
endif
enddo

time = (dclock() — time) / maxiter

Figure 5.5 Structure of training set for unit stride broadcast
communication pattern for iPSC/860 or Paragon

92

x 10" Training Set for Broadcast Pattern with Unit Stride
141
121
%]
S0l 32 procs
3
5
b
<]
S 8r 16 procs
=
£
[
-E 6r 8 procs
c
°
=
3
a4 4 procs
2k . ' 2 procs
0 At : L L L L Il Il J
0 1 2 3 4 5 6 7
Message Size in Bytes 4

Figure 5.6 Results generated by training sets for unit stride broadcast
communication pattern for different numbers of processors on iPSC/860

Data Layout Selection

The prototype tool solves NP-complete problems during alignment analysis and the
final data layout selection step. Instances of these problems are translated into 0-1
integer programming problems suitable to be solved by the general-purpose version
of CPLEX. The data layout selection step uses the disaggregated node-based formu-
lation as discussed in Section 4.5.5. The prototype tool builds the required constraint
matrices internally, and directly calls the CPLEX routines without creating any in-

termediate files.

5.2.2 Description of Experiments

The experiments were based on a target compiler that performs message coalescing
and message vectorization, but does not perform coarse-grain pipelining, loop in-
terchange, or loop distribution. The parameters in the compiler model were set to

simulate such a target compiler. The target architecture for our experiments was

Intel’s iPSC/860.

93

time in seconds

57.88
_51'91 double, 16 processors, 512 x 512
[] measured time
|:| estimated time
10.34
10.00
8.57 8.32
row column transpose

Figure 5.7 Example test case for ADI with three possible data layouts

It is important to note that it is not the goal of the experiments to evaluate the
quality of any target compiler, but to show the ability of the data layout assistant tool
to simulate the target compiler and to correctly estimate the relative performance of
the candidate layouts in its generated search spaces. The quality of a data layout for
a program is always relative to the HPF compiler that is used to compile the program.

We used four programs for our experiments, an alternating direction implicit inte-
gration kernel (Adi), a 3D tridiagonal solver based on ADI integration and developed
by Thomas Eidson at ICASE (Erlebacher), a grid generation program, adapted from
the SPEC benchmark suite by Applied Parallel Research (Tomcatv), and a weather
prediction program based on shallow-water equations (Shallow). Shallow was written
by Paul Swarztrauber from the National Center for Atmospheric Research (NCAR).
All programs are written in a data-parallel programming style that allows good com-
pile time analysis [KR94].

The automatic data layout tool was applied to each program for different test
cases. A test case consists of a data type for the arrays in the program, a problem
size, and a given number of processors used. Figure 5.7 shows a single test case
for the Adi kernel and its results. The test case is for double precision arrays, 16
processors, and a problem size of 512 x 512. For each test case, the overall execution
times of promising data layouts for the entire program were measured and compared

to execution times predicted by the prototype data layout assistant tool. For the Adi

94

kernel test case shown in Figure 5.7 the prototype tool picked the best data layout,
namely a static row-wise data layout, and also ranked the data layout alternatives
correctly.

For all four programs, the prototype tool did not miss any promising data layouts.
The remaining questions are whether the tool ranked the data layout alternatives
correctly, and whether the best predicted data layout alternative was also the best
measured alternative.

To perform the comparison, each program was compiled for each data layout in
its set of promising data layouts using the Fortran D compiler prototype [Tse93] with
loop interchange and coarse-grain pipelining disabled. When necessary, the output of
the Fortran D compiler was modified by hand to ensure correct code. The resulting
SPMD node programs were compiled using the highest optimization level (if77 -04),
and executed and timed on the iPSC/860. In the remainder of this section, we will

discuss the results for each program in more detail.

Adi: Adi solves a two-dimensional problem. The program has 9 phases. There are no
inter-dimensional alignment conflicts. The solution of the 0-1 data layout selection
problem took CPLEX 60 milliseconds on average on a SPARC-10. The problem had
61 variables and 53 constraints.

We measured 40 test cases, one of which is shown in Figure 5.7. The results of all
five test cases for problem size 256 x 256 and double precision arrays can be found
in Figure 5.8. Distributing the second dimension (column layout) resulted in the
sequential execution of two phases. This was always the worst choice. Distributing
the first dimension (row layout) introduced a fine-grain pipeline in two phases and
resulted in the best possible data layout in 24 cases. In the remaining 16 cases, a
dynamic layout that remaps the arrays between row and column sweeps (transpose
or remapped layout) was the best data layout choice.

The prototype tool selected the best data layout in 37 cases. In all these cases the
relative rankings of data layout alternatives were correct. In 3 cases the automatically
chosen layout was suboptimal. The worst case performance loss due to the suboptimal

selection was 7.4% as compared to the best possible choice.

Erlebacher: We used an inlined version of Erlebacher for the experiments, since
the prototype implementation of the data layout assistant does not perform inter-
procedural analysis. Erlebacher has 40 phases. There are no inter-dimensional align-

ment conflicts. The data layout selection step generated a 0-1 problem with 327

95

variables and 190 constraints. CPLEX solved the problem in 120 milliseconds on
average on a SPARC-10.

Measured

N
o
1

IR
a1
T

+——+ static row

Execution Time in Seconds
=
o
T

% — — —X static column
O0- - —-0 remapped
5,
B -3
0 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35
20

Execution Time in Seconds
=
o
T

1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 5.8 Measured and estimated execution times for Adi
kernel with problem size 256 x 256, double precision

The program consists of a three symmetric computations, each along one of the
dimensions of the problem. The computations share access to a 3-dimensional, read-
only array. All four 3-dimensional arrays are aligned canonically, i.e., there is no
inter-dimensional alignment conflict. The choice of a static data layout leads to cross-
processor dependences in exactly one of the three symmetric computations. Since
the target compiler performs message vectorization but no coarse-grain pipelining or
loop interchange, the particular loop order in the partitioned loops determines the
granularity of the resulting pipelined execution.

We measured 20 test cases. Distributing the first dimension resulted in introducing

a fine-grain pipeline which was never profitable. Introducing a coarse-grain pipeline

96

by distributing the second dimension was the best choice in 9 cases. The last possible
static data layout, namely distributing the third dimension, resulted in the sequential
execution of one of the three symmetric computations. This choice was the best in 2
cases. Finally, using a dynamic data layout by remapping the read-only array once
between a pair of symmetric computations was the best choice in 9 cases.

The prototype tool determined the best layout in 12 cases. Since the performance
of the dynamic data layout and the static layout that distributes the second dimension
were very close, the tool failed to rank them correctly in some cases. However, the
incorrect ranking would have only resulted in a maximum performance loss of 8.6%

as compared to the best possible data layout choice.

Measured

o 81 »———X static 1. dimension
i)
S + — — — + static 2. dimension
éef o0— — —-© static 3. dimension
c * * remapped
g4t \\
=
5 LS
S2f %
(8] ig&::“. - =
2 e e
e | T TTESSSgoosTo Tl 2
w 0 1 1 1 1 1 1 1]

0 2 4 6 8 10 12 14 16

Estimated

0]
T

(o]
T

N
T

Execution Time in Seconds
S
T

o

|
6 8 10 12 14 16
Number of Processors

o
N
N

Figure 5.9 Measured and estimated execution times for
Erlebacher with problem size 64 x 64 x 64, real

Figure 5.9 shows the measured and estimated execution times for the test cases of

problem size 64 x 64 x 64 and data type real. Although the different candidate layouts

97

are ranked correctly, the layout that distributes the third dimension is overestimated
by up to 23% and the layout that distributed the first dimension is underestimated
by up to 47%.

Tomecatv: In contrast to Erlebacher and Adi, Tomcatv has inter-dimensional align-
ment conflicts for two of its 2-dimensional arrays. The assistant tool partitioned
the 17 phases into two classes and exchanged their inter-dimensional alignment in-
formation. The resulting alignment search spaces for each phase had two entries.
Together with the two possible single dimension distributions, the final data layout
search space contained four candidate layouts for most phases. Some phases had
search spaces with only two entries, since the projection of phase partition layouts

onto single phase layouts resulted in identical candidate data layouts.

60 +——+ static row
Measured .
% — —X static column
40+ \ 0—-—-6 remapped
\
20+ 'y : *
~ \\\@
0 ! Tt — \
8 0 5 10 15 20 25 30 35
C
8401
3 Estimated (pre—determined branch probabilites)
c
© SN
.g 201 \\
= - w —
- ~
9 Te——
30 \ \ == \
L% 0 5 10 15 20 25 30 35
151
10
5 N Il
e —_—
0 1 1 1 1 1 1]
0 5 10 15 20 25 30 35

Number of Processors

Figure 5.10 Measured and estimated execution times for Tomcatv with
problem size 128 x 128, double precision (Note the different time scales)

98

The two inter-dimensional alignment conflicts were translated into 0—1 problems
with 312 variables and 530 constraints. Although the sizes of the two problems are
the same, their objective functions are different, since the edge weights in the two
merged CAGs are not identical. The sizes of the 0—1 problems are quite large since
we scalar expanded all scalar temporaries. On a SPARC-10, CPLEX solved the two
problems in 480 and 1030 milliseconds on average. The 0-1 formulation of the data
layout selection problem had 336 variables and 203 constraints. CPLEX determined
the optimal solution in 160 milliseconds on average on a SPARC-10.

We measured 18 test cases. In a single test case, a static row layout was the best
choice. Distributing the second dimension was the best data layout selection for 12
cases. For the remaining 5 test cases, the dynamic data layout was the best choice. In
all cases the prototype tool selected the column-wise data layout. The six suboptimal
choices resulted in a performance degradation of at most 2.0% as compared to the
best choice.

Figure 5.10 shows the measured and estimated execution times for the test cases of
problem size 128 x 128 and double precision. Tomcatv has control flow inside its main
iterative loop. The prototype implementation guesses a 50% branch probability. The
bottom graph in Figure 5.10 shows the resulting estimates. However, if the actual
branch probabilities are used, the performance prediction is more precise although

still lower than the actually measured timings.

Shallow: The program is a 200 line benchmark weather prediction program devel-
oped by Paul Swarztrauber at the National Center for Atmospheric Research (NCAR)
in Boulder, Colorado. It uses a two-dimensional, finite-difference model of the shallow-
water equations. The main computations consist of two-dimensional stencils that can
be parallelized in either dimension. However, a row distribution requires messages to
be buffered. Therefore, the column distribution should perform slightly better than
the row distribution.

Shallow has 28 phases. There are no interdimensional alignment conflicts. Fach
candidate layout search space has two layouts. The data layout selection problem
is solved by CPLEX in 150 milliseconds on average. The 0-1 formulation has 228
variables and 200 constraints.

We ran 19 test cases. Column distribution was the best choice in all but one case.
Our automatic data layout tool always picked the column distribution. The potential

performance loss due to the single suboptimal selection was 1.8% as compared to the

99

optimal choice. Figure 5.11 shows the 5 test cases for data type real and a problem
size of 384 x384. The static performance estimates slightly overestimate the measured

timings. However, the relative performance is predicted with high accuracy.

Measured

+——+ static row

=
(62
T

% — — — X static column

Execution Time in Seconds
=
T

35

Estimated

15

Execution Time in Seconds
==
T

o

| |
0 5 10 15 20 25 30 35
Number of Processors

Figure 5.11 Measured and estimated execution times
for Shallow with problem size 384 x 384, real

5.2.3 Discussion of Results

A total of 97 experiments based on four scientific programs and program kernels were
conducted. For three out of the four programs, the data layout choice is non-trivial,
i.e., choosing the wrong layout results in substantial performance loss.

Choosing the best layout is difficult since it involves complex trade-off decisions
between minimizing communication overhead and maximizing usable parallelism.

Making such trade-off decisions requires knowledge about the target compilation

100

system, since the compiler performs the work mapping and inserts the necessary
communication. In addition, the trade-off decisions depend on the performance char-
acteristics of the target machine, the problem size, and the number of processors
used.

Erlebacher and Adi are program examples where the best data layout choices de-
pend on the problem size and number of processors used. Tomcatv contains branches
inside its main iterative loop, making static performance prediction without predeter-
mined branch probabilities difficult. However, the relative performance characteris-
tics of the different layout choices were predicted with high accurracy. Shallow shows
the precision of relative performance estimates for a program where reasonable data
layout choices have nearly identical performance.

In 79 cases, the tool selected the optimal data layout. In the cases where the tool
selected a suboptimal layout, the performance loss incurred was within 8.6% of the
optimal layout. All encountered instances of the interdimensional alignment problem
and the data layout selection problem were solved in less than 1.1 seconds. This result

shows that our framework is efficient and generates good data layouts.

101

Chapter 6

Conclusions and Future Work

Choosing a good layout is difficult since it involves complex trade-off decisions between
minimizing communication overhead and maximizing usable parallelism. Making
such trade-off decisions requires knowledge about the target compilation system, the
performance characteristics of the target machine, the problem size, and the number
of processors used. The trade-off decisions become even harder it dynamic remapping
is allowed.

We have developed a new framework for automatic data layout for regular prob-
lems. The framework optimizes the data layout for a given problem size and number
of available processors. The automatically generated data layouts may contain dy-
namic data remapping. Instead of resorting to heuristics, the framework uses the
latest and most powerful general purpose techniques for linear and integer program-
ming to solve two NP-complete problems optimally, namely the inter-dimensional
alignment problem and the data layout selection problem.

We have implemented a data layout assistant tool based on our framework. The
prototype implementation uses a static performance estimator consisting of an effi-
cient compiler, execution and machine model. The machine model is based on our
novel training set approach. Experiments showed that the prototype tool is efficient

and generates data layouts of high quality.

6.1 Framework for Automatic Data Layout

Our framework divides the problem of automatic data layout into four well defined
subproblems, namely program partitioning, candidate layout search spaces construc-
tion, performance estimation, and data layout selection. We presented an efficient,
optimal solution to the data layout selection subproblem. For the other subprob-
lems we discussed basic tools and methods that can be used to implement efficient

solutions.

102

Most automatic data layout algorithms discussed in the literature can be sup-
ported in our framework. Each such algorithm has a specific strategy for the choice
of candidate data layouts and for performance prediction, and uses a heuristic to
determine the final, overall data layout. Implementing a data layout algorithm in our
framework has the advantage that our final selection step uses an optimal solution
instead of a heuristic. Therefore, the overall quality of the data layouts generated by
an automatic data layout algorithm embedded in our framework will be improved.

Although the four subproblems in our framework can be solved independently,
the overall precision and efficiency of an implementation based on the framework will
depend on a balanced design of its solutions to the four subproblems. For instance,
the search spaces construction algorithm and the performance estimator should be
calibrated with respect to each other. The performance estimator has to be able to
efficiently process every candidate layout that is generated during the search spaces
construction step. In addition, if the performance estimator cannot distinguish the
performance of two similar candidate data layouts, both layouts should not be inserted
into the same search space. Other overall efficiency issues are related to the program
partitioning algorithm. For instance, if it can be shown that remapping between two
neighboring code segments can never be profitable, the phase definition should assign
both segments to the same phase. Fewer phases will reduce the time needed for search
spaces construction, performance prediction, and final candidate selection.

In the remainder of this section we discuss some of the unique features of our

framework in more detail.

6.1.1 Fixed Problem Size and Number of Processors

Our experiments showed that the choice of a good data layout may depend on the
problem size and the number of available processors. Optimizing a data layout for
specific values of these entities is therefore desirable or even necessary.

A tool that allowed the specification of a range of problems sizes or numbers of
processor could also be implemented based on our framework. The tool could apply
our framework multiple times for different problem sizes and numbers of processors
in the specified range. The resulting data layouts could be used to identity the data
layout that has the best average performance for the specified ranges. In the case
where no range is specified, the tool could either choose the ranges or just select an

arbitrary problem size and number of processors.

103

6.1.2 Explicit Search Spaces Construction

Explicit candidate layout search spaces are the main interface between the last three
subproblems in our framework. In addition, the search spaces provide the basis for
an effective user interface. Such an interface may allow the user to browse through
the search spaces, delete candidate layouts, or insert additional candidates.

The current prototype implementation uses a heuristic to construct alignment
search spaces. Explicit alignment search spaces allow the postponement of tradeoff
decisions between different alignments until the distributions are known. Distribution
candidates are chosen from an exhaustive search space of one-dimensional distribu-
tions.

Exhaustive search space construction methods may not be efficient if block-cyclic
and multi-dimensional distributions are considered. One possible approach involves
an iterative search process based on multiple invocations of our framework. Initially, a
coarse distribution search space is generated. Once the solution for the coarse spaces
has been determined, the next iteration builds distribution search spaces that refine
the distributions close to the optimal distributions in the previous solution. Note
that such an approach is not guaranteed to find the optimal solution since it may
converge in a local minimum. Experiments will be needed to verify the efficiency of
the described approach.

We were not able to implement distribution search spaces for block-cyclic and
multi-dimensional distributions as part of this thesis since this would have required the
availability of efficient compilation and performance models for these distributions.
At this point in time, such models are still a topic of active research in the compiler

and parallel programming environment community.

6.1.3 Optimal or Near-Optimal Solutions to NP-complete Problems

We have shown that today’s 0-1 integer programming technology combined with
a careful 0-1 formulation of NP-complete problem instances can be used to solve
these problems efficiently in practice. Data layout selection problems as large as 200
phases with a total of over 1200 candidate layouts and 13500 possible remappings
were solved in a matter of minutes. To obtain this result we investigated different
equivalent 0—1 formulations of the NP-complete data layout selection problem and
the inter-dimensional alignment problem. Our experiments were based on CPLEX,

arguably the most powerful 0-1 integer programming tool available today.

104

If the structure of a 0—1 problem instance is so complex that even the most ad-
vanced integer programming techniques fail to compute the optimal solution effi-
ciently, or if the optimal solution is not desired, feasible solutions can be used as
a basis for near-optimal approximations. Information about how closely a feasible
solution approximates the optimal solution is available without additional cost due
to the branch-and-bound nature of the solution process. Returning the best feasible
solution found within a pre-specified time bound or returning the first feasible solu-
tion that is within some pre-defined epsilon of the optimal solution, are examples of
heuristics that could be implemented easily.

Although we discussed polynomial time solutions for problem instances with spe-
cial characteristics, we did not investigate algorithms that combine special purpose

and general solution methods.

6.1.4 Static Performance Estimation

Performance estimation is crucial for any automatic data layout technique. We have
developed a new approach to static performance estimation based on an efficient com-
piler, execution, and machine model. The compiler model simulates the compilation
process at an abstract level. The machine model uses machine-level “training sets”
to estimate the costs of basic computations and communication patterns.

Instead of using a general theoretical performance model, training sets probe the
underlying system for its performance characteristics. The execution of a machine-
level training set produces a cost function that is used by the execution model to
estimate the costs of basic computations and communication patterns. Changes in
the underlying hardware/software system can be handled by reexecuting the training
sets on the target system. If a general theoretical model is used, changes to the
underlying system will nearly always result in changes to the performance model
itself, making the updating of the machine model difficult.

Although the use of training sets simplifies the task of performance prediction
significantly, its complexity now lies in the design of the training sets themselves.

Our current implementation uses over 100 machine-level training sets.

105

6.2 Experimental Results

We conducted experiments to determine the efficiency of our framework and the
quality of data layouts it generates. The results show that our framework is efficient
and generates data layouts of high quality.

The efficiency experiments were based on hand-generated data layout graphs for
the 500 line program Erlebacher. The resulting data layout selection problems had
40 search spaces with a total of 253 candidate layouts and 2133 possible remappings.
The optimal solution of each problem instance was computed in less than 4.8 seconds
on a SPARC-10. We generated bigger problem instances by using multiple copies of
Erlebacher. Data layout selection problems with 200 search spaces and a total of over
1200 candidate layouts and 13500 possible remappings were solved optimally in less
than 6 minutes.

To determine the quality of the generated data layouts, we implemented a pro-
totype data layout assistant tool. A total of 97 experiments based on four scientific
programs and program kernels were conducted. For three out of the four programs,
the data layout choice is non-trivial, i.e., choosing the wrong layout results in substan-
tial performance loss. In 79 cases, the tool selected the optimal data layout. In the
cases where the tool selected a suboptimal layout, the performance loss incurred was
within 8.6% of the optimal layout. All encountered instances of the inter-dimensional
alignment problem and the data layout selection problem were solved in less than 1.1

seconds.

6.3 Future Work
6.3.1 Data Layout Selection

Our current framework does not allow replication of read-only data, i.e., it assumes
that only a single copy of an array can exist at any time during program execution,
unless the array is replicated due to multiple ownership. The data layout graph
(DLG) construction algorithm can be modified to support read-only replication. The
0-1 formulation of the data layout selection problem has to be changed to deal with
the additional remapping edges. Constraints over the remapping edges can be used

to specify an upper bound on the number of possible read-only replications.

106

6.3.2 Interprocedural Analysis

In order to be able to evaluate our automatic data layout techniques for larger pro-
grams, the framework should be extended to handle programs that consist of multiple
procedures. Multiple passes over the call graph may be necessary to perform program
partitioning, search spaces construction, and DLG construction.

During the DLG construction for the entire program, DLGs of subroutines can be
propagated bottom-up along edges in the call graph. If a procedure is cloned, each
procedure clone is represented by a separate copy of the procedure’s DLG. Otherwise,
each procedure is represented by a single copy of its DLG in the DLG for the entire

program.

6.3.3 Distributed Shared Memory Systems

In the longer term, we propose investigating the possibility of using our framework
for automatic data layout selection for distributed shared memory systems (DSM).
In a DSM system, the objects to be mapped are not user-level arrays, but operating

system objects such as pages or cache lines.

6.3.4 0-1 Integer Programming

Encouraged by our experience with 01 integer programming, we propose to investi-
gate 0—1 formulations of other NP-complete problems that occur in optimizing com-
pilers and programming environments, such as register allocation, instruction schedul-
ing, and parallel code generation. There will be several benefits of this research.
Translating practical instances of NP-complete problems into equivalent 0-1 for-
mulations will allow a classification of the problems based on the structure of their 0-1
formulations. For some structures, advanced general purpose techniques will suffice
to determine the optimal solution within an acceptable time bound. For other struc-
tures, the use of special purpose solvers, possibly combined with parallel processing

may allow an efficient solution.

[ABCC93]

[ACG+94]

[AGO4]

[AGG*94]

[AGGY5]

[AKS87]

[AKLS8S]

[AL93]

107

Bibliography

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. The traveling salesman
problem. 1993. In preparation.

V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, J. Mellor-Crummey, C-W. Tseng, and S. Warren. Requirements
for data-parallel programming environments. IEFFE Parallel and Distribuled
Technology, 2(3):48-58, 1994.

R. Govindarajan E. R. Altman and G. R. Gao. Minimizing register require-
ments under resource-constrained rate-optimal software pipelining. In Pro-
ceedings of the 27th Annual International Symposium on Microarchilecture,
San Jose, CA, December 1994.

E. Ayguadé, J. Garcia, M. Girones, J. Labarta, J. Torres, and M. Valero.
Detecting and using aflinity in an automatic data distribution tool. In Pro-
ceedings of the Seventh Workshop on Languages and Compilers for Parallel
Compuling, Ithaca, New York, August 1994.

E. R. Altman, R. Govindarajan, and G. R. Gao. Scheduling and mapping:
Software pipelining in the presence of structural hazards. In Proceedings of the
SIGPLAN ’95 Conference on Program Language Design and Implementation,
La Jolla, CA, June 1995.

J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to

vector form. ACM Transactions on Programming Languages and Systems,
9(4):491-542, October 1987.

E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Compiling Fortran 8x
array features for the Connection Machine computer system. In Proceedings
of the ACM SIGPLAN Symposium on Parallel Programming: Fzrperience with
Applications, Languages, and Systems (PPEALS), New Haven, CT, July 1988.

J. Anderson and M. Lam. Global optimizations for parallelism and locality
on scalable parallel machines. In Proceedings of the SIGPLAN °93 Conference

[AMCA*95]

[ASUS6]

[Bal90]

[BFKK90]

[BFKK91]

[Bix92]

[Bix94]

[BKK+89]

[BKK94]

[Cal87]

108

on Program Language Design and Implementation, Albuquerque, NM, June
1993.

V. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J-C. Wang, and
D. Reed. An integrated compilation and performance analysis environment
for data parallel programs. In Proceedings of Supercomputing ’95, San Diego,
CA, December 1995.

A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, second edition, 1986.

V. Balasundaram. A mechanism for keeping useful internal information in
parallel programming tools: The data access descriptor. Journal of Parallel
and Distributed Computing, 9(2):154-170, June 1990.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive en-
vironment for data partitioning and distribution. In Proceedings of the 5th
Distributed Memory Compuling Conference, Charleston, SC, April 1990.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance
estimator to guide data partitioning decisions. In Proceedings of the Third
ACM SIGPLAN Symposium on Principles and Praclice of Parallel Program-
ming, Williamsburg, VA, April 1991.

R. Bixby. Implementing the Simplex method: The initial basis. ORSA Journal
on Computing, 4(3), 1992.

R. Bixby. Progress in linear programming. ORSA Journal on Compuling,
6(1), 1994.

V. Balasundaram, K. Kennedy, U. Kremer, K. S. MCKinley, and J. Subhlok.
The ParaScope Editor: An interactive parallel programming tool. In Proceed-

ings of Supercompuling ’89, Reno, NV, November 1989.

R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 inte-
ger programming. In Proceedings of the Inlernational Conference on Parallel
Architectures and Compilation Techniques (PACTY4), pages 111-122, Mon-
treal, Canada, August 1994.

D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Rice
University, March 1987.

[CCL8Y]

[CGST92]

[CGST93]

[CHO1]

[CHZ91]

[CKSS]

[CLRYO]

[Clu89]

[CMT94]

[CMZ92]

109

M. Chen, Y. Choo, and J. Li. Theory and pragmatics of compiling efficient
parallel code. Technical Report YALEU/DCS/TR-760, Dept. of Computer
Science, Yale University, New Haven, CT, December 1989.

S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Optimal evaluation
of array expressions on massively parallel machines. In Proceedings of the
Second Workshop on Languages, Compilers, and Runlime Environments for
Distributed Memory Mulliprocessors, Bolder, CO, October 1992.

S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Automatic array
alignment in data-parallel programs. In Proceedings of the Twentieth Annual
ACM Symposium on the Principles of Programming Languages, Albuquerque,
NM, January 1993.

B.M. Chapman and H.M. Herbeck. Knowledge-based parallelization for dis-
tributed memory systems. In First International Conference of the Austrian

Center for Parallel Computation, Salzburg, Austria, September 1991.

B. Chapman, H. Herbeck, and H. Zima. Automatic support for data distri-
bution. In Proceedings of the 6th Distributed Memory Computing Conference,
Portland, OR, April 1991.

D. Callahan and K. Kennedy. Compiling programs for distributed-memory
multiprocessors. Journal of Supercomputing, 2:151-169, October 1988.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

The Perfect Club. The Perfect Club benchmarks: efficient performance eval-
uation of supercomputers. Int. J. Supercomp. Appl., 3(3):5-40, 1989.

S. Carr, K. S. M¢Kinley, and C.-W. Tseng. Compiler optimizations for im-
proving data locality. In Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages and Operaling Systems

(ASPLOS-VI), San Jose, CA, October 1994.

B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - a Fortran language
extension for distributed memory multiprocessors. In J. Saltz and P. Mehrotra,
editors, Languages, Compilers, and Run-Time Environments for Distribuled
Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.

[DFJ54]

[D’HS9]

[Dyb87]

[EXPS9]
[Fah92]

[FBZ92]

[Fea94]

[FHK*90]

[FJL*88]

[FZ93]

[GALYS5]

[GAY91]

110

G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large scale
traveling salesman problem. Operations Research, 7:58-66, 1954.

E. D’Hollander. Partitioning and labeling of index sets in do loops with con-
stant dependence. In Proceedings of the 1989 Inlernational Conference on
Parallel Processing, St. Charles, IL, August 1989.

R. K. Dybvig. The Scheme Programming Language. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey, 1987.

Parasoft Corporation. Ezpress User’s Manual, 1989.
T. Fahringer. Private communication. 1992.

T. Fahringer, R. Blasko, and H.P. Zima. Automatic performance prediction
to support parallelization of Fortran programs for massively parallel systems.
In Proceedings of the 1992 ACM International Conference on Supercomputing,
Washington, DC, July 1992.

P. Feautrier. Fine-grain scheduling under resource constraints. In Proceedings
of the Seventh Workshop on Languages and Compilers for Parallel Computing,
Ithaca, New York, August 1994.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran D language specification. Technical Report TR90-141, Dept.

of Computer Science, Rice University, December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solv-
ing Problems on Concurrent Processors, volume 1. Prentice-Hall, Englewood

Cliffs, NJ, 1988.

T. Fahringer and H.P. Zima. A static parameter based performance prediction
tool for parallel programs. In Proceedings of the 1993 ACM Inlernational
Conference on Supercompuling, Tokyo, Japan, July 1993.

J. Garcia, E. Ayguadé, and J. Labarta. A novel approach towards automatic
data distribution. In Proceedings of the Workshop on Automatic Dala Layout
and Performance Prediction (AP’95), Houston, TX, April 1995.

E. Gabber, A. Averbuch, and A. Yehudai. Experience with a portable paral-
lelizing Pascal compiler. In Proceedings of the 1991 International Conference
on Parallel Processing, St. Charles, IL, August 1991.

[GBY0]

[GB91]

[GB92a]

[GBY2b]

[GBD*94]

[Ger90]

[GLS94]

(GS91]

[HA90]

[Hec77]

[Hig93]

111

M. Gupta and P. Banerjee. Automatic data partitioning on distributed mem-
ory multiprocessors. Technical Report CRHC-90-14, Center for Reliable and
High-Performance Computing, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, October 1990.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed mem-
ory multiprocessors. In Proceedings of the 6th Distributed Memory Compuling
Conference, Portland, OR, April 1991.

M. Gupta and P. Banerjee. Compile-time estimation of communication costs
on multicomputers. In Proceedings of the 6th International Parallel Processing
Symposium, Beverly Hills, CA, March 1992.

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. I[EEFE Transactions
on Parallel and Distributed Systems, April 1992.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. The MIT Press, Cambridge, MA, 1994.

M. Gerndt. Updating distributed variables in local computations.
Concurrency— Practice & FErperience, 2(3):171-193, September 1990.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with Message-Passing Interface. The MIT Press, Cambridge, MA,
1994.

J.R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel
architectures. Journal of Parallel and Distributed Computing, 13(1):58-64,
September 1991.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of
sequentially iterated parallel loops. In Proceedings of the 1990 ACM Inter-
national Conference on Supercomputing, Amsterdam, The Netherlands, June
1990.

M. S. Hecht. Flow Analysis of Computer Programs. North Holland, New York,
NY, 1977.

High Performance Fortran Forum. High Performance Fortran language spec-
ification, version 1.0. Technical Report CRPC-TR92225, Center for Research
on Parallel Computation, Rice University, Houston, TX, May 1993. To appear

in Scientific Programming, vol. 2, no. 1.

[HKK+91]

[HKTW94]

[IFKF90]

[KeB93]

[KK95]

[KLD92]

[KLS88]

[KLS90]

[KM91]

112

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An
overview of the Fortran D programming system. In Proceedings of the Fourth

Workshop on Languages and Compilers for Parallel Computing, Santa Clara,
CA, August 1991.

S. Hiranandani, K. Kennedy, C.-W. Tseng, and S. Warren. The D Editor: A
new interactive parallel programming tool. In Proceedings of Supercomputing
’94, Washington, DC, November 1994.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic
parallelization system for distributed memory parallel computers. In Proceed-
ings of the 5th Distributed Memory Computing Conference, Charleston, SC,
April 1990.

C.W. KeBler. Knowledge-based automatic parallelization by pattern recog-
nition. In Christoph W. KeBler, editor, Automatic Parallelization — New
Approaches to Code Generation, Data Distribution, and Performance Predic-
lion, pages 110-135. Vieweg Advanced Studies in Computer Science, Verlag
Vieweg, Wiesbaden, Germany, 1993.

K. Kennedy and U. Kremer. Automatic data layout for High Performance
Fortran. In Proceedings of Supercompuling °95, San Diego, CA, December
1995. To appear. The paper is also available as technical report CRPC-TR94-

498-S, Center for Research on Parallel Computation, Rice University.

K. Knobe, J.D. Lukas, and W.J. Dally. Dynamic alignment on distributed
memory systems. In Proceedings of the Third Workshop on Compilers for
Parallel Computers, Vienna, Austria, July 1992.

K. Knobe, J. Lukas, and G. Steele, Jr. Massively parallel data optimization.
In Frontiers88: The 2nd Symposium on the Fronliers of Massively Parallel
Computation, Fairfax, VA, October 1988.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of
arrays to reduce communication on SIMD machines. Journal of Parallel and
Distributed Computing, 8(2):102-118, February 1990.

C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for
distributed execution. IFEF Transactions on Parallel and Distributed Sys-
tems, 2(4):440-451, October 1991.

[KN90]

[KR94]

[Kre93a]

[Kre93b]

[KZBGSS]

[LC90a]

[LC90b]

[LC91a]

[LCY1b]

[Li92]

113

K. Knobe and V. Natarajan. Data optimization: Minimizing residual interpro-
cessor data motion on SIMD machines. In Frontiers90: The 3rd Symposium on
the Frontiers of Massively Parallel Computation, College Park, MD, October
1990.

U. Kremer and M. Ramé. Compositional oil reservoir simulation in Fortran D:
A feasibility study on Intel iPSC/860. International Journal of Supercomputer
Applications, 8(2):119-128, Summer 1994. Also available as Technical Report
CRPC-TR93335, Center for Research on Parallel Computation, Rice Univer-
sity.

U. Kremer. Automatic data layout for distributed-memory machines. Techni-
cal Report CRPC-TR93-299-5, Center for Research on Parallel Computation,
Rice University, February 1993. (thesis proposal).

U. Kremer. NP-completeness of dynamic remapping. In Proceedings of the
Fourth Workshop on Compilers for Parallel Computers, Delft, The Nether-
lands, December 1993. Also available as technical report CRPC-TR93-330-S
(D Newsletter #8), Rice University.

U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools and tech-
niques for automatic parallelization. Parallel Compuling, 7:387-393, 1988.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-
referencing between distributed arrays. In Frontiers90: The 3rd Symposium
on the Frontiers of Massively Parallel Computation, College Park, MD, Octo-
ber 1990.

J. Li and M. Chen. Synthesis of explicit communication from shared-memory
program references. Technical Report YALEU/DCS/TR-755, Dept. of Com-
puter Science, Yale University, New Haven, CT, May 1990.

J. Li and M. Chen. Compiling communication-efficient programs for massively
parallel machines. [EFE Transactions on Parallel and Distributed Systems,
2(3):361-376, July 1991.

J. Li and M. Chen. The data alignment phase in compiling programs for
distributed-memory machines. Journal of Parallel and Distributed Compuling,
13(4):213-221, August 1991.

J. Li. Private communication. 1992.

[LT93]

[MCAK94]

[NDGY5]

[NG93]

[NW8S]

[PB95]

[PFTVSS]

[PHHF94]

[Phi95]

114

P. Lee and T-B. Tsai. Compiling eflicient programs for tightly-coupled dis-
tributed memory computers. In Proceedings of the 1993 International Con-
ference on Parallel Processing, St. Charles, 1L, August 1993.

John M. Mellor-Crummey, Vikram S. Adve, and Charles Koelbel. The
Compiler’s Role in Analysis and Tuning of Data-Parallel Programs.
In Proceedings of The Second Workshop on FEnvironments and Tools
for Parallel Scienlific Compuling, pages 211-220, Townsend, TN, May
1994. Also available via anonymous ftp from softlib.cs.rice.edu in
pub/CRPC-TRs/reports/CRPC-TR94405 . ps.

Q. Ning, V. V. Dongen, and G. R. Gao. Automatic data and computation
decomposition for distributed memory machines. In Proceedings of the 28th
Annual Hawaii International Conference on System Sciences, Maui, Hawaii,
January 1995.

Q. Ning and G. R. Gao. A novel framework of register allocation for software
pipelining. In Proceedings of the Twentieth Annual ACM Symposium on the
Principles of Programming Languages, Albuquerque, NM, January 1993.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Oplimization.
John Wiley & Sons, 1988.

D. Palermo and P. Banerjee. Automatic selection of dynamic data partitioning
schemes for distributed-memory multicomputers. Technical Report CRHC-
95-09, Center for Reliable and High-Performance Computing, Coordinated
Science Laboratory, University of lllinois at Urbana-Champaign, April 1995.

W.H. Press, B.P. Flannery, 5.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in C: the Art of Scientific Computing. Cambridge University Press,
1988.

M. Parashar, S. Hariri, H. Haupt, and G. Fox. Interpreting the performance
of HPF /Fortran90D. In Proceedings of Supercomputing °94, Washington, DC,
November 1994.

M. Philippsen. Automatic alignment of array data and processes to reduce
communication time on DMPPs. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Praclice of Parallel Programming, Santa Bar-

bara, CA, July 1995.

[P1JJ8S]

[PRY1]

[PSCBY4]

[Pug91]

[Ree94]

[RPSY]

[RSS9]

[SSP*95]

[TMC89]

115

D.J. Pease, R. Inamdar, A. Joshi, and S. Jejurikar. Predicting the performance
of a scalar program converted to execute on a vector processor. In Proceedings
of the 3rd ACM SI1GSoft/SIGPlan Conference on Parallel Processing, pages
355-361, August 1988.

M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review, 33:60-100,
1991.

D. Palermo, E. Su, J. A. Chandy, and P. Banerjee. Communication opti-
mizations used in the PARADIGM compiler for distributed-memory multi-
computers. In Proceedings of the 1994 International Conference on Parallel
Processing, St. Charles, IL, August 1994.

W. Pugh. The Omega test: A fast and practical integer programming algo-
rithm for dependence analysis. In Proceedings of Supercomputing 91, Albu-

querque, NM, November 1991.

Daniel A. Reed. Experimental Performance Analysis of Parallel Systems:
Techniques and Open Problems. In Gunter Haring and Gabriele Kotsis, edi-
tors, Proceedings of the 7th International Conference on Modelling Techniques
and Tools for Compuler Performance FEvaluation, pages 25-51. Springer-
Verlag, May 1994.

A. Rogers and K. Pingali. Process decomposition through locality of reference.
In Proceedings of the SIGPLAN 89 Conference on Program Language Design
and Implementation, Portland, OR, June 1989.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs
for multicomputers and complex memory multiprocessors. In Proceedings of

Supercomputing ’89, Reno, NV, November 1989.

T. J. Sheffler, R. Schreiber, W. Pugh, J. R. Gilbert, and S. Chatterjee. Efficient
distribution analysis via graph contraction. In Proceedings of the Workshop
on Automatic Data Layoul and Performance Prediction (AP’95), Houston,
TX, April 1995.

Thinking Machines Corporation, Cambridge, MA. CM Forlran Reference
Manual, version 5.2-0.6 edition, September 1989.

[Tol95]

[Tse93]

[Wan93]

[Wan94]

[Wei91]

[WhoO91]

[Who92a]

[Who92b]

[WLO1]

[Wol89]

[ZBGSS]

116

S. Toledo. PERFSIM: A tool for automatic performance analysis of data-
parallel Fortran programs. In Frontiers95: The 5th Symposium on the Fron-
tiers of Massively Parallel Computation, McLean, VA, February 1995.

C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Rice University, Houston, TX, January 1993. Rice
COMP TR93-199.

K-Y. Wang. A framework for static, precise performance prediction for
superscalar-based parallel computers. In Proceedings of the Fourth Workshop
on Compilers for Parallel Computers, Delft, The Netherlands, December 1993.

K-Y. Wang. Precise compile-time performance prediction for superscalar-
based computers. In Proceedings of the SIGPLAN ’94 Conference on Program
Language Design and Implementation, Orlando, FL, June 1994.

M. Weiss. Strip mining on SIMD architectures. In Proceedings of the 1991
ACM International Conference on Supercomputing, Cologne, Germany, June
1991.

S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Com-
puters. PhD thesis, School of Computer Science, Carnegie Mellon University,
May 1991.

S. Wholey. Automatic data mapping for distributed-memory parallel comput-
ers. In Proceedings of the 1992 ACM International Conference on Supercom-
puting, Washington, DC, July 1992.

S. Wholey. Private communication. 1992.

M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings
of the SIGPLAN ’91 Conference on Program Language Design and Implemen-

tation, Toronto, Canada, June 1991.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, MA, 1989.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

117

Appendix A

A.1 Correctness of 0—1 Alignment Problem Formulation

Assume that the CAG may contain nodes of arrays with different numbers of dimen-
sions. Each edge represents an alignment preference, weighted by its importance.
The inter-dimensional alignment problem is a node partitioning problem such that
(1) nodes that represent the same array cannot be in the same partition, and (2) the
sum of the weights of edges between distinct partitions is minimal. The correctness

criteria for a solution of the inter-dimensional alignment problem over the CAG are:

e (C1) : The solution is a node partitioning of the CAG, i.e., each node belongs

to exactly one partition.

e (C2) : Nodes representing distinct dimensions of the same array must not belong

to the same partition.

e (C3) : The partitioning of the nodes has the property that the sum of the

weights of all edges between nodes in different partitions is minimal.

The correctness criteria C'1 and C2 are enforced by the node constraints. The edge
constraints must make sure that the cost of an edge is considered in the objective
function, if and only if both, the source and the sink of the edge are in the same
partition. By maximizing the sum of all edge weights inside partitions, the sum of
all edge weights crossing distinct partitions is minimized. Therefore, the correctness
criterion C3holds. What remains to be shown is that the edge constraints formulation

satisfies the following lemma:

Theorem A.1 Let e = (a;,b;) be an edge in the CAG. For any solution
of the 0-1 problem formulation the following holds:

a$b§-’fC =1 ifandonlyif a5 =1 and by =1,

118

where k is the index of an arbitrary partition, 1 < k£ < d.

Proof

“=": Assume a$b§~]z is switched on. Assume without loss of generality that the
edge is directed from a; to b;. a$b§-’f€ occurs in exactly two constraints, namely the IN
constraint for node b; and partition k, and the OUT constraint for node a; and par-
tition k. The right hand side of the inequality constraints is b;;, and a;, respectively.

Theretore, both a;; and b;;, have to be switched on.

“«=": Assume a;; and b;; are both switched on. Assume without loss of generality
that the edge is directed from a; to b;. a$b§’f€ occurs in exactly two constraints, namely
the IN constraint for node b; and partition k&, and the OUT constraint for node «;
and partition k. The right hand side of the inequality constraints is b;;, and a,
respectively. Due to the node constraints, all a;, and b, , 2" # ¢ and 3’ # j, have to
be switched off. This implies that all variables of the form a$b§-’,f have to be switched
off since they occur in OUT constraints of switched off variables a;. Therefore, in
the IN constraint for CAG node b; and partition k,
S a$biy <by,
a1 €SRC (a,h;)

only a$b§];€ may be switched on.

Since the solution of the 0-1 problem determines the maximal solution of the
objective function and since all edge weights are greater than zero, a$b§],€C must be
switched on. Assume a$b§’f€ is not switched on in an optimal solution of the 0-1
problem. Since a;; and bj; are both switched on, a$b§-’f€ can be switched on, resulting

in a solution that is greater than the optimal solution. This is a contradiction. [

A.2 Correctness of 0-1 Remapping Constraints

The three formulations of the remapping constraints introduce a distinct switch for
each candidate data layout and each possible remapping between different candidate
data layouts. The switches can either be turned on or off. The constraints have
to ensure that the following three correctness criteria hold for any solution of the

corresponding 0-1 integer programming problem:

e (C1) : Exactly one data layout is selected for each phase, i.e., only a single

node switch is on for each phase.

119

e (C2) : Only edges between selected candidate data layouts are selected, i.e., an

edge is switched on if and only if its sink and source nodes are switched on.

For all three formulations, the first correctness criterion is enforced by the layout
constraints as discussed in Section 4.5.5. In the following we will show the validity of

correctness criterion (C2) for the node-based and edge-based formulations.

Theorem A.2 The compact and disaggregated node-based formulations

of the remapping constraints ensure the validity of the second correctness

criterion (C2).

Proof Assume that rf,i is an edge with source node z;; and sink node z;;. We have

to show that edge JBZ}C is switched on iff z;; and x;; are both switched on.

“==": Assume that z; or z;; are switched off. Without loss of generality, assume
that x¥ is switched off. Since the edge TJZ}C occurs in an IN constraint for node z¥, the

edge has to be switched off as well.

“<=": Assume zj; and z;; are both switched on. Due to the layout constraints of
phases ¢ and j, no other nodes in these phases can be switched on. Therefore, the
edge xf,i is the only edge between nodes in phases ¢ and j that may be switched on.
In the disaggregated formulation, the IN constraint of node z;; for phase j forces the
edge xf,i to be switched on. In the compact formulation, the right hand side of the
IN constraint for node z;; contains the factor |Pi"|. Since each phase in P{™ can only
contribute a single edge that is switched on, an edge between phase 7 and ¢ has to be
switched on. Edge ;Uf,i is the only candidate for such an edge and therefore has to be
switched on.

O

Theorem A.3 The edge-based formulations of the remapping constraints

ensures the validity of the second correctness criterion (C2).

Proof Assume that rf,i is an edge with source node z;; and sink node z;;. We have

to show that edge xf,i is switched on iff z;; and x;; are both switched on.

T . . ¢ 1 ¢
“=": Assume z7, is switched on. Due to constraint x;;, + x;; > 2 xl, vy + x;1 > 2

has to hold. This is only possible if both, z; and z;, are switched on.

120

“«=": Assume z;; and z;; are switched on. Due to constraint z;; +z;; <1 + rf,i,
zrtep <1l + xf,i, 1< ;Uf,i has to hold. Therefore $f}i must be switched on.

U

A.3 Exhaustive Search Spaces for BLOCK Distributions

Lemma A.1 Let procs denote the number of processors used. Assume
that the number of processors is a power of some prime number p multi-
plied by a prime number ¢, i.e. procs = p* x ¢, with ¢ # p. Assuming that
at least one dimension is partitioned, the number of distribution schemes

for a d-dimensional program template , size, is

d (d k—1 d [d k—1
i=1 \ ! 1—1 i=2 \ ! 1 — 2

Proof The index i keeps track of the number of dimensions to be partitioned.
The first sum gives the number of possible distribution schemes if each distributed
dimension is assigned a number of processors that is a multiple of p. In terms of
Figure 4.10, the additional factor ¢ can end up in any of the 2 groups created by the
partitioning. The second sum takes care of the case where a single dimension has
exactly ¢ processors assigned to it. This means that the p* processors need to be
partitioned into only ¢ — 1 groups, since the i-th group will consist of ¢ alone. There
are ¢ possible positions for the group consisting of ¢ with respect to the other ¢ — 1
groups.

The proof of the second part of the equation is as follows:

(1) :

(2) :

(1) + (2):

3 d!
= =2 {1 (d—i)!

121

d d!
Li=2 D) @t (;

= d*E?ﬂ(C.l)*(
)

i« k+d—1
d—1

E—1
1 —1

) (due to Lemma 4.2).

O

The following table gives the values of size for different numbers of processors

used and program templates of up to seven dimensions. The number of processors is

assumed to be a power of two times a single number, i.e. procs = 2% * ¢, where ¢ is

relative prime to two and no factorization of ¢ is allowed.

#dimensions
#procs
1 2 4 5 6 7
2xc¢ |1 4 16 25 36 49
4x¢ |1 6 18 40 75 126 196
8xc |1 8 30 80 175 336 588
6xc |1 10 45 140 350 756 1470
2*c |1 12 63 224 630 1512 3234
64+xc |1 14 84 336 1050 2772 6468
128%x¢ | 1 16 108 480 1650 4752 12012
256 ¢ | 1 18 135 660 2475 7722 21021
512*¢ |1 20 165 880 3575 12012 35035

Lemma A.2 Let d be constant. Then size = @(kd_l).

Proof Follows immediately from Lemma 4.3 and Lemma A.1.

123

A.4 Experimental Results

This section contains the entire data generated for the quality experiments described

in Section 5.2. Table entries are pairs of the form:
“<measured execution time> <predicted execution time>"

All timings are given in seconds. The best measured and estimated timings for
a specific test case are printed in boldface. The entry “problem” indicates that
the particular problem size and number of processors could not be handled by the
Fortran D compiler prototype. An entry “memory” for a problem size and number
of processors means that the node program executable did not fit into the memories

of the node processors.

A.4.1 Adi

Static Row Layout

128 x 128 256 x 256 384 x 384 512 x 512
procs real real real real
2 2.492 2.470 | 9.254 9.069 | 20.284 19.798 | 35.577 34.659
4 1.708 1.597 | 5.467 5.248 | 11.374 10.964 | 19.377 18.745
8 1.297 1.123 | 3.487 3.232 6.718 6.374 | 11.004 10.549
16 1.196 0.914 | 2.716 2.242 4.613 4.087 | 7.061 6.447
32 1.217 0.928 | 2.406 1.888 3.979 3.106 5.748 4.582

128 x 128 256 X 256 384 x 384 512 x 512
procs double double double double
2 3.274 3.407 | 12.132 12.806 | 27.340 28.198 | 48.545 49.584
4 2.082 2.071 6.937 7.127 | 14.865 15.180 | 25.824 26.229
8 1.510 1.367 4.198 4.186 8.451 8.503 | 14.164 14.318
16 1.266 1.041 2.988 2.729 5.411 5.166 8.571 8.352
32 1.245 0.996 2.552 2.143 4.146 3.664 6.221 5.560

Static Column Layout

128 x 128 256 x 256 384 x 384 512 x 512
procs real real real real
2 3.179 3.126 | 12.810 12.444 | 28.771 27.947 | 55.754 49.646
4 2.676 2.659 | 10.720 10.452 | 24.061 23.408 | 46.339 41.529
8 2,418 2.491 | 9.704 9.552 | 21.708 21.263 | 41.570 37.632
16 2.388 2.556 | 9.350 9.330 | 20.748 20.484 | 39.485 36.066
32 2.493 2.868 | 9.225 9.692 | 20.457 20.753 | 38.565 36.097
128 x 128 256 x 256 384 x 384 512 x 512
procs double double double double
2 4.360 4.547 | 18.619 18.058 | 39.833 40.555 | 79.173 72.047
4 3.678 3.869 | 15.444 15.202 | 33.349 34.019 | 66.818 60.336
8 3.390 3.627 | 14.093 13.936 | 30.101 30.968 | 60.540 54.773
16 3.358 3.733 | 13.335 13.686 | 28.819 29.943 | 57.884 52.664
32 3.586 4.260 | 13.657 14.375 | 28.448 30.556 | 56.764 53.110
Dynamic Layout with Remapping
128 x 128 256 x 256 384 x 384 512 x 512
procs real real real real
2 3.174 2.685 | 12.437 10.752 | 28.487 24.318 | 50.846 44.040
4 1.704 1.466 | 6.678 5.825 | 15.109 12.991 | 26.515 23.091
8 0.961 0.806 | 3.579 3.081 | 7.901 6.819 | 13.783 12.065
16 0.712 0.510 | 2.017 1.791 | 4.143 3.631 7.178 6.271
32 0.775 0.477 | 1.471 1.339 | 2.475 2.301 | 4.150 3.658

124

128 x 128 256 x 256 384 x 384 512 x 512
procs double double double double
2 4.361 4.243 | 17.465 17.018 | 40.309 39.257 | 73.541 71.689
4 2.430 2.369 | 9.527 9.289 | 21.397 20.884 | 38.376 37.415
8 1.354 1.330 | 5.066 4.942 | 11.251 10.988 | 19.875 19.406
16 0.908 0.879 | 2.781 2.738 | 5.883 5.756 | 10.342 10.088
32 0.909 0.884 | 1.871 1.836 | 3.430 3.389 | 5.643 5.559

125

A.4.2 Erlebacher

Static Distribution of First Dimension

32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs real real real
2 0.647 0.567 | 2.139 1.619 | 4.677 3.496
4 0.687 0.501 | 1.929 1.289 | 3.918 2.601
8 0.721 0.433 | 1.807 1.045 | 3.441 2.004
16 problem problem 3.223 1.693
32 X 32 x 32 | 48 X 48 X 48 | 64 X 64 X 64
procs double double double
2 0.917 0.982 | 2.936 2.974 | 6.630 6.651
4 0.824 0.737 | 2.415 2.050 | 4.931 4.320
8 0.817 0.582 | 2.131 1.482 | 4.177 2.998
16 problem problem 3.646 2.330

Static Distribution of Second Dimension

32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs real real real
2 0.319 0.369 | 1.019 1.179 | 2.503 2.699
4 0.199 0.232 | 0.581 0.696 | 1.380 1.525
8 0.146 0.165 | 0.368 0.453 | 0.785 0.926
16 problem problem 0.537 0.644
32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs double double double
2 0.589 0.793 | 1.896 2.534 | 4.607 5.854
4 0.343 0.486 | 1.057 1.463 | 2.440 3.254
8 0.245 0.333 | 0.678 0.900 | 1.488 1.935
16 problem problem 0.958 1.298

126

Static Distribution of Third Dimension

32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs real real real
2 0.337 0.381 | 1.038 1.217 | 2.651 2.813
4 0.213 0.263 | 0.638 0.782 | 1.597 1.744
8 0.163 0.224 | 0.456 0.602 | 1.093 1.273
16 problem problem 0.920 1.206
32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs double double double
2 0.572 0.824 | 1.805 2.656 | 4.382 6.162
4 0.361 0.557 | 1.066 1.689 | 2.579 3.801
8 0.280 0.457 | 0.759 1.277 | 1.765 2.747
16 problem problem 1.531 2.555

Dynamic Layout with Remapping

32 X 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs real real real
2 0.321 0.349 | 1.036 1.142 | 2.729 2.706
4 0.197 0.211 | 0.584 0.621 | 1.473 1.449
8 0.159 1.694 | 0.400 0.383 | 0.845 0.865
16 problem problem 0.690 0.686
32 x 32 x 32 | 48 X 48 X 48 | 64 x 64 x 64
procs double double double
2 0.567 0.742 | 1.811 2.461 | 4.451 5.820
4 0.313 0.415 | 0.977 1.304 | 2.373 3.055
8 0.233 0.278 | 0.633 0.739 | 1.415 1.693
16 problem problem 0.952 1.128

127

A.4.3 Tomcatv

128

The presented execution time estimates are based on a branch prediction heuristic

that assigns the same probability to each branch.

Static Row Layout

64 x 64 128 x 128 256 x 256 384 x 384
procs double double double double
2 7.939 3.181 | 44.215 11.020 | 165.792 40.890 memory
4 8.294 2.348 | 27.891 6.899 98.823 23.148 | 191.006 48.903
8 9.462 1.941 | 20.810 4.728 66.504 13.882 | 96.587 27.775
16 10.377 1.824 | 20.543 3.712 49.863 9.289 | 70.684 17.233
32 problem 21.145 3.521 45.023 7.370 | 72.379 12.394
Static Column Layout
64 x 64 128 x 128 256 x 256 384 x 384
procs double double double double
2 6.684 2.517 | 42.231 9.757 | 168.835 38.407 memory
4 3.018 1.451 18.923 5.142 | 85.593 19.686 | 168.240 43.742
8 1.724 0.924 7.095 2.841 | 43.229 10.279 63.629 22.454
16 1.058 0.649 3.248 1.693 | 19.281 5.587 25.393 11.811
32 problem 1.963 1.157 7.672 3.293 13.405 6.573
Dynamic Layout with Remapping
64 x 64 128 x 128 256 x 256 384 x 384
procs double double double double
2 6.547 2.521 | 42.354 9.774 | 176.864 38.482 memory
4 2.990 1.452|18.904 5.153 | 85.809 19.734 memory
8 1.750 0.925 7.136 2.848 | 43.362 10.305 | 63.182 22.513
16 1.069 0.650 3.257 1.698 | 19.336 5.599 | 25.513 11.839
32 problem 1.975 1.164 7.591 3.302 | 13.439 6.588

A.4.4 Shallow

Static Row Layout

128 x 128 256 X 256 384 x 384 512 x 512
procs real real real real
2 0.172 0.182 | 0.643 0.712 | 1.426 1.587 memory
4 0.093 0.097 | 0.346 0.366 | 0.731 0.807 | 1.287 1.423
8 0.055 0.055 | 0.189 0.193 | 0.390 0.416 | 0.675 0.727
16 0.036 0.034 | 0.106 0.107 | 0.213 0.221 | 0.371 0.380
32 0.026 0.024 | 0.067 0.064 | 0.126 0.124 | 0.206 0.206
Static Column Layout
128 x 128 256 x 256 384 x 384 512 x 512
procs double double double double
2 0.162 0.181 | 0.640 0.710 | 1.405 1.585 memory
4 0.085 0.096 | 0.327 0.364 | 0.711 0.805 | 1.310 1.420
8 0.047 0.053 | 0.170 0.190 | 0.367 0.414 | 0.670 0.724
16 0.028 0.032 | 0.090 0.104 | 0.191 0.219 | 0.345 0.377
32 0.019 0.022 | 0.052 0.062 | 0.104 0.122 | 0.183 0.204

129

