Parallel Mixed Integer
Programming

Robert Bixby
William Cook
Alan Cox
FEva Lee

CRPC-TR95554
June 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Parallel Mixed Integer Programming

Robert E. Bixby,* William Cook,! Alan Cox! and FEva K. Lee}

June 30, 1995

Abstract

Numerical experiments for a parallel implementation of a branch-and-bound mixed 0/1 integer program-
ming code are presented. Among its features, the code includes cutting-plane generation at the root node,
and employs a new branching-variable selection rule within the search tree. The code runs on a loosely-
coupled cluster of workstations using TreadMarks as the parallel software platform. Numerical tests were
performed on all mixed 0/1 MIPLIB instances as well as two previously unsolved MIP instances, one arising

from telecommunication networks and the other a multicommodity flow problem.

Keywords: Parallelism; Mixed Integer Programming

Abbreviated title: Parallel MIP code

*Department of Computational and Applied Mathematics, Rice University, Houston, Texas. Supported in part by the Center
for Research on Parallel Computation, Rice University, and by NSF Grants CCR-881504 and CCR-9407142
fResearch Institute for Discrete Mathematics, University of Bonn, Bonn, Germany

{Department of Computer Sciences, Rice University, Houston, Texas
$Department of Industrial Engineering and Operations Research, Columbia University, New York, New York. Supported in

part by postdoctoral fellowship from the Center for Research on Parallel Computation, and by NSF/NATO grant GER-9452935,
NSF CAREER grant CCR-9501584

Parallel Mixed Integer Programming

1 Introduction

We report results for a rudimentary 0/1 mixed integer programming code, powerful enough to solve instances
of real interest, including all the 0/1 problems in MIPLIB [5], and at least two difficult, previously unsolved
models. Two interesting features are that the code runs in parallel on a variety of architectures, including
networks of workstations, and that it employs an apparently new branching rule called strong branching,

which was developed as part of work on the traveling-salesman problem [1].

Other research that exploits parallelism in integer programming includes work on pure 0/1 problems [9],
the traveling salesman problem [1], and general mixed integer programming [12]. In Canon and Hoffman [9],
a complex branch-and-cut algorithm was run on a network of 9 DECstations, joined to form a “Local Area
VAXcluster.” Data, such as the global queue of active nodes, were shared through disk files. The test
set was a subset of those used in Crowder et al. [10]. In Applegate, Bixby, Chvatal and Cook [1], the
computations were very coarse-grained, with individual “tasks” often running for a large fraction of a day
on the hardest instances. The parallelism, which employed a rather complex list of tasks, was implemented
using the master-slave paradigm. Data were shared through message passing over TCP/IP sockets. This
code ran on heterogeneous networks of Unix workstations. Eckstein’s code [12], in contrast, was written for
a specific, dedicated parallel computer, the Thinking Machines CM-5. His code also used message passing
to share data. There have been numerous implementations of parallel branch-and-bound as a simple search
procedure on similar large-scale parallel computers, but Eckstein’s work was, to our knowledge, the first

based upon a robust algorithm, capable of solving practical MIP instances of real interest.

Portability and simplicity in our parallel implementation are achieved by using TreadMarks'. Tread-
Marks [17] is a parallel programming system that allows distributed memory computing machines to be
programmed as if they were shared memory machines. Thus, our code, which is written in C, should run
on any machine to which TreadMarks has been ported? and, with minor syntactic changes, shared memory
multiprocessors such as the DEC 2100 or the SGI Challenge. The advantage of a system such as TreadMarks
is that it is typically much easier to modify sequential programs to use shared memory than to directly use

message passing.

A 0/1 mized integer programming problem (0/1 MIP) is an optimization problem of the form

ITreadMarks is a trademark of Parallel Tools, L.L.C.
2TreadMarks is available for DEC’s OSF/1, HP’s HPUX, IBM’s AIX, SGI’s IRIX, and Sun’s SunOS and Solaris.

maximize c¢"x
subject to Az <b
x>0
z;€{0,1} j=1,...,p)

where A € R™*", be R™, c€ R", and p < n.

The remainder of the paper is organized as follows. We begin with sections discussing the basic features
of our algorithm: Preprocessing, cutting planes, branching variable and node selection, reduced-cost fixing,
and a heuristic for finding integral feasible solutions. This discussion is followed by a section on TreadMarks
and a section giving an overall description of our parallel implementation. Finally we present computational

results.

2 Basic Features of the Algorithm

2.1 Preprocessing

Problem preprocessing has been shown to be a very effective way of improving integer programming formu-
lations prior to and during branch-and-bound [7, 10, 15, 19]. Rather than writing our own preprocessor,
we have simply employed the CPLEX 3.0 preprocessor, invoking it not only once, but repeatedly until no
further reductions result. In addition to applying standard linear programming (LP) reductions, also valid
for integer programs, CPLEX applies “coefficient reduction” and “bound strengthening,” see [19]. Statis-
tics for the problems solved and the preprocessed versions are given in Table 1. We remark that, without
preprocessing, our code could not solve the model mod011 from MIPLIB, and its performance was seriously

affected in a number of other cases.

2.2 Cutting planes

The basic algorithm is branch-and-bound. As an additional preprocessing step, before branching begins,
we strengthen the formulation by generating cutting planes: Where P C R" is the convex hull of integral
feasible solutions of (M), and z* € R™\P, a cutting plane for z* is an inequality "z < «, satisifed by all

*

x € P and violated by z* (a*z* > «). Typically, x* is the solution of some linear program obtained by

relaxing the integrality restrictions of (M).

We have included only three kinds of cutting planes: disjunctive cuts, knapsack cuts, and a very restricted

kind of clique cuts. These are discussed in the subsections that follow.

3CPLEX is a registered trademark of CPLEX Optimization, Inc.

2.2.1 Disjunctive cuts

Disjunctive cuts were introduced by Balas [2], and their computational properties studied extensively in

recent work by Balas, Ceria and Cornéjols [3]. Consider the polyhedron
P; = conv{z € R" : Az < b, z; € {0,1}, j=1,...,p},

where we assume that Az < b includes Az < b, the restrictions 0 < z; < 1for j =1,...p, and z; > 0 for
j=p+1,...,n. Let * be a feasible solution of Az < b such that 0 < x} < 1 for some ¢ € {1,...,p} and
consider the pair of polyhedra

&)
Py

{r eR": Az < b, z; = 0},
{xER":AwSI;, z; =1}

Clearly P; C P,, = conv(Py U P;). Assume that both Py # (), and P, # 0 (otherwise, z; can be eliminated).
Now if 2* & P,,, the following procedure will find an inequality valid for P; and violated by x*.
Consider the system
fly - yoi?
AZ - Z()B

INIA

0

0

Yi 0

2i — 20 =0

Yo+z =1
y+z = z

where auxiliary variables y,z € R™ and yg, 29 € R have been introduced. It is easy to see that this system

is feasible for every x € P,,, and that it is infeasible for x = z* if z* ¢ P,,. In this latter case, consider the

following feasible LP:

minimize «

subject to Ay - yol; < 0
Az — zOI; < 0
. = 0
vi (DISJ)
2; — 20 =0
Yo + 2o =1

Y+ z+ae >

-y—z2+ae > -—x

where e = (1,...,1)T € R™. Let a* > 0 be the optimal value of (DISJ]), and let uw*, v*, 8%, v*, §*, s*, t*
be an optimal dual solution, where u*,v* € R™, 8*,7*,6* € R, and s*,t* € R™. Then (t* — s*)Tz > §* is
a valid inequality for P,,, but (¢* — s*)7z* — 0* = —a*. As an alternative, one might also consider the LP

that results by replacing the last two constraints of (DISJ) with y + 2z + w = z* and minimizing), |w;|;

however, the cuts produced by this second alternative seem to be considerably denser, and we did not use it

in our tests.

Our implementation of the above idea is straightforward, and, hence, computationally too expensive to
be applied as a default: Consider a given z*. For each 0/1 variable z; such that 0.0001 < 2} < 0.9999,
we solve the corresponding instance of (DISJ). If o* > 0.001, we add the resulting valid inequality to our
formulation. After all such valid inequalities have been added, a new z* is computed and the procedure
repeated. We stop as soon as the gain in the objective value in the LP relaxation is less than 0.1% over
a span of three consecutive £* computations. Cuts are dropped if the corresponding dual variables remain

zero in the solution of 8 consecutive LP relaxations.

The same violation, stopping and cut-deletion criteria are used for knapsack and clique cuts, described

below.

The MIPLIB models for which we found it necessary to apply disjunctive cuts are set!* and modglob.

2.2.2 Knapsack cuts

A commonly employed technique is to generate cutting planes by analyzing individual constraints. This
approach was applied in [10], for pure 0/1 problems, using the well-developed theory of knapsack polyhedra.

One way of applying knapsack cuts to mixed 0/1 problems proceeds as follows. Given a constraint

P n
Zaja:j + Z a;r; < b,
=1

Jj=p+1
taken from (M), the knapsack inequality
p
Z a;xT; S 5
j=1
is valid for (M), where

n

B:bi_ Z ajl]-— i a;us;,

j=p+1 i=p+1
a,j>0 aj <0
and lj,u;, j = p+1,...,n, are valid lower and upper bounds for the corresponding continuous variables.

Let 2* be a fractional solution, and let @ and Z be the vectors obtained after complementing binary variables
where necessary to obtain a; > 0 for j = 1,...,p. In our procedure, violated covers are identified using
a greedy approach on the nonzero fractional variables, in a fashion similar to that described in [10]. We

approximate the optimal objective for the knapsack problem
P P B
min{Z(l R Zdjsj >b, s; €{0,1}, j=1,...,p},
j=1 j=1

by setting s; to 1 in nondecreasing order with respect to the ratios (1 — z7})/a;, j = 1,...,p. During this
solution process, the minimum constraint coefficient among the chosen variables, a;, ., together with its

objective coeflicient are recorded. There are two cases to consider:

Case 1: If the corresponding objective value is less than 1, a violated cover is obtained. We then check if the
sum of the coefficients, excluding @j,,,. , is less than b, in which case the cover is minimal; otherwise,
we modify it by first discarding a;,,,,, then resetting as many s;’s to 0 as possible without leaving the

feasible region.

Case 2: If the objective value is greater than or equal to 1, and if the objective coefficient corresponding to
a;j..;. is positive, we correct this cover by discarding a;,,,.. If that results in a feasible solution with

an objective value less than 1, we again obtain a violated cover.

After identifying a violated cover, it is lifted (in both forward and reverse passes) [4, 20, 21]. We approximate

the lifting coefficients by solving the linear programming relaxations of the corresponding lifting problems.

2.2.3 Clique Cuts

We employ the following exact procedure to find lifted 2-covers. Consider again a constraint of the form:
Z a;x; < b.
jEB

where @, b, and Z are as described in the previous section. Let B = {1,...,p},
B'={j€B:a; >b/2},

and for each k € B\ B', let
B, ={k}U{j € B' : ay +a; > b}.

Then the following clique inequalities are valid:

Zi’jfl

jeB’
Y #;<1 keB\B.
JEB],
Note that if the elements of @ are sorted in nonincreasing order, then the entire collection of sets B}, can be
computed in time linear in |[BU C|. For a given z*, determining the clique inequalities violated by z* is also

a linear-time computation.

2.2.4 Node and variable selection

To obtain upper bounds at the nodes of the branching tree, we solve the corresponding linear programming
relaxations. If the solution is integral, its objective value is exceeded by the value of the best known integral
solution, or the LP relaxation is infeasible, the processing of the node is complete; otherwise, a branching

variable is selected and two new nodes are created. The rule we use to select the branching variable is strong

branching, described below. To select the next node for processing we use the best-bound rule, taking the

active node with the largest objective value.

Strong branching works as follows. Let N and K be positive integers. Given the solution of some linear
programming relaxation, make a list of N binary variables that are fractional and closest to 0.5 (if there are
fewer than N fractional variables, take all fractional variables). Suppose that I is the index set of that list.
Then, for each z;, i € I, starting with the optimal basis for the LP relaxation, fix z; first to 0.0 and then to
1.0 and perform K iterations of the dual simplex method with steepest-edge pricing using as “normalizing”
factors the L, norms of the rows of the basis inverse (option “dgradient 2” in CPLEX, see [13]). Let L;, U;,
i € I, be the objective values that result from these simplex runs, where L; corresponds to fixing z; to 0.0
and U; to fixing it to 1.0. In our implementation we use N = 10 and K = 50, and select as the branching
variable one that minimizes 10.0 max{L;, U;} + min{L;, U;}. We note that CPLEX 3.0 implements a special
routine for efficiently computing the L; and U;. A much more detailed study of strong branching is presented

in [1].

2.2.5 Reduced-cost Fixing and Heuristics

Reduced-cost fixing refers to the fixing of variables to their upper or lower bounds by comparing their
reduced-costs to the gap between a linear programming optimum and the current problem lower bound, the
best known integral-feasible solution. We perform reduced-cost fixing both globally— at the root node—and
locally. Global fixing is applied whenever the gap between the root linear program and the current lower

bound changes; local fixing is carried out at each node before and after each heuristic call.

We use the term (primal) heuristic to refer broadly to heuristic procedures for constructing “good,
approximately optimal” integral feasible solutions from available solutions that are in some sense “good,”

but fail to satisfy integrality. We incorporate an “adaptive” heuristic based on the heuristic used in [6].

At some node in the branch-and-bound tree, assume that an LP relaxation has been solved and that
the optimal solution is fractional. The heuristic works as follows. If some problem lower bound is currently
available, reduced-cost fixing is applied (as indicated above). Second, all variables that are identically equal
to 1.0 in the current LP solution are fixed to 1.0. Finally, where € is the current integrality tolerance (10~*
by default), the following procedure is applied iteratively until either the LP relaxation yields an integral
solution, is infeasible, or has an optimal value that is exceeded by the current lower bound: Let z* be an

optimal solution of the current LP relaxation. Let

*

Ty = min{z} e <z < 1.0 —€}

*

Tpap = max{z} e < z; <1.0— e}

The heuristic fixes variables in the following manner.

Case 1: |7y,,, — Tpinl > € e <aj <ay .., set z; = 0.0; otherwise, if z},, ., < 7, set z; = 1.0.

*
min

Case 2: | | < e Set z; = 1.0 where j is the smallest index satisfying « <z} < Tmag-

* *
Tmaz Tmin

Instead of applying the heuristic to every branch-and-bound node, our (simple) default selects every node

whose depth from the root is a multiple of 4.

3 TreadMarks

TreadMarks is a distributed shared memory (DSM) system for networks of Unix workstations and distributed-
memory multiprocessors, such as the IBM SP2. DSM enables processes running on different workstations
to share data through a network-wide virtual memory, even though the hardware provided by the network
lacks the capability for one workstation to access another workstation’s physical memory [18]. For example,
Figure 1 illustrates a DSM system consisting of IV workstations, each with its own physical memory, connected
by a network. The DSM software implements the abstraction of a network-wide virtual memory, denoted
by the dashed line in the figure, in which each processor can access any data item, without the programmer
having to worry about where the data is, or how to obtain its value. In contrast, in the “native” programming
model directly provided by the hardware, message passing, the programmer must decide when a processor
needs to communicate, with whom to communicate, and what data to communicate. For programs requiring
complex data structures and parallelization strategies, this implementation can become a difficult task. On
a DSM system, the programmer can focus on the development of a good parallel algorithm rather than on
partitioning data among the workstations and communicating values. In addition to ease of programming,
DSM provides the same programming environment as that on (hardware) shared-memory multiprocessors,

allowing for portability between the two environments.

TreadMarks is provided to the user as an ordinary software library that is linked with the user’s parallel
program. Standard Unix compilers and linkers are used to build TreadMarks programs. Furthermore, no

kernel modifications or special (super-user) privileges are required to execute parallel programs.

The challenge in developing an efficient DSM system is to minimize the amount of communication
(message-passing) required to implement the shared memory abstraction, in particular, to insure data con-
sistency. Data consistency is the guarantee that changes to shared memory variables get propagated to each
processor before that processor tries to use the variable. Various techniques are used by TreadMarks to meet

this challenge, including lazy release consistency [16] and a multiple-writer protocol [8].

Lazy release consistency is a novel algorithm that implements the release consistency memory model
developed by Gharachorloo et al. [14]. From the programmer’s standpoint, release consistency is identical to
the traditional (hardware) multiprocessor shared-memory model, sequential consistency, if the data accesses
by different processors are correctly synchronized. However, unlike sequential consistency, release consis-
tency does not require data consistency at each write to shared memory. Instead, lazy release consistency

enforces data consistency when a synchronization object, such as a lock, is acquired. In contrast, earlier im-

Shared Memory

Figure 1: Distributed Shared Memory

plementations of release consistency enforced data consistency when a synchronization object was released.
This difference has the effect that lazy release consistency only requires data consistency messages to travel
between the last releaser and the new acquirer, instead of a global broadcast at each release. As a result,

lazy release consistency requires fewer messages to be sent.

All shared-memory multiprocessors, such as the DEC 2100 and SGI Challenge, and most DSM systems
use single-writer protocols. These protocols allow multiple readers to access a given page simultaneously,
but a writer is required to have sole access to a page before performing any modifications. Single-writer
protocols are easy to implement because all copies of a given page are always identical. So a processor that
needs a copy of the page can retrieve one from any processor that has a current copy. Unfortunately, this
simplicity often comes at the expense of message traffic. Before a page can be written, all other copies must
be invalidated. These invalidations can then cause subsequent requests for the page if the processors whose

pages have been invalidated are still accessing data.

As the name implies, multiple-writer protocols allow multiple processes to simultaneously modify the same
page, with data consistency messages deferred until a later time, when synchronization occurs. TreadMarks
uses the virtual memory hardware to detect accesses and modifications to shared memory pages. Shared
pages are initially write-protected. When a write occurs, the protocol creates a copy of the virtual memory
page, a twin, and saves the twin in system space. When modifications must be sent to another processor,
the current copy of the page is compared with the twin on a word-by-word basis and the bytes that vary are
saved into a “diff” data structure. Once the diff has been created, the twin is discarded. With the exception
of the first time a processor accesses a page, its copy of the page is updated exclusively by applying diffs;
a new complete copy of the page is never needed. Thus, the diffs provide two benefits that outweigh the
computation overhead. First, they can be used to implement a multiple-writer protocol, reducing the number
of messages sent between processors; second, they usually reduce the amount of data sent because a diff only

contains the parts of a page that changed.

4 Implementation

At the startup of the parallel code, one processor is responsible for reading the problem. That processor also
solves the initial linear programming relaxation. If the optimal solution is integral feasible, the algorithm is
done; otherwise, the heuristic is called. If it succeeds, reduced-cost fixing is performed. Cut generation is
then called in an attempt to improve the upper bound (in the case of maximization). Once “enough” cuts
are generated, reduced-cost fixing is performed again. After that, sequential branch-and-bound is performed
until the number of active nodes accumulated exceeds a predetermined threshold. This threshold is an
increasing function of the number of processors. We delay the beginning of the parallel branch-and-bound to
avoid having processors contend for access to the global active list until nodes are available for processing.

Such contention generates useless communication, which slows the accumulation of active nodes.

The shared data in our implementation consists of the best lower bound (for maximization problems),
its corresponding solution, and the global list of active nodes. For an individual processor, the initial setup
consists of reading in a transparent copy of the linear programming relaxation, as well as all the cuts appended
to this linear program after performing cut generation at the root. The processors then perform the following
procedure repeatedly until the entire list of active nodes is exhausted and every processor is idle, signaling
the completion of the parallel processing. Each idle processor fetches an active node from the list, using
best-node selection, and reads the current best lower bound. The linear program is then solved. If an
integral solution is obtained, this node is fathomed without further branching; otherwise, local reduced-cost
fixing is performed, and the heuristic is called according to the heuristic interval setting. If the heuristic
is performed and a better lower bound is obtained, the best lower bound and solution are “updated.” If
there is no gap between the linear programming objective value and this lower bound, for the current node,
the node is fathomed; otherwise, a branching variable is selected and two new nodes corresponding to the

selected variable are added to the list of active nodes.

Our approach is centralized in the sense that a global list of active nodes is stored in a single, shared
data structure. When a processor becomes idle, it selects the current best-node from the global list. To
insure that only one processor accesses this list at a time, a “lock” is acquired before the list is accessed and
subsequently released after processing is complete; locks are a standard synchronization facility provided by
TreadMarks. After fetching an active node from the list, a processor is only certain of the current lower
bound until the lock is released. As the computation on the node proceeds, the other processors may update
the lower bound. The processor that is working on the node will not discover the update until it attempts
to read or update the shared lower bound itself. While it is possible that some unnecessary computation is

performed, it is equally important that the amount of communication not become excessive.

We have experimented with various ways of handling critical sections in the code, and our current
implementation tries to strike a balance between computation and communication overhead. If the amount

of work between consecutive accesses to the active list is too small, then the overhead associated with the

10

lock mechanism can be significant. This fact suggests the alternative strategy of fetching several nodes,
rather than just one, with each access to the active list. While this idea certainly deserves further testing, in
our limited examination, it did not improve the results, and thus was not included in our final testing. For
example, on stein45, when our code was modified to fetch two nodes instead of one per access, the running

time on two processors increased from 3227.9 seconds to 3429.2 and the node count increased by 399.

5 Numerical Results

Numerical tests were performed on all of the mixed 0/1 instances from MIPLIB and on two additional,
previously unsolved mixed 0/1 integer programs. One was a multicommodity flow instance, supplied to us
by Dan Bienstock, and the other was a telecommunication network problem. The former model included a
significant number of non-trivial cutting planes (424 in total) added as a result of the research by Bienstock

and Giinliik [11].

Let T,, denote the time elapsed when n processors are used. In our tests, 7;, was always measured using
“wall-clock” time, and was recorded starting from reading in the problem instance to the final shutdown of
all processors after printing the solution. We define the speedup for n processors to be the ratio Ty /T),. (See
Ty -T

the later discussion of the alternative measure —2uE)
n rtup

Table 1 shows problem statistics. Here, Name, Original Rows, Cols, and 0/1 var denote, respectively,
the name of the test instance, the initial number of rows, the number of columns, and the number of 0/1
variables in the constraint matrix. Preprocessed Rows, Cols and 0/1 var denote the size after running
CPLEX’s presolve procedure. Initial LP Objective, Preprocessed LP Objective and Optimal MIP Objective
record, respectively, the optimal objective value for the initial LP relaxation, the optimal objective value for
the initial LP relaxation after preprocessing, and the optimal objective value for the original integer program.
Of 51 problem instances, the presolve procedure closed the gap for 16; on some of the more difficult models

(e.g., fiznet*, setlal) the gap was reduced by over 70%.

The code is set to use the dual simplex method for resolving the branch-and-bound nodes, strong branch-
ing with 50 dual steepest pivots, and a simple “adaptive” primal heuristic with heuristic interval 4. In
addition, branch-and-bound nodes are stored internally in a global list, a best-node selection strategy is
employed, and clique and knapsack cuts are applied at the root node. Cuts are removed at the root after
being inactive for 8 consecutive LP solves. Cuts are not removed at non-root nodes. (More details of these
algorithmic components are given in sections 2 and 4.) Nodes are fathomed (for maximization problems)
when a provable bound is known that is within 0.01 of best-known feasible solution; in the special case that
only integral variables appear in the objective, and all objective coefficients are also integral, this cutoff

tolerance is increased to 0.99.

Tables 2a and 2b record statistics of problems after initial cut generation at the root node. Only those

11

problems for which cuts were actually generated are included. Clique passes, Cliques Found, Clique Time,
Knap. passes, Knap. Found and Knap. Time record, respectively, the number of clique passes, the number of
cliques generated, total time for clique generation, the number of knapsack passes, the number of knapsack
cuts found and total time for knapsack generation. Total Cuts added denotes the final number of cuts
appended to the LP relaxation after weak cuts are discarded. Initial Obj., Cut Obj., and Optimal IP Obj.
denote, respectively, the optimal objective value of the initial LP relaxation, the optimal LP objective value
after presolve and cut generation, and the optimal objective value for the integer program itself. The last
column gives the percentage of the gap closed due to presolve and cut generation. Table 2b shows the
statistics for the instances where disjunctive cuts were necessary. There were four such cases, and these were

the only four models for which disjunctive cuts were used.

Tables 3 and 4 show, respectively, the solution time (in seconds) and the total number of branch-and-
bound nodes searched for each model, running on n SPARC20s’ where n ranged from 1 to 8. For each n,
we performed four independent runs on each model. The best sequential time was then recorded for n = 1.
The parallel running time is an average over the four runs. T'sgptyyp records the time elapsed before parallel
execution began. Observe that our implementation of disjunctive cuts, while effective in closing the gap, can
be computationally expensive (see modglob and set1* in Tables 2b and 3). In contrast, clique and knapsack

cuts — which are also very effective in closing the gap — are computationally inexpensive to generate. As

T1-Tstartup
Ts—Tstartup

reflects the speedup in the parts of the algorithm that we actually attempted to parallelize.

a measure of speedup, we used the ratio rather than the more-standard % The former ratio

Few of the problems with sequential solution times under 100 seconds achieved significant speedup.
Indeed, in some instances, the parallel runnings times were actually slower than the sequential time. Such
behavior was not unexpected, and can be largely attributed to communication overhead. In addition, several
of these models simply do not generate enough nodes to justify (or necessitate) the use of parallelism. We
observe, in addition, that parallelism does occasionally lead to extra work, and in some instances that extra
work is excessive. Consider, for example, the model rentacar. When running sequentially, only 18 nodes were
solved and the number of nodes in the queue was never greater than 2. However, when multiple processors
were used, as many as 50 total nodes were processed, with considerable effort expended on processing nodes

that were fathomed in the sequential run.

In Table 5, we present a summary of the speedup for problems with sequential running times greater
than 1000 seconds. We observe that significant speedup is realized in most of these problems. Note that in
problems vpm1, misc07 and stein/5, the node counts remained essentially constant regardless of the number
of processors used. The constant node counts were due to the fact that for each of these models, an optimal
solution was found very early in the branch-and-bound process (after 400 nodes in both misc07, and stein45,
and 2400 nodes in vpm1.) Note also that for vpm1, performance deteriorated significantly when the number

of processors exceeded 4: The LP relaxations for this model are extremely easy. The number of simplex

12

iterations per node solved is around 2 to 15. As a result, the processors spent the majority of their time
waiting to acquire the lock on the list of active nodes. For example, on 8 processors, each processor spent

62% of its time waiting. In contrast, for misc07, each processor spent only 4% of its time waiting.

The problems air04 and air05 exhibit some of the same behavior as, for example, rentacar: Nodes are
generated too slowly to effectively use a larger number of processors. Thus, when the number of processors is
small, performance (speedup) remains good, but eventually, as the number of processors grows, the number
of nodes also grows. Since the linear programs for these problems are far from trivial (taking about 50
seconds, and 30 seconds, respectively, per node), any increase in node counts directly influences the solution

time.

For problem p6000, consistent superlinear speedup is realized. The explanation is three fold. First, when
running in parallel, the optimal solution is found much more quickly. Second, the value of the objective is
integral. Thirdly, the gap between the optimal value and the objective of the LP relaxation is relatively small.
Thus, where k denotes the optimal value of the objective, failure to find k early means, in this problem, that

a large number of nodes with LP value in the gap (k — 1, k] are unnecessarily processed.

Table 6 reports the solution time for two previously unsolved problems: a multicommodity flow problem
quasiunif2, and a telecommunication network problem teleicm. Here, Rows, Cols, (/1 var denote, respec-
tively, the initial numbers of rows, columns and 0/1 variables in the problem. Cuts denotes the total number
of cuts added. LP Obj., Cut Obj., and Optimal Obj. are, respectively, the objective value of the initial LP
relaxation, the objective of the LP with cuts appended, and the optimal MIP objective value. It is inter-
esting to note that while the gap for quasiunif? is relatively small after the addition of cuts, this problem
is very difficult to solve. (This difficulty is the reason for not reporting running times with fewer than eight

Processors.)

6 Conclusion

We have presented a simple parallel branch-and-bound implementation for mixed integer programs. The
implementation is built on TreadMarks, a distributed shared memory software environment that provides
the abstraction of a network-wide virtual memory. Such an environment provides for ease of programming

on networks of Unix workstations, as well as portability across platform and network types.

The MIP code incorporates strategies such as heuristics, problem reformulation, and cutting plane gener-
ation that have repeatedly been shown to be effective — particularly when combined — in solving difficult,
real-world MIP instances. In addition, we use an apparently new branching approach, called strong branch-
ing, whereby a branching variable is selected based upon a rule that involves performing a fixed number
of dual simplex pivots on each LP in a sequence of LP’s derived from sequentially fixing each variable in a

collection of fractional 0/1 variables to its upper and lower bound.

13

Our numerical results demonstrate that this code is powerful enough to solve all the mixed 0/1 MIPLIB
problem instances, as well as two other difficult, real instances. Moreover, the speedup achieved on the
harder instances is in most cases close to linear, and in some cases superlinear. Thus, this work provides some
justification for the time-consuming task of developing even more sophisticated mixed integer programming

codes in a similar environment.

14

Table 1. Problem Statistics of 51 0/1 MIPLIB Problems

Original Preprocessed Initial Preprocessed Optimal Percentage (%)
Name Rows Cols 0/1 var. Rows Cols 0/1 var. LP Objective LP Objective MIP Objective Gap closed
air01 23 771 771 23 771 771 6743.0 6743.0 6796 0
air02 20 6774 6774 20 6774 6774 7640.0 7640.0 7810 0
air03 124 10757 10757 122 10755 10755 338864.25 338864.25 340160 0
air04 823 8904 8904 T 8873 8873 55535.436 55355.436 56137 0
air05 426 7195 7195 408 7195 7195 25877.609 25877.609 26374 0
air06 825 8627 8627 757 8560 8560 49616.364 49616.364 49649 0
bm23 20 27 27 20 27 27 20.57 20.57 34 0
cracpbl 143 572 572 125 573 572 22199.0 22199.0 22199 0
diamond 4 2 2 1 1 1 -1.0 0.5 Infeasible -
egout 98 141 55 40 52 28 149.589 367.085 568.1007 52.0
enigma 21 100 100 21 100 100 0.0 0.0 0.0 -
fixnet3 478 878 378 477 877 378 40717.018 50285.766 51845 86.0
fixnet4 479 878 378 477 877 378 4257.966 7689.478 8922 73.6
fixnet6 479 878 378 477 877 378 1200.884 3190.042 3981 71.6
khb05250 101 1350 24 100 1299 24 95919464.0 95919464.0 106940226 0
1152lav 97 1989 1989 97 1989 1989 4656.363 4656.363 4722 0
1p4l 85 1086 1086 85 1086 1086 2942.5 2942.5 2967 0
Iseu 28 89 89 28 88 88 834.68 944.754 1120 38.6
misc01 54 83 82 53 78 78 57.0 57.0 563.5 0
misc02 39 59 58 38 54 54 1010.0 1010.0 1690 0
misc03 96 160 159 95 153 153 1910.0 1910.0 3360.0 0
misc04 1725 4897 30 1079 4155 30 2656.424 2656.424 2666.699 0
misc05 300 136 74 257 122 70 2930.9 2930.9 2984.5 0
misc06 820 1808 112 664 1519 112 12841.689 12841.689 12850.861 0
misc07 212 260 259 211 253 253 1415.0 1415.0 2810 0
mod008 6 319 319 6 319 319 290.931 290.931 307 0
mod010 146 2655 2655 146 2655 2655 6532.083 6532.083 6548 0
mod011 4480 10958 96 2387 8050 96 -6212982.552 -6212982.552 -54558535.0 0
mod013 62 96 48 62 96 48 256.016 256.016 280.95 0
modglob 291 422 98 289 389 98 20430947.619 20430947.619 20740508.1 0
p0033 16 33 33 15 32 32 2520.57 2819.357 3089 52.6
p0040 23 40 40 13 40 40 61796.55 61829.081 62027 14.1
p0201 133 201 201 113 195 195 6875.0 7125.0 7615 33.8
p0282 241 282 282 161 202 202 176867.5 180000.300 258411 3.8
p0291 252 291 291 66 103 103 1705.13 2921.375 5223.749 34.6
p0548 176 548 548 151 477 477 315.29 3126.383 8691 33.6
p2756 755 2756 2756 729 2684 2684 2688.75 2701.144 3124 2.8
p6000 2176 6000 6000 2171 5995 5995 -2451537.325 -2451537.325 -2451377 0
pipex 25 48 48 25 48 48 773.751 773.751 788.263 0
rentacar 6803 9557 55 1392 3208 27 28806137.644 28928379.620 30356760.984 7.9
rgn 24 180 100 24 180 100 48.799 48.799 82.199 0
sample2 45 67 21 45 64 21 247.0 247.0 375 0
sentoy 30 60 60 30 60 60 -7839.278 -7839.278 -TT772 0
setlal 493 712 240 432 652 220 11145.628 14508.272 15869.75 71.2
setlch 493 712 240 446 666 235 32007.729 33537.021 54537.75 6.8
setlcl 493 712 240 431 651 220 1671.958 1827.674 6484.25 3.2
stein9 13 9 9 13 9 9 4.0 4.0 5 0
steinlb 36 15 15 36 15 15 7.0 7.0 9 0
stein27 118 27 27 118 27 27 13.0 13.0 18 0
stein4b 331 45 45 331 45 45 22.0 22.0 30 0
vmpl 234 378 168 174 270 120 15.416 15.416 20 0

15

Table 2a. Problems Statistics After Default Cut Generation

Clique Clique Clique Knap. Knap. Knap. Total Initial Cut Optimal Percentage (%)
Name passes Found Time passes Found Time Cuts added Obj. Obj. IP Obj. Gap closed
bm23 1 0 0.0 3 5 0.1 4 20.57 21.344 34 5.8
enigma 1 0 0.0 2 1 0.0 1 0.0 0.0 0.0 -
1p4l 1 1 0.1 0 2 0.2 1 2942.5 2943 2967 2.0
Iseu 1 0 0.0 3 10 0.1 7 834.68 948.446 1120 40.0
mod010 1 0 0.6 3 2 0.8 2 6532.083 6532.6 6548 3.2
p0033 2 1 0.0 4 14 0.0 6 2520.57 2881.834 3089 63.6
p0040 1 0 0.0 3 2 0.0 2 61796.55 61973.57 62027 76.8
p0201 1 0 0.1 2 4 0.2 4 6875.0 7125 7615 33.8
p0282 3 7 0.3 8 81 0.7 48 176867.5 252367.75 258411 92.6
p0291 2 2 0.0 3 3 0.1 5 1705.13 4896.64 5223.749 90.7
p0548 6 13 0.9 15 110 2.5 96 315.29 7063.01 8691 80.6
p2756 3 27 9.2 7 257 18.1 212 2688.75 3062.30 3124 85.8
p6000 1 0 13.9 53 68 36.1 24 -2451537.325 -2451524.79 -2451377 7.8
pipex 1 1 0.0 4 11 0.1 7 773.751 776.27 788.263 17.4
sentoy 1 1 0.0 5 16 0.3 7 -7839.278 -7832.49 -T7772 10.1
Table 2b. Problems Statistics After Disjunctive Cut Generation

Disj. Disj. Disj. Disj. Initial Cut Optimal Percentage (%)

Name passes Found Time Cuts added Obj. Obj. IP Obj. Gap closed

modglob 7 84 1762.9 74 20430947.619 20612619.17 20740508.1 58.7

setlal 5 189 321.3 185 11145.628 15602.13 15869.75 94.4

setlch 12 878 2314.2 339 32007.729 54516.98 54537.75 99.9

setlcl 1 180 158.4 180 1671.958 6218.76 6484.25 94.4

16

Table 3. Running Time (in seconds) on n SPARC20’s

TT=T,
Name T Ty Ts T, Ty Ts T Tg % Tstartup
a0l 0.8 3.0 33 38 13 37 7 50 - 0.8
air02 46.1 50.5 66.5 61.2 58.6 53.0 60.5 69.4 0.64 5.5
air03 60.1 74.5 85.0 83.7 98.8 78.5 95.1 80.9 0.62 26.3
air04 8750.7 4556.8 3324.7 2500.0 2481.9 2047.0 2577.3 3210.4 2.9 296.7
air05 27655.9 14071.8 9474.8 7143.1 5786.3 5392.0 4630.2 4237.0 6.7 96.8
air06 215.0 203.3 2877 2439 279.8 220.3 2472 267.6 0.68 104.7
bm23 3.2 2.4 3.2 2.2 3.2 3.8 7.7 8.9 0.35 0.1
cracpbl 1.2 1.1 11 11 1.2 1.1 11 1.3 0.5 1.1
diamond 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.7 - 0.1
egout 79.8 58.6 52.8 52.3 41.7 53.3 47.4 52.2 1.53 0.1
enigma 16.7 9.6 9.2 8.5 8.7 9.0 10.0 117 1.43 0.1
fixnet3 11.4 7.8 7.6 7.1 8.1 7.3 9.3 8.6 1.35 0.6
fixnet4 45.4 26.0 18.6 15.3 18.6 13.9 14.5 12.4 3.85 0.8
fixnet6 73.9 37.8 27.1 22.2 26.9 19.7 18.8 17.3 4.45 0.9
Kkhb05250 272.0 164.6 111.0 90.1 81.7 67.4 60.1 19.2 5.58 0.5
1152lay 1273.4 730.4 467.4 3443 289.4 2385 200.1 186.0 6.94 2.9
1p4l 44.1 11.4 15.2 12.9 14.8 14.5 13.9 15.1 3.09 1.2
lseu 63.9 40.2 31.1 26.1 24.3 24.8 28.2 31.1 2.06 0.2
misc0l 26.0 13.8 10.9 8.6 9.0 8.8 9.7 9.8 2.67 0.1
misc02 2.0 1.9 2.5 2.5 2.9 3.3 3.4 4.0 0.49 0.1
misc03 82.7 49.7 55.5 60.8 63.4 63.7 68.4 67.5 1.23 0.2
misc04 19.1 19.7 21.4 21.7 21.8 23.7 22.0 24.1 0.68 8.5
misc05 76.4 42.8 36.8 23.7 18.0 16.3 14.4 14.1 5.52 0.3
misc06 27.6 18.4 18.6 15.6 16.4 16.2 17.9 17.7 1.64 2.1
misc07 20410.3 10532.1 6953.2 5255.1 4269.1 3541.1 3017.9 2626.1 7.78 0.5
mod008 94.5 58.4 44.6 35.7 32.9 37.3 35.6 35.1 2.70 0.1
mod010 78.1 39.9 42.3 43.2 44.7 40.9 42.2 40.4 2.10 5.9
mod011* 187982.9 103321.3 67298.9 50675.5 40816.5 38573.4 27644.4 21240.9 8.86 13.2
mod013 10.1 6.8 6.6 4.6 4.8 6.3 7.9 8.0 1.27 0.1
modglob® 7340.7 4527.8 3722.1 3254.6 3110.9 2806.6 2771.5 2508.3 7.44 1861.9
0033 4.0 3.5 3.7 3.7 5.0 4.8 6.1 7.2 0.55 0.1
0040 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.8 0.14 0.1
p0201 62.7 34.6 24.7 18.0 21.0 20.0 19.6 20.7 3.08 0.5
0282 31.0 19.5 15.4 13.4 13.0 12.7 13.4 135 2.42 1.2
0291 2.3 1.4 15 1.7 2.0 2.2 2.6 2.8 0.81 0.2
p0548 13806.3 7667.1 5206.4 3926.0 3161.1 2666.8 2306.3 2021.1 6.85 4.8
2756 8209.4 4090.9 2725.5 2060.2 1677.3 1417.2 1237.8 1089.2 7.71 28.6
6000 5889.1 2823.0 1933.8 1331.5 1109.7 949.7 850.1 755.1 9.32 137.8
pipex 16.8 11.6 10.1 9.5 9.3 10.8 1.1 12.3 1.41 1.2
rentacar 120.9 117.6 120.3 1272 1207 1544 149.0 150.1 0.79 8.9
rgn 64.9 40.6 33.1 26.4 24.8 29.8 28.4 27.5 2.37 0.2
sample2 4.4 3.3 3.9 4.7 3.4 5.1 5.6 5.5 0.80 0.1
sentoy 15.8 8.0 6.3 5.1 5.1 7.0 4.9 7.5 2.63 2.4
setlal® 616.4 471.9 433.6 407.1 389.9 382.8 381.2 373.1 6.41 328.1
setlcht 2440.9 2372.9 2368.2 2361.6 2340.2 2333.1 2337.2 2329.1 11.26 23182
setlclt 208.5 202.9 253.1 232.3 2155 211.9 213.4 198.3 1.28 161.5
stein9 0.3 0.7 0.6 0.8 0.8 3.9 2.6 0.6 0.4 0.1
steinl 0.6 0.8 2.8 4.8 5.4 2.5 3.6 3.2 0.16 0.1
stein27 152.6 86.3 63.8 47.5 41.8 37.2 38.0 37.4 4.09 0.1
stein45 5927.9 3227.0 2138.5 1614.1 1310.3 1121.7 966.0 802.1 7.39 0.3
ympl 27624.5 16079.0 11671.7 9691.0 9339.5 0922.2 9773.5 10403.6 2.66 1.4

* Run on an SP1 with 8 nodes.

* Disjunctive cuts activated.

17

Table 4. Nodes Searched on n Processors

Name n=1 2 3 4 5 6 7 8
air01 1 1 1 1 1 1 1 1
air02 10 11 11 11 11 11 10 11
air03 2 2 2 2 2 2 2 2
air04 176 182 188 173 183 195 184 220
air05 1061 1031 1032 1039 1031 1194 1214 1225
air06 6 5 5 5 5 5 5 5
bm23 82 78 82 79 131 109 170 82
cracpbl 0 0 0 0 0 0 0 0
diamond 1 1 1 1 1 1 1 1
egout 2706 2706 2706 2708 2708 2707 2708 2715
enigma 472 467 549 573 612 684 649 761
fixnet3 41 44 53 55 61 61 66 69
fixnet4 114 114 114 116 121 108 156 154
fixnet6 241 242 242 239 244 266 276 268
khb05250 1648 1896 1650 1898 1897 1898 1901 1903
1152lav 545 599 590 564 584 557 584 559
1p4l 36 16 24 27 31 40 35 43
Iseu 1540 1542 1538 1537 1539 1545 1497 1566
misc0l 192 192 192 192 192 193 196 193
misc02 22 22 22 22 22 22 22 22
misc03 217 287 320 323 326 330 326 332
misc04 9 13 13 14 15 13 14 14
misc05 199 204 202 211 176 175 156 150
misc06 39 46 51 60 66 67 71 74
misc07 13401 13401 13401 13401 13401 13401 13401 13402
mod008 1627 1630 1635 1647 1635 1654 1627 1687
mod010 28 23 31 34 40 45 45 48
mod011* 12102 10725 10725 10726 10726 10726 10727 10726
mod013 280 280 281 280 285 268 281 300
modglob™ 12406 12405 12407 12408 12408 12409 12410 12409
p0033 198 202 199 200 286 207 207 206
p0040 2 2 4 4 4 4 4 4
p0201 251 259 262 155 169 179 176 198
p0282 232 242 249 273 302 367 400 451
p0291 42 44 42 64 70 67 80 72
p0548 25963 25990 25969 25963 25967 25967 25967 25990
p2756 6105 6153 6143 6157 6172 6180 6227 6235
p6000 3521 3513 3391 2878 2874 2848 2836 2832
pipex 703 700 709 710 710 716 703 719
rentacar 18 30 39 44 47 50 43 50
rgn 1410 1410 1412 1414 1416 1381 1161 1151
sample2 148 150 153 155 159 160 169 165
sentoy 200 201 209 198 218 308 231 377
setlal® 1156 1156 1158 1162 1167 1169 1174 1170
setlcht 48 30 54 56 54 55 62 68
setlclt 939 941 941 946 951 948 953 955
stein9 6 6 6 6 6 6 6 6
steinlb 37 37 37 37 37 37 37 37
stein27 1175 1175 1175 1175 1175 1175 1182 1176
stein4b 15678 15678 15679 15679 15679 15679 15679 15679
vmpl 155636 155636 155636 155636 155636 155636 155636 155636

* Run on an SP1 with 8 nodes.

+ Disjunctive cuts are activated.

18

Table 5. Speedup on n SPARC20’s

Name So Ss3 S4 Ss Se S+ Ss
air04 20 2.8 37 39 32 3.7 2.9
air05 20 29 39 48 5.2 6.1 6.7
1152lav 1.7 2.7 3.7 44 54 6.2 6.9
misc07 1.9 29 39 48 5.8 6.8 7.8
modglob 2.1 29 39 44 58 6.0 7.4
mod011* 1.8 2.8 3.7 46 4.9 6.8 8.9
p0548 1.8 27 35 44 52 6.0 6.8
p2756 20 3.0 40 5.0 59 6.8 7.7
p6000 21 32 48 59 7.1 8.1 9.3
setlch 2.2 25 28 56 82 65 11.3
steind5 1.8 28 3.7 45 53 6.1 7.4
vmpl 1.7 24 29 3.0 28 28 2.7

* Run on an SP1 with 8 nodes.

Table 6. Solution Status for quasiunif? and teleicm

0/1 LP Cut Optimal

Name Rows Cols var. Obj. Obj. MIP Obj.

quasiunif2 240 521 56 11.72 62.64 65.67

teleicm 2672 7069 58 34818.42 - 39345
Name Runtime Node Cnt. machine type
quasiunif2 132277.5 349965 SP2 thin node (16 nodes)
quasiunif2 374075.7 366420 8 SPARC20/61’s.
teleicm 306817.0 237802 8 SPARC20/61’s.

* Size after one presolve on CPLEX. Original size is 3276 rows and 9611 columns (63 0/1 variables).

19

References

[1]

[2]

[3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

D. Applegate, R. E. Bixby, V. Chvatal and W. Cook, “The Traveling Salesman Problem,” in preparation
(1995).

E. Balas, “Disjunctive Programming: Cutting Planes from logical conditions,”

ming 2 O. L. Mangasarian et al., eds., Academic Press, (1975b) 279-312.

in Nonlinear Program-

E. Balas, S. Ceria and G. Cornuéjols, “A Lift-and-Project Cutting Plane Algorithm for Mixed 0/1
Programs,” MSRR, 576 (1992), Carnegie Mellon University.

E. Balas and E. Zemel, “facets of the knapsack polytope from minimal covers,” STAM Journal of Applied
Mathematics 34 (1978) 119-148.

R. E. Bixby, E.A. Boyd, S. S. Dadmehr and R. R. Indovina, “The MIPLIB Mixed Integer Programming
Library,” COAL Bulletin 22 (1993).

R. E. Bixby and E. K. Lee, “Solving a Truck Dispatching Scheduling Problem Using Branch-and-Cut,”
TR93-37 (1993), Department of Computational and Applied Mathematics, Rice University.

A. L. Brearley, G. Mitre and H. P. Williams, “Analysis of Mathematical programming problems prior
to applying the simplex method,” Mathematical Programming 5 (1975) 54-83.

J. B. Carter and J. K. Bennett and W. Zwaenepoel, “Implementation and Performance of Munin,”

Proceedings of the 13th ACM Symposium on Operating Systems Principles, (1991) 152-164.

T. L. Cannon and K. L. Hoffman, “Large-scaled 0/1 linear programming on distributed workstations,”

Annals of Operations Research 22 (1990) 181-217.

H. Crowder, E. L. Johnson and M. Padberg, “Solving large-scale zero-one linear programming problems,”

Operations Research, 31 (1983) 803-834.

D. Bienstock and O. Giinliik, “Computational Experience with a Difficult Mixed-Integer Multicommod-
ity Flow Problem,” Mathematical Programming 68 (1995) 213— 237.

J. Eckstein, “Parallel branch-and-bound algorithm for general integer programming on the CM-5,"

TMC-257 (1993), Thinking Machines Corporation.

J. J. Forrest and D. Goldfarb, “Steepest-Edge Simplex Algorithms for Linear Programming,” Mathe-
matical Programming 57 (1992) 341-374.

K. Gharachorloo, D. Lenoski and J. Laudon, P. Gibbons, A. Gupta and J. Hennessy, “Memory Consis-
tency and Event Ordering in Scalable Shared-Memory Multiprocessors,” Proceedings of the 17th Annual
International Symposium on Computer Architecture, SIGARCH90 (1990) 15-26.

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. L. Hoffman and M. Padberg, “Solving airline crew-scheduling problems by branch-and-cut,” Man-
agement Science 39 (1993) 657-682.

P. Keleher, A. Cox and W. Zwaenepoel, “Lazy Release Consistency for Software Distributed Shared
Memory,” Proceedings of the 19th Annual International Symposium on Computer Architecture, (1992)
13-21.

P. Keleher, A. Cox, S. Dwarkadas and W. Zwaenepoel, “TreadMarks: Distributed Memory on Standard
Workstations and Operating Systems,” Proceedings of the 1994 Winter Usenix Conference, (1994) 115—
131

K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory Systems,” ACM Transactions on
Computer Systems 4 (1989) Vol 7, 229-239.

L. A. Oley and R. J. Sjoquist, “Automatic reformulation of mixed and pure integers models to reduce

solution time in APEX IV,” SIGMAP Bulletin 32 (1983).

L. A. Wolsey, “Faces for a linear inequality in 0-1 variables,” Mathematical Programming 8 (1975)
165-178.

E. Zemel, “Easily computable facets of the knapsack polytope,” Mathematics of Operations Research
14 (1989) 760-764.

21

