Compiler Blockability of Dense
Matrix Factorizations

Steve Carr
Richard Lehoucq

CRPC-TR95557-S
August 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Also available as TR95-08 from the Department of Com-
puter Science, Michigan Technological University.

Compiler Blockability of Dense Matrix Factorizations*

Steve Carr! R. B. Lehoucg?

August 9, 1995

Abstract

Recent architectural advances have made memory accesses a significant bottleneck for com-
putational problems. Even though cache memory helps in some cases, it fails to alleviate the
bottleneck for problems with large working sets. As a result, scientists are forced to restructure
their codes by hand to reduce the working-set size to fit a particular machine. Unfortunately,
these hand optimizations create machine-specific code that is not portable across multiple ar-
chitectures without a significant loss in performance or a significant effort to re-optimize the
code.

It is the thesis of this paper that most of the hand optimizations performed on matrix factor-
ization codes are unnecessary because they can and should be performed by the compiler. It is
better for the programmer to express algorithms in a machine-independent form and allow the
compiler to handle the machine-dependent details. This gives the algorithms portability across
architectures and removes the error-prone, expensive and tedious process of hand optimization.

In this paper, we show that Cholesky and LU factorizations may be optimized automatically
by the compiler to be as efficient as the same hand-optimized version found in LAPACK. We
also show that the QR factorization may be optimized by the compiler to perform comparably
with the hand-optimized LAPACK version on matrix sizes that are typically run on nodes of
massively parallel systems. Our approach allows us to conclude that matrix factorizations can
be expressed in a machine-independent form with the expectation of good memory performance
across a variety of architectures.

1 Introduction

Over the past decade, the computer industry has realized dramatic improvements in the power of
processors. These gains have been achieved both by cycle-time improvements and by architectural
innovations like multiple processors, multiple-instruction issue and pipelined functional units. As a
result of these architecture improvements, today’s machines can perform many more operations per
cycle than their predecessors. Unfortunately, memory speeds have not kept pace. Therefore, with
these gains in computational power has come an increase in the number of cycles for a memory
access—a latency of 10 to 20 machine cycles is now quite common [20, 30].

Because the latency and bandwidth of memory systems have not kept pace with processor
speed, computations are often delayed waiting for data from memory. As a result, processors
see idle computational cycles more frequently. In fact, memory delays have become a principal

*Research supported by NSF Grant CCR-9120008 and by NSF grant CCR-9409341
"Department of Computer Science, Michigan Technological University, Houghton MI 49931, carr@cs.mtu.edu.

‘Department of Computational and Applied Mathematics, Rice University, Houston TX 77251-1892,
lehoucq@rice.edu.

performance bottleneck for high-performance computers. Although cache helps to ameliorate these
problems, it performs poorly on scientific calculations with working sets larger than the cache size.

To overcome these performance problems, programmers have learned to employ a coding style
that achieves a good balance between memory references and floating-point operations and improves
program locality. This is usually done by unrolling outer loops and merging the resulting copies
of inner loops and by restructuring the code so that it operates on blocks of data that can fit in
cache. Unfortunately, this coding method almost always leads to ugly code that is dependent upon
a single machine architecture. More importantly, this method is error-prone, expensive, tedious
and time consuming.

There is a long history of the use of sophisticated compiler optimizations to achieve machine
independence. The Fortran I compiler included enough optimizations to make it possible for scien-
tists to abandon machine-language programming. More recently, advanced vectorization technology
has made it possible to write machine-independent vector programs in a sub-language of Fortran
77. We contend that it will be possible to achieve the same success for memory-hierarchy manage-
ment on scalar processors. More precisely, enhanced compiler technology will enable programmers
to express an algorithm in a natural, machine-independent form and achieve memory-hierarchy
performance good enough to obviate the need for hand optimization.

To investigate the viability of memory-hierarchy management by the compiler, experiments
were undertaken to determine if a compiler could automatically generate the block algorithms in
LAPACK from the corresponding point algorithms expressed in Fortran 77 [7, 8, 14, 25]. This study
addressed the following question: what information does a compiler need in order to derive block
versions of matriz factorization codes that are competitive with the best hand-blocked versions?

This study has yielded two major results. The first, which is detailed in another paper [9],
reveals that the hand loop unrolling performed when optimizing the level 3 BLAS [12] subroutines
is rarely necessary. While the BLAS are useful, the hand optimization that is required to obtain
good performance on a particular architecture should be left to the compiler. Experiments show
that the compiler can automatically unroll loops as effectively as hand optimization in most cases.
The second result, which we discuss in this paper, reveals an algorithmic approach that can be
used to analyze and block matrix factorization algorithms automatically in the compiler. Our
results with this algorithmic approach show that the block algorithms derived by the compiler are
competitive with those of LAPACK [2]. For modest sized matrices (on the order of 200 or less), the
compiler-derived variants are often superior. We feel this is important since the architectural trend
is toward the amalgamation of many smaller processors.

We begin our presentation with a review of background material related to memory optimiza-
tion. Next, we present the transformations that are necessary to block matrix factorization codes
automatically. Then, we describe a study of the application of these transformations to derive the
block algorithms in LAPACK from their corresponding point algorithms. Finally, we present an
experiment comparing the performance of hand-optimized LAPACK algorithms with the compiler-
derived algorithms attained using our techniques.

2 Background

2.1 Memory Hierarchy

The processing power of microprocessors and supercomputers has increased dramatically and con-
tinues to do so. At the same time, the demand on the memory system of a computer is to increase
dramatically in size. Due to financial costs, typical workstations and massively parallel machines
cannot use memory chips that have the latency and bandwidth required by today’s processors.

Instead, main memory is constructed of cheaper and slower technology and the resulting delays can
be 10’s to 100’s of cycles for a single memory access.

To alleviate the memory speed problem, machine architects construct a hierarchy of memory
where the highest level (registers) is the smallest and fastest and each lower level is larger but
slower. The bottom of the hierarchy for our purposes is main memory. Typically, one or two levels
of cache memory fall between registers and main memory. The cache memory is faster than main
memory, but is often a fraction of the size. The cache memory serves as a buffer for the most
recently accessed data of a program (the working set). The cache becomes ineffective when the
working set of a program is larger than its size.

Because of the memory hierarchy and shared-memory multiprocessors, the LAPACK and the
level 2 and 3 BLAS and BLAS projects became necessary. The projects restructured basic linear
algebra algorithms in order to provide portable software that runs efficiently in the presence of a
memory hierarchy [14, 2, 13].

2.2 Dependence

The fundamental tool available to the compiler is that of dependence—the same tool used in vec-
torization and parallelization. A dependence exists between two statements if there exists a control
flow path from the first statement to the second, and both statements reference the same memory
location [21].

o If the first statement writes to the location and the second reads from it, there is a true
dependence, also called a flow dependence.

o If the first statement reads from the location and the second writes to it, there is an antide-
pendence.

e If both statements write to the location, there is an output dependence.

e If both statements read from the location, there is an input dependence.

A dependence is carried by a loop if the references at the source and sink (beginning and end) of
the dependence are on different iterations of the loop and the dependence is not carried by an outer
loop [1]. In the loop below, there is a true dependence from A(I,J) to A(I-1,J) carried by the
I-loop, a true dependence from A(I,J) to A(I,J-1) carried by the J-loop and an input dependence
from A(I,J-1) to A(I-1,J) carried by the I-loop.

10 A(@,J—l)

To enhance the dependence information, section analysis can be used to describe the portion
of an array that is accessed by a particular reference or set of references [5, 19]. Sections describe
common substructures of arrays such as elements, rows, columns and diagonals. As an example of
section analysis consider the following loop.

DO 10 I
DO 10
10 AQJ,D)

1,N
=1, 10

[T

If A were declared to be 100 x 100, the section of A accessed in the loop would be that shown in the
shaded portion of Figure 1.

2.3 Cache Reuse

When applied to memory-hierarchy management, a dependence can be thought of as an opportunity
for reuse. There are two types of reuse: temporal and spatial. Temporal reuse occurs when a
reference in a loop accesses data that has previously been accessed in the current or a previous
iteration of a loop. Spatial reuse occurs when a reference accesses data that is in the same cache
line as some previous access. In the following loop,

DD 10 I = 1,N
10 A(I) = A(I-5) + B(I)

the reference to A(I-5) has temporal reuse of the value defined by A(I) 5 iterations earlier. The
reference to B(I) has spatial reuse since consecutive elements of B will likely be in the same cache
line.

2.4 TIteration-Space Blocking

To improve the memory behavior of loops that access more data than fit in cache, the iteration space
of a loop can be grouped into blocks whose working sets are small enough for cache to capture the
available temporal reuse. Strip-mine-and-interchange is a transformation that achieves this result
[34, 28, 31]. It shortens the distance between the source and sink of a dependence so that it is more
likely for the datum to reside in cache when the reuse occurs. Consider the following loop nest.

DO 10 J = 1,N
DD 10 I = 1,M
10 A(I) = A(I) + B(D)

Assume the value of M is much greater than the size of the cache. Temporal reuse exists for B,
but not for A. To exploit A’s temporal reuse, strip-mine-and-interchange is applied to the J-loop as
shown below.

DO 10 J = 1,N,JS
DO 10 I = 1,M
DO 10 JJ = J, MIN(J+JS-1,N)
10 A(I) = AC(I) + B(JD)

.

100

FIGURE 1: Section of A

Temporal reuse of A now occurs. In addition, the temporal reuse of JS values of B out of cache
occurs for every iteration of the J-loop if JS is less than the size of the cache and there is no
interference [23].

A transformation analogous to strip-mine-and-interchange is unroll-and-jam [3]. Unroll-and-
jam is used for register blocking instead of cache blocking and can be seen as an application of strip
mining, loop interchange and loop unrolling. Essentially, the inner loop is completely unrolled after
strip-mine-and-interchange to effect unroll-and-jam. When JS doesn’t divide N, a pre-loop is used
to handle the extra iterations instead of a MIN function. In the previous example, if JS were equal
to 3 and N were divisible by 3, then the following code would result from unroll-and-jam.

po 10 J = 1,N,3
DO 10 I = 1,M

ACI) = ACI) + B(J)
A(I) = A(I) + B(J+1)
10 A(I) = A(I) + B(J+2)

3 Transformation of Complex Loop Forms

For matrix factorization problems, iteration-space blocking cannot be directly applied as shown in
the previous section. As will be shown in Section 4, the shape of the loop body or safety constraints
may permit only a partial application of blocking. In these cases, a transformation called indez-set
splitting can be applied. In the rest of this section, we present index-set splitting and its use in
optimizing complex loop nests. Fach use of index-set splitting discussed below is applicable to the
transformation of matrix factorization code.

3.1 Index-Set Splitting

Index-set splitting creates multiple loops from one original loop with each new loop iterating over
nonintersecting portions of the original iteration space. Execution order is unchanged and the
original iteration space is still completely executed. As an example of index-set splitting, consider
the following loop.

DO 10 I = 1,N
10 A(I) = A(I) + B(I)

The index set of I can be split at iteration 100 to obtain

DO 10 I = 1,MIN(N,100)
10 A(I) = A(I) + B(I)

DO 20 I = MAX(1,MIN(N,100)+1),N
20 A(I) = A(I) + B(I)

Although this transformation does nothing by itself, its application can enable the blocking of
complex loop forms. This section uses index-set splitting to enable the blocking of triangular and
trapezoidal iteration spaces and loops with complex dependence patterns.

3.2 Triangular Iteration Spaces

If the iteration space of a loop is not rectangular, iteration-space blocking cannot be directly
applied. Interchanging loops that iterate over a triangular regions requires the modification of
the loop bounds to preserve the semantics of the loop [33, 34]. Therefore, blocking triangular

J=aII+f

II

1 I TI+IS-1 N

Ficure 2: Upper Left Triangular Iteration Space

regions also requires loop bound modification. Below, we derive the formula for determining loop
bounds when blocking is performed on triangular iteration spaces. We begin with the derivation
for strip-mine-and-interchange and then extend it to unroll-and-jam.

The general form of one type of strip-mined triangular loop is given below, where o and 3 are
literal integer constants (5 may be symbolic) and a > 0.

b0 10 T = 1,N,IS
DO 10 IT = I,I+IS-1
DO 10 J = alII+f,M
10 loop body

Figure 2 gives a graphical description of the iteration space of this loop. To interchange the IT and

J loops, the intersection of the line J=aII+(with the iteration space at the point (I,aI+3) must

be handled. Therefore, interchanging the (loo;;s requires the II-loop to iterate over a trapezoidal
J=p

region with an upper bound of % until *—= > I+IS-1. This gives the following loop nest.

DO 10 I = 1,N,IS
DO 10 J = oI+3,M
DO 10 II = I,MIN((J-8)/a,I+IS-1)
10 loop body

This formula can be trivially extended to handle the cases where a < 0 and where a linear function
of I appears in the upper bound instead of the lower bound [6].

Triangular strip-mine-and-interchange can be extended to triangular unroll-and-jam as follows.
Since the iteration space defined by the two inner loops is a trapezoidal region, the number of
iterations of the innermost loop vary with J, making unrolling more difficult. Index-set split-
ting of J at a(I+IS-1)+73 creates one loop that iterates over the triangular region below the line
J=a(I+IS-1)+03 and one loop that iterates over the rectangular region above the line. Since the
length of the rectangular region is known, it can be unrolled to give the following loop nest.

b0 10 T = 1,N,IS
DO 20 IT = I,I+IS-2
DO 20 J = aII+B,MIN(a(I+IS-2)+3,M)
20 loop body
DO 10 J = o (I+IS-1)+F M
10 unrolled loop body

Depending upon the values of a and [, it may also be possible to determine the size of the
triangular region; therefore, it may be possible to completely unroll the first loop nest to eliminate
the overhead. Additionally, triangular unroll-and-jam can be extended to handle other common
triangles [6].

3.3 Trapezoidal Iteration Spaces

While the previous method applies to many of the common non-rectangular-shaped iteration spaces,
there are still some important loops that it will not handle. In linear algebra, seismic and partial
differential equation codes, loops with trapezoidal-shaped iteration spaces occur. Consider the
following example, where L is assumed to be a constant, and a > 0.

DO 10 I = 1,N
DO 10 J = L,MIN(aI+@,N)
10 loop body

The MIN function defines one rectangular region and one triangular region separated at the point
where aI+3 = N. Because rectangular and triangular regions can be handled already, the index set
of I can be split into two separate regions at the point I = ¥ with blocking applied to each new
loop separately. Splitting gives the following loop nests that can be blocked.

DO 10 I = 1,MIN(N, (N-£)/a)
DO 10 J = L,al+p
10 loop body
DO 20 I = MAX(1,MINCN, (N-3)/«a)+1),N
DO 20 J = L,N
20 loop body

The lower bound, L, of the inner loop in a trapezoidal nest need not be a constant value. It may
be any function that, after index-set splitting, produces an iteration space that can be blocked.

3.4 Complex Dependence Patterns

In some cases, it is not only the shape of the iteration space that presents difficulties for the compiler
but also the dependence patterns within the loop. Consider the strip mined example below.

DO 10 I = 1,N,IS
DO 10 II = I, I+IS-1
T(II) = A(II)
DO 10 K = II,N
10 A(K) = A(K) + T(II)

To complete iteration-space blocking, the II-loop must be interchanged to the innermost position.
However, there is a recurrence between the definition of A(K) and the use of A(II) carried by
the II-loop, preventing interchange with distribution. Standard dependence abstractions, such as
distance or direction vectors, report that the recurrence exists for every value defined by A(K) [32].
This means blocking is prevented. However, analyzing the sections of the arrays that are accessed
at the source and sink of the backward true dependence reveals that there is potential to apply
blocking. Consider Figure 3. The section of the array A read by the reference to A(II) goes from
I to I+IS-1 and the section written by A(K) goes from I to N. Therefore, the recurrence does not
exist for the section from I+IS to N.

To allow partial blocking of the loop, the index set of K can be split so that one loop iterates
over the iteration space where A(K) and A(II) access common memory locations and one loop

iterates over the iteration space where they access disjoint locations. To determine the split point
that creates these loops, the subscript expression that defines the larger section is set equal to the
boundary between the sections accessed by the source and sink of the dependence and the equation
is solved for the inner induction variable. In the above example, let K = I+IS-1 and solve for K.
Splitting at this point yields

DO 10 I = 1,N,IS
DO 10 II = I,I+IS-1
T(II) = A(II)
DO 20 K = I,I+IS-1

20 A(K) = A(K) + T(II)
DO 10 K = I+IS,N
10 A(K) = A(K) + T(II)

The II-loop can now be distributed around statements 10 and 20 and blocking can be completed
on the loop nest surrounding statement 10.

The method just described may be applicable when the references involved in the preventing
dependences have different induction variables in corresponding subscript positions (e.g., A(II)
and A(K) in the previous example). The effectiveness of index-set splitting depends upon the
representation of sections. The precision must be enough to relate the locations in the array to
index variable values. The representation that we have chosen is equivalent to Fortran 90 array
notation [19].

4 Automatic Blocking of Dense Matrix Factorizations

The three factorizations considered in this paper, the LU, Cholesky, and QR, are among the most
frequently used by numerical linear algebra and its applications. The first two are used for solving
linear systems of equations while the last is typically used in linear least squares problems. For
square matrices of order n, all three factorizations involve on the order of n® floating point operations
for data that needs n? memory locations. With the advent of vector supercomputers, the efficiency
of the factorizations were seen to depend dramatically upon the algorithmic form chosen for the
implementation. Dongarra, Gustavson and Karp [15] gave a detailed study the algorithmic issues
involved in constructing an efficient LU factorization on the early CRAY supercomputers. The
work of Ortega [27], and Gallivan, Plemmons and Sameh [17] considered both algorithmic and
computational issues involved in the efficient implementation of matrix factorizations on vector
and parallel computers. The single most important factor governing the efficiency of a software
implementation in computing a factorization is : Managing the memory hierarchy.

1 I [+l S 1 N

FiGure 3: Data Space for A

Part of the motivation of the LAPACK [2] project was to recast the matrix factorization algo-
rithms in LINPACK [11] with block ones. A block form of a factorization restructures the algorithm
in terms of matrix operations that minimize the amount of data moved within the memory hier-
archy while keeping the arithmetic units of the machine occupied. LAPACK blocks matrix factor-
izations by restructuring the algorithms to use the level 2 and 3 BLAS [13, 12]. The motivation
for the BLAS [24](Basic Linear Algebra Subprograms) was to provide a set of commonly used vec-
tor operations such as vector addition and dot product so that the programmer could invoke the
subprograms instead of writing the code directly. The responsibility for optimizing these “level 1”7
operations was left up to the machine vendor or some other interested party. The level 2 and 3
BLAS followed with matrix-vector and matrix-matrix operations that are often necessary for high
efficiency across a broad range of high performance computers. The higher level BLAS better utilize
the underlying memory hierarchy. The reader is referred to the work of Dongarra, Duff, Sorensen
and Van der Vorst [14] for further information regarding the BLAS and their use in deriving block
matrix factorizations. As with the level 1 BLAS, responsibility for optimizing the higher level BLAS
was left to others. Unfortunately, the cost of developing optimized versions in programming effort
is significant. In contrast, we believe that programmers should express algorithms in a machine-
independent form with the compiler handling the machine-specific optimization details.

To investigate whether compiler technology can make it possible to express matrix factorization
in a machine-independent form, this section examines the block-ability of the three factorization al-
gorithms using the techniques developed in Section 3. An algorithm is determined to be “blockable”
if a compiler can automatically derive the most efficient block algorithm (for our study, the one
found in LAPACK) from its corresponding machine-independent point algorithm. Our study shows
algorithms that perform a triangularization of a matrix are amenable to the technique described in
Section 3. In particular, LU and Cholesky factorizations are blockable algorithms. Unfortunately,
QR factorization with Householder transformations is not blockable. However, we show an alter-
native block algorithm for QR that can be derived using the same compiler methods as those used
for LU and Cholesky factorizations. The block algorithm variant performs well on matrix sizes
typically run on workstations and nodes of massively parallel systems.

4.1 LU Factorization

The LU decomposition factors a non-singular matrix A into the product of two matrices, L and U,
such that A = LU [29]. L is a unit lower triangular matrix and U is an upper triangular matrix.
This factorization can be obtained by multiplying the matrix A by a series of elementary lower
triangular matrices, M,,_; - --M; and pivot matrices P,,_; --- P, where L= = M,,_P,_, --- M P,
and U = L='A. The pivot matrices are used to make the LU factorization a stable process.

In this section, we examine the blockablity of LU factorization. Since pivoting creates its own
difficulties, we first show how to block LU factorization without pivoting. We then show how to
handle pivoting.

4.1.1 No Pivoting

Since the point algorithm for LU factorization exhibits poor cache performance on large matrices,
scientists have developed a block algorithm that essentially groups a number of updates to the
matrix A together and applies them all at once to a block portion of the array [14]. Consider the
strip-mined version of the point algorithm shown below.

DO 10 K = 1,N-1,KS
DO 10 KK = K,MIN(K+KS-1,N-1)

DO 20 I = KK+1,N
20 A(I,KK) = A(I,KK) / A(KK,KK)
DO 10 J = KK+1,N
DO 10 I = KK+1,N
10 A(I,J) = A(I,]) - A(I,KK) * A(KK,J)

To complete the blocking of strip-mined LU factorization, the KK-loop must be distributed around
the loop that surrounds statement 20 and around the loop nest that surrounds statement 10 before
being interchanged to the innermost position of the loop surrounding statement 10. However, there
is a recurrence between A(I,KK) in statement 20 and A(I,J) in statement 10 carried by the KK-loop
that prevents distribution unless index-set splitting is performed.

Figure 4 shows the sections of the array A accessed for the entire execution of the KK-loop.
The section accessed by A(I,KK) in statement 20 is a subset of the section accessed by A(I,J)
in statement 10. Since the recurrence exists for only a portion of the iteration space of the loop
surrounding statement 10, the index-set of J can be split at the point J = K+KS-1 to create a new
loop that executes over the iteration space where the memory locations accessed by A(I,J) are
disjoint from those accessed by A(I,KK) in statement 20. This loop is shown below.

DO 10 KK = K,K+KS-1
DO 10 J = K+KS,N
DO 10 I = KK+1,N
10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)

At this point, the best block algorithm has been obtained. Therefore, LU factorization is blockable.
The loop nest above is matrix-matrix multiply that can be further optimized depending upon the
architecture. For superscalar architectures whose performance is bound by cache, loop interchange
can be used to put the KK-loop in the innermost position and unroll-and-jam can be applied to
the J- and I-loops to further improve performance [26,9]. The techniques described in Section 3
for handling triangular and trapezoidal loops are necessary to optimize the above matrix-matrix
multiply For vector architectures, a different loop optimization strategy may be more beneficial [1].

1 K Keks1 N

20 10

FIGURE 4: Sections of A in LU Factorization

10

4.1.2 Adding Partial Pivoting

Although the compiler can discover the potential for blocking in LU decomposition without pivoting
using index-set splitting, the same cannot be said when partial pivoting is added (see Figure 5 for
LU decomposition with partial pivoting). In the partial pivoting algorithm, a new recurrence exists
that does not fit the form handled by index-set splitting. Consider the following sections of code
after applying index-set splitting to the algorithm in Figure 5.

DO 10 KK = K,K+KS-1
DO 30 J = 1,N
TAU = A(KK,J)
25 A(KK,J) = A(IMAX,J)
30 A(IMAX,J) = TAU
DO 10 J = KK+KS,N
DO 10 I = KK+1,N
10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)

The reference to A(IMAX,J) in statement 25 and the reference to A(I,J) in statement 10 access the
same sections. Distributing the KK-loop around both J-loops would convert the true dependence
from A(I,J) to A(IMAX,J) into an antidependence in the reverse direction. The rules for the
preservation of data dependence prohibit the reversing of a dependence direction. This would
seem to preclude the existence of a block analogue similar to the non-pivoting case. However,
a block algorithm that ignores the preventing recurrence and distributes the KK-loop can still be
mathematically derived [14].

Consider the following. If

1 0 1 0
A4i‘_ (—1ma I) ’ }E<_ (0 jé)

then
1 0 1 0 -
i — N ~ =
Py My = (. 1) (o b,) = My P,. (1)
DO 10 K = 1,N-1
C
C . pick pivot --- IMAX
C
DO 30 J = 1,N
TAU = A(K, D)
25 A(K,J) = A(IMAX,J)
30 A(IMAX,J) = TAU
DO 20 I = K+1,N
20 A(I,K) = A(I,K) / A(K,K)
DO 10 J = K+1,N
DO 10 I = K+1,N
10 A(I,J) = A(I,J) - ACI,K) * A(K,J)

FicurEe 5: LU Decomposition with Partial Pivoting

11

This result shows that we can postpone the application of the eliminator Ay until after the ap-
plication of the permutation matrix P, if we also permute the rows of the eliminator. Extending
Equation 1 to the entire formulation we have

U = M, M, oM, 5---MyP, 1P, oP, 3---PLA = MPA.

In the implementation of the block algorithm, P; cannot be computed until step ¢ of the point
algorlthm P; only depends upon the first ¢ columns of A, allowing the computation of k P;’s and
M;’s, where k is the blocking factor, and then the block application of the M;’s [14].

To install the above result into the compiler, we examine its implications from a data depen-
dence viewpoint. In the point version, each row interchange is followed by a whole-column update in
which each row element is updated independently. In the block version, multiple row interchanges
may occur before a particular column is updated. The same computations (column updates) are
performed in both the point and block versions, but these computations may occur in different loca-
tions (rows) of the array. The key concept for the compiler to understand is that row interchanges
and whole-column updates are commutative operations. Data dependence alone is not sufficient to
understand this. A data dependence relation maps values to memory locations. It reveals the se-
quence of values that pass through a particular location. In the block version of LU decomposition,
the sequence of values that pass through a location is different from the point version, although the
final values are identical. Without an understanding of commutative operations, LU decomposition
with partial pivoting is not blockable.

Fortunately, a compiler can be equipped to understand that operations on whole columns are
commutable with row permutations. To upgrade the compiler, one would have to install pattern
matching to recognize both the row permutations and whole-column updates to prove that the
recurrence involving statements 10 and 25 of the index-set split code could be ignored. Forms of
pattern matching are already done in commercially available compilers, so it is reasonable to believe
the situation in LU decomposition can be recognized.

4.2 Cholesky Factorization
When the matrix A is symmetric and positive definite, the LU factorization may be written as
A= LU =LD(D™'U) = LD?DY? 1T = LIT,

where I, = LD'Y? and D is the diagonal of U. The decomposition of A into the product of a
triangular matrix and its transpose is called the Cholesky factorization. Thus we need only work
with the lower triangular half of A and essentially the same dependence analysis that applies to
the LU factorization without pivoting may be used.
The strip mined version of the Cholesky factorization is shown below.
DO 10 K = 1,N-1,KS
DO 10 KK = K,MIN(K+KS-1,N-1)
A(KK,KK) = SQRT(A(KK,KK))
DO 20 I = KK+1,N
20 A(I,KK) = A(I,KK) / A(KK,KK)
DO 10 J = KK+1,N
DO 10 T = J,N
10 A(I,J) = A(I,J) - A(I,KK) * A(J,KK)

As is the case with LU factorization, there is a recurrence between A(I,J) in statement 10 and
A(I,KK) in statement 20 carried by the KK-loop. The data access patterns in Cholesky factorization
are identical to LU factorization (see Figure 4), index-set splitting can be applied to the J-loop at
K+KS-1 to allow the KK-loop to be distributed, achieving the LAPACK block algorithm.

12

4.3 QR Factorization

In this section, we examine the blockability QR factorization. First, we show that the block algo-
rithm from LAPACK is not blockable. Then, we give an alternate algorithm that is blockable.

4.3.1 LAPACK Version

The LAPACK point algorithm for computing the QR factorization consists of forming the sequence
Agy1 = VkAg for k= 1,...,n— 1. The initial matrix A; = A has m rows and n columns, where for
this study we assume m > n. The elementary reflectors V;, = I—Tkvkv;{ update Ay in order that the
first k columns of Agy; form an upper triangular matrix. The update is accomplished by performing
the matrix vector multiplication wy = ATy followed by the rank one update Ag4q = Ay — TkvkwkT.
Efficiency of the implementation of the level 2 BLAS subroutines determines the rate at which the
factorization is computed. For a more detailed discussion of the QR factorization see Golub and
Van Loan [18].

The LAPACK block QR factorization is an attempt to recast the algorithm in terms of calls to
level 3 BLAS [14]. If the level 3 BLAS are hand-tuned for a particular architecture, the block QR
algorithm may perform significantly better than the point version on large matrix sizes (those that
cause the working set to be much larger than the cache size). However, the optimized BLAS codes
are often not portable and the application programmer must rely upon the machine vendor to make
the software investment to optimize the kernels for the architecture. It would be better to express
an algorithm in a machine-independent form with the compiler handling the machine-dependent
optimizations.

Unfortunately, the block QR algorithm in LAPACK is not automatically derivable by a compiler.
The block application of a number of elementary reflectors involves both computation and storage
that does not exist in the original point algorithm [14]. To block a number of eliminators together,
the following is computed

Q= (I- Tlvlv%r)(f — TQUQUQT) (I = Tn_l'vn_lvg_l)
I-vrvT,

The compiler cannot derive I — VTVT from the original point algorithm using dependence infor-
mation. To illustrate, consider a block of two elementary reflectors

Q= (I- TlvlvlT)(I— TQUQUQT),
B B T Tg(vlTvg) v?
= I (’01’1)2) (0 - ’Ug .

The computation of the matrix

T (T Tlrg(v%rvg))

0 T2

is not part of the original algorithm. Hence, the LAPACK version of block QR factorization is a
different algorithm from the point version, rather than just a reshaping of the point algorithm for
better performance. The compiler can reshape algorithms, but, it cannot derive new algorithms
with data dependence information. In this case, the compiler would need to understand linear
algebra to derive the block algorithm.

In the next section, a compiler-derivable block algorithm for QR factorization is presented. This
algorithm gives comparable performance to the LAPACK version on small matrices while retaining
machine independence.

13

4.3.2 Compiler-Derivable QR Factorization

Consider the application of 7 matrices Vi to Ag,
Apyj = (I = Thpjm1rpjm1vig) - (L = Tepaopgrvf (I — Teopol) Ay

The compiler derivable algorithm, henceforth called ¢d-QR, only forms columns k through k+75—1
of Ap4; and then updates the remainder of matrix with the j elementary reflectors. The final
update of the trailing n — k — 5 columns is “rich” in floating point operations that the compiler
organizes to best suit the underlying hardware. Code optimization techniques such as strip-mine-
and-interchange and unroll-and-jam are left to the compiler. The derived algorithm depends upon
the compiler for efficiency in contrast to the LAPACK algorithm that depends on hand optimization
of the BLAS.

(Cd-QR can be obtained from the point algorithm for QR decomposition using array section
analysis [8]. For reference, segments of the code for the point algorithm after strip mining of
the outer loop are shown in Figure 6. To complete the transformation of the code in Figure 6 to
obtain ¢d-QR, the I-loop must be distributed around the loop that surrounds the computation of V;
and around the update before being interchanged with the J-loop. However, there is a recurrence
between the definition and use of A(K,J) within the update section and the definition and use
of A(J,I) in computation of V;. The recurrence is carried by the I-loop and appears to prevent
distribution.

Figure 7 shows the sections of the array A(:,:) accessed for the entire execution of the I-
loop. If the sections accessed by A(J,I) and A(K,J) are examined, a legal partial distribution of
the I-loop is revealed (note the similarity to LU and Cholesky factorization. The section accessed
by A(J,I) (the black region) is a subset of the section accessed by A(K,J) (both the black and
gray regions) and the index-set of J can be split at the point J = I+IB-1 to create a new loop
that executes over the iteration space where the memory locations accessed by A(K,J) are disjoint
from those accessed by A(J,I). The new loop that iterates over the disjoint region can be further
optimized by the compiler depending upon the target architecture.

5 Experiment

We measured the performance of each block factorization algorithm on on three different architec-
tures: the IBM RS/6000 model 530, the HP PA-RISC model 712/80 and the SGI Indigo2 with a MIPS
R4400. The RS/6000 has a 32KB 4-way set-associative cache with 128 byte lines. The PA-RISC
has a 256K direct-mapped cache with 32-byte lines. Finally the MIPS has a 16K direct-mapped
first-level cache with 32-byte lines. These architectures were chosen because they are representative
of the typical high-performance workstation and because the chips are used as building blocks for
massively parallel architectures.

On the RS/6000, we used the hand optimized level 3 BLAS subroutine dgemm [16] obtained
from Netlib. For the HP and SGI we used the optimized BLAS distributed with the machine. Our
compiler optimized versions were obtained by hand using the algorithms in the literature. The
reason that this process could not be fully automated is because of a current deficiency in the
dependence analyzer of our tool [4, 6]. All software was compiled with full optimization on all the
machines. On the RS/6000, version 2.2 of the zlf compiler was used. On the HP, version 9.16 of the
77 compiler was used, and on the SGI, version 5.3 of the 77 compiler was used.

In each figure below, performance is reported in normalized execution time where the hand-
optimized LAPACK algorithm is the base performance and the compiler-derived version is reported
as a percentage of the LAPACK algorithm. All operations are performed on double-precision

14

DO II =1, N, IB
DO I = II, MINOCII+IB-1,N)
Generate elementary reflector V_i.
DO J = I+1, M
A(J,I) = A(J,I)/(A(I,I)-BETA)
ENDDO
Update A(i:m,i+1:n) with V_i.

DO J = I+1, N

T1
DO

ERO
I, M
T1 = T1 + AK,D*AK,D)
ENDDO

=
I~

DOK=1I,M
A(K,J) = A(K,J) - TAUCI)*T1*A(K,I)
ENDDO

ENDDO

ENDDO
ENDDO

F1GURE 6: Strip-Mined Point QR Decomposition

Il I+lB-1 N

FiGure 7: Regions of A Accessed by QR Decomposition

15

floating-point numbers. Each factorization routine was run with block sizes of 1, 2, 4, 8, 16, 24, 32,
48, and 64. The performance using the best block factor of this set for each matrix size is displayed
in the figures. Although the compiler can effectively choose blocking factors automatically, we did
not use the available algorithms [22, 10].

5.1 LU Factorization

Figures 8 and 9 show the performance of the compiler-derived version of LU factorization versus the
LAPACK version. The results for the RS/6000 show that our compiler-derived version outperforms
the hand-optimized LAPACK code for matrices of size less than 150x150. Once the cache becomes
too small for the working set, both algorithms perform approximately the same. For the HP, the
two versions performed equivalently for small matrices, but for larger matrices the compiler-derived
version performed significantly better. This result reinforces the notion that hand-optimization is
tedious and may not always yield optimal results. It is better for the compiler to perform the
optimization.

On the MIPS R4400, we see the performance of our algorithm consistently 10% worse than the
LAPACK version (see Figure 10). The main reason for the performance difference is that the R4400
has a 16K cache. This small cache made it significantly more difficult to obtain good performance.

5.2 Cholesky Factorization

Figures 11, 12 and 13 show the performance of the compiler-derived version of Cholesky factorization
versus the LAPACK version. The relative performance on both the HP and IBM mimics that of
LU factorization. This is because the codes are similar and because the LAPACK algorithm can be
derived by the compiler in both cases. The performance on the R4400 in Figure 13 was good for
small matrices, but degraded fast on larger matrices. This was due to the small 16K cache on the
chip.

5.3 QR Factorization

Figures 14, 15 and 16 show the performance of the compiler-derived version of QR factorization
versus the LAPACK version. Since the compiler-derived algorithm for block QR factorization has
worse cache performance than the LAPACK algorithm, but O(n?) less computation, we would
expect worse performance when the cache performance became critical. On the RS/6000, this point
occurred at the 150x150 matrix size. However, we were still within a reasonable percentage of the
LAPACK algorithm until size 300x300. Given that the compiler works with no algorithm-specific
knowledge, unlike the hand-coded LAPACK algorithm, the fact that a compiler can equal or even
beat hand optimization is significant.

The performance that we attained on the PA-RISC was quite unexpected. Here, our compiler-
derived algorithm increasingly outperforms the LAPACK version as matrix sizes increase. This is
in spite of the inferior cache behavior of the compiler-derived algorithm. This phenomena can only
be explained by poorly optimized BLAS routines on the HP.

For the MIPS R4400, we could not get our code to run using the “-mips2” flag. So, the numbers
represent code generated for a MIPS R3000. As can be seen in Figure 16, the small cache on the
MIPS limits the effectiveness of our algorithm to matrices of size less than 100x100.

16

Normalized Execution Time

Normalized Execution Time

Normalized Execution Time

100
80
60

20

100
80
60
40
20

100
80
60
40
20

(é

101 103 102
ss8 OLAPACK
79 = Compiler
68

25x25 50x50 T75%x75 100x100 150x150 200x200 300x300 500x500
F1GurEe 8: LU Factorization on the IBM RS/6000
81 O LAPACK
51 aa
25x25 50x50 75%x75 100x100 150x150 200x200 300x300 500x500
FIGuRrE 9: LU Factorization on the HP PA-RISC
111 107 108 110 109 112 110 —
25x25 50x50 75%x75 100x100 150x150 200x200 300x300 500x500

Figure 10: LU Factorization on MIPS R4400

17

Normalized Execution Time

Normalized Execution Time

Normalized Execution Time

100
80
60

20

100
80
60
40
20

o1 24 O LAPACK
78 = Compiler
55 60
33

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

FiGure 11: Cholesky Factorization on the IBM RS/6000

85 O LAPACK
74 72 70 = Compiler

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

Ficure 12: Cholesky Factorization on the HP PA-RISC

152
134 LAPACK
103 103 27 <
o8

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

Ficure 13: Cholesky Factorization on MIPS R4400

18

Normalized Execution Time

Normalized Execution Time

Normalized Execution Time

140
120
100
80
60

20

100
80
60
40
20

119 O LAPACK
=2
86
71 75
52

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

FiGuRrE 14: QR Factorization on the IBM RS/6000

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

Ficure 15: QR Factorization on the HP PA-RISC

147 153
132 140 O LAPACK
107 116 = Compiler
o1
% §

25x25 50x50 75x75 100x100 150x150 200x200 300x300 500x500

Ficure 16: QR Factorization on MIPS R4400

19

5.4 Performance Summary

The results of this study show that compiler technology obviates the need for hand-optimized BLAS
for smaller problems that are typically run on high-performance workstations. This is even more
significant when we consider the fact that the microprocessors used in this study are often building
blocks for massively parallel architectures. With smaller matrix sizes being processed on each
individual node of a massively parallel system, the compiler technology presented in this paper can
have a significant effect on performance.

6 Summary

We have set out to determine whether a compiler can automatically restructure matrix factor-
izations well enough to avoid the need for hand optimization. To that end, we have examined a
collection of implementations from LAPACK For each of these programs, we determined whether a
plausible compiler technology could succeed in obtaining the block version from the point algorithm.

The results of this study are encouraging: we have demonstrated that there exist readily im-
plementable compiler methods that can automatically block matrix factorization codes to achieve
algorithms that are competitive with those of LAPACK. Our results show that for modest-sized
matrices on advanced microprocessors with a memory hierarchy, the compiler-derived variants are
often superior. These matrix sizes are typical on workstations and nodes of massively parallel sys-
tems. We remark that this strategy does not necessarily translate to good performance on vector
processors. Although compiler technology exists to generate efficient code on vector processors [1],
we did not use this technology.

Given that future machine designs are certain to have increasingly complex memory hierarchies,
compilers will need to adopt increasingly sophisticated memory-management strategies so that
programmers can remain free to concentrate on program logic. Given the performance attainable
with completely automatic techniques, we believe that it is possible for the user to express machine-
independent point matrix factorization algorithms naturally with the expectation of good memory
hierarchy performance across a variety of architectures.

Acknowledgments

Ken Kennedy and Richard Hanson provided the original motivation for this work. Ken Kennedy,
Keith Cooper and Danny Sorensen provided financial support for this research. Robert Reynolds
and Phil Sweany gave helpful suggestions during the preparation of this document.

References

[1] J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM
Transactions on Programming Languages and Systems, 9(4):491-542, October 1987.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongara, J. Du Croz, A. Geenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, Pennsylvania, 1992.

[3] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted vari-
ables. In Proceedings of the SIGPLAN °90 Conference on Programming Language Design and
Implementation, White Plains, NY, June 1990.

20

[4] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. ParaScope: A parallel
programming environment. In Proceedings of the First International Conference on Supercom-
puting, Athens, Greece, June 1987.

[5] D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel program-
ming environment. In Proceedings of the First International Conference on Supercomputing.
Springer-Verlag, Athens, Greece, 1987.

[6] S. Carr. Memory-Hierarchy Management. PhD thesis, Rice University, Department of Com-
puter Science, September 1992.

[7] S. Carr and K. Kennedy. Blocking linear algebra codes for memory hierarchies. In Proceedings
of the Fourth SIAM Conference on Parallel Processing for Scientific Computing, Chicago, 1L,
December 1989.

[8] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Proceedings of
Supercomputing 92, pages 114-124, Minneapolis, MN, November 1992.

[9] Steve Carr and Ken Kennedy. Improving the ratio of memory operations to floating-point
operations in loops. ACM Transactions on Programming Languages and Systems, 16(6):1768—
1810, 1994.

[10] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organization.
SIGPLAN Notices, 30(6):279-280, June 1995. Proceedings of the ACM SIGPLAN °95 Confer-
ence on Programming Language Design and Implementation.

[11] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. LINPACK Users’ Guide. SIAM,
Philadelphia, Pennsylvania, 1979.

[12] J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammerling. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathemalical Soflware, 16:1-17, 1990.

[13] J.J. Dongarra, J. DuCroz, S. Hammerling, and R. Hanson. An extendend set of fortran basic
linear algebra subprograms. ACM Transactions on Mathemalical Software, 14:1-17, 1988.

[14] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. Van der Vorst. Solving Linear Systems on
Veclor and Shared-Memory Computers. STAM, Philadelphia, 1991.

[15] J.J. Dongarra, F.G. Gustavson, and A. Karp. Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine. SIAM Review, 26(1):91-112, January 1984.

[16] J.J. Dongarra, P. Mayes, and G. Radicati. The IBM RISC system /6000 and linear algebra
operations. Technical Report CS-90-122, Department of Computer Science, University of
Tennessee, 1990. LAPACK Working Note 28.

[17] K.A. Gallivan, R.J. Plemmons, and A.H. Sameh. Parllel algorithms for dense linear algebra
computations. SIAM Review, 32:54-135, 1990.

[18] G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, 1989.

[19] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section
analysis. IFEFE Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.

21

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kauffman, San Mateo, California, 1990.

[21] D. Kuck. The Structure of Computers and Computations Volume 1. John Wiley and Sons,
New York, 1978.

[22] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 63-74,
Santa Clara, California, 1991.

[23] M.S. Lam, E.E. Rothberg, and M.E. Wolf. The cache performance and optimizations of blocked
algorithms. In Proceedings of the Fourth International Conference on Architecural Support for
Programming Languages and Operating Systems, April 1991.

[24] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortran
usage. ACM Transactions on Mathematical Software, 5:308-329, 1979.

[25] Richard Lehoucq. Implementing efficient and portable dense matrix factorizations. In Pro-
ceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, 1992.

[26] Kathryn McKinley, Steve Carr, and Chau-Wen Tseng. Compiler optimizations for improving
data locality. In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, Santa Clara, California, 1994.

[27] James M. Ortega. Introduction to Parallel and Vector Solutions of Linear Systems. Plenum
Press, New York, New York, 1988.

[28] A.K. Porterfield. Software Methods for Improvement of Cache Performance on Supercomputer
Applications. PhD thesis, Rice University, May 1989.

[29] G.W. Stewart. Introduction to Matriz Computations. Academic Press, New York, 1973.

[30] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley, Reading, Mas-
sachusetts, 2nd edition, 1990.

[31] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the SIG-
PLAN ’91 Conference on Programming Language Design and Implementalion, June 1991.

[32] M. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of Illinois,
October 1982.

[33] M. Wolfe. Advanced loop interchange. In Proceedings of the 1986 International Conference
on Parallel Processing, August 1986.

[34] M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific Compuling, December 1987.

22

