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Optimizing Fortran 90 Shift Operations on
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Ken Kennedy, John Mellor-Crummey, and Gerald Roth **

Department of Computer Science MS#132, Rice University, Houston, TX 77005-1892

Abstract. When executing Fortran 90 style data-parallel array opera-
tions on distributed-memory multiprocessors, intraprocessor data move-
ment due to shift operations can account for a significant fraction of
the execution time. This paper describes a strategy for minimizing data
movement caused by Fortran 90 CSHIFT operations and presents a com-
piler technique that exploits this strategy automatically. The compiler
technique is global in scope and can reduce data movement even when
a definition of an array and its uses are separated by control flow. This
technique supersedes those whose scope is restricted to a single state-
ment. We focus on the application of this strategy on distributed-memory
architectures, although it is more broadly applicable.

1 Introduction

High-Performance Fortran (HPF)[11], an extension of Fortran 90, has attracted
considerable attention as a promising language for writing portable parallel pro-
grams. Programmers express data parallelism using Fortran 90 array operations
and use data layout directives to direct partitioning of the data and computation
among the processors of a parallel machine.

For HPF to gain acceptance as a vehicle for parallel scientific programming,
it must achieve high performance on problems for which it is well suited. To
achieve high performance on a distributed-memory parallel machine, an HPF
compiler must do a superb job of translating Fortran 90 data-parallel operations
on arrays into an efficient sequence of operations that minimize the overhead
associated with data movement.

Interprocessor data movement on a distributed-memory parallel machine is
typically far more costly than movement within the memory of a single proces-
sor. For this reason, much of the prior research on minimizing data movement
has focused on the interprocessor case. However, although interprocessor data
movement is more costly per element, the number of elements moved within the
memory of a single processor may be much larger, causing the cost of local data
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movement to be dominant. Johnsson previously has noted that “eliminating the
local data motion by separating the set of data that must move between nodes
from the data that stays within local memory may yield a significant performance
improvement” [12]. The cost of local data movement becomes more important
for distributed arrays as the partition size per processor increases.

In this paper, we focus on the problem of minimizing the amount of intra-
processor data movement when computing Fortran 90 array operations. To make
our technique as generally applicable as possible, we handle array assignment
statements where the right-hand side consists of a call to a Fortran 90 shift in-
trinsic. The technique can handle all such assignment statements, even when
the definition of the array and its uses are separated by control flow. Such a
technique supersedes those that are restricted to a single statement.

In the next section we briefly review the Fortran 90 shift operators and their
execution cost on distributed-memory machines. In Section 3, we describe the
offset array strategy for reducing intraprocessor data movement associated with
shift operations on arrays with BLOCK or cycLic(k) distributions. We also
present some empirical results to show the potential profitability of applying
the offset array optimization. Section 4 describes a global SSA-based analysis
algorithm that restructures programs to use offset arrays where profitable. We
close with a look at related work.

2 Fortran 90 Shift Operators

The Fortran 90 circular shift operator CSHIFT(ARRAY, SHIFT, DIM) returns an
array of the same shape, type, and values as ARRAY, except that each rank-one
section of ARRAY crossing dimension DIM has been shifted circularly SHIFT times.
The sign of SHIFT determines the shift direction. The end-off shift operator
EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM) is identical to CSHIFT except for the
handling of boundaries. For the rest of the paper we focus on optimizing CSHIFT
operations although our techniques can be generalized to handle EOSHIFT as
well.

2.1 Sources of CSHIFT Operations

For HPF, optimizing CSHIFT operations is important since CSHIFT operations
are ubiquitous in stencil-based dense array computations for which HPF is best
suited. Besides CSHIFT operations written by users, compilers for distributed-
memory machines commonly insert them to perform data movement needed for
operations on array sections that have different processor mappings [14, 15]. For
example, given the statement X(2:255) = X(1:254) + X(2:255) + X(3:256)
the CM Fortran compiler would translate it into the following statement se-
quence, where the temporary arrays match the size and distribution of X:

ALLOCATE TMP1, TMP2
TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
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Fig.1. DST = CSHIFT(SRC,SHIFT=-1,DIM=2)

X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)
DEALLOCATE TMP1, TMP2

For the rest of the paper, we assume that all CSHIFT operations in a program
are explicit (either user-written, or inserted where appropriate during an earlier
phase of HPF compilation), that each call to CSHIFT occurs as a singleton oper-
ation on the right-hand side of an assignment statement, and that each CSHIFT
in our intermediate form is applied only to a whole array. All other occurrences
of CSHIFT can be translated into the required form by factoring expressions and
introducing array temporaries.

2.2 CSHIFT Operations on Distributed-Memory Machines

When a distributed array is shifted across a distributed dimension, two major
actions take place:

1. Data elements that must be shifted across processing element (PE) bound-
aries are sent to the neighboring PE. This is the interprocessor component of
the shift. The dashed lines in Fig. 1 represent this data movement for arrays
distributed in a BLOCK fashion.

2. Data elements that stay within the memory of the PE must be copied to
the appropriate locations in the destination array. This is the intraprocessor
component of the shift. The solid lines in Fig. 1 represent this data move-
ment.

Assuming a BLOCK distribution and that each PE contains a 2D subgrid of
size (g x ¢), a shift amount of d, d < g, consists of an interprocessor move of d
columns (of size g), and an intraprocessor move of g — d columns. The cost of
such a shift operation is described by the following model [8]:

Tshift =49 (g - d) tonpe + Conpe +9 d 7foffpe + Coﬂ"pe (1)

where tonpe and tompe represent the time to perform an intraprocessor and inter-
processor copy respectively, and Conpe and Cogpe represent the startup time (or
latency) for each type of copy. Table 13 presents measured values for each of

? From Fatoohi [8], ©1993 ACM.
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Table 1. Measured cost of communication parameters for a 32-bit word (in psec).

Parameter|CM2|MPP|MP-1|610C
toffpe 9.0 3.2 2.7 3.2
Cofipe 20.0| 13.4| 41.9| 7.2
tonpe 0.7 -] 5.6 9.0
Conpe 35.0 -l 59.1] 18.0

the model’s parameters for four different SIMD machines. Different models are
required for the cases d = g and d > ¢g. cycLic(K) distributions also require a
different model which include a parameterization for the blocking factor.

The instances in which we are most interested occur when d is small compared
to g. For such cases Equation (1) is O(g? tonpe) and the execution time Typif, 1s
dominated by the cost of the intraprocessor copies, even when Zonpe < Tofipe-

3 Offset Arrays

The goal of the work described here is to eliminate the intraprocessor copying
associated with a Fortran 90 CSHIFT operation when it is safe to do so. When
we can determine that the intraprocessor copying of a CSHIFT is unnecessary,
we can transform the program to perform only the interprocessor copying and
rewrite references to the shift’s destination array to refer to the source array
with indexing adjusted by the shift amount. We call such a destination array
an offset array. In the following subsections, we present criteria for determining
when offset arrays are safe and profitable and present the code transformations
that avoid intraprocessor copying by exploiting offset arrays.

To hold the data that must move between PEs, we use overlap areas [9)].
Overlap areas are subgrid extensions to hold data received from neighboring
PEs. To limit the impact of allocating this permanent storage, we place an
upper bound on their size. This upper bound should be set at compile-time by
a heuristic that considers the machine characteristics along with the expected
size of the subgrids.

3.1 Criteria for Offset Arrays

Given an assignment statement DST = CSHIFT(SRC,SHIFT,DIM) within our in-
termediate representation, the array DST may be treated as an offset array if the
following criteria can be verified for this statement at compile time:

1. The source array SRC is not modified while this definition of DST is live.
2. The destination array DST is not partially modified* while SRC is live.

* Any partial modification will require a copy of the shifted array SRC and so we simply
go ahead and make the copy at the point of the shift. Any full modification of DST
which kills the whole array does not require the copy of SRC and thus DST may still
be treated as an offset array up to the point of the killing definition.
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From the work on copy elimination in functional and higher-order program-
ming languages [17], we know that the above two criteria are necessary and
sufficient conditions for when the two objects can share the same storage. How-
ever, the sharing of storage may not always be profitable. To insure profitability,
we add the following efficiency criteria:

3. The SRC array and the DST array are distributed in the same BLOCK (or
cycLIC(K)) fashion and are aligned with one another.

4. The values SHIFT and DIM are compile-time scalar constants.

5. The amount of interprocessor data must fit within the bounds placed on the
size of the overlap areas.

6. For each use of DST that is reached by the given definition, all the definitions
of DST that reach that use are identical offset arrays of the same source array
SRC.

These efficiency criteria may be relaxed if we are willing to generate multiple
versions of code for statements that use the array DST, and then select the
appropriate version depending upon run-time conditions. However, due to the
drawbacks of multiple versions of code, in particular code growth, we consider
these additional criteria as important.

3.2 Offset Array Optimization

Once we have determined that the destination array of the assignment state-
ment DST = CSHIFT(SRC,SHIFT,DIM) may be an offset array, we perform the
following transformations on the code. First we replace the shift operation with
a call to a routine that moves the interprocessor data into the appropriate over-
lap area: CALL OFFSET_SHIFT(SRC,SHIFT,DIM). We then replace all uses of the
array DST, that are reached from this definition, with a use of the array SRC.
The newly created references to SRC carry along special annotations represent-
ing the values of SHIFT and DIM. In the examples that follow, the annotations
are represented by a superscripted vector where the DIM-th element contains the
value SHIFT; e.g., SRC<-+SHIFT,..> Finally, when creating subgrid loops during
the code generation phase, we alter the subscript indices used for the offset ar-
rays. The array subscript used for the offset reference to SRC is identical to the
subscript that would have been generated for DST with the exception that the
DIM-th dimension has been incremented by the SHIFT amount.

It is possible that offset arrays are themselves used in other shift operations.
If these shift operations also meet all of the criteria to be an offset array then the
above transformations can again be applied. We call such arrays multiple-offset
arrays. If one dimension is shifted multiple times, the SHIFT amounts are simply
added together.

As an example, consider the 5-point stencil routine in Fig. 2(a). The expected
intermediate representation in Fig. 2(b) is achieved by separating the communi-
cation operations from the computational operations. Once we have determined
that the temporary arrays T1-T4 can be offset arrays, we perform the above
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SUBROUTINE FIVEPT(a,b,n)
REAL, ARRAY(n,n) :: a,b
DECOMPOSITION decomp(n,n)
ALIGN a,b with decomp
DISTRIBUTE decomp (BLOCK,BLOCK)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,Cs

b =cc * a

+ cn * cshift(a,-1,1)
+ cs * cshift(a,+1,1)
+ cw * cshift(a,-1,2)
+ ce * cshift(a,+1,2)
RETURN

END

(a) Original program

SUBROUTINE FIVEPT(a,b,n)
REAL, ARRAY(n,n) :: a,b
DECOMPOSITION decomp(n,n)
ALIGN a,b with decomp
DISTRIBUTE decomp (BLOCK,BLOCK)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cCs

CALL offset_cshift(a,-1,1)
CALL offset_cshift(a,+1,1)
CALL offset_cshift(a,-1,2)
CALL offset_cshift(a,+1,2)
b=cc* a

+ cn * a<_1p>
+ cs * a<+1p>
+ cw ¥ a<0’_1>
+ ce ¥ a<Q+1>
RETURN

END

(c) Offset array transformations

&
&
&
&

& P ORP R

SUBROUTINE FIVE PT(a,b,n)

REAL, ARRAY(n,n) :: a,b
REAL, ALLOCATABLE :: t1,t2,t3,t4
DIMENSION(:,:) :: t1,t2,t3,t4

DECOMPOSITION decomp(n,n)

ALIGN a,b,t1,t2,t3,t4 with decomp

DISTRIBUTE decomp (BLOCK,BLOCK)
REAL cc,cn,ce,cw,cs
COMMON cc,cn,ce,cw,cCs

ALLOCATE(t1(n,n),t2(n,n),
t3(n,n),t4(n,n))

t1 = cshift(a,-1,1)
t2 = cshift(a,+1,1)
t3 = cshift(a,-1,2)
t4 = cshift(a,+1,2)
b =cc * a

+ cn * t1

+ cs * t2

+ cw * t3

+ ce * t4
DEALLOCATE(t1,t2,t3,t4)
RETURN

END

(b) Intermediate representation

SUBROUTINE FIVEPT(a,b,n)
REAL, ARRAY(n/p,n/p) :: Db
REAL, ARRAY(O:n/p+1,0:n/p+1)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cs

CALL offset_cshift(a,-1,1)
CALL offset_cshift(a,+1,1)
CALL offset_cshift(a,-1,2)
CALL offset_cshift(a,+1,2)

do j=1,n/p
do i=1,n/p
b(i,j) = cc * a(i,j)
+ cn * a(i-1,j)
+ cs * a(i+l,j)
+ cw * a(i,j-1)
+ ce * a(i,j+1)
enddo
enddo
RETURN
END

(d) Final node program

Fig. 2. Offset array optimization on a 5-point stencil computation.
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Fig. 3. Timings for 5-point stencil computation on 16K MasPar MP-1.

set of transformations. Fig. 2(c) shows the program after the first two transfor-
mation steps have been completed. The third step is performed during subgrid
loop generation and is shown in Fig. 2(d).

To demonstrate the usefulness of this optimization, we have compiled and
executed the code from Fig. 2 on a MasPar MP-1 with 16K processors. Figure 3
compares the execution times of the original program displayed in Fig. 2(a) and
the optimized program shown in Fig. 2(d) for varying subgrid sizes. The figure
shows that the program exploiting offset arrays gives a speed-up of a factor of
two for the larger subgrid sizes. The figure also displays the time to execute
the four CSHIFTs of Fig. 2(b) and the four calls to OFFSET_SHIFT of Fig. 2(d).
We can see that the amount of execution time that is spent performing the
four CSHIFT operations is actually more than the time spent performing the
desired computation. In fact, the CSHIFT operations account for 75% of the
total execution time for the largest subgrid. The corresponding number for the
OFFSET_SHIFT operations is 17%.

4 Offset Array Analysis

Our algorithm for determining offset arrays relies upon the static single assign-
ment (SSA) intermediate representation [7]. For our purposes, the SSA repre-
sentation is an analysis framework which is used in conjunction with the con-
trol flow graph. Within SSA, modifications and uses of arrays are represented
with UPDATE and REFERENCE operators, respectively. Since we are analyzing For-
tran 90D programs, we have enhanced these operators to handle array sections
by incorporating regular section descriptors (RSDs) [1].

In addition to the SSA graph, we generate an interference graph [3]. The
interference graph indicates those SSA variables with overlapping live ranges,
and is used to check for violations of criteria 1 or 2. The graph is built in the
usual manner, but with one exception: all ¢-functions occurring at the same
merge point are considered to be executed simultaneously. This prevents the
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detection of spurious interferences that may prevent the use of offset arrays
across merge points. We also enhance the accuracy of the interference graph by
exploiting the RSDs in UPDATE operations to identify statements that kil the
entire array.

4.1 Offset Array Algorithm

In this section, we present our algorithm for identifying offset arrays and trans-
forming the program to reference them. In describing the algorithm, we typically
refer to the SSA variable names rather than their CFG counterparts. The algo-
rithm is shown in Fig. 4.

We begin by traversing the CFG in a reverse depth-first order looking for
shift operations. Upon encountering a shift operation which satisfies criteria 3—
5, we check the interference graph to see if criterion 1 is not violated. If all
the required criteria are satisfied, then it is safe for the destination array to be
an offset array. Given such a shift operation, we rename the destination array
DST; by giving it the same SSA name as the source array SRC;. The new name
is annotated as described in Section 3.2. By using the same name we do not
violate the spirit of SSA. This is because the shift really does not create any new
values but rather just specifies a new indexing method for existing values. We
change the use of the SHIFT intrinsic into a use of the OFFSET_SHIFT routine,
and update the interference graph by renaming the changed variable.

After we make this change, we propagate the information in an optimistic
manner. This will insure that criterion 6 is satisfied wherever possible. This is
accomplished by simply following the SSA def-use edges and replacing all uses
of DST; with uses of SRCf“"SHIFT"">. Depending upon the type of use, further
propagation may be possible. Several different cases must be handled during this
propagation; we discuss them next. When the propagation of a change has com-
pleted, we continue the traversal of the program looking for the next offsetable
array. The reverse depth-first traversal order is important so that multiple-offset
arrays can be correctly handled in a single pass of the program.

As stated in the previous paragraph, we propagate the offset array informa-
tion by changing all uses of the original destination array DST; into uses of the
new offset array SRCf""SHIFT"”>. Since we are dealing with arrays, these uses
can only occur in three places: a REFERENCE operation, an UPDATE operation,
or a ¢-function. If this change is propagated into an array REFERENCE operator,
there are no more opportunities for propagation. If the use is at an UPDATE op-
erator we propagate the offset array through the operation when possible. It is
valid to propagate through the UPDATE as long as it does not violate criterion 2
and does not realign or redistribute the array. The propagation is accomplished
by generating a new instance of the SRC array, call it SRCy, to be the target of
the UPDATE operation in place of the existing DST array instance. This new SRC
receives the same annotations as SRC»<""SHIFT"">, and then is propagated to
all its uses in a similar manner. If it is not possible to propagate through the
UPDATE operation then a copy of the offset array may be required prior to the
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Procedure Offset_Arrays

Input: CFG, the control flow graph for the procedure.
Output: CFG optimized with offset arrays.

/* See Fig. 5 for auxiliary routines. */

SSA = Create_SSA_Form(CFG)
1G = Build_Interference_Graph(SSA, CFG)

for each SHIFT operation stmtin a depth-first traversal of the CFG do
push stmt onto stack S
endfor

while stack Sis not empty do
pop stmt off of stack S
switch (stmt)

case SHIFT operation: Dstpgyp = shz’ft(Src:Sgglft, shift, dim):
if criteria 3, 4, or 5 is violated then break endif
if Check_Interferences(Dstpgyy, Srcgsup, IG) then break endif

calculate new annotation Nanot from Sanot, shift, and dim
replace stmt with Srciq\;(mm = oﬁset_shift(Src:Zggé)t, shift, dim)
call Replace-Uses(DstDsub,Srciq\g%%m,S)

call Update_Graphs(Dstpgysp, Srcg{gzm, SSA, IG)

break

case ¢-function: Dstpsup = qzﬁ(Lvar%?th, Rvar%?ﬁft' :

if criteria 3 is violated then break endif

if Lvar™®°t £ Ryarf®°! then break

elseif Dstpgyp = Lvarpgyp or Dstpgupy = Rvarggy,, then break

. Lanot __ Ranot
elseif Lvary(,;" = Rvargy,, then

New nsyp = Lvar gy
else

New ygyp = Find_Phi(Lvar gy, Rvar gsyp, stmt)
endif

it Check_Interferences(Dstpsyp, New ysup, IG) then break endif

replace stmt with New%izzt = qb(Lvar%?th, Rvarggggt)

call Replace-Uses(DstDsub,New%ﬁzzt,S)

call Update_Graphs(Dstpgysp, NewJL\,‘;th, SSA, IG)
break

case UPDATE operation: Dstpgyp = Update(Lvar%‘;th, section, values):

if criteria 3 is violated then break endif
New ygyp = Gen_Next_SSA_Var(Luvar)
if Check_Interferences(Dstpgyy, New sy, IG) then break endif

replace stmt with New%ﬁzzt = ULpdaie(Lvar%;th, section, values)
ano

call Replace_Uses(Dstpsyp, Newans »5)

call Update_Graphs(Dstpsys, New@izzt, SS4, 1Q)
break

endswitch
endwhile

call Insert_Copies(CFG,SSA)
return CFG

Fig. 4. Offset array propagation algorithm
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Function Check_Interferences(Dst psyp, Srcgsyp, IG)
/* Return TRUE if there exists an interference between */
/* Dstpgyp and some Sre;, ¢ # Ssub. */

Procedure Replace_Uses(Dest, Src, S)

/* Replace each reference to Dest with a reference to Sre. */
/* If the use is in a ¢-function or UPDATE operation, then */
/* push operation on stack S. */

Procedure Update_Graphs(Old, New, SSA, IG)
/* Replace node Old with node New in both SS4 and IG. */

Function Find_Phi(Lvarp gy, Rvar gsyp, stmt)

/* Find the ¢-function merging Lvary g, and Rvarggyp */
/* at the same merge point as stmt and return it. */

/* If it does not exist, return a new instance of Lvar. */

Fig. 5. Auxiliary procedures.

UPDATE. This copy is inserted by a subsequent phase which we describe in the
next subsection.

When propagating an offset array into a ¢-function, in addition to verifying
criteria 1 and 3, it is only valid to continue the propagation if the other input to
the ¢-function is an equivalent offset array (see criterion 6). Two offset arrays are
equivalent if they are from the same SSA family and have identical annotations.
The one exception to this rule is if a cycle has been created (i.e.; one of the inputs
to the ¢-function, when its annotation is removed, is the same SSA variable
being defined by the ¢-function). When it is possible to propagate through the
¢-function, we need to select the correct SSA variable to receive the definition
of this ¢-function. If the ¢-function happens to be merging identical values, we
simply use one of its inputs as the target variable. Otherwise we look for a ¢-
function at the same merge point whose inputs are the unannotated variables
of the current ¢-function. If found, we use the SSA variable that it defines,
otherwise we generate a new instance of the SSA variable in the same manner
as we did for UPDATE. In any case, the variable is annotated with the same
annotation as the input variables and is propagated forward. If it is not possible
to propagate through a ¢-function, then array copy statements must be inserted
on the appropriate branches leading to the ¢-function. These copies are added by
the Insert_Copies routine, which is the last function called by the Offset_Arrays
procedure and which we describe next.

4.2 Imserting Array Copies

Once we have found all the offset arrays and propagated them as far as possible
through the program, it may be necessary to insert some array copy statements
to maintain the original semantics. The copy statements may be needed at points
where an offset array is used to define, via an UPDATE operation or a ¢-function,
a non-offset array.
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Procedure Insert_Copies(CFG, SSA, stmt_set)
/* stmi_set is produced in Offset_Arrays as described */

for each stmt in stmit_set do
switch (stmt)

case UPDATE operation: Dstpgy,p = Update(Lvar%?Z‘ft, section, values):

if (section does not specify the entire array) then

insert Dst = Lyarlanot

endif
break

immediately preceding stmtin CFG

case ¢-function: Dstpsup = qzﬁ(Lvar%?th, Rvar%?%)t :

if (Lanot # nil) then /* Rvaris handled similarly. */
insert Dst = Lvar®?°t on appropriate branch in CFG
/* optimize placement when possible. */

endif
break

endswitch
endfor
return

Fig. 6. Algorithm to insert array copy statements.

It is quite easy to determine the statements that may require a copy while
we are propagating offset arrays in the Offset_Arrays procedure. To track these
statements, we maintain a set (list) of such statements (the code has been omit-
ted from Fig. 4). An UPDATE operation which is processed by the algorithm but
determined not to be offsetable is added to the set. A ¢-function which is deter-
mined not to be offsetable is also added to the set, and marked so that it is added
only once. If it is later determined to actually be offsetable (after the other input
parameter has been processed), then it is removed from the set if it is marked as
being included. The use of pruned-SSA form, where dead ¢-functions have been
eliminated, can greatly reduce the number of ¢-functions added to the set.

After the propagation of offset arrays has completed, the procedure In-
sert_Copies, shown in Fig. 6, is called to add the required array copies to the
program. It examines each statement in the set that was produced to determine
if an array copy is actually needed and to select the best placement for it. If the
array copy is truly required, it will take as input the offset array and will define
the array originally used by the statement. This copy statement will perform all
the intraprocessor data movement that was avoided at the shift operation. Note
however that no interprocessor data movement is required.

Given an UPDATE operation from the set, an array copy statement is not
required if the UPDATE is a killing definition. Otherwise, we insert an array copy
immediately preceding the UPDATE.

For a ¢-function which defines a non-offset array, an array copy statement
will need to be generated for each input parameter that is an offset array. In
general, the copy statements are placed on the appropriate branches leading to
the merge point represented by the ¢-function. It is possible to optimize this
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placement in the case of some loop structures. If a copy must be made for the
array values coming around from the previous iteration but there is no use within
the loop of the values defined by the ¢-function, then it is possible to move the
array copy out of the loop by placing it on the loop exit branch. The copy is
moved to the shallowest nesting level such that it still dominates all uses. This
is advantageous in situations where it is allowable for an array to be an offset
array inside a loop nest but not outside. The full copy is only performed when
the loop nest is exited rather than on each iteration.

The insertion of such array copy statements into the program raises a concern.
We must answer the question of whether these inserted copy statements can
generate more data movement than was specified in the original program. The
following theorem states that this is not possible.

Theorem 1. Given a copy statement C created for an offset array SRC™ which
was generated by a sel of shift operations {S1,S52,53,...}, C is never executed
more often than {S1,S2,Ss,...}.

Proof. The theorem follows directly from the following two lemmas. O

Lemma 2. Any path from the beginning of the program (Root) to C' must go
through at least one S;.

Proof. Assume there exists a path P;: Root — C that does not contain a shift
operation S;. Since C' is an inserted copy statement for an offset array, there
must exist a shift operation S; and a path Py: S; Z C. Since both P; and Ps
end at C, and P; does not contain S; (by assumption), then there must exist
a merge point X that joins P, and P prior to C'. X must contain a ¢-function
which merges the values of SRC**?* generated at S; with the other values of SRC
that reach C' along Root = X. But our algorithm only propagates an offset
array through a ¢-function when the ¢-function merges identical offset arrays.
Thus there must exist a shift operation S; identical to .S; on Root Z X which
contradicts our original assumption. O

Lemma 3. C cannot be more deeply nested than all S; € {S1,S52,5s,...}.

Proof. Assume C' is contained in a loop which does not contain a shift operation
Si. Since C' is an inserted copy statement for an offset array, there must exist
a shift operation S; outside the loop and a path P: S; = C. The path P must
contain a ¢-function to merge the values reaching C' from S; with those that
reach C' from the back edge of the loop. By the same argument used in the proof
of Lemma 2, there must exist a shift operation S; within the loop that reaches
the back edge of the loop, thus contradicting our original assumption. O

4.3 Cost Analysis

During our offset array algorithm each SSA def/use edge is processed at most
once. Thus our algorithm is guaranteed to terminate. This also means that our
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algorithmis quite efficient. The cost of the algorithm is actually dominated by the
cost of generating SSA form and building the interference graph, both of which
are O(n?) in the worst case (although building SSA is O(n) in practice [7]). Once
these structures are built, the rest of the algorithm is linear. Finding offsetable
arrays is O(n) and their propagation through the program is O(e). In addition,
the checking of interferences is O(i). Here n is the size of the program, e is the
number if edges in the SSA graph, and 7 is the number of edges in the interference
graph.

5 Related Work

Stencil Compiler: The stencil compiler [2, 4] for the CM-2 avoids the memory-
to-memory copying for shift operations that occur within specific, stylized, array-
assignment statements. These statements, or stencils, must be in the form of
a weighted sum of circularly-shifted arrays. Not only does the compiler elimi-
nate intraprocessor data movement for these statements, it also optimizes inter-
processor data movement by using the CM-2’s multidimensional and bidirec-
tional interconnect, and exploits hand-optimized library microcode to minimize
data movement between local memory and registers. However, use of this special-
purpose compiler requires that the user identify these stylized assignment state-
ments in the source program and separate them into their own subroutine.

Our compiler scheme is a superset of the stencil compiler. We hoist all shift
operations, whether implicit or explicit, out of expressions and assign them to
array temporaries. This allows us to handle all shift operations, whether part of
larger expression or not, in a uniform manner. Since hoisted temporaries have
short life spans and thus never have conflicting uses, we will always be able to
make them into offset arrays.

Currently we do not plan to exploit multidimensional and bidirectional com-
munication, since they are exclusive to the CM-2’s slicewise model. Although, it
would not be difficult to scan adjacent communication operations looking for op-
portunities. Our context partitioning optimization [13] groups together as many
such operations as possible, thus maximizing the possibilities of finding such
opportunities.

Finally, to match the performance of the stencil compiler, we would exploit a
highly-optimizing node compiler to perform final code generation. Such a com-
piler would consider the memory hierarchy and attempt to minimize data move-
ment between local memory and registers [5].

Scalarizing Compilers: Previous work on Fortran 90D [6], like the stencil
compiler, is capable of avoiding some intraprocessor data movement for stylized
expressions. In this case, the expressions have to use array syntax. The com-
piler translates the array syntax expressions into equivalent Fortran 77D code
using FORALL statements. It is then the job of the Fortran 77D back end, us-
ing dependence information, to determine the exact amount of interprocessor
communication required. Unfortunately, any call to CSHIFT, whether in an as-
signment statement or as part of an expression, still makes a full copy of the
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array. As with the stencil compiler, our work is a superset of this work.

Functional Languages: Functional and many high-level languages have
value semantics, and thus do not have the concept of state and variable as in
Fortran. Naive compilation of such languages causes the insertion of many copy
operations of aggregate objects to maintain program semantics. It is imperative
that compilers for such languages eliminate a majority of the unnecessary copies
if they hope to generate efficient code. This task is known as copy optimization.

Schwartz [17] characterizes the task of copy optimization as the destructive
use (reuse) of an object v at a point P in the program where it can be shown
that all other objects that may contain v are dead at P. He then develops a set
of value transmission functions that can be used to determine the safety of a
destructive use within the language SETL.

Gopinath and Hennessy [10] address the problem of copy elimination by tar-
geting, or the proper selection of a storage area for evaluating an expression. For
the lambda calculus extended with array operation constructs, they develop a
set of equations which, when solved iteratively to a fixpoint, specify targets for
array parameters and expressions. Unfortunately, solving their equations to a
fixpoint is at least exponential in time.

Schnorf et al. [16] describe their efforts to eliminate aggregate copies in the
single-assignment language SISAL. Their work analyzes edges in a data flow
graph and attempts to determine when edges, representing values, may share
storage. Our work has some similarities to parts of their work.

6 Conclusion

In this paper, we have presented a unified framework for analyzing and optimiz-
ing shift operations on distributed-memory multicomputers. The framework is
capable of handling all such operations, whether written by the user or gener-
ated internally by the compiler. This work supersedes prior work by others that
only handled shifts embedded within expressions. And although this paper has
concentrated on distributed-memory machines, the optimizations presented are
also applicable to scalar and shared-memory machines.

An implementation of the algorithms described in this paper is currently in
progress.
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