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MIXED FINITE ELEMENT METHODS FOR MODELING FLOW
AND TRANSPORT IN POROUS MEDIA*

MARY F. WHEELER! AND IVAN YOTOV

Abstract. Mixed finite element methods applied to modeling flow and transport in porous media
are discussed for both single and multiphase problems. An expanded mixed finite element method
is introduced to treat general geometry problems and full tensor permeability and/or dispersion.
Extensions to discontinuous coefficients, multiblock domains, and non-matching grids or faults are
also discussed. Convergence results for some of these procedures are presented.

1. Introduction. In this paper, we present a brief summary of results on apply-
ing mixed finite element methods for modeling flow and transport in porous media,
which have been obtained by several members of the Center for Subsurface Modeling at
the University of Texas (formerly the Subsurface Modeling Group at Rice University).

In modeling flow in porous media it is important to employ a discretization method
that is accurate, conserves mass locally and preserves continuity of fluxes, i.e. the
physics of the problem is satisfied. In addition, the algorithm needs to be able to handle
tensor permeabilities and dispersivities and irregularly shaped domains. Finally it is
advantageous to be able to implement the procedure as a cell-centered finite difference
method and be able to incorporate it into existing petroleum reservoir simulators using
rectangular grids or multiblocks.

Here we describe mixed finite element algorithms which satisfy all the above prop-
erties. These methods conserve mass locally. For Darcy flow both the pressure and
the velocity are approximated with the same order of convergence. Moreover, the flux
is forced to be continuous.

We have included in the bibliography a collection of references in which mixed
methods have been formulated, analyzed, and/or applied to flow in porous media
problems. This list is by no mean comprehensive because of page limitations. We have
however referenced the seminal work of Raviart, Thomas, Arnold, Brezzi, Douglas,
Roberts and others in the formulation and analysis of mixed methods for elliptic
partial differential equations [47, 44, 7, 29] .

Mixed finite element methods have been used in modeling flow in porous media
for many years. In the case of miscible displacement in porous media, Douglas, Ewing
and Wheeler [27, 28] introduced mixed finite element methods for solving the Darcy
flow equation. Further analysis and implementation of these algorithms can be found
in [25, 33, 34, 46, 15, 26]. We wish to note however that mixed finite element methods
with special numerical quadrature have been employed in petroleum reservoir engi-
neering for more than forty years [43, 8]. This relationship between cell-centered finite
differences and mixed finite element methods was first observed and analyzed by Rus-
sell and Wheeler in [45]. Superconvergence results were later obtained by Weiser and
Wheeler [48]. Other convergence and superconvergence results for the mixed methods
can be found in [41, 30, 32]. We note that all of the above works treat diagonal tensor
coeflicients.

The rest of this paper is divided into three major sections. In Section 2 we discuss
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mixed finite element methods for single phase flow. First, the expanded mixed finite
element method [49, 38, 16, 4] is formulated to treat general geometry problems and
full tensor permeability or dispersion. In addition special quadratures are introduced
to obtain a cell-centered finite difference procedure for treating logically rectangular
grids. Extensions to discontinuous coeflicients, multiblock domains, and non-matching
grids or faults are also discussed. Convergence results for some of these procedures
are presented. Also in this section it is noted that the characteristics-mixed method
developed by Arbogast and Wheeler [3] for transport or advection-diffusion/dispersion
problems is locally conservative.

In Section 3 mixed finite element methods for multiphase flow are considered. Here
we show that the standard finite difference procedure used by the petroleum reservoir
engineers is an expanded mixed finite element method with special quadrature. In
addition mixed methods based on the fractional flow formulation are described.

Some conclusions and current research are provided in the last section of the

paper.

2. Mixed finite elements for single phase flow. Flow of a single fluid in
porous media is modeled by a second order elliptic equation. Given domain © C R?,
d = 2 or 3, the problem in its mixed form is to find the velocity u and the pressure p
such that

u=-KVp in Q, (2.1)
Viu=f in €, (2.2)
p=g” on I'V, (2.3)
u-v=g" on 'V, (2.4)

Here K is a symmetric positive definite tensor with L°°(€) components, representing
the permeability divided by the viscosity, and v is the outward unit normal vector on
the boundary 0%, which is decomposed into I'” and T'V. Equation (2.1) is referred to
as Darcy law, and (2.2) is the mass conservation equation.

2.1. The expanded mixed method on general geometry. Two features of
the differential problem impose difficulties on its numerical approximation by mixed
finite element methods. First, the permeability K is a full tensor, and second, the
domain € can have irregular geometry. The expanded mixed method has been intro-
duced to handle efficiently these two problems.

Let (-,-)s, 5 C R%, denote the L%(S) inner product or duality pairing. The L?(S)
norm is given by

ll¢llo,s = (¢, 9)s.

The subscript S will be omitted if § = Q. Let (-, -)ss denote the L?(99) inner product
or duality pairing. Define

H(div;S) = {v e (L49)?: V- v e L}9)},

with the norm

1/2
HV”H(div;S) = {/S (|v|2 + |V-v|2) dx} .
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Following [4, 1] we introduce the adjusted pressure gradient
= —-M"'Vp,

where M is some symmetric positive definite tensor related to the geometry of €.
Then

u= KM,

and we have the following expanded mixed formulation.

(Mu,v) = (MKMu,%), v e (L3(Q)4, (2.5)

(Mu,v)—(p,V-v) (2.6)
= —(gP,v - V) — (N, v-V)pw, v € H(div;Q),

(V- w,w) = (fw) w e L3(Q), (2.7)

(w-v,p)pw = (g™, wrw, pe HYHTNY), (2.8)

where A is the boundary pressure on I'V.

Let {74 }r>0 be a regular family of finite element partitions of € [18]. There are
many known mixed finite element spaces Vj x W), C H(div;Q) x L?(Q) associated
with 73, in the case of standard shape elements (triangle, tetrahedra, parallelepiped,
or prism) [47, 44,42, 13, 11, 12, 17]. Here we generalize these spaces to curved elements
in the following way. Let

F:R*=RY F(Q) =1,

be a smooth (at least C'?) invertible map, where ) is a computational reference domain
with a regular shape. Given a partition Ty, of Q, F defines a curved element partition
7, of Q. Denote by Vh X Wh any of the known mixed spaces defined on ’j}L Then
the spaces V, X Wy, are defined in the usual way by the standard isomorphism for the
scalar space and the Piola transformation for the vector space. For any scalar function
@(X) on €, let

p(x) = po P (x), (2.9)

and for any function q € (L*(Q))?, define

qu:(%DFQ)oF“%xL (2.10)

where DF(%) is the Jacobian matrix of ¥’ and
J (%) = |det(DF(%))|.

We note that the Piola transformation preserves the normal components of the vectors,
therefore the velocity space Vy, is a subspace of H(div; Q).

Let A;LV C L*(I'V) be the corresponding Lagrange multiplier space for the pressure
on 'V [7, 14]. Let V}, be a finite element subspace of (L?(2))? such that V; C V.
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In the expanded mixed method on general geometry we solve for uy € Vy, Gy €
Vi, pn € Wi, and Ay € AJJ satisfying

(Muy,¥) = (MK Mii,,¥), VeV, (2.11)
(Mg, v) = (pr, V- v) (2.12)
= —{g”,v-v)ro = (A, v - v)pw, v € Vp,
(V-up,w)=(f,w), w e Wy, (2.13)
(wn - v, prw = (g, phrw, pe Ay, (2.14)

Optimal convergence for ||p — prllo, [|A — Anll=1/2, llu — wpllo, [[@ — @pllo, and
IV - (u — up)||o in all known mixed spaces has been shown in [4, 1] under the as-
sumption of smoothness of K and M. Here we present the results for the lowest order
Raviart- Thomas spaces [44, 42].

THEOREM 2.1. For the expanded mized method (2.11)—(2.14) on curved elements,
there exists a constant C', independent of h and dependent on

, 1pll2 1l 1V - wlly, 1M 11 c0s (1K [|1,005 1K lo,c0s [[Fll2,00, and [[F7||2,00,
such that
[[u—upllo + ||[0 — Apllo < Ch, (2.15)
IV - (u = un)llo < Ch, (2.16)
|Prp — prllo < CR?, (2.17)
llp = prllo < Ch, (2.18)
(2.19)

A = Anl|_1j2 < CRI/2,

Here || - ||;,4.5 is the norm of the Sobolev space W(S) of j-times differentiable
functions in L?(.9), and P, denotes the L?(Q2)-projection operator onto W, defined for
any ¢ € L*(Q) by

(¢_Ph¢7w):07 w € W.

Note that estimate (2.17) implies superconvergence for ||Pyrp — prlfo-

2.2. A Cell-centered finite difference scheme on logically rectangular
grids. The main advantage of the expanded mixed formulation is that it can be
implemented as cell-centered finite differences for the pressure, even for problems
with full tensor coefficients on general geometry domains. In [4], for the case of RT
spaces on rectangular grids, quadrature rules are used to approximate some of the
integrals. Thus the vector unknowns can be eliminated resulting in a sparse positive
definite system for the pressures. Moreover, superconvergence for both pressure and
velocity is obtained at certain discrete points. These results have been generalized
in [1] to logically rectangular and triangular grids. Special choice of M simplifies the
interactions of the vector basis functions in (2.11) and (2.12). Define

M(F(%)) = (J(DF~)T DF1)(%). (2.20)
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Using (2.9) and (2.10), problem (2.11)~(2.14) can be transformed into the following

problem on the reference domain Q. Find u, € Vh, i, € Vh, P, € ﬁ/h, and \, € Aﬁy
such that

(i, 9)g = (JDF~L (D) i, %) $eVh, (2.21)

(8, ¥)g = (B, V- ¥)g (2.22)
:_<gD7\A/-Z>>fD_</A\h7\AI-lA/>1;N’ \AIE\A/-}L,

(V- iy, )y = (Jf,)g, W € Wi, (2.23)

(-0, @) = (J53™, B v i€ A, (2.24)

where

Jo(%) = JX)(DFHTD

REMARK 2.1. We note that the geometry transformation always leads to a full
computational tensor J DF~' K (DF~1)T except in trivial cases, even if K is diagonal.

To obtain cell-centered finite differences on logically rectangular grids, we consider
the lowest order Raviart-Thomas spaces [44] and take V), = V. We employ quadra-
ture rules to approximate the vector integrals in (2.21), (2.22). The two equations are
replaced by

NSy -1 5 —I\T~ 2 2 =

(ih, Vg 0 = (JDFT K (DF7) uh,v)m, VeV, (2.25)

(Tn, V)gp — (Prs V- ¥)g (2.26)
= (", v D)pp — (A, V- D)p, v eV,

where ( -, - )s denote an application of the trapezoidal rule to the L*(.9) inner product
with respect to 7.

This choice of quadrature rules gives diagonal coefficient matrices for 1y, in (2.25)
and for 1, in (2.26). Therefore the vector unknowns can be eliminated, leading to
cell-centered finite differences for the pressure with 9 point stencil in two dimensions
and 19 point stencil in three dimensions.

The following convergence result can be found in [1, 4].

THEOREM 2.2. Let Q* be a fixred domain compactly contained in 2. For the cell-
centered finite difference method (2.25), (2.26), (2.23), (2.24) on logically rectangular

_ _ d _ dxd
grids, if p € C*Y(Q), u € (CHQNW2=(Q))", and K € (CHQ)NW>=(2))"
then there exists a constant C, independent of h bul dependent on the solution and K
as indicated , and on || F||3,00,0, and ||F7|5 00,0, such that

lJw = wpllar + [T = §ipll < CRP2,
mar < Ch?,

la = unllar0r + [0 — T
|V - (u—up)|a < CR?,
lp = prllm < CRH2.

Here (-,-)as is an application of the midpoint rule and || - [|as = (-, )}\//[2
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Fi1c. 1. Multiblock domain

REMARK 2.2. Theorem 2.2 implies superconvergence in L? for the computed
pressure, velocity and its divergence at the midpoints of the elements. The velocity
exhibits full O(h?) superconvergence away from the boundary. The loss of half a power
of h for the velocity in (2.27) is due to the O(h) approximation on 0fQ.

Computational results confirm the theoretical results of Theorem 2.2. The method
has been implemented in a single phase flow 3-D simulator ParFlowl developed by
the Subsurface Modeling Group at Rice University [22]. The code runs on massively
parallel distributed memory computers. A substructuring domain decomposition algo-
rithm by Glowinski and Wheeler [36, 24] is used in the solver. Balancing preconditioner
developed by Cowsar, Mandel, and Wheeler allows for ill-conditioned problems with
several orders of magnitude variation in the permeability to be handled very efficiently.

A cell-centered finite difference scheme on triangular meshes based on the ex-
panded mixed formulation have also been developed and analyzed in [1]. It has been
implemented in the Rice Unstructured Flow code [37], which can handle coupled un-
structured and logically rectangular grids.

A locally mass conservative characteristics-mixed method has been developed by
Arbogast and Wheeler [3] for solving advection-dominated transport problems. The
expanded mixed method combined with the characteristics-mixed method has been
used for accurate and efficient approximation of transport problems on general geom-
etry domains [5].

2.3. The expanded mixed method for problems with discontinuous co-
efficients on multiblock domains. The results of the previous section require the
permeability K and the mapping F to be smooth functions. In many applications
this is not the case. The permeability of heterogeneous media can be discontinuous.
On the other hand, very irregular domains are difficult to map to a regular shape
domain via smooth mappings. In those cases, multiblock structure has to be used,
with different mappings for the different blocks. Therefore the global map is piecewise
smooth and could be non-differentiable across the interfaces (see Figure 1).

Computational results in [2, 1] indicate loss of convergence along interfaces of map
or coefficient discontinuities. Note that the transformed computational tensor is

K = JDF K (DF~H)T,

so a nonsmooth mapping leads to a discontinuous coefficient on the reference domain.
This implies discontinuous pressure gradient. In the above finite difference scheme
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however, iy, = Vpp is continuous in the normal direction. This inconsistency causes
the loss of convergence along the discontinuities.

To correct for the above problem, we need to relax the continuity constraints for
V), across the interfaces. Pressure Lagrange multipliers are introduced there, leading
to a partially hybridized mixed formulation. Assume that € can be decomposed into
a set of non-intersecting subdomains Q;,1 < 72 < n, and the restrictions of K and F
to any subdomain are smooth functions. The following weak form can be obtained by
integrating over each {2; and summing.

(Mu,¥)=(MKMu,%), v e (L3(Q)4, (2.31)

(Mu,v) = Z {(Pav Vg, — (A, v V>8Qi\FD} (2.32)

=1
— (97, v-v)ro, v e | H(div; ),
=1
Z(V - u, w)Qi = (f7 w)7 w e L2(‘Q)7 (233)
=1
Z<u Vs oD = <9N7N>FN7 = HI/Q(F\FD)a (2.34)
=1

where I' = Ui 0.

Let T}Z be a partition of Q;, 1 < ¢ < n, and let this partitions match on the
interfaces of the subdomains. Let Vi x W} C H(div;Q;) x L%(€;) be any mixed
spaces on ;. Let Vi = U, Vi, ~2 = U, V LWr = UL, Wi, and Af denote
the Lagrange multiplier space on I'\I'? associated with Vi x Wy. We then solve for
u, € Vi, uy € \72, pr, € W}, and A\, € Aj satisfying

(Muy,,v) = (MK Miy,, ), ¥ eV, (2.35)

(M, v) = {(ph, V-v)q, — (A, v- y>89i\rp} (2.36)

=1
_<gD7V'V>FD7 VGVZ?
Z(V s Up, w)Qi = (fv w)7 w e W}T? (237)
=1
> (w vy )aA\rp = (g™, ), e A (2.38)
=1

Following [1] we refer to (2.35)—(2.38) as the enhanced method. Note that the flux-
matching condition (2.38) guarantees that u, € H(div;Q), while @, is discontinuous
across the subdomain interfaces. Let V}'L X Wfi be the RT, spaces on ;. Use of
quadrature rules as in Section 2.2 leads to a sparse symmetric positive definite system
for p, and Ap. The stencil is slightly modified only near the interfaces where Lagrange
multipliers are added. Therefore the computational cost for the enhanced method is
compatible with the one for the expanded method. Moreover, the Glowinski-Wheeler
domain decomposition algorithm [36, 24] can be used to solve the linear system. There,
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FiGg. 2. Grid around a fault and locally refined grid

Lagrange multipliers are introduced on subdomain interfaces for a purpose of paral-
lelism, so the solution to the enhanced method comes at no extra cost.
Computational results in [2, 1] show that convergence along the discontinuities is
regained for the enhanced method. Using techniques similar to those used in [4, 1] we
can show the following result.
THEOREM 2.3. For the cell-centered finite difference approzimation of the en-
hanced mized method (2.35)—(2.38) on a logically rectangular grid, if p € C>Y(Q;)

_ - d . ) _ dxd
NCOQ), u e (CHQ)NW2(2)) N H(div; ), and K € (CHQ) NW=())" ",
then there exists a constant C, independent of h bul dependent on the solution and K
as indicated , and on || F||3,00,0:, [[F 73,0095 [|DF 0,00, and || DF7Y|o,00, such that

lw = willar + (|8 = Tl < CH2, (2.39)
IV - (u—wp)llm < CH?, (2.40)
Ip = prllm < Ch (2.41)

In many applications the geometry of the domain or the behavior of the solution
may require using different grids in different parts of the domain. This is the case
with porous media problems in a presence of faults. Local refinement techniques are
also widely used for accurate and computationally efficient approximation of local
phenomena (e.g. high gradients around the wells). The type of grid used in such cases
is shown on Figure 2.

The partially hybridized form of the mixed method is also needed for solving
problems on non-matching or locally refined grids.

Let us assume that © can be decomposed into subdomains {£2;}7_, such that all
faults lie along the interfaces. Thus the grids are smooth within each subdomain and
possibly non-matching on the subdomain boundaries.

In this setting we again have the expanded variational form (2.31)~(2.34) and its
hybrid-mixed finite element approximation (2.35)—(2.38) with the only difference in
the definition of A}. To define it we use the idea of mortar boundary elements. This
method has been analyzed in [10] for coupling of Galerkin finite elements and spectral
discretizations. For any edge v;; = 09Q;()0€; we define Aj(7;;) to be the normal
trace of either V}'L or V{L. In other words, A} (7;;) is the space of pressure Lagrange
multipliers associated with one of these velocity spaces (see Figure 3 for R1j case).
Note that, because of the non-conformity of the grids, the continuity condition (2.38)
only implies that the fluxes match in an average sense on any element of the boundary
grid. We observe that the mixed mortar finite element method is nothing else but the
hybrid mixed method on non-matching grids.
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e Mortar Lagrange
multipliers

< velocities

pressures
FiGg. 3. Non-matching grids along a segment of a fault, mortar Lagrange multipliers

Locally refined grids can be viewed as a special case of non-matching grids, thus the
technique discussed above is also applicable in this case. Computational experiments
by Cowsar [22, 19] indicate that the mortar approach on locally refined grids possesses
good approximation properties. Note that our approach differs from the previous
works on mixed methods with local refinement [31, 40, 35], where the notion of “slave”
velocities is used.

We close the section with a remark that all of the above schemes can be im-
plemented very efficiently, using the domain decomposition techniques proposed by
Glowinski and Wheeler [36, 24] with balancing preconditioning [21], or the parallel
multigrid algorithm developed by Cowsar, Weiser, and Wheeler [23]. These methods
require only subdomain linear solves, where the grids are regular and structured, with
possible slight modification of the computational stencil near the interfaces. Recently
Kuznetsov and Wheeler [39] used the Lagrange multiplier formulation to construct
optimal substructuring preconditioners for mixed methods on non-matching grids.

3. Mixed finite element methods for multiphase flow. In this section we
consider mixed finite element discretizations for the coupled nonlinear system of mul-
tiphase flow equations. We consider an immiscible two-phase flow model. Extensions
to three or more phases are straightforward. The governing equations for fluid motion
through porous medium are mass conservation of phases [8, 15]

W + V- (,02'112') = q;, (X,t) € 0 x (O,T), (3.1)

where ¢ = w (wetting), n (non-wetting) denotes the phase, s; is the phase saturation,
p; is the phase density, ¢ is the porosity, ¢; is the source term, and

ki(si )I(
M

u; = —

(Vpi — pigV D), (x,t)€Qx(0,T), (3.2)

is the Darcy velocity. Here p; is the phase pressure, K is the absolute permeability
tensor, k;(s;) is the phase relative permeability, p; is the phase viscosity, ¢ is the
gravitational constant, and D is the depth. The two equations are coupled with the
volume balance equation

Sw+ S, =1
and the capillary pressure relation

pc(sw) = Pn — Pw-
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No flow boundary conditions
u v =0, (x,1)edQx(0,T)
are considered only for simplicity. Initial condition
Su(x,0) = sp(x), x€Q,

completes the model.
For simplicity of the presentation we restrict our discussion to incompressible
fluids and media, i.e. constant densities and porosity, and neglect gravity effects.
REMARK 3.1. The relative permeabilities k;(s;) vanish at s; = 0, ¢ = w,n (see
[9]), making the equations (3.1) degenerate . This causes difficulties in the analysis of
the numerical method.

3.1. The expanded mixed method for multiphase flow. As in Section 2,
we introduce the pressure gradients

Then
u; = /\Z'(S)I(ﬁi,

where A\; = k;/u; is the phase mobility and s = s,,. We omit the geometry factor M
for simplicity. General geometry domains are handled in the same way as in the single

flow case.
Define

V={veH(div;Q):v-v=0on 0Q}.

In the expanded mixed variational form we seek, for every time ¢t € [0,T], u;(+,t) € V,

(-, 1) € (L), i+, 1) € L*(Q), i = w,n, and s(-,t) € L?(Q) such that

(u;, %) = (A\(s)K i1y, ¥), ¥ e (LA Q) (3.3)
(i, v) = (pi, V- v) =0, veV, (3.4)
A0 ) (Voww) = @uls)w), we Q) (35)
— qb(z—j,w) + (V- u,,w) = (Guls),w), w € L*(Q), (3.6)
(Pr — Puw,w) = (pe(s), w), w € L*(Q), (3.7)
(s(-,0),w) = (s0,w), w e LA(Q), (3.8)

where ¢; = ¢;/p;.

REMARK 3.2. As in the single flow case, the expanded mixed formulation allows
us to handle efficiently full permeability tensor. There is one more reason the expanded
form is used here. The phase mobility A;(s;) vanishes at s; = 0. The standard mixed
method requires inverting the coefficient A;(s)K, which is impossible when A;(s) = 0.

Let 75, be a finite element partition of Q, where h is associated with the size of
the elements. Let Vi x W), C V x L%(Q) be any of the known mixed finite element
spaces on 7y.
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Let V), be a finite element subspace of (L%(€))? such that Vj, C V.

Let {t,}N_, be a partition of [0,7] with to = 0 and tx = T, let At™ =1, — t,,_1,
and let ™ = f(t,).

We have the following backward Euler expanded mixed ﬁnite element method for
the multiphase flow system. Find, for any 0 <n < N, (uf),, 0, pl')) € Vi X Vi x Wy,
t = w,n, and s} € W}, such that

(UZ}”") (/\(SL)A 112 gV ) Ve vh, (39)
(ﬁ?,hv ) (p?,}u V) 0, v EVy, (310)
Sh = Sh ! n R,
N 0) + (V- ul s 0) = (Gulsh), w), weW,, (311
Sh = Sh_ ! n R,
— (T w) (Vo ug s, w) = (Galsh), w), weW,, (312
(Prh = Py @) = (pe(sy), w), w €Wy,  (3.13)
(s w) = (s0,w), we Wy  (3.14)

REMARK 3.3. The choice of fully implicit time discretization is motivated by the
fact that all known explicit or partially implicit schemes suffer from severe time step
stability limitations when advection processes are dominating.

Use of trapezoidal quadrature rule for approximating the vector inner products in
(3.9), (3.10) allows the vector unknowns to be eliminated. One of the phase pressures
can be further eliminated using the capillary pressure equation (3.13). Thus a coupled
cell-centered finite difference system for one pressure and one saturation is obtained.
The stencil for the pressures or the saturations is 5 points for d = 2 and 7 points for
d = 3 if K is diagonal, and 9 points for d = 2 and 19 points for d = 3 if K is a full
tensor.

REMARK 3.4. The cell-centered finite difference scheme described above has been
commonly used by the environmental and petroleum engineers [43, 8]. It conserves
the mass of all phases locally. The mixed finite element formulation provides more
robustness for handling irregular geometries and general boundary conditions, and is
useful in the convergence analysis.

REMARK 3.5. The use of quadrature rule requires evaluation of A;(sj) on the
edges. Since sy is constant on any element, A;(s;) along the edges cannot be directly
computed. One-point upstream weighting is used to determine these values. This
choice further stabilize the method.

The above finite difference scheme has been originally implemented in a two-phase
flow three dimensional simulator ParFlow2 developed by John A. Wheeler of Exxon
Production Research Company and modified by the Subsurface Modeling Group at
Rice University. The code runs on distributed memory parallel machines. It handles
slightly compressible flow and has been successfully used in black oil and ground water
applications.

Recently a new optimization approach for solving the finite difference equations
has been introduced [20]. The algorithm requires only symmetric positive definite
linear solves, thus taking advantage of the wide variety of eflicient and robust solvers
available.
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3.2. Mixed methods based on the fractional flow formulation. It has been
a common approach to reformulate the two-phase flow system as a pressure equation
of elliptic or parabolic type and a saturation equation of advection-diffusion type. This
formulation has certain advantages in the analysis of the numerical methods. In this
section we present the expanded mixed finite element method for the fractional flow
formulation and show that it preserves the local mass conservation properties of the

scheme from the previous section.
Let

A=Ay + Ay
be the total mobility and let
u=u, +u,
be the total velocity. Multiplying (3.1) by 1/p; and adding them together, we get
V-u=yg, (3.15)

where ¢ = ¢ /pw + Gn/pn- Let us define the global pressure to be

p=pu+t /Opc(s) (A—A”) (p21(0)) dc.

Thus
u=-AKVp. (3.16)

Equation (3.15) is referred to as the pressure equation. Since A > 0 and K is a
symmetric positive definite tensor, this is an elliptic equation. For compressible flow
the pressure equation is parabolic.
To derive the saturation equation, we first observe that

A AwAn .

Twu =u, — wA K Vpe(s).
Substituting this expression into the water conservation equation (3.1), we get the
saturation equation

604V (Bls)n+ a(s)KVi(s)) = (3.17)

where §(s) = A/, a(s) = Ay, /A, and Gy = qu/pw- Note that p.(s) is a strictly
monotone decreasing function. We can write the last term on the left in (3.17) as

- Ope
a(s)K s
Therefore (3.17) is an advection-diffusion equation. The diffusion term vanishes at
s = 0,1 - the minimum and maximum values of the saturation. This is due to the
behavior of the relative permeability and the capillary pressure functions (see [9]).

One possible technique to handle the degenerate diffusion term is to use the Kir-
choff transformation. Let

Vs=—-0(s)KVs.
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Then

and the saturation equation becomes

¢‘;_j + V- (B(s)u— KVD(s)) = (3.18)

In [6] Arbogast, Wheeler and Zhang analyze a mixed finite element method for
equation (3.18). They assume that the total velocity u is given and obtain optimal
error bounds.

To obtain the expanded mixed variational formulation of (3.15), (3.18) we intro-
duce the variables

it=—Vp, (3.19)
= —VD(s), (3.20)
¥ = B(s)u+ K = u,,. (3.21)

We now have, for every time ¢ € [0,7], the variational form for u(-,¢) € V, a(-,¢) €
(L2(2))4, and p(-,t) € L*(Q) as

(u,%) = (A(s)K#1, %), ¥ e (LA(Q)Y, (3.22)
(@,v) - (p,V-v)=0, vEV, (3.23)
(V- u,w) = (¢(s), w), w € L*(Q), (3.24)
and the variational form for ©(-,1) € V, ¢(-,t) € (L*(Q))?, and s(-,1) € L*(Q) as
(6,9) = (B(s)0, 9) + (K5, 9), v e (LHQ)). (3.25)
(¢, v) = (D(s),V-v) =0, VeV, (3.26)
C) 4 (Vv =) w), we Q) (3.27)
(s(+,0),w) = (s0,w), w € L*(Q). (3.28)

With the finite element and time discretization notation from Section 3.1, we have
the following backward Euler mixed finite element approximation to (3.22)—(3.28). For
any 0 <n < N, find (u}, 0}, p}) € Vi, x Vi X Wy, such that

(uf, ¥) = (A(sp)Kup, v), VeV, (3.29)
(ap,v) = (pi,V-v) =0, v €V, (3.30)
(V- up, w) = (¢(s3), w), w e Wy, (3.31)

and (@b}j,z@}f,&ﬁ) € Vi, X V}, x W), such that

(7. 9) = (B(sh)ui, 9) + (K 7. 9), VeVE  (332)

(7. v) = (D(s}), V-v) = 0, v EVy, (3.33)
n _ n—1

(#w) VU w) = (@ulsh)w),  weWin  (334)

(s w) = (s0,w), w € Wi (3.35)
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REMARK 3.6. Equation (3.34) is a locally mass conservative approximation of the
water conservation equation (note that by construction ¢ = u,,). Subtracting (3.34)
from (3.31) we get

s — Sn—l )
- (%w) (V= 00, 0) = (@s)w), weWi (330

which is an element by element approximation to the oil conservation equation, so the
scheme conserves the mass of both phases locally. Therefore the mixed method for
the pressure-saturation formulation preserves the conservation properties of the cell-
centered finite difference scheme applied directly to the phase conservation equations
and described in the previous section.

ReEMARK 3.7. If the permeability tensor is discontinuous, or the domain has
multiblock structure with non-smooth grids across the interfaces, the hybrid form of
the expanded mixed method has to be used. Following Section 2.3, we can introduce
Lagrange multipliers for p and s along the discontinuities. Note that this also allows us
to handle p, varying discontinuously in space. The techniques discussed in Section 2.3
for approximations on non-matching and locally refined grids can also be extended to
the multiphase flow system.

4. Some conclusions and current research. We have discussed mixed finite
element methods for modeling flow and transport in porous media. The theoretical
and computational results indicate that the mixed methods are accurate, robust, and
efficient numerical tool for porous media applications. Their main advantage is local
mass conservation, continuity of fluxes, and good approximation of both pressure and
velocity. The methods discussed in the paper can handle full tensor permeabilities,
domains with irregular geometries, including multiblock domains, discontinuous co-
efficients, and non-matching grids. They can be implemented as cell-centered finite
differences and require regular data structure (logically rectangular grids); therefore
they can be easily incorporated into existing simulators.

The current research includes analysis of the presented numerical schemes for the
multiphase flow system and development of new solvers and preconditioners for non-
symmetric and indefinite linear systems arising in the discretizations of the nonlinear
partial differential equations.

Acknowledgments. We would like to acknowledge Todd Arbogast, Clint Daw-
son, Phil Keenan, and the other members of the Center for Subsurface Modeling at
the University of Texas (formerly the Subsurface Modeling Group at Rice University),
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