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Abstract

The aim of this work is to introduce a new scheme to apply Kirchhoff modeling
efficiently to a 2-D acoustic model with a free surface and with irregular source and
receiver locations. We consider as data all the traveltimes and amplitudes of each ray
connecting points below some datum depth and points over this depth. We derive
a new expression for the Kirchhoff formula which uses these computed traveltimes
and amplitudes only. Given accurate components, the primary reflection seismograms
computed via this new approach for the Kirchhoff method is remarkably accurate and
less expensive than the usual technique. We also compare Kirchhoff seismograms with
those produced from the same model by finite-difference solution of the linearized
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1 Introduction

Imaging methods based on high frequency asymptotic approximations of the acoustic
Green’s function, sometimes called Kirchhoff modeling, are an efficient tool for computing
primaries only reflection seismograms ([3], [4]). Their popularity relies on the fact that they
can produce a seismogram for a fixed time window, using a portion of the avaliable data
only, and with a smaller cost than the others classical techniques such as finite—difference
solution of the full acoustic wave equation (e.g. [1], [5]). We will discuss Kirchhoff model-
ing explicitly, but the same considerations apply to high—frequency asymptotic inversion
algorithms as well.

The straightforword Kirchhofl modeling requires the tabulation of the traveltimes
and amplitudes for each ray connecting the source and the receiver with the points in the
region under consideration. Therefore, we must compute two traveltime and amplitude
tables. For models consisting of an acoustic medium with constant density, and a free
surface at z = 0, the image principle states that if 2, is the source or receiver depth then

the free—surface Green’s function Gp(z,) can be written as
Gr(zp) = G(z) — G(=2) , (1)

where (G/(z,) is the free-space Green’s function with the velocity field evenly extended
about z = 0. Since the Kirchhofl algorithm requires the traveltime and amplitude tables
not only for source positions but also for receiver positions, to simulate the free—surface
model we must compute four related tables: two for the true positions, z; and z,, and two
for the “ghost” positions, —z; and —z,, which can be very expensive.
In order to reduce the cost of such computations, for 2, close enough to the surface
(2, = 0), from Taylor’s expansion the following approximation to (1) can be used
d
Gr(zp) = 2 zp EG(ZP) . (2)
P 2p=0
However, a very naive computation using the homogeneous Green’s function in frequency
domain indicates that to achieve a reasonable accuracy for the above approximation, z,

must be at most a fraction of a wavelength away from the free surface. Figure 1 shows
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the average of the relative errors in the Ly—norm for approximation (2) as a function of
the number of wavelengths for z,. For instance, for z, = 0.2 wavelengths the relative error
is about 8% and for z, = 0.4 wavelengths it is 43%. It is interesting to observe how fast
the error increases as z, becomes greater. As a result, since in practical experiments z,
maybe close to half a wavelength, the approximation (2) is not very accurate, and then

we need to compute the four traveltime/amplitude tables.
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Figure 1: Relative error in the Ly—norm for the approximation of the free—surface Green’s

funtion: Gp(z,) = G(zp) — G(—2,) & 22, %
P lzp=0

The objective of this work is to introduce a different scheme for applying the Kirch-
hoff algorithm to free-surface models, with computational cost only slightly higher than
from that of free—space Kirchhoff modeling. We consider as data all the traveltimes and
amplitudes of each ray connecting points below some datum depth z; and points over the
line z = z4. With a formula relating that data to the solution for any pair source-receiver
above the datum depth, we derive a new approximate expression for the Kirchhoff formula,

using traveltimes and amplitudes at the datum depth only.

Denoting by N the number of source positions, by N, the number of receiver positions
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for each shot, and by N4 the number of points on the datum depth, the free—space Kirchhoff
algorithm will require the computation of Ny, traveltime and amplitude tables in general
(i.e. if the placement of sources and receivers is arbitrary) whereas in our approach only
Ny tables are needed. For the free—surface case the comparison is between 2N N, and Ny.
If we assume that the source and receiver positions are regularly spaced at the same depth
and overlap, the number of traveltime and amplitude tables needed is at most Ng; + N,
in the free—space case and 2N, + 2N, in the free—surface case. Therefore, provided the
sources and receivers are spaced densely enough so that Ny &~ Ns; + N, our new scheme
is less expensive than the obvious technique, for both free—space and free—surface models,
and much less so for irregular source/receiver positions.

Given accurate components, the primary reflection seismograms computed via this
new approach for the Kirchhoff method is remarkably accurate, for models within its
domain of validity. We illustrate the accuracy of the Kirchhoff seismograms by comparing
them with those produced from the same model by a finite—difference code.

This paper is organized as follows. In Section 2 we present some Green’s functions
which are necessary to the development of the work. In Section 3 we devise the formula
relating the free—space solution at the datum depth to the required solution for any pair
source-receiver. We also develop some asymptotic approximations. In Section 4 we de-
scribe the implementation of the new scheme for the free-surface Kirchhoff modeling. In
Section 5 we show numerical examples that illustrate the validity of our approach, and the
inaccuracy of the derivative approximation for the free—surface Green’s function. Finally,

in Section 6 we present our conclusions concerning practical computations.

2 Green’s Functions

Our 2-D model consists of an isotropic acoustic medium with constant density, bounded
above by a free surface at z = 0 (the z-axis points downwards). The datum depth is at
z = zg > 0 and the medium between z = 0 and z = z4 is homogeneous of constant velocity
vg (see Figure 2). This applies directly to marine problems. The rapidly varying part of the

velocity field (r(z,z) = reflected field) is treated as a first order perturbation of the slowly
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varying part (v(z,z) = velocily field). We have vyq1(2, 2) = v(z,2)[1+ r(z, z)], that is, 7

is the oscilllatory relative perturbation of the smooth velocity v and it is dimensionless.

Figure 2: Free—surface model. The medium between the free surface and the datum depth

is homogeneous.

We also assume that there are no turning rays: incident rays are entirely downgoing
(or upcoming, depending on the relative positions of source and receiver), and reflected
rays are entirely upcoming (respectively, downgoing), at least for the time window un-
der consideration. The discussion to follow will develop relations amongst four Green’s

functions for the wave equation with various coefficients and boundary conditions.

The inhomogeneous free-surface Green’s function Gg(z, z,1; 7, %) satisfies the equa-
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We denote by G(z,z,1;7,Z) the inhomogeneous free-space Green’s function with
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v(z,z) = —z) for z < 0, that is, the solution of

G(z,z,t;7,2)=0,1t<0

(3)

It is a well known result that by the image principle (cf. [7]) GF can be written as
Gp(z,2,4,7,2) = Gz, 2,4;,T,%Z) — G(z, 2, 1,7, %) , (4)

that is, G is the difference between two free—space Green’s functions for two different
source positions: (7, %) and (T, —%).
Let Gg(z,z,4;7,Z) be the homogeneous free-space Green’s function given by the

solution of equation (3) with v(z,z) = vg. Recall that G is expressed as (see [2])

H(t— R/wv)
2m\/12 — (R/vg)?’

where R = \/(z —7)? + (2 — z)? and H(.) is the Heaviside function.

Gu(z,z,;T,%z) =

(5)

Let us now define a new velocity field for the whole medium by vy (z,z) = v(z, z) for
z > zq and vy (z,2) = v(z,224 — 2) for 2 < 24, i.e. vy is a evenly extension of v about

z = zq. We introduce the Green’s function Gn(z, 2,¢;T,Z) as the solution of
L P G tTE) = 606 — D)z — 7)
’UN(.I 2)2 012 Ny <y by by -

b8 — T8z — 220 +7) - (O
Gn(z,2,4T,2)=0,1<0

It can be easily shown that the following property holds for G y:

a T~ p—
P1. a—ZGN(x,z,t,x,z) =0.

Z2=zq
Moreover, since we are avoiding the possibility of turning rays, G'x also satisfies for Z > z4

P2. Gn(2,24,4;7,2) =2 G(2,24,4;T,Z) .

These properties will be necessary in the next section to derive a useful formula for

computing the Green’s function G, knowing all its values on the datum depth z = z4.
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3 Computation of G using the data at z = z,

3.1 Exact Solution

By applying Green’s identity to G(z, z,t; &, 2) (equation (3) with Z < z;) and Gn(z, 2,1’ —
t;2',2") (equation (6) with 2’ > z4 and ¢’ > 0) and taking the domain of integration to be

the lower half—plane bounded above by z = z4, we have

/ di / do / dz [GV?Gx — Gy V6] =

/ dt/ dac[GN——GagN]

Using properties (P1) and (P2), we find

t! ) 0
G2, 2 t;2,2) = —2/ dt/ de G(z,zq,1' — t;2',2") - 8—G(w,z,t;5c,2)
0 00 z

Z2=zq

or equivalently,

o0 0
G2, 2 15,2) = —2/ dz G(z,2q,1';2",2") * 8—G(x,z,t’;i,2)
oo z

Z2=2z4q
where * denotes convolution in time.
Now, since the ray connecting (Z, 2) and (z, z4) is entirely downgoing (as assumed in

the previous section), we can make the following approximation

0 L. ( L. 0 L.
8—ZG(Jc,z,t;$, Z) . R~ 6—ZGH(x,z,t;x,z) = a—%GH(w,zd,t;w,z) ,
and so, equation (7) can be approximated by
o0 J
G2, 2, 15,2) ~ —2/ dz G(z,zq,1';2',2") * a—GH(x,zd,t’;if,é). (8)
—0o0 Zd

Expression (8) gives the free—space Green’s function for any pair (2’,2')—(Z, %) in
terms of its known values at the datum depth z; and the normal derivative of the corre-

sponding solution in homogeneous medium.

3.2 Asymptotic Solution

In this section we present an asymptotic approximation to equation (8) in order to es-

tablish a suitable relation for numerical computation. We begin by making the following
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approximation for ¢t &~ 7,

H(t—rT) ~ H(t-71)  p(t-r1)
mVEE — 12 2\l —T1  2m\r

where p(t) = t_l/QH(t). Therefore, Gg(z,z,1; %, 2) given by equation (5), can be approx-

imated by
p(t — R/vo)

21\/2R[vg

Gulz,z,43,2) ~

(9)

with R =/(z —2)?+ (2 — 2)? .

A similar approximation is valid for G(z, z,¢;2', 2'), that is,
Gz, 2, ;2,2 )~ a(z, 232", 2') p(t — 7(z, 232", 7)), (10)

where a(z,z;2',2") and 7(z,z;2',2") can be calculated, for instance, by proper finite—

difference codes (e.g. [6], [8], [9]).

In order to make the notation more compact, we write a(z) = a(z, zq;2', %), 7(z)
m(z,2¢;2",2") and R(z) = /(z — 2)? + (24 — 2)2.
Substituing (9) and (10) in (8) we find,

. = d |t — R(z)/vo)
1o g, ~ ! _ —
G, 2/ 18,2) = 2/_00 dz a(z) p(t' — r(x)) * 97, [ or AR o | (11)
OR OR .
Using the fact that Pl T and p(t —a)*pu(t —b) = 1H(t — a —b), equation (11)
zq z

takes the form

v (t' = 7(z) — R(z)/v0)
G(z', 2 17, 2) \/>/ dz a( 02[ ) ] . (12)

Now, we assume that the major contribution of the z-derivative to the above integral
24— 2
vo R(z)3/2

of the hypothesis made when high frequency approaches are used. Hence, equation (12)

is given by the term 6(t' — 7(z) — R(x)/vo). Such assumption has the flavour

becomes

Gl 2 55, 5) ~ / dz a(z 3/25(15 —7(z) - R(z)/w0) .

(z)
Let a be the unique minimizer of the function 7'(z) = 7(x) + R(z)/vo, that is,

T'"(a) = 0 and 8§ = T"(a) > 0, where the prime indicates derivative with respect to x.
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Therefore, expanding T in a second order Taylor’s series around # = a, and denoting

{ = T(a), we have
-, B

T(z)~t+ 5(90 —a)?.
Making the variable transform v = T'(z) and after some algebraic manipulation in the
above integral, we finally find
IR P KLV (13)

Vo B R(a)?/?
It is worthwhile comparing the expression for the Green’s function in both homo-
geneous and inhomogeneous cases, given by equations (9) and (13), respectively. The
asymptotic approximation (13) can also be achieved by applying the stationary—phase

method (see [2]) to the integral (8) in frequency domain.

4 Kirchhoff Simulation

4.1 Derivation

Using the Born approximation, the first order perturbation of Gp(z,,z.,t; s, 2s)

resulting from the perturbation év of v is given by

2 2
6GF($T7ZT7t;x87Zs / d.T/ |: Txfzzg] %GYF(Qj Z7t;$5725) * (14)

Gp(z,z,t;xp,2,0)

where (z5,25) and (2, 2,) are the source and receiver positions, respectively, z,, z, < z4.
Recall that for a general source f(¢), the perturbed solution is given by ép = f * 6GF.

Combination of equations (13) and (4) gives the following asymptotic approximation
for G

Gr(z,z, iz, 2,) = GV (2, 2, 1) — GY (2,2, 1), (15)

where
(2a +v2p) aj(z, 2)
vo Bb(z,2) RY(z, 2)3/?

gf(w,z,t): u(t—tﬁ(w,z)),

ﬂp x Z [ \/ Zd+VZp)2+T(y72d§-T7Z) 5

y=ab(z,z)



10 L.T. Santos and W.W. Symes

RE(2,2) = \J(ab(2,2) — 2p)2 + (24 + v2,)? ,

ap('rvz) = a(aﬁ(w,z),zd;x,z) ’

Rb(z, 2)

+ T(Oég(.f, 2)7 Zd; CC,Z) )
Vo

and

(2 2) = argmin {——\/{y = 2,7 + G+ 12, + 70, 2030,2) |

Y Yo
for p € {s,r} and v € {—1,1}. Note that since zs, z5, 2, and z, are fixed, we dropped

them from the parameters of G.

(e}

(b)

© (d)

Figure 3: Geometrical representation of the four terms in equation (16). 5 = (x5, 25),
R= () and P=(2,2). (@) n=E= 1 (=1, E=1 () g=1,€= 1,
(d)yp=¢=1.

Replacing G’z in equation (14) by the approximation (15), evaluating the convolution,

and using the fact that u * v" = (u * v')’, we find the asymptotic formula for 6G'r
0GE(xp, 2r, b as, 25) &

0 2m
Ot ) Z / de / dz

n,Ee{-1,1}

(16)

5 Ay gz, 2)6(t — 17 (z,2) — ti(z, 2)) ,
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where

A, o(z,2) = W Gatnz)aat Ear) ayls, 2)ag(, 2)
n,E\Vt 2 ) = R;(gg’2)3/232(%2)3/257?(3672)1/262(3672)1/2 .

Observe that the first term of the sum in equation (16), corresponding to n = £ =
—1, gives the perturbed solution without surface reflections, i.e. 6G(z,,z,,t; 25, 25) (see
Figure 3). Also notice that to compute ép = f* éGr we only need to change the function
6 in equation (16) to f.

4.2 Computation of o?(z,z), t2(x,z), a’(z,z) and B2(z,z)

The data are the traveltimes and amplitudes for 7, recorded at z = z4 and 2% = 22, +
(n—1Az, n=1,...,Ng: 1, = 7(22,24;2,2) and a,, = a(z?, 24; z, 2), respectively.
Let 7(y, z4; @, z) be a procedure that interpolates the value of the traveltimes 7(y, z4; , 2)

using the values of 7,,, and a(y, z4; ¢, z) the analogous procedure for the amplitudes.

Let ¢ be the index such that the traveltime

1
ot =2 Gat v 4 (e e 2)

is minimal. Define the discrete set Y = {z¢ + i Az?/N | i = —N,...,N} where N
is a fixed positive integer (for £ = 1 we start at ¢ = 0 and for £ = Ny we stop at
i = 0). Therefore, a?(z, z) can be approximated by the solution of the following discrete

minimization problem

1
(. 2) ~ argumip { (= )+ G b v+ 70,2 )

As a result,

1
(z,z)~ —\/(ag(x, 2)—xp)t + (24 +vzp)? + 72, 2), 245, 2)

Vo
and

ag('r72) ~ d(ag(xvz)vzd;x7z) :

To compute GE, the second derivative of 7(y, zq4; z, z) at the point y = ab(z,z2) is

approximated by quadratic interpolation through the points x%l_l, x%l and JC%Z-H (for £ =1
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we use z¢, 24 and x4 and for £ = Ny we use $§l\,d_2, Jcﬁl\,d_l and xﬁl\,d). Therefore,

(24 + vzp)? T4l — 2T+ T

Bilz, =)~ vo [(a(w,2) — wp)? + (24 + vz )?2]?/? * (Azd)?

4.3 Discretization and Algorithm

We introduce the total traveltime field
\1’7775(%, Z) = t;(.f, Z) + tg('rv Z) .

Assume that all grids are uniform. Write 2, = Zpin +(k—1)Az, 21 = 2pin +(I—1)Az
and t; =ty + (7 — DAL KL j > 1.

Approximating the é§-function by

(At+0)/A , —At<t<0
6y~ (At—0)/A , 0<t<AL

0 , otherwise

(equivalent to perform linear interpolation on f when computing ép) and assuming that
r(z, z) vanishes near the edges of the zz-grid, the trapezoidal rule applied to the integrals

in equation (16) takes the form:

L AzAz (K, 21) 3 e e
Zye(ly) = At ; v(xk,zl)QA"’g(‘rk’”) [(1 - Sk,z )5]'_Jg;f—1 + Sk,l 6]‘_Jg;f—2 , (17)

where

and Int(¢) denotes the integer part of g.

Finally, the time derivative is approximated by the central-difference formula:

d U(ti1) — U(ti—y)
—U(l;) ~ .
dtb( i) 2AL



Efficient Kirchhoflf Modeling

Algorithm. Given z,, 2, x5, 2z, and f:

271 Az Az

- Precompute the scaling field: F =
P S Yo At

- For each k,! (depth point):
- Define 7 = r(ag,2) and ¥ = v(Tk, 21).
- For each 7,£ (primary index):
. Calculate a;;, ag, 757, ﬁg, t;, g, R; and Rg.
- Calculate A = A, ¢(z, 7).
- Calculate J,Z’f and SZ:;.
- Compute U = 7;—;4
- Add to output sample JZ”; + 1 the quantity (1-— SZ’;)U.
- Add to output sample JZ”; + 2 the quantity SZ:fU.
- Multiply the output trace by F.

- Apply centered time difference operator to the output trace.

- Convolve the output trace with the source f.

The procedure is repeated for all requested source and receiver positions.

5 Numerical Results

In order to analyze the accuracy of the new approach, we first applied the algorithm
presented in the previous section to a homogeneous model, where the traveltimes and
amplitudes required by the method can be computed analytically. The velocity is 1.5m/ms
and the reflectivity is layered as shown in Figure 4. The grid on which velocity and
reflectivity fields are defined has spacings Az = Az = 2m. Shot depth is 8m located at
1600m from the left edge of the model. Receivers depth is 12m with spacing 24m, far
offset 864m and 34 traces per shot gather. The energy source is a Ricker wavelet with

peak frequency 30H z, and then z; = 0.4 wavelengths and 2. ~ 0.6 wavelengths.

The amplitudes and traveltimes for the Kirchhoff algorithm were computed exactly

at Ny = 45 points with Azy = 25m on the datum depth z; = 16m. We use quadratic

13
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interpolation to approximate the traveltimes and amplitudes on z4, and N = 10 in the
minimization step. We test our algorithm for two different grids: Az = Az = 8m and
Az = Az = 4m. For reference, we simulate the same experiment using a finite-difference
scheme of order 2-4 for the linearized acoustic wave equation [6], using a grid with Az =

Az = 2m (10 points/wavelength) and A¢ = 0.5ms to ensure accurate results.

Plane 1
Trace 100 200 300 400 500 600 700 800 900 1000
° I °
0.311045
0.233284
0.155523
0.0777613
o]
-0.0777613
-0.311045 1016 e 016
Trace 100 200 300 400 500 600 700 800 900 1000
Plane 1

Figure 4: Reflectivity profile for the homogeneous model. Depth axis is in meters.

Figure 5 shows the resulting Kirchhoff simulation for the 8m grid and Figure 6 for
the 4m grid, together with the finite—difference solution and the difference between them.
In both cases we use At = 0.5ms. We also made experiments increasing the number of
points and/or the size of the datum depth on z = z;, but the results yielded less than
0.5% change in the output.

To show that the approximation for the free—surface Green’s function given by equa-
tion (2) is not accurate in this case, we show in Figure 7 the resulting Kirchhoff simulation
with the derivative approximation on the 4m grid. The relative errors in the Ly—norm for
the Kirchhoff seismogram in Figure 5.3 are between 4% and 12%, whereas in Figure 5.4
they are between 20% and 121%.
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©

(b)

@

Plane

Figure 5: Homogeneous model: 30H z Ricker source wavelet and At = 0.5ms. (a) Finite

(b)

@

Differences with Az = Az = 2m; (b) Kirchhoff with Az = Az = 8m; (c) Difference.

Figure 6: Homogeneous model: 30H z Ricker source wavelet and At = 0.5ms. (a) Finite

Differences with Az = Az = 2m; (b) Kirchhoff with Az = Az = 4m; (c) Difference.
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Figure 7: Homogeneous model: 30H z Ricker source wavelet and At = 0.5ms. (a) Finite
Differences with Az = Az = 2m; (b) Kirchhoff using the approximation (2) for G and
Az = Az = 4m; (c) Difference.

The second model used has the same size and grids of the previous one. The velocity
field is almost layered with a slow anomaly embedded in the center, as shown in Figure 8,
and the reflectivity is again layered (Figure 9).

Figure 10 shows the resulting Kirchhoff simulation with Az = Az = 4m and At =
0.5ms for the same source/receiver/datum—depth geometry as in the first model, together
with solution produced by the finite-difference code using Az = Az = 2m, and the
difference between both solutions.The traveltime/amplitude tables were computed using
the scheme proposed in [6], which allows the computations being first made in a coarse

grid (in this case 8m) and after interpolated to the original one.
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Plane 1
Trace 100 200 300 400 500 600 700 800 900 1000
(o) (o)
1.9
1.85
1.8
1.75
1.7
1.65
1.6
1.55
15 1016 1 1 1 1 1 1 1 1 1 1 1016
Trace 100 200 300 400 500 600 700 800 900 1000
Plane 1

Figure 8: Velocity profile for the nonhomogeneous model. Depth axis is in meters.

Plane 1
Trace 100 200 300 400 500 600 700 800 900 1000
o] (0]
0.195626
0.146719
0.0978128
0.0489064 e —
0
-0.0489064
0146719 e
-0.195626 1016 m 1016
Trace 100 200 300 400 500 600 700 800 900 1000
Plane 1

Figure 9: Reflectivity profile for the nonhomogeneous model. Depth axis is in meters.

17
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@ (b) ()

1000 1000 1000 1000 1000 1000

Trace 10 20 30 Trace 10 20 30 Trace 10 20 30

Plane 1 Plane 1 Plane 1

Figure 10: Nonhomogeneous model: 30H z Ricker source wavelet and At = 0.5ms. (a)

Finite Differences with Az = Az = 2m; (b) Kirchhoff with Az = Az = 4m; (c) Difference.

In this experiment the agreement between the seismograms computed by finite dif-
ferences and Kirchhoff modeling was not as good as in the homogeneous model. This is
due to the fact that here the traveltimes are computed by solving the eikonal equation,
introducing numerical errors, which also affect the solution of the transport equation for
the amplitudes. Moreover, due the slow anomaly in the velocity field the rate of change
of traveltimes and amplitudes increases, and so does the truncation error. Nevertheless,
we still have reasonable results.

To illustrate the effect of irregular receiver positions, we considered the geometry
shown in Figure 11. The resulting Kirchhoff simulation for the 4m grid and At = 0.5ms

is shown in Figure 12.
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> Source
= Receivers
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0
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Figure 11: Irregular receiver positions for the nonhomogeneous model. Axes are in meters.

Plane

Trace
o

100 100

200 200

300 300

400 400

500 500

600 600

800 800

900 900

1000 1000

Trace s 10 is 20 25 30

Plane B

Figure 12: Nonhomogeneous model with irregular receiver positions: 30H z Ricker source

wavelet and At = 0.5ms. Kirchhoff simulation with Az = Az = 4m.

6 Conclusion

The major cost of usual Kirchhoff simulations lies on the computation of traveltimes and
amplitudes, since the Kirchhoff summation itself is quite inexpensive. The new approach

presented in this work reduces the cost of such computations. Indeed, once we have com-
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puted the traveltimes and amplitudes at the datum depth, we can simulate any experiment
with sources and receivers above the datum depth at any place in the domain, even out-
side the mesh. For irregular source/receiver positions the cost of the introduced scheme
is much less expensive than in the usual approach.

From the experiments we can conclude that for the parameter ranges and type of
model considered here, primaries only simulation via this new approach for the Kirchhoff
modeling also gives accurate results.

Naturally, further significant optimization opportunities are available in the Kirchhoff
code. For instance, the scheme to find a?(z,z) can be improved. Since the velocity field
is smooth, the search for the interval where the signal of the traveltime derivative changes
can be done only near the interval founded for the previous depth point.

Another feature of our approach is that the information required from each grid
point (traveltimes and amplitudes) can be stored in core, one data set at a time, as we
perform the summation for all requested source-receiver positions. This gives an additional
improvement on the CPU time, since operations on disk during computation do degrade

the performance.
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