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An Empirical Evaluation of Dependence Analysis
in Parallel Program Comprehension

Douglas M. Monk

Abstract

This research contributes two advances to the field of empirical study of parallel pro-
gramming: first, the introduction of the Xbrowser system, a unique general-purpose
hypertext/hypermedia system combining high-quality text formatting using TEX* or
IATEX with author-controlled support for event-level protocol analysis and computer-
assisted instruction. Second, an extensive ground-breaking empirical study using
Xbrowser tested effects of dependence analysis and related factors on error severity
and time required for successful comprehension of loop transformations relevant to
both sequential and parallel program comprehension.

The results show that graphical annotation of program source with dependence
information as is done in the ParaScope parallel programming environment improves
the time required to correctly comprehend the results of parallelizing loops, and that
dependence type affects both time required for successful comprehension and severity
of errors made in the attempt, with anti- dependences somewhat more problematic
than flow dependences, and both much worse than output dependences, particularly
for loop carried dependences.

An alternative to dependence analysis based on simpler data-flow concepts was not
better in either comprehension time or error severity measures, nor were parallel loop
transformation shown to be more difficult to understand than equivalent sequential
loop transformations for this particular task.

Controlling for the previous experimental effects, GRE Analytical and Mathemat-
ics scores, SAT Mathematics scores, mathematics grade point average, number of high
school and college mathematics courses, and the percentage of working time spent pro-

gramming were all found to correlate to improved error and /or time performance.

*TEX is a trademark of the American Mathematical Society.
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Preface

This dissertation is the culmination of several years of effort both on my part and by
those on whose shoulders I stand. An interdisciplinary work integrating the fields of
computer science and psychology must attempt to fulfill the desires of each; aspects of
each discipline deserve more attention than is possible to include here. The primary
audience of this work is assumed to be computer scientists and others interested in
human factors relevant to parallel programming and dependence analysis. Every effort
is made to explain terminology or to refer to explanations that the larger community
interested in this research may find useful. A certain minimal amount of inevitable
repetition in such explanation is made between chapters to accommodate readers who

may be inclined to browse rather than assiduously scrutinize.



Chapter 1

Introduction

Dependence analysis — the study of data dependences arising from shared references
to a memory location occurring in two different places in a program — is critical to
understanding and constructing correct parallel programs, [KKP*81, AK87, SLY89,
Hag90] yet the effects of data dependences on parallel program comprehension have
not been investigated sufficiently despite rich resources in empirical techniques that
have been applied to sequential programming; indeed, virtually no empirical work
has been done on parallel programming [Wad93].

My research has contributed two advances to the field of empirical study of
parallel programming: first, I introduced the Xbrowser system, a unique hyper-
text /hypermedia system that combines high-quality typesetting using TEX' or IATEX
with author-controlled support for event-level protocol analysis and computer-assisted
instruction. Based on a common, freely available and popular standard for typesetting
that produces display-device-independent document files, the Xbrowser system uses
hypertext annotations created using the flexible and extensible typesetting languages
of TEX and IATEX to display text, graphics, hypertext links, and interactive editors
using standard X Windows?. These considerable capabilities are further extended by
allowing the hypertext author to control generation of an event-level protocol record
of reader interaction with the hypertext documents used by the Xbrowser system.
These event records may then be further processed to yield data readily suitable for
statistical or further protocol analysis using Xbrowser or other systems; in effect
this can combine the protocol transcription and segmentation phases if desired, con-
siderably speeding protocol analysis. In addition, the hypertext scripting language
used in the Xbrowser system provides extensive support for computer-assisted in-
struction through the mechanism of session variables under author control, including

flexible interactive reader text input. These three features — high quality hypertext,

TEX is a trademark of the American Mathematical Society.
2X Windows is a trademark of M.I.T.



event-level protocol analysis, and support for computer-assisted instruction — pro-
vide an excellent platform for many uses, such as empirical user interface research,
interactive automated training, and user interface prototyping.

Second, I validated the value of these features of the Xbrowser system by using
it in an extensive ground-breaking empirical study that tests the effects of depen-
dence analysis and related factors on error severity and time required for successful
comprehension of loop transformations relevant to both sequential and parallel pro-
gram comprehension. This experiment included thorough computer-assisted training
in the basics of parallel programming and dependence analysis requiring an average
of 90 minutes of interactive instruction, followed by a data-collecting phase requir-
ing about 90 minutes to complete in which twenty-six subjects worked twenty-four
problems covering a variety of areas suspected of affecting performance on parallel
programming. Subjects then used Xbrowser to answer a roughly fifteen minute long
questionnaire about many aspects of background factors possibly related to perfor-
mance on parallel programming, followed by a final interactive debriefing averaging
fifteen minutes explaining the purpose of the study and the correct answers to the
problems, again conducted using Xbrowser.

The results of this study show that an interface prototype of graphical anno-
tation of program source with dependence information similar to what is done in
the ParaScope parallel programming environment [Che93, CCH*88a, CCH*88b] im-
proves the time required to correctly comprehend the detailed and specific results of
parallelizing loops, and that specific forms of dependences have different effects on
both time required for successful comprehension and the severity of errors occurring
in the attempt. An alternative to traditional dependence analysis derived from sim-
pler data-flow concepts was also tested, but was no better than the more complete
traditional method, nor were parallel loop transformations more difficult to deal with
than equivalent sequential loop transformations on the particular task used.

A further result using the background questionnaire data controlling for exper-
imental effects found that GRE Analytical and Mathematical scores, mathematics
grade point averages, number of high school and college mathematics courses taken,
and the percentage of working time devoted to programming were all found to corre-
late to various improved error and/or time performance measures.

The following sections serve as an introduction to the layout of the remainder of

this dissertation with brief descriptions of each point of interest along the way.



1.1 Overview

The motivation for and contents of each chapter are discussed in the following sections,
summarized here. The dissertation may be considered as consisting of two basic parts,
with Part I covering the Xbrowser system, and Part II describing the first major

empirical study of parallel program comprehension, performed using Xbrowser.

Part I: The Xbrowser System

Part I begins with two chapters reviewing work related to its design and implemen-
tation. Chapter 2 on Protocol Analysis presents an introduction to this technique
frequently used in empirical user interface research. Chapter 3, Hypertext Issues
and Computer-Assisted Learning, discusses work related to the other features of the
Xbrowser system. Finally, Chapter 4 presents the Xbrowser system, its component

programs, and plans for its future.

1.2 Protocol Analysis

Chapter 2 discusses analysis of both verbal and behavior-based protocols, as well as

some existing protocol analysis systems somewhat comparable to Xbrowser, such
as Fisher’s Protocol Analyst’s Workbench [Fis87, Fis91] and the hypertext Writing
Environment described by Smith, Smith, and Kupstas [SSK92].

1.3 Hypertext Issues and Computer-Assisted Learning

Chapter 3 presents issues related to other hypertext systems and computer-assisted
learning, including an analogous system using another hypertext typesetting language
based on the SGML-derived HyTime and MHEG standards [Mar92]: the SGML-
MUCH project [ZR93], and how various features of hypertext can be used to support
computer-assisted instruction. The “mastery learning” model recommended by Egan
[Ega88] to reduce extraneous subject variance through thorough training is used as

an example.

1.4 Xbrowser: Hypertext and Protocol Analysis for User

Interfaces

In Chapter 4 I discuss Xbrowser, a protocol analysis tool for displaying high quality

hypertext documents and recording subject responses and system interactions. This



tool was used to present experimental materials and record response times and an-
swers to problems in the study reported in Chapter 7. The three areas of research
discussed in Chapters 2 and 3 contributed to the design of Xbrowser: protocol anal-
ysis tools such as Fisher’s Protocol Analyst’s Workbench [Fis87, Fis91] and the pro-
tocol analysis instrumentation approach used in the hypertext Writing Environment
described by Smith et al. [SSK92|, hypertext systems such as the analogous SGML-
MUCH system [ZR93], and computer-assisted learning issues such as the “mastery
learning” technique as described by Egan [Ega88]. The origins of Xbrowser in the
pilot studies for the study in Chapter 7 are presented, together with details of the
three current components: xbro — a hypertext program that displays high-quality
typesetting display-device-independent files produced by TEX or IATEX and records
a protocol trace of subject interactions with the document, catevents — a program
that translates the protocol trace event record into formatted data suitable for post-
analysis with awk or perl, and xevents — a prototype of an event record interactive
analysis and replay tool.

Features that distinguish Xbrowser from other protocol analysis systems include
its integrated support for computer-assisted learning techniques, its support for direct
author-controlled event-level subject protocol recording, and its applicability to mul-
tiple domains. The first factor is useful in reducing extraneous experimental error by
using appropriate training techniques, the second allows experimenters to deal with
many more subjects than might otherwise be possible, and the last represents the
flexibility and capability of the system to function in many venues.

Xbrowseris distinguished in the area of hypertext and computer-assisted learning
by its focus on high-quality typesetting and a simple text-based hypertext model that
enhances the ability of hypertext authors to rapidly produce complex documents
useful in computer-mediated training and testing. The familiarity and popularity of
the TEX and IATEX typesetting model and the focus of the Xbrowser system on core
hypertext issues while not precluding more ambitious extensions makes the system

simpler and more practical than might otherwise be the case.

Part II: An Empirical Study of
Parallel Program Comprehension

Chapters 5 and 6 serve as general introductions to two of the areas of work specif-
ically related to this experiment: empirical studies of sequential programming, and

parallel programming and dependence analysis, respectively. In Chapter 7 I then



present the second major contribution of this research, the extensive empirical study
of dependence analysis in parallel program comprehension implemented using the

Xbrowser system.

1.5 Empirical Studies of Programming

I first give an introduction to empirical studies of sequential programming and pro-
grammer variance in Chapter 5 that discusses related work influential in the design of
the experiment reported here. In addition to work generally useful for empirical de-
sign, this includes in particular studies on the effects of control-flow and data-flow in
programming, and studies that attempt to relate subjects’ backgrounds to program-
ming performance. In the former category the works most similar to this research
are Weiser’s studies using slicing [Wei79], and Lyle’s studies using slicing and dicing
[Lyl84]. Iselin’s study is also similar in the choice of dependent variables [Ise88]. In
the latter category the most similar work is that of Oman, Curtis, and Nanja on de-
bugging semantic errors [OCN89], although my experimental design in this particular
category is also similar to that of Gowda and Saxton [GS89] in terms of background

information collected.

1.6 Parallel Programming and Dependence Analysis

Chapter 6 provides some of the motivation for parallel programming, and how depen-
dence analysis is useful for some of its most basic inherent problems. For researchers
deeply involved in an area as we are with parallel programming, it is easy to forget
that there are appreciable segments of the research audience who may have had little
exposure to these topics: I present this as a quick and hopefully painless introduction
to the rudiments of parallel programming, and to the fundamentals of dependence
analysis that underly the choice of the empirical variables used in the study presented
in Chapter 7.

1.7 An Empirical Evaluation of Dependence Analysis in
Parallel Program Comprehension
Chapter 7 presents a study performed with the Xbrowser system, in which twenty-

six subjects learned the basics of parallel programming and dependence analysis

and worked twenty-four randomized problems covering several experimental factors.



Results are presented for severity of errors made by subjects, length of time subjects
took to comprehend transformed programs, and individual differences that signifi-
cantly correlated to these error and time performance measures after controlling for
other significant results.

The results of this study as previously alluded to, show that for the prototype
interface graphical annotation of program source with dependence information used,
the time required to correctly comprehend the detailed and specific results of paral-
lelizing loops was improved. The similarity of this prototype to what is done in the
ParaScope parallel programming environment [Che93, CCH*88a, CCH*88b] provides
support for the value of the annotation approach in general and the specific method
used by ParaScope in particular. In addition, evidence was found that various types of
dependences affect both time required for successful comprehension and the severity
of errors occurring in the attempt.

The alternative to traditional dependence analysis investigated, derived from a
simpler data-flow model, seemed to be no better than the more complete traditional
method, nor were parallel loop transformations more difficult to deal with than equiv-
alent sequential loop transformations on the particular task used.

Finally, the background questionnaire data, when controlling for experimental
effects, indicated that GRE Analytical and Mathematical scores, mathematics grade
point averages, number of high school and college mathematics courses taken, and
the percentage of working time devoted to programming were all correlated to various

improved error and/or time performance measures.

1.8 Summary, Future Research, and Conclusions

Finally, I reprise in Chapter 8 the conclusions reached and discuss suggested directions
for future research for both the Xbrowser system and empirical studies of parallel
programming.

Two appendices are also included that describe the experimental materials and

statistical results in far greater detail.



Part 1

The Xbrowser System



This section of the dissertation discusses the Xbrowser hypertext system for pro-
tocol analysis. The Xbrowser software, described in Chapter 4, will be made freely
available over the Internet. For more information, contact the author by email at
bro@cs.rice.edu, or consult the World Wide Web page:
http://www.cs.rice.edu/"bro.



Chapter 2

Protocol Analysis

Computers have been used to collect and analyze detailed transcriptions of human
behavior called protocols for some time. These protocols — including data from intro-
spection, thinking aloud, annotation of videotape or audiotape recordings, and output
of instrumented programs — constitute a rich resource of empirical data suitable for
further analysis. Most systems for protocol analysis process protocols recorded by
some other agency and are not integrated into a single framework that includes both
recording and analysis. In this chapter I describe some of the research on protocol
analysis and protocol analysis support tools related to the Xbrowser system.
Protocol analysis refers to the study of detailed records of human behavior using
analytical methods described in more detail below. These records may come in many
different forms, and many different methods may be applied to them. Typically, raw
protocols may be recordings of either verbal' statements or observable behavior; in
the latter category, the recording medium may be field notes, auditory, visual, or
other mechanical recordings. Verbal and behavioral protocols both may have advan-
tages and disadvantages as summarized in Table 2.1. The perceived disadvantages
of verbal protocols include that they are “soft” data: usually consisting of subjective
statements, prone to subjective interpretation, produced by verbalization processes
that may interfere with the desired object of study, and possibly requiring substan-
tial expertise in psychology to interpret. The advantages of verbal protocols are that
they can provide a rich insight into internal thought processes when interpretation
is available and can collect information that may not otherwise be observable. The
disadvantages of behavioral protocols are that they usually cannot expose internal
states of subjects, thereby missing possible internal causation clues, that some ob-

servation techniques such as obvious videotaping may perturb subjects, and that the

1“Verbal” protocols are typically considered to include both spoken and written records, while
verbal recordings in which content is ignored in favor of data such as timings of utterances are really
behavioral protocols. [ES93] On the other hand, non-verbal behavior communicative behavior may
need to be treated as a “verbal” protocol. [STS89]
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Possible Disadvantages

Verbal Behavioral
subject-subjective and processed may ignore internal processes
verbalization usually intrusive observation sometimes intrusive
interpretation often difficult interpretation sometimes difficult
specialist interpretation may be required sometimes harder to record
huge data size “keystroke”-level produces huge data size

Possible Advantages

Verbal Behavioral
can capture internal processes usually “hard” data
can be rich, deep data observation can be made imperceptible

“event”-level (or higher) can reduce data
data can be simple to interpret
data can be simple to collect/extract

Table 2.1 Comparison of Verbal and Behavioral Protocols

protocol may be difficult to record (as when the desired behavior to collect requires
customized software for each study, or is difficult to evoke). The advantages of be-
havioral protocols include that they produce “hard” data: specific detailed sets of
information that are simple to collect and interpret, that the process of observation
may be made imperceptible to subjects by concealment, program instrumentation,
etc., and that selection of the grain of recording can reduce extraneous data in the

raw protocol. [ES93, Fis91, SJS89]

2.1 A Brief History of Protocol Analysis

Ericsson and Simon [ES93] describe a history of protocol analysis in considerable de-
tail, summarized here. Before the availability of practical methods of sound record-
ing, the only way to record verbalizations consisted of written transcription, typically
consisting of field notes that of necessity summarized rather than detailed the spoken
record. The similarity of this type of data to the “introspective” method of psycho-
logical analysis is marked, and shares many of the drawbacks that led that method
to fall into disfavor.

One early analysis of a think-aloud protocol was performed by Watson in 1920,
while studies in the 1920s, 1930s, and 1940s continued to contribute to the method-

ology. Even as late as 1965, DeGroot used as raw data written notes of a think-aloud
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protocol to analyze the selection of movements in chess games, using a theoretical
framework proposed by Selz in 1913. As primitive phonographic recorders using wax
cylinders and disks were replaced with wire-recorders and, particularly after World
War 11, tape-recorders, the ability to transcribe and analyze verbalizations was greatly
improved. The primary bias of the note-taker that could not be addressed except with
the use of multiple note-takers was removed, leaving the secondary bias of the ana-
lyst, easily addressed because of the existence of an indisputable physical record that
could be re-analyzed at will.

Computers also provided new opportunities for protocol analysis, both as analyt-
ical and modeling tools and as sources of behavioral protocols. The capabilities of
computers and the cognitive demands of using and particularly programming com-
puters made them a rich source of data and tools for protocol analysis. Examples
of computer automation of techniques for abstracting and analyzing protocols in-
clude the Protocol Analysis Systems PAS-1 (1971) and PAS-II (1973) of Waterman
and Newell [WNT71, WNT73]. The founding of the Xerox Palo Alto Research Center
(PARC) in 1970 also led to exploration of the study of human factors in the use of
computers. This center, discussed by Card, Moran, and Newell [CMN83], has served
a fundamental role in many areas of human-computer interaction research.

The work of Card, Moran, and Newell also provided the Keystroke and GOMS?
models [CMN80, CMN83], frameworks for analysis of behavioral protocols augmented
by verbal information. One feature of the GOMS model was its acknowledgment of
the value of various grains of analysis, including Keystroke, Argument, Functional,
and Unit-Task Levels in order of increasing abstraction. The methodology they used
in applying GOMS techniques to protocols consisting of time-stamped keystrokes
coupled with symbolic actions produced from think-aloud and video protocols in-
spired other researchers, including J. Smith, D. Smith, and Kupstas [SSK92] in work
involving the Writing Environment described in the next section.

The process of modern protocol analysis consists of several overlapping stages,
ranging from the preliminaries of recording and transcribing raw protocols, to seg-
mentation and encoding of protocols into more abstract forms, to data extraction and

numerical or logical analyses.> A typical verbal protocol analysis might start with a

2goals, operators, methods, and selection rules

3This model is simplified to allow comparison of somewhat disparate protocol analysis systems.
Ericsson and Simon [ES93], Fisher [Fis91], or Sanderson, James, and Seidler [SJS89] are useful
references for a fuller picture.
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tape recording of a subject, transcribe the tape into text, segment the text into usable
phrases or sentences, encode the phrases in symbolic terms, and then use predicate
calculus to study the encoding. A behavioral protocol analysis could begin with an
instrumented program that produces a record of user-related events that could then
be transcribed as plain text for automated segmentation and encoding with filter
programs that could also extract specific data for statistical analysis. In this model

of protocol analysis, these stages represent:
e recording an original raw protocol record.
e transcription of rawest protocol into a format usable for analysis.
e segmentation of a transcription into units suitable for higher-level encoding.
e encoding : symbolic manipulation including “naming” of segmented protocols.

e data extraction of specific data to be analyzed, such as encoding-symbol
frequencies, time between high-level events, comparison of achievements to ideal

situations, etc.
e analysis of data by numerical, statistical, logical, or other methods

The lack of numbering is intentional: protocol analysis is frequently a non-linear
process, and stages typically overlap, recurse, and supplant each other. Fisher de-
scribes the chaotic state of the current art: “Protocol analysis is a largely ill-defined,
difficult to learn task. There are no cookbook methodologies available, analogous to
statistics how-to books, to aid the researcher. In fact, even the most comprehensive
treatise on the subject* includes only sketchy instructions on the practical application
of protocol analysis techniques.” [Fis91], p. 3

Procedural issues involving the use of protocol analysis systems include:

e domain generality : How hard is it to design and implement a given study
assuming the type of protocol supported is adequate? How applicable is the

system to other problem domains?
e data size : What quantity of low-level data must be processed?

e automation : Are automatic processes available to deal with data and can

they be monitored and corrected?

e transportability : Is some type of intermediate output produced that may be

applied to using other systems?

4Referring to the 1984 edition of [ES93], this is still essentially correct for the 1993 edition.
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2.2 Representative Protocol Analysis Systems

As previously mentioned, early forms of protocol analysis used “think aloud” proto-
cols to record thoughts of subjects either as they occurred, in response to prompting,
or retrospectively, using written field notes, and later, audio or video recordings to
store the resulting protocol. The availability of useful devices including computers to
assist in this process revolutionized protocol analysis, both by providing additional
sources of data such as extensive instrumented records of user interactions and by
enabling automatic and semi-automatic processing of previously recorded protocols,
thereby extending the abilities of protocol analysts to deal with sometimes over-
whelming amounts of data. Beside the historical perspective provided by Ericsson
and Simon on (mostly verbal) protocol analysis to the present [ES93], J. Smith, D.
Smith, and Kupstas [SSK92] and Fisher [Fis87, Fis91] separately describe several
systems designed to assist coding and analysis of protocols ranging from field notes
to videotape to instrumented-program logs. Representative systems are discussed
in the following sections, and are compared to aspects of the Xbrowser system in
Chapter 4. Beside Smith et al.’s Writing Environment (WE) and Fisher’s Protocol
Analyst’s Workbench (PAW), these systems include the Protocol Analysis Systems
PAS-T and PAS-II of Waterman and Newell[ WN71, WNT73], Verbal Protocol Analysis
(VPA?) described by Lueke, Pagery, and Brown [LPB87] and work on SHAPA® by
Sanderson, James, and Seidler [SJS89].

2.2.1 Protocol Analysis Systems PAS-I and PAS-II

These systems included linguistic and semantic processors that operated on natu-
ral language transcripts. PAS-1 was designed to produce a program behavior graph
(PBG) from manually segmented protocols in a completely automatic fashion, while
PAS-1I extended those capabilities with externally provided rules that made the sys-
tem more flexible, and allowed user intervention to rescue the system when processing
reached a dead end, or when manual tweaking was required. One strong suit, the abil-
ity to process natural language, was also a liability in terms of complicating extension

of the system to general problems: each problem would require either extension of

5VPA is used in the literature both for this particular system and as a generic abbreviation for
“verbal protocol analysis”.

6 Hemi-Semi- Automated-Protocol-Analysis, with the first two initials intentionally transposed.
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the grammar and vocabularies used or a general solution to natural-language parsing.

PAS-T and PAS-II support the use of predicate calculus for encoding and analysis.

2.2.2 “Verbal Protocol Analyzer”: VPA

VPA uses interactively updated menus of tag categories to segment protocols and
build a model interface to meet system-suggested needs; VPA is then used to validate
improvements in the new interface using the model. The initial set of menus must be

designed beforehand.

2.2.3 “Hemi-Semi-Automated-Protocol-Analysis” : SHAPA

SHAPA is explicitly designed to analyze both verbal and non-verbal protocols and
assist in developing encoding tags, using the encoding, collecting, and summarizing

of data. SHAPA supports the use of predicate calculus for encoding and analysis.

2.2.4 Protocol Analyst’s Workbench: PAW

Fisher’s own Protocol Analyst’s Workbench (PAW) system guides analysts in encod-
ing raw protocol data and selecting appropriate analyses [Fis87, Fis91]. She describes
an experiment where six subjects were videotaped thinking aloud about two program-
ming problems. She then used PAW to encode the raw data into a series of concepts
and operations demonstrated by all subjects in the process of designing programs,
and then performed path analysis to uncover mental models. PAW supports the use

of predicate calculus for encoding and analysis.

2.2.5 Trigg’s videotape analysis tool

Trigg describes a videotape analysis tool later to be extended to audiotape and
field notes, produced as part of the Workplace project at Xerox Palo Alto Research
Center (PARC). This tool allowed researchers to produce detailed sets of annotated
data streams including text and graphics describing activities captured on videotape
[Tri89]. These data streams could then be viewed in various ways and in various levels

of detail, and used hypermedia links to constrain layout and presentation.
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2.2.6 Experimental Video Annotator: EVA

EVA, an Experimental Video Annotator for symbolic analysis of video data pro-
duced by Mackay, runs under UNIX” and the X Window System?® [Mac89]. Using
this system, video is digitized and stored in computer-compatible form, and then
is integrated into Athena Muse, a language for constructing interactive multimedia
[HSAS89]. Annotations may be attached to the video, and those annotations can then

be filtered and analyzed with other software.

2.2.7 Writing Environment (WE) analysis tools

In contrast to think aloud and non-verbal communicative transcription protocols, the
keystroke-level analysis proposed by Card, Moran, and Newell used recorded times-
tamp information as part of the GOMS models [CMN83]. Much of the work in this
direction has been theoretical, describing possible interaction sequences and validat-
ing predictions, but Smith et al. describe tools and techniques as part of a hypertext
production system called the Writing Environment (WE) that lend themselves to the
underlying empirical schema, but at a higher level of granularity [SSK92]. Instead
of recording keystroke-level information, an instrumented version of WE produces a
protocol recorded by program instrumentation based on unit actions, such as menu
selections or text entry, rather than underlying component mouse or keyboard activ-
ity. These protocols may then be replayed, filtered, and analyzed as desired, looking
for strategic patterns of behavior. The recording method (inserting instrumentation
in a program to be studied) is a common approach, but the tools for viewing the re-
sulting protocol are interesting although the system requires more development, par-
ticularly to generalize the domain of study, currently limited to users of the Writing

Environment itself.

2.3 Conclusions

It is toward this same action-oriented level of protocol analysis used by the Writing
Environment analysis tools that our own tool, Xbrowser was designed: capable

of detailed records of high-level user interactions but less intrusive in data capture

TUNIX is a trademark of AT&T.
8The X Window System is a trademark of Massachusetts Institute of Technology.
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than videotaping and without the overhead of keystroke-level recording for large ex-
periments. In Xbrowser recorded protocols are the result of users interacting with
hypertext documents designed by experimenters. Table 4.1 (previewed below) from
Chapter 4 presenting Xbrowser compares support of various protocol analysis sys-
tems for certain desirable functions. Solid circles imply strong support for a feature,
hollow circles imply at least some support, and blank spaces imply no or weak sup-
port. Note that not all systems are designed to support the same set of phases of

dependence analysis: this table is intended to be descriptive rather than critical.

Stages Xbrowser* | WE* | PAS | SHAPA | PAW | EVA*
recording [ o
transcription [ ] ° 0
segmentation ° o ° ° [ 0
encoding [ [ [ ] [ ] ° °
data extraction ° ° ¢ ¢ o] )
analysis [ ] [ [ ¢ o o
Procedural
domain generality ° o [ o o
data size [ [ ¢ ¢ o] °
automation ° ° 6] 6] [ [
transportability ° [ o)

Key: @ implies strong support, O implies moderate support.
* including external filter programs and statistical packages

Preview of Table 4.1:
Comparison of Xbrowser to selected protocol analysis systems
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Chapter 3

Hypertext Issues and Computer-Assisted
Instruction

The Xbrowser protocol analysis and hypertext system presented in Chapter 4 fulfill
two distinct roles in human-computer interaction research: it records event-level be-
havioral protocols of subject interactions with hypertext documents, and it provides
a basic set of functions designed to support computer-assisted instruction without
enforcing a particular pedagogic model, thereby allowing training and testing using
the same system without limiting the design of that training. These two areas con-
stitute work related to the design of the Xbrowser system discussed in the following

sections.

3.1 Hpypertext Systems

The traditional term “hypertext”, coined by Ted Nelson [Nel81], refers to “text
... where there are links between different texts and portions of texts ...” [Ras87].
Though supplemented by the later term “hypermedia” [GSM86, YHMDS8] to reflect
the ability to include links to graphics, audio, video, etc. [T187], original conceptions
of hypertext implicitly included other media [Bus45].

My intent in referring to Xbrowser as hypertext rather than hypermedia is partly
one of modesty: although it is simple to use graphics and external audio or any
external program supported by hardware in Xbrowser hypertext documents, the
main focus is on simple hypertext links while providing high-quality text formatting.
The use of the term hypertext also reflects the basis of the Xbrowser document in
the high-quality text layout dvi'-files created by TEX and IATEX, and a reflection
of a desire to improve the longevity of hypertext, cited by Crane as a problem in
integrating hypertext into traditional scholarship [Cra87]. Designed originally to cre-
ate high-quality paper-based output, the device-independent nature of dvi-files allow

Tdevice-independent
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ready adaptation to the latest display devices, whether computer displays or printers.
As display technology improves, Xbrowser document displays running under the X
Window System will improve as well with minimal additional effort.

To focus on the design goals of protocol recording and computer-assisted instruc-
tion, extensions to document navigation are left to the author of the Xbrowser docu-
ments: in the base system, Xbrowser provides a single level virtual book-mark to be
placed by the user. Document designers may augment the basic system to any extent
desired by providing menus and graphical displays to guide users, and may prevent
digression is sections of the document where it is not desired.

Another feature intended to support computer-assisted instruction is the con-
straint placed on appearance and placement of the hypertext displays in Xbrowser:
by tiling the screen under author control rather than allowing free-form reader place-
ment, and by providing internal session variables that track the current display layout,
the author of the hypertext document may be confident of exactly what a reader is

seeing without worrying about partial or total obscurement of critical information.

3.1.1 Related Hypertext Systems

One hypertext system with ties to the TEX text formatting system is the texinfo
package, a product of the GNU Project of the Free Software Foundation. Files pre-
pared using the texinfo language can be transformed in one of two ways: into hyper-
text info files that may be viewed using the stand-alone info viewer or GNU emacs
in info-mode, or into TEX files suitable for producing a paper document with appropri-
ate cross-references. Despite its use of TEX as an output medium, there is little other
resemblance between the texinfo system and Xbrowser. When viewing hypertext
versions of texinfo documents, the text formatting and hypertext elements are prim-
itive at best. From the online documentation distributed with texinfo v.3.1/GNU
emacs v.19.27.1%: “Because a Texinfo file must be able to present information both
on a character-only terminal in Info form and in a typeset book, the formatting
commands that Texinfo supports are necessarily limited.”

Another hypertext language that provides primitive text formatting capabilities is

HTML (Hypertext Markup Language), used in the World Wide Web (W3) project

2From the same source: “Richard M. Stallman wrote Edition 1.0 of this manual. Robert J. Chassell
revised and extended it, starting with Edition 1.1.”
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[BLCGY92]. W3 uses viewers such as the dumb-terminal oriented lynx® or the more
capable NCSA Mosaic* and Netscape Navigator® to display a distributed collection
of information nodes, including hypertext /hypermedia documents using HTML. The
latter two viewers rely on greater display capabilities such as in the X Windows
system and Microsoft Windows environments, and so the text formatting capabilities
of HIML are somewhat more powerful that those of texinfo. HIML is an SGML
(Standardized General Markup Language) DTD (Document Type Definition), and
provides a number of text-like formatting features, including a minimal collection of
fonts in varying sizes, titles, paragraphs, and line-breaking. The control of an author
over the specific appearance of text is limited, however: like many other hypertext
systems, formatting is done on-the-fly and is driven by the specific window size at
display time. Resizing a window can completely alter the appearance of the document,
and documents may be overlaid by other viewers and windows. As will be seen in
the next section, this poses a problem for computer-assisted instruction, which must
make assumptions about what pupils can or cannot see. The requirement to support
primitive browsers on plain text terminals also restricts the typesetting possibilities
of HTML. As the founders of W3 put it: “SGML was not chosen out of any particular
aesthetic appeal or inherent cleanliness.” [BLCG92], p. 457.

Another emerging hypertext standard, although far less widely used than HTML,
is the HyTime project [Mar92]. Like HTML, HyTime is an SGML DTD, although
with a larger repertoire of support for multimedia issues, such as time scheduling
and synchronization. Textual formatting is not addressed although ODA (Office
Documentation Architecture) encodings are being explored.

One application of HyTime is the SGML-MUCH (Many Using and Creating
Hypertext) system, again using SGML and, in principle, HyTime as hypertext doc-
ument interchange and formatting languages [ZR93]. Like texinfo, SGML-MUCH
can export hypertext documents for use with external text formatters. The degree of
text formatting available while viewing hypertext is, like both texinfo and HTML,
a browser-driven problem. No more than plain text is guaranteed, although with
some hierarchical organization. Also like texinfo and the HTML systems, no author

control or knowledge over the field of view seen by readers is provided. These are

3 Available from the Distributed Computing Group of the University of Kansas.

“Developed at the National Center for Supercomputing Applications at the University of Illinois in
Urbana/Champaign.

>Netscape Navigator is a trademark of Netscape Communications Corporation.
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significant limitations for computer-assisted instruction, as will be seen in the next
section.

Hypertext is used in Xbrowser to good effect as a schema for document navi-
gation, allowing intelligent response because the system knows what users have seen
and done and is able to interactively control where they should be able to go. The
general-purpose hypertext design of Xbrowser supports a rich ability to fulfill many
needs, including user-interface prototyping and computer-assisted learning. It is in
this combination of protocol analysis, hypertext with extensive text layout tools, and

support for computer-assisted learning that Xbrowser is unusual.

3.2 Computer-Assisted Learning

Computers provide two components useful in enhancing the learning process: first,
they act as a medium, displaying desired instructional information in varying ways.
Second, computers may be used to mediate in the instructional process, serving as
agents to administer lessons for an instructor.

A central problem in this second role of computer-assisted learning is support
for “authoring”: the process of writing and assembling lessons to be applied by the
computer as tutor. Miildner and Elammari [ME92] briefly review several authoring
systems including Hypercard, Toolbook, Quest, IconAuthor, Tencore, and their own
OBJECTOR. This system features multiple windows with a rich user interface and
learner-modifiable hypertext, and uses C++ [Str91] as its input language.

An extensive example of the use of ABASE — a Hypercard-based interactive tuto-
rial program — in a specific information domain is given by Li, Rovick, and Michael
[LRM92]. They describe several problems and tutorials in acid/base regulation used
by first-year medical students; each is implemented as a Hypercard stack. These fea-
ture hypertext, animated summaries, graphical testing routines, and an interactive
dictionary.

Hypertext is only one way that computers can fill the role of an instructional
medium. Badre et al. [BBMS92] discuss the use of program visualization systems
[Mye90] in general to assist in teaching computer science. They also discuss the use
of XTango, an algorithm animation system descended from Tango by John Stasko
[Sta90]. Stasko and Patterson [SP91] present a classification system for program visu-
alization tools in four dimensions — aspect, abstractness, animation, and automation

— that apply to other computer-media as well. Xbrowser has sufficient capabilities
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to fulfill several levels of most of these categories, with animation being the sole

exception unless external programs are used, as is possible.

3.2.1 Navigation and Visual Control Issues in Hypertext for Computer-

Assisted Instruction

When used as instructional medium, some issues in hypertext become even more
important. De La Passardiere and Dufresne [LD92] present a survey of navigational
tools used in hypermedia, including overview, local, and fisheye maps, filters, and
indices. Other tools such as history trails, footprints, landmarks, and progression
cues are more obviously useful in the construction of intelligent lessons: by knowing
what a student has seen, the lesson may adapt to present remaining topics in the
most constructive way possible. This ability to adapt and respond is critical to the
educational function.

The issue of visual control is part of the problem of disorientation inherent in
hypertext systems. [LD92, Con86] Readers may easily become lost in complex doc-
uments, and without adequate author support for awareness of current document
location, the hypertext system must provide mechanisms to orient the reader, when
it is the author who is most qualified to guide the reader to progress rather than
digress.

Xbrowser addresses this issue in several ways. The hypertext author may place
and test range-marker annotations within the document or test hypertext page num-
bers to determine the current location, and may keep a trail of where readers have
been. Session-specific variables allocated for individual readers can keep a record of
what has been seen and accomplished, allowing the author to guide readers onward.
The ability to continue and the destination of conventional reading operations such
as “next-page” and “previous-page” are always under author control. Xbrowser pro-
vides as a primitive a single-level “virtual bookmark” for readers to place and return
to within a document. By not forcing a navigation mechanism on authors and by
allow authors to control the availability of the primitive bookmark, Xbrowser allows
much finer control over digression than is usual in hypertext systems: authors may
allow or encourage it, implementing more extensive “stacks” of bookmarks if desired,
or may turn off the ability to digress when some portion of the document requires

close attention.
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Another feature of Xbrowser that is useful in computer-assisted instruction is the
control provided over available windowing displays: four combinations are provided,
ranging from one to four windows that tile the display without overlap. An author
is thus guaranteed that if the session variables indicate a particular bit of text is
available, then readers may see it. The problem of obscurement of critical information

is thus precluded.

3.2.2 “Mastery Learning” : a Computer-Assisted Instruction Paradigm

One approach to training that is particularly applicable when using computers is
called automated “mastery learning”, as described by Egan [Ega88]. Motivated by
a desire to reduce extraneous differences in performance in subjects after training,

these techniques use a computer to administer lessons that are :

e intended to be mastered with proficiency by all students,

e are broken into small pieces sequenced so that prerequisite skills are mastered

before higher-level skills,
e are followed by tests after each unit of instruction,

e and provide remedial instruction immediately when needed.

These principles were used in the design of instructional material used in the experi-
ment presented in Chapter 7.

The design of Xbrowser facilitates the implementation of methods such as auto-
mated mastery learning by providing traditional document structuring features that
allow compartmentalization of lessons in familiar “chapter-section-subsection” docu-
ment models, while allow interactive questioning of readers to determine understand-

ing of a given topic, thereby allowing normal progression or remedial instruction to

be offered.

3.3 Conclusion

It may thus be seen that the Xbrowser system is a unique hypertext medium, allowing
high-quality text formatting coupled with author control of presentation and progress.
Together with its support for protocol analysis, these features make Xbrowser a

valuable tool in performing empirical studies of programming.
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Chapter 4

Xbrowser: Hypertext and Protocol Analysis for
User Interfaces

In this chapter 1 describe Xbrowser, a hypertext system suitable for computer-
assisted learning, user-interface prototyping, and empirical event-level protocol anal-
ysis studies using features that record subject interactions with hypertext documents
prepared using TEX! [Knu79] or IATEX [Lam94]. Xbrowser is the product of a con-
fluence of protocol analysis, hypertext, and computer-assisted learning systems, and
was used in the extensive study described in Chapter 7. I will discuss Xbrowser and
my experiences using Xbrowser in such experiments shortly, but because of the wide

variety of related work, some background information is presented first.

4.1 Areas related to Xbrowser
4.1.1 Protocol Analysis

Computers have been used to collect and analyze detailed transcriptions of data on
human-computer interaction — called protocols — for some time. These protocols,
whether collected through field notes, annotation of videotape or audiotape record-
ings, or instrumented programs, provide a rich source of empirical data to be analyzed.
Unlike Xbrowser, most systems for protocol analysis are used to process protocols
recorded in some other medium and are not integrated in an application that provides
general-use hypertext facilities or features applicable to computer-assisted learning.
Early forms of protocol analysis used “think aloud” protocols to record thoughts
of subjects either as they occurred, in response to prompting, or retrospectively, using
written field notes, and later, audio or video recordings to transcribe the resulting
protocol. The availability of useful devices including computers revolutionized pro-
tocol analysis, both by providing additional sources of data such as extensive records

of user interactions and by enabling automatic and semi-automatic processing of

'TEX is a trademark of the American Mathematical Society
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recorded protocols to extend the abilities of protocol analysts to deal with sometimes
overwhelming amounts of data. Ericsson and Simon provide a useful history of pro-
tocol analysis to the present [ES93]; J. Smith, D. Smith, and Kupstas [SSK92] and
Fisher [Fis87, Fis91] separately describe several systems designed to assist coding and
analysis of protocols ranging from field notes to videotape to instrumented-program
logs. Beside Smith et al.’s Writing Environment (WE) and Fisher’s Protocol Analyst’s
Workbench (PAW), these include the Protocol Analysis Systems PAS-I and PAS-II
of Waterman and Newell [WN71, WNT73], Verbal Protocol Analysis (VPA?) described
by Lueke, Pagery, and Brown [LPB87] and work on SHAPA by Sanderson, James,
and Seidler [SJS89].

PAS-T was designed to produce a program behavior graph (PBG) from manually
segmented protocols; PAS-IT extended its capabilities with externally provided rules
that made the system more flexible. VPA uses interactively updated menus of tag
categories to segment protocols and build a model interface to meet system-suggested
needs; VPA is then used to validate improvements in the new interface. SHAPA is
explicitly designed to analyze both verbal and non-verbal protocols and assist in
developing encoding tags, using the encoding, and collecting and summarizing data.

Fisher’s own Protocol Analyst’s Workbench (PAW) system guides analysts in
encoding raw protocol data and selecting appropriate analyses [Fis87, Fis91]. She
describes an experiment where six subjects were videotaped thinking aloud about
two programming problems. She used PAW to encode the raw data into a series
of concepts and operations demonstrated by all subjects in the process of designing
programs, and then performed path analysis to uncover mental models.

Trigg describes a videotape analysis tool later to be extended to audiotape and
field notes, produced as part of the Workplace project at Xerox Palo Alto Research
Center (PARC). This tool allowed researchers to produce detailed sets of annotated
data streams including text and graphics describing activities captured on videotape
[Tri89]. These data streams could then be viewed in various ways and in various levels
of detail, and used hypermedia links to constrain layout and presentation.

EVA, an Experimental Video Annotator for symbolic analysis of video data pro-

duced by Mackay, runs under UNIX?® and the X Window System* [Mac89]. Using

2VPA is used in the literature both for this particular system and as a generic abbreviation for
“verbal protocol analysis”.

3UNIX is a trademark of AT&T.
4The X Window System is a trademark of Massachusetts Institute of Technology.
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this system, video is digitized and stored in computer-compatible form, and then
is integrated into Athena Muse, a language for constructing interactive multimedia
[HSAS89]. Annotations may be attached to the video, and those annotations can then
be filtered and analyzed with other software.

In contrast to think aloud and human-observation transcription protocols, Card,
Moran, and Newell proposed a keystroke-level analysis using recorded timestamp
information as part of the Keystroke and GOMS® models [CMN80, CMN83]. Much
of the work in this direction has been theoretical, describing possible interaction
sequences and validating predictions, but Smith et al. describe tools and techniques as
part of a hypertext production system called the Writing Environment (WE) that lend
themselves to the underlying empirical schema, but at a higher level of granularity
[SSK92]. Instead of recording keystroke-level information, WE produces a protocol
recorded by program instrumentation based on unit actions, such as menu selections
or text entry, rather than underlying component mouse or keyboard activity. These
protocols may then be replayed, filtered, and analyzed as desired, looking for strategic
patterns of behavior.

It is toward this same action-oriented level of protocol analysis that our own tool,
Xbrowser was designed: capable of detailed records of high-level user interactions
but less intrusive in data capture than videotaping and without the overhead of
keystroke-level recording for large experiments. In Xbrowser recorded protocols are
the result of users interacting with hypertext documents designed by experimenters.

The model of protocol analysis presented in Chapter 2 consists of several non-

exclusive stages:
e recording an original raw protocol record.
e transcription of rawest protocol into a format usable for analysis.
e segmentation of a transcription into units suitable for higher-level encoding.
e encoding : symbolic manipulation including “naming” of segmented protocols.

e data extraction of specific data to be analyzed, such as encoding-symbol
frequencies, time between high-level events, comparison of achievements to ideal

situations, etc.

e analysis of data by numerical, statistical, logical, or other methods

5goals, operators, methods, and selection rules



26

There are also procedural issues concerning the use of protocol analysis systems, in-
cluding domain generality (how easily different domains of study can use the system,
ignoring differences in verbal and behavioral protocols), data size (how much data
must be dealt with) automation (whether data may be readily dealt with automat-
ically), and transportability (whether intermediate output is produced that may be
applied to using other systems.)

Table 4.1 compares how some of these systems compare to Xbrowser in support
for desirable functions. Solid circles imply strong support for a feature, hollow circles
imply at least some support, and blank spaces imply no or weak support. Note that
not all systems are designed to support the same set of phases of dependence analysis:

this table is intended to be descriptive rather than critical.

Stages Xbrowser* | WE* | PAS | SHAPA | PAW | EVA*
recording [ ] o
transcription [ ] ° 0
segmentation ° o ° ° [ 0
encoding [ [ [ ] [ ] ° °
data extraction ° ° ¢ ¢ o] )
analysis [ ] [ [ ¢ o o
Procedural
domain generality ° o [ o o
data size [ [ ¢ ¢ o] °
automation ° ° o o [ [
transportability ° [ o)

Key: @ implies strong support, O implies moderate support.
* including external filter programs and statistical packages

Table 4.1 Comparison of Xbrowser to selected protocol analysis systems

4.1.2 Hypertext Systems

The traditional term “hypertext”, coined by Ted Nelson [Nel81], refers to “text
... where there are links between different texts and portions of texts ...” [Ras87].
Though supplemented by the later term “hypermedia” [GSM86, YHMDS8] to reflect
the ability to include links to graphics, audio, video, etc. [TI87], original conceptions

of hypertext implicitly included other media [Bus45].
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My intent in referring to Xbrowser as hypertext rather than hypermedia is partly
one of modesty: although it is simple to use graphics and external audio or any
external program supported by hardware in Xbrowser hypertext documents, the
main focus is on simple hypertext links while providing high-quality text formatting.
The use of the term hypertext also reflects the basis of the Xbrowser document in
the high-quality text layout dv®-files created by TEX and IATEX, and a reflection
of a desire to improve the longevity of hypertext, cited by Crane as a problem in
integrating hypertext into traditional scholarship [Cra87]. Designed originally to cre-
ate high-quality paper-based output, the device-independent nature of dvi-files allow
ready adaptation to the latest display devices, whether computer displays or printers.
As display technology improves, Xbrowser document displays running under the X
Window System will improve as well with minimal additional effort.

One hypertext system with ties to the TEX text formatting system is the tex-
info package, a product of the GNU Project of the Free Software Foundation. Files
prepared using the texinfo language can be transformed in one of two ways: into
hypertext info files that may be viewed using the stand-alone info viewer or GNU
emacs in info-mode, or into TEX files suitable for producing a paper document with
appropriate cross-references. Committed to supporting the most primitive terminals,
text formatting in texinfo is necessarily limited, and the hypertext elements only the
most basic.

Another hypertext language that provides primitive text formatting capabilities is
HTML (Hypertext Markup Language), used in the World Wide Web (W3) project
[BLCG92]. W3 uses viewers such as the dumb-terminal oriented lynx” or the more
sophisticated NCSA Mosaic® and Netscape Navigator? to display a distributed collec-
tion of information nodes, including hypertext /hypermedia documents using HTML.
Again, the requirement to support primitive browsers on plain text terminals re-
stricts the typesetting possibilities of HI'ML, and in windowing versions of viewers,
there are the usual problems of obscurement and disorientation inherent in windowed

hypertext.

Sdevice-independent
“Available from the Distributed Computing Group of the University of Kansas.

8Developed at the National Center for Supercomputing Applications at the University of Illinois in
Urbana/Champaign.

9Netscape Navigator is a trademark of Netscape Communications Corporation.
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Another SGML-derived hypertext proposal — HyTime [Mar92] — is used in the
SGML-MUCH (Many Using and Creating Hypertext) system [ZR93]. Like texinfo,
SGML-MUCH can export hypertext documents for use with external text format-
ters. The degree of text formatting available while viewing hypertext is, like both
texinfo and HT'ML, a browser-driven problem. No more than plain text is guaran-
teed, although with some hierarchical organization. Also like texinfo and the HTML
systems, no author control over or knowledge about the field of view seen by readers
is provided. These are significant limitations for computer-assisted instruction, as
will be seen in the next section.

To focus on the design goals of protocol recording and computer-assisted instruc-
tion, extended document navigation is left to the author of an Xbrowser document:
in the base system, Xbrowser provides a single level virtual book-mark to be placed
by the user. Document designers may augment the basic system to any extent desired
by providing menus and graphical displays to guide users, and may prevent digression
is sections of the document where it is not desired.

Another feature intended to facilitate computer-assisted instruction is a constraint
on appearance and placement of the windows displaying hypertext in Xbrowser: by
tiling the display under author control rather than allowing free-form reader place-
ment, and by providing internal session variables that track the current display layout,
the author of the hypertext document may be confident as to exactly what a reader
is seeing without worrying about partial or total obscurement of critical information.

Hypertext is used in Xbrowser to good effect as a schema for document naviga-
tion, allowing intelligent response because the system knows something of what users
have seen and is able to interactively adjust where they should be able to go. The
general-purpose hypertext design of Xbrowser supports a rich ability to fulfill many
needs, including user-interface prototyping and computer-assisted learning. It is in
this combination of protocol analysis, hypertext with extensive text layout tools, and

support for computer-assisted learning that Xbrowser is unusual.

4.1.3 Computer-Assisted Learning

Computers provide two components useful in enhancing the learning process: first,
they act as a medium, displaying desired instructional information in varying ways.
Second, computers may be used to mediate in the instructional process, serving as

agents to administer lessons for an instructor.
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A central problem in this second role of computer-assisted learning is support
for “authoring”: the process of writing and assembling lessons to be applied by the
computer as tutor. Miildner and Elammari [ME92] briefly review several authoring
systems including Hypercard, Toolbook, Quest, IconAuthor, Tencore, and their own
OBJECTOR. This system features multiple windows with a rich user interface and
learner-modifiable hypertext, and uses C++ [Str91] as its input language.

An extensive example of the use of ABASE — a Hypercard-based interactive tuto-
rial program — in a specific information domain is given by Li, Rovick, and Michael
[LRM92]. They describe several problems and tutorials in acid/base regulation used
by first-year medical students; each is implemented as a Hypercard stack. These fea-
ture hypertext, animated summaries, graphical testing routines, and an interactive
dictionary.

Hypertext is only one way that computers can fill the role of an instructional
medium. Badre et al. [BBMS92] discuss the use of program visualization systems
[Mye90] in general to assist in teaching computer science. They also discuss the use
of XTango, an algorithm animation system descended from Tango by John Stasko
[Sta90]. Stasko and Patterson [SP91] present a classification system for program visu-
alization tools in four dimensions — aspect, abstractness, animation, and automation
— that apply to other computer-media as well. Xbrowser has sufficient capabilities
to fulfill several levels of most of these categories, with animation being the sole
exception unless external programs are used, as is possible.

When used as instructional medium, some issues in hypertext become even more
important. De La Passardiere and Dufresne [LD92] present a survey of navigational
tools used in hypermedia, including overview, local, and fisheye maps, filters, and
indices. Other tools such as history trails, footprints, landmarks, and progression
cues are more obviously useful in the construction of intelligent lessons: by knowing
what a student has seen, the lesson may adapt to present remaining topics in the
most constructive way possible. This ability to adapt and respond is critical to the
educational function.

The issue of visual control is part of the problem of disorientation inherent in
hypertext systems. [LD92, Con86] Readers may easily become lost in complex doc-
uments, and without adequate author support for awareness of current document
location, the hypertext system must provide mechanisms to orient the reader, when
it is the author who is most qualified to guide the reader to progress rather than

digress.
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Xbrowser addresses this issue in several ways. The hypertext author may place
and test range-marker annotations within the document or test hypertext page num-
bers to determine the current location, and may keep a trail of where readers have
been. Session-specific variables allocated for individual readers can keep a record of
what has been seen and accomplished, allowing the author to guide readers onward.
The ability to continue and the destination of conventional reading operations such
as “next-page” and “previous-page” are always under author control. Xbrowser pro-
vides as a primitive a single-level “virtual bookmark” for readers to place and return
to within a document. By not forcing a navigation mechanism on authors and by
allow authors to control the availability of the primitive bookmark, Xbrowser allows
much finer control over digression than is usual in hypertext systems: authors may
allow or encourage it, implementing more extensive “stacks” of bookmarks if desired,
or may turn off the ability to digress when some portion of the document requires
close attention.

Another feature of Xbrowser that is useful in computer-assisted instruction is the
control provided over available windowing displays: four combinations are provided,
ranging from one to four windows that tile the display without overlap. An author
is thus guaranteed that if the session variables indicate a particular bit of text is
available, then readers may see it. The problem of obscurement of critical information
is thus precluded.

One approach to training that is particularly applicable when using computers is
called automated “mastery learning”, as described by Egan [Ega88]. These techniques
use a computer to administer lessons that are broken into small pieces sequenced so
that prerequisite skills are mastered before higher-level skills. Then tests are made of
the acquisition of those skills, with remedial instruction if needed. These principles

were used in the design of instructional material used in the experiment presented in

Chapter 7.

4.2 The Genesis of Xbrowser

The need for Xbrowser was recognized during the design of an experiment on empir-
ical analysis of dependence analysis in parallel programming described in Chapter 7.
As part of that design process several pilot studies were performed to identify experi-
mental issues and variables. In the second pilot study, four subjects were videotaped

using written materials on parallel programming to work 24 problems testing com-
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prehension of effects of reversing and parallelizing loop transformations; the materials
contained colored flags that made it possible to code time sequence information from
the videotape as subjects completed various instructional sections and individual
problems. Analysis of the results made it clear that these time values could be valu-
able, but that the process of videotaping and analysis would be problematic on the
scale required to demonstrate projected effects. However, the written materials pre-
pared from device-independent dvi-files produced by IATEX worked well other than
the need for some mechanism to record user interactions.

The next step was inspired by an existing dvi-file previewer running under the X
Window system called XTEX, begun by Dirk Grunwald while at M.I.T. using a library
of routines written by Chris Torek at the University of Maryland [GT90]. The XTEX
previewer provides a primitive hypertext capability for references using dvi-files as
input, produced simply by including an “xtex” IATEX style option. This observation
led to the initial design of a full hypertext program running under X Windows that
used annotated dvi-files and also recorded user interactions. Once refined this design

became the Xbrowser hypertext system for protocol analysis.

4.3 The Xbrowser system

Xbrowser is an extensible set of tools for protocol analysis that consists of two
components programs in its current implementation: xbro, a flexible hypertext pre-
sentation program that uses dvi-files produced by TEX or IATEX from source provided
by experimenters and optionally stores action-oriented protocol records for each user;
and catevents, a translator that converts compact event records produced by xbro
into human-readable form suitable for further analysis by filter and analytic tools run-
ning under Unix such as awk or perl. Future tools include xevents, an interactive

event record replay and filter-creation program currently in prototype.

4.3.1 xbro: hypertext viewer and protocol recorder

The first step in using the Xbrowser system is to prepare a hypertext dvi-file
for display using TEX or IATEX; a style option called “xbro” provides an interface
using macros to access the basic hypertext features. Fig. 4.1 is a simple example
of a IATEX file that produces an Xbrowser document with two hypertext buttons,
using the xbro style option: the source produces two displays, the relevant portions

of which are shown, and writes two custom events into the protocol event record,
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\documentstyle[xbro]l{article}

\def\firstpage{1}

\def\secondpage{2}

\xbroevent{\firstpage}

\begin{document}

This is a \xbrobutton{button}{forward()} that ...

back to this page $\Leftarrow$
\clearpage
. leads to here.
\xbrobutton{This button }{backward()} takes you $\Leftarrow$

\xbroevent{\secondpage}
\end{document}

Sample Xbrowser IATEX file

This is a that ... ... leads to here.
back to this page < This button J§ takes you <

(from display 1) (from display 2)

Figure 4.1 Sample Xbrowser IATEX file and resulting xbro displays

one at the beginning when the first page is displayed, and one when the second page
finishes displaying. The xbro program displays pages from the hypertext dvi-file
in one to four windows called displays tiling the entire screen, looking for “special”
commands embedded in the dvi file. These xbro directives belong to five categories:
actions (including conditional actions based on the value of session variables) that
are executed when encountered, such as tiling the screen in a particular way, setting
session variables, opening a new hypertext dvi-file, going to a particular page, etc.;
action-oriented buttons that display text or graphics within a frame (hollow when
disabled) to indicate the button may be selected with the mouse to execute associ-
ated actions; status-oriented buttons such as multiple-choice or option-selection
buttons, etc.; display-oriented indicators that selectively conceal or highlight text

or depict numeric values as bar graphs based on session variable values; or editors
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that use X Windows standard editing capabilities to allow users to enter text stored
in session variables. Session variables and the current document and location can be
saved in user-specific context files for later retrieval, allowing subjects to quit and re-
sume at will. The current implementation of Xbrowser uses standard Athena widget

f 19 widget editors or XView!! text subwindows,

editors; future versions will use Moti
allowing a more flexible user interface when filling in multiple editors.

Users of xbro access hypertext dvi-files either directly from the command line or
by using a login procedure that simplifies administration of experiments using the
Xbrowser system. Fig. 4.2 shows the appearance of xbro after a user has logged
into Xbrowser using the dialog on the left; for consistency, the login dialog remains
visible whenever a single display is active, as in this figure. The login dialog contains
a scrollable output window, standard X Windows editors for entering a subject’s
Xbrowser user name and password to access specific documents used by that subject,
a quit button, a help button that provides context-sensitive help in the login dialog
output window, and a button to complete the login process. The Xbrowser user
name and password are used to verify access to files named in a simple Xbrowser
database, protecting subject confidentiality; those files specify for each subject an
initially assigned hypertext document, a context file to maintain location and session
variables so that subjects may quit and resume at will, and an event file that records
interactions of the subject with the system and documents. Both context and event
files are optional; only a suitable dvi-file is required. Multiple experiments can be
supported within either a single database or multiple databases stored in the UNIX
file system.

Once the document and most recent context of a subject is accessed, the associ-
ated display arrangement is presented. Fig. 4.2 shows an introductory page in the
single display on the right, with the pre-defined standardized “control-panel” at the
top of the display produced by IATEX macros defined in the provided “xbro” style
option; other such macros allow creation of the various actions, buttons, indicators,
and editors, or insert invisible “milestone” events that appear in the output event
record when the associated display is presented. Standard control-panel buttons al-
low quitting the xbro session (disabled for demonstration purposes in Fig. 4.2 as can

be seen by its hollow button box), visiting a table of contents (likewise disabled),

10OSF /Motif is a trademark of the Open Software Foundation, Inc.

11X View is a trademark of Sun Microsystems, Inc.
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Figure 4.2 Xbrowser login window from xbro with single display
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paging backward and forward through the document where appropriate, “pushing”
a virtual book-mark at the current page, or “popping” back to a previously placed
book-mark if any. Here, access to the table of contents is disabled until the intro-
duction to Xbrowser’s features is completed, and no book-mark exists to be popped.
Whenever the next-page function is disabled, the mouse cursor becomes a question-
mark to remind users that some action needs to be performed to re-enable next-page.
The mouse cursor also changes to a standard watch whenever xbro is occupied with
system tasks and is ignoring user input: earlier versions that queued user input in such
circumstances for later processing proved problematic. As an alternative to clicking
on embedded buttons, subjects can use keyboard equivalents for many control-panel
functions. Statistics on the numbers of buttons, edit events, and keyboard commands
used are all maintained by xbro in the event record, allowing statistical profiling of
individual interaction styles. The event record also contains all editing text events
and a trace of advancement through the document on a page-by-page or symbolic-
milestone basis as decided by the experimenter.

In addition to these action-oriented buttons, display-oriented indicators may be
used to conceal or invert text according to the status of session variables, progression
bar-gauges may be used to show numeric values graphically, and editors may be used
to input values to be stored in variables and the event record. Fig. 4.3 is a four-
display tiled screen that was used as part of the training process for the experiment
presented in Chapter 7. The display in the upper right contains examples of both
indicator types, whose status depends on the contents of the 30 work sheet editors
in the lower left. In this example, the Affected Set Name in the editor for Step D.1
is “second” rather than “fourth”; concealment indicators in the bottom third of the
upper right display indicate this answer is incorrect and what the correct answer is.
At the bottom of the upper right display, inverting indicators show that the answers
in the work sheet editors are correct through Step C; once the Affected Set Name
editor is corrected the indicators for Steps D.1 to D.3 will invert and the “Next” page
button will be enabled, allowing the subject to continue to the next screen. In this
example, the remaining work sheet editors are correct, but the third multiple-choice
button answer in the answer sheet in the lower right display is incorrect; the subject
must click on the incorrect “Yes” button to re-enable the “No” alternative and then

select it to complete this programmed-instruction review of the first training problem.



36

QIAAYD-400T = 0 | yuws )
L0dL0O -IINV MOTd | (FHnee)
o -0 <& Ray

‘Uﬁmvﬂﬁkﬁxﬂ I[qeua-al 0} I2MIUR P[0 }II[I3:-a1 framiue uw Uﬂ:ﬂ_ﬂd oT,

[l 7 [eoal ] el 7 F=ad T s v

¢ yraunyen[pyLea) 1o (e P UIoIgiena) HE i J N {3

e Exz I R E I R
E l T wm afuey pryeaupial

3¢ T )ysInoy 1oy yuspearnba swesBorg ayy ary | | tzir®

1C F )45ITF 10§ yuapearnba swesBorg ayy ary | | t1°I'F

+aps yaf 1addn 2as ‘7§ pue [°F sweiBorg o doo ysmy rog  # uonsany

:adiy, (vE)
1199Yg JIopy 9} U0 sau K1yua azowx paau noi Pia 1 TF E l i emT -d L
. . yumg (sm) auo(q HE=i TN ?:ﬁ?.mm
1( g Jpuodas Iof yuapearnba swerforg ayy ary LGP
- Leesa} o [eesaf  of [epea] @ [opsa]  puooes :iespenapy
10§ )%sITT 10} yuafeammba sweaBorg ayy a1y FF : yraunyen[pyLea) Dof el P UIoIgiena) HE i J N {3
3¢ & )YsInoT Iof yuarearnba swreiBorg ayy axy | | :grF op=y h.m PRI PR n;um.n_ : ﬁEE_ nﬁm.nm N,M ERELIT

EX1 B P T aFury pryeauy (2)
T — s adiy (sE)
opEyR m,.w faug : marg | PPEFR Tque :edif (ve

Slp Dl Bs

yuig (¢33 Fomog  (zE) | OPEX puopes i smN feuy Q.mﬁ

(payerouny) sagg dooT ysmg I'F 199§ 1BMsuy

1 vy H— n;um.hm hlm =T w— n;um.n— ._”ﬁ = ¥I¥

anfes dayg YU WOTyvIay] ()

Uom—m Q.U.U_.H ULINTy I0J 339G JIOAN mmmhﬂﬂﬁ.ﬁ. Uo:Uﬁ:UQUﬁH

.mm_m-m G1X2 N,y F[QRUS O} sIaMEUR }021I00UT Jue 1220

_ yueiq _ _ SWE N 335 pPayIaJy malv puoias

_ _ -jue UQH_H_ IO HLANOT 10 yHOop SWE N 335 pPayIaJy malr 84

:2q prnoye SI0] 8laMeUR INOL

$911091] dayeqne yuszms ayy,
TR el

107 slaMeUR INOE

ow yug
auy) puncy aq of § sruspusdap 21} o JUIG SY} SIAYM SUI AU} UO 43S SUD SY} o
1 uossardxs wapul Keue payrayy o) ‘eruspusdsp moy = I ¢ 95ed AMOQTA
(UL #Tnng ety
puncy aq o} ¢t svuspuadap a1y yo FIIOG STy SIST[M SUL] &1} U 3as5 SUO &Y 61 a
uctesardxa xepur Keue payrayy oy ‘eruspusdep -yyue ue j : Ased TNV
“HEEY AuilE ssuapuadap |
oy Lpduns o1 Leire payrayy o3 ‘eruspuadsp yndynoue 3y : aswr I JLNO0
: emop[op ¢e addy svuspuadap sty oy Furpionae froypa
awrw )] jag payiayy sarpedes oy of sweu sy Kdos pue siuspuadap a1y £q payreyy
Kenyoe Keare oy ayeso] jenu nok siuspusdsp puooss 10 eIy Sy 10} E uj

E e | sovaal _Ewﬁou __ b -toamap fmb |

o

MITASY
Iaye oy

{qyuat Fpprne e Fypnease T{yae FUNY CQMLOE FRITY TPU0IeE TSIy AT T iRpaATs TTVD
sheire payeotpur = syndino wyepraneg suninoiqng
i paaOUIal FYISTIALRE pRIT[AIIN H
0d TYIINANDAS ANT
Wt + (1 Py = (1 ey
wnu - (1 )pigs = ( [ Jpuosas
A+ (1 41 )puodes = 1 4+ 1 Qnop
dury + (1 + 71 Jpamgy = (1 ey
T4 =100 TYIINANDAS

39 = duny
B = TEA
1% = wIno

“[ynop pue fpuoass fyery safuega UoTyass S,

{ryaey “pyne fypgdie fyyuass fqpes Cpyy Sqnop fpargy fpuooss fyery et el proT TIVD
=o%2 Cog T (00e)PITgs fg o (F 4RI CT ST [ T)PUODes ST, CYISUIS[a Yy I0f STYRA XSpUl 2}
TR yI0D yIstIale € iep qaes Furyeur £q efeize opo v yep Surpeal saje[mIne € iR pEOT SULNOIqNE

0 = qyray ‘qyrnr “yygfte fpnranes s “pyy fqanep FpaTgy ‘puoes s s (00011 JEEDEINI
o007 = yoq ‘doy four fdury frea foonu fare fr o A ALNI

surangy sayeqndnrens way fefeare suioe saqeyron ueidond sngy,

uresfor g ma(qol g matasy

(payeyouuy) g dooq ypsmg ‘rf weiforg

Figure 4.3 Complex Xbrowser example from xbro with four displays
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4.3.2 catevents: simple protocol event display

The events records stored by xbro are in an uncompressed binary form. The cat-
events program was created to convert event records into human-readable text; filter
programs such as awk or perl can then scan this text for further processing. Additional
Xbrowser tools under development use whichever of the original event record file or
the output of catevents is more convenient.

Fig. 4.4 is a partial sample of the output of catevents for a subject completing an
introduction document to Xbrowser. In order, the events depicted show the subject
logged in to Xbrowser on an X-terminal called “typical.cs.rice.edu” using a CPU-

server called “mythical”!?  triggered an initial embedded milestone called “FIRST

# fields:
# elapsed time since last event
# | wall-clock time since first xbro login
# | |  event name and assigned value
# | [ | |  timestamp display:pagel/2/3/4
# | (. (. I
#V v v v v v
# __________________________________________________________________________
0 : 0 : EVENT START : -3 :Mon Oct 11 11:09:36 1994:VERSION 3.0
0 : 0 : HOST EVENT : -5 :Mon Oct 11 11:09:36 1994:\
Host=:mythical:Display=:typical.cs.rice.edu:0.0:
0 : 0 : FIRST GOAL : O :Mon Oct 11 11:09:36 1994:
0 : 0 : PAGE1 EVENT : -6 :Mon Oct 11 11:09:36 1994:PG=:0:1
125 : 125 : PAGE1 EVENT : -6 :Mon Oct 11 11:11:41 1994:PG=:1:2
5 : 130 : PAGE1 EVENT : -6 :Mon Oct 11 11:11:46 1994:PG=:0:1
2 : 132 : PAGE1 EVENT : -6 :Mon Oct 11 11:11:48 1994:PG=:1:2
88 : 220 : PAGE3 EVENT : -8 :Mon Oct 11 11:13:16 1994:PG=:4:5:6:7:7:8
9 : 229 : PAGE4 EVENT : -9 :Mon Oct 11 11:13:25 1994:PG=:5:6:6:7:7:8:8:9
6 : 236 : PAGE2 EVENT : -7 :Mon Oct 11 11:13:32 1994:PG=:3:4:6:7
3 : 239 : PAGE1 EVENT : -6 :Mon Oct 11 11:13:35 1994:PG=:2:3

5 : 244 : PAGE1 EVENT : -6 :Mon Oct 11 11:13:40 1994:PG=:9:10
85 : 329 : EDIT EVENT : -10:Mon Oct 11 11:15:05 1994:firstedit:1:\
This is an example of a multiple-line\n\ edit entry.
24 : 353 : FINISH INTRO : 1 :Mon Oct 11 11:15:29 1994:PG=:10:11

Figure 4.4 Sample Xbrowser output from catevents

2machine names are fictionalized
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awk script

# awk example for page tracing and section time summaries:
# traces = page(s+/+/+)-[elapsed time]-page(s+/+/+)...

BEGIN { printf(“> " ); sum = 0 ; total = O ; FS=":" ; }
( NF > 86) { total += $1 ; sum += $1 ; }
/PG=/ { printf("-[%d]-%d", sum, $10) ; sum = O ;

for (£ =NF ; £ > 10 ; £ -=2 ) printf("+") ; }

( $4+0 > 0 ) { printf("\n>total time to %s was /d seconds.\n", $3, total) ;
total = 0 ; }

awk output

>-[0]-1-[125]-2-[5]-1-[2]-2-[88]-5++-[10]-6+++-[6]-4+-[3]-3-[5]-10-[109]-11
>total time to FINISH INTRO was 353 seconds

Figure 4.5 Short awk example for scanning catevents output

GOAL”, spent 125 seconds viewing the initial display (0:1) before going to display
1:2, five seconds later went back to 0:1, two seconds later went on again to 1:2,
88 seconds later started a three-display screen with displays 4:5, 6:7, and 7:8, etec.
The EDIT EVENT shows the content of an editor variable named “firstedit” was
changed 85 seconds after arriving at display 9:10. Editor contents are session variables
that may be used in conditional expressions in the hypertext annotations stored in the
dvi-file. The document used in this example required firstedit to contain non-blank
text before the next-page function was enabled: 24 seconds after entering the text,
the subject finished reading the page and proceeded to display 10:11, triggering the
“FINISH INTRO” milestone; the total time for this subject to finish the introduction
to Xbrowser was just under six minutes.

Milestone names are contained either in an external file maintained by the author
of the hypertext document, or may be stored at the beginning of an event file as
desired; the external file is used in producing the document so event records and
symbols automatically match. The output of catevents is designed for use by pattern
matching filter programs. For example, Fig. 4.5 shows a simple awk script for scanning

catevents output that outputs page usage and milestone times.

4.3.3 xevents: prototype replay tool and event filter editor
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A recent addition to the Xbrowser system is xevents, a prototype of an event
record replay tool that can also be used to interactively filter the event output from
catevents. Fig. 4.6 is a example of the proposed intertace of xevents when editing
event filters. When replaying an event record a small movable xevents window (not
shown) appears in front of the full set of xbro displays that produced the record: as
the ver-like controls are used, the appropriate xbro displays are created, simulating
button-pushing and editor-filling either in a time-based mode with variable replay
speed or in an event-based mode that allows single-stepping. The editing view shown
in the figure has a menu bar at the top. The uppermost windows contain a scrolling
list of the original event record. Just below, a collection of windows show for the
current event translation set the event translation selector masks with associated
line-oriented labels and operands, and below that the output filter control window.
At the bottom is a pair of windows for the resulting translated event record. The
input event record and output event record windows display matching highlighted
lines to indicate lines selected for event translation and the corresponding output
events produced; “Set” indicators show the set identifiers of event translation rules
that match original events or produce the translated events. The current prototype
of xevents stores translation sets as awk scripts that may be altered manually as

needed.

4.4 Experiences using Xbrowser with an extensive study

The study reported in Chapter 7 used xbro documents that were shared by all sub-
jects as well as some uniquely produced for each subject. Customized dvi-files con-
tained 24 random problems covering all combinations of experimental variables ar-
ranged as 12 sets of two problems. As each problem set was used, the corresponding
dvi-file was uncompressed by commands embedded in hypertext annotations in the
previous problem, and the preceding set was compressed. Each problem set required
329 kilobytes of storage uncompressed, and 96 kilobytes of storage compressed for a
maximum of 1.3 megabytes per subject while working problems. The total size of
dvi-files shared by all subjects was 1.9 megabytes.

Event files stored for each subject covered an average three and half hours of par-
ticipation involving almost 800 displays and filling in 300 editors, and when complete
were typically less than 64 kilobytes uncompressed and 20 kilobytes compressed. The

corresponding final context files for each subject averaged 40 kilobytes uncompressed
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and less than 10 kilobytes compressed. Event and context files are optionally stored
in compressed form between uses, but are not usually an issue while an experiment
is being administered.

Display speed was carefully considered: a complicated full-screen set of displays
such as in Fig. 4.3 required less than one second to complete. More commonly, only
one-fourth of the screen was updated at a time, in under one-sixth of a second; such
updates can be done without clearing the entire window if only button, indicator, or
editor status changes, further reducing distraction owing to display refreshing. The
implication of these maximal display times is that experimenters using Xbrowser
can expect to detect effects on the order of seconds, as might be expected for an
event-level protocol recording system. In this experiment, the shortest time interval
with significance in an analysis of variance on was about 10 seconds; however, this
had p < 0.001 with 18 subjects and 216 observations, implying that weaker effects (3.
e., smaller intervals) should be readily detectable.

For data analysis catevents and awk were used extensively: to summarize time
spent in each section of the experiment and time to complete each problem, to gen-
erate a trace of all errors made by subjects and to score those error traces in terms of
severity, and to produce data files in a format that could be read as input to SAS'®
procedures used for statistical analysis. Several versions of tracing and scoring awk
scripts were used with several styles of SAS input files to verify the output interface
of catevents.

The prototype of xevents was developed using an awk script that converts earlier
Xbrowser event records into the latest version; event records contain history fields
describing the versions of Xbrowser and xevents used to produce and edit them. To
maintain the integrity of data, alterations may be stored as edit operations appended

to a copy of the original data, or as a final edited version to save space.

4.5 Future directions for Xbrowser

The experiment described in Chapter 7 shows how valuable the current version of
Xbrowser can be in collecting and processing extensive amounts of data. Three major
classes of improvement are currently envisioned, covering authoring, implementation,

and future plans.

13GAS is a trademark of SAS Institute Inc.
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First, the INTEX macros currently provided for hypertext document authoring are
to be augmented by a set created explicitly for the aforementioned study, includ-
ing automated multiple-choice buttons, visibility-toggling indicators, and highlight-
ing completion indicators. Source for other complex macros from that study will be
distributed with Xbrowser as examples of ways to produce various effects.

Second, several implementation issues of xbro could be improved: display and hy-
pertext interface code could benefit from improved speed, the editor interface should
be upgraded to use the more flexible Motif or XView user interface standards, and
the event record format should include basic events previously implemented as ex-
tended string-event markers, such as host and display machine usage and display/page
activity.

Finally, planned extensions to the Xbrowser system remain to be completed, such
as a full implementation of xevents, focusing initially on interactive replay of event
records with the corresponding hypertext documents. Another feature of xevents
to be completed is its ability to interactively build awk or perl scripts to filter event
records to produce desired output time-based, session variable or editor content-based

values in a flexible fashion.

4.6 Conclusions

The Xbrowser system provides a valuable tool for empirical tests of user interface
issues. By using high-quality page layout programs as a basis, many opportunities
arise including rapid prototyping of user interface layouts simulating program appear-
ance, menu and dialog design, and preparation of text manuals. The common dvi-file
substrate makes it trivial to conduct text-vs.-display experiments guaranteeing the
only difference between materials is the respective quality of the text and computer
display output devices and the method used to turn pages. Xbrowser also provides
a platform that can provide high-quality hypertext manuals and instructional mate-
rials. With its protocol analysis capabilities, Xbrowser makes it possible to design,

implement, and analyze complex user interface studies efficiently and unobtrusively.
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Part 11

An Empirical Study of Parallel Program

Comprehension
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This section of the dissertation discusses an extensive empirical study of depen-
dence analysis using the Xbrowser system. A version of the data similar to that used
for statistical analyses reported here will be made freely available over the Internet.
For more information, contact the author by email at bro@cs.rice.edu, or consult

the World Wide Web page: http://www.cs.rice.edu/ bro.
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Chapter 5

Empirical Studies of Programming

The importance of understanding human abilities and limitations in the area of
parallel programming is clear. One approach to achieving that understanding lies in
using empirical studies to measure comprehension of dependences and data-flow in
sequential and parallel programs.

There is a rich literature on methodology for empirical studies of program-
mers, but virtually no application has been made to parallel programming [Wad93].
Empirical studies of sequential programming provide details of experimental design
useful in the implementation of the study described in Chapter 7. Pertinent reviews
of the literature that provide design methodologies include Shneiderman [Shn80],
Brooks [Bro80], Sheil [She81], and Landauer [Lan88]. Broader works in the more
general context of human-computer interaction can be found in Curtis’ description
of the paradigms of psychology of programming [Cur88], Boehm-Davis’ survey of
program comprehension studies [BD88], and Egan’s discussion of individual variance
[Ega88]. Another useful survey of studies of programmer variance appears in a review
of statistical methodology in the literature on human capabilities by John Hammer,
who addressed the question of statistical power in computer programming, concluding
that power is not generally a problem with such work [Ham84].

In addition to these survey and methodological works, two areas of specific studies
have proved helpful to the research described in this dissertation. These include stud-
ies of the use of control- and data-flow in sequential programming analogous to the
current research, and studies of individual programmer variance. In the former cate-
gory, Weiser’s work with slicing [Wei79] and Lyle’s work with dicing [Lyl84] have been
particularly helpful, while Iselin’s experimental design [Ise88] is most similar to the
current effort in that he collected both error severity and time to demonstrate com-
prehension; in the latter category, Oman, Cook, and Nanja’s experiment comparing
the effects of programming experience on the debugging of semantic errors [OCN89]
is most similar, again for its use of both error severity and time to task completion

as dependent measures in their study of interactions of programming experience with
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the nature of programming problems. These and other related works are discussed in

some detail here.

5.1 Control- and Data-flow Use in Programming Studies

Although involving control-flow as well as data-flow, Weiser’s and Lyle’s works on
slicing and dicing are best attributed to the data-flow aspect of these studies, while
other research more directly addresses the effects of control-flow inherent in program

loop and conditional statements.

5.1.1 Data-flow Work: Slicing and Dicing

Weiser’s Slicing Experiment
Mark Weiser used empirical techniques in his dissertation on the data-flow technique
known as slicing [Wei79]. Slicing involves using traditional data-flow techniques to
eliminate program statements that do not contribute to the values stored in a par-
ticular set of variables at a particular place in a program. The statements that
remain are called a slice of that program for those variables at that program state-
ment. In later work he described a test of whether programmers mentally construct
slices when debugging [Wei82]. Weiser’s hypothesis was that while debugging, pro-
grammers use data-flow techniques and program slices as mental representations of
program specifics. Such knowledge is not conceptualized as linear lists of program
statements but as connected threads related by data-flow.

Three ALGOL-W programs were prepared, each with a simple bug. In addition
representative code fragments from each program were selected, consisting of slices,
contiguous chunks, or random statements, some of each including the bug statements.
Each subject was given a randomly selected program to debug. The program descrip-
tion and output could be referred to at any time. After finding a correction, the
subject recorded the time and went on to another program. After debugging all three
programs, a short break was given. The subject then was shown code fragments and
asked to rate how confident he felt that the code had appeared in one of the three
programs.

When analyzed, the difference in ability to recognize relevant and irrelevant slices
was significant, as was the difference between relevant slices and random statements.

Slices relevant to the planted bugs were recognized more often than slices not con-
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nected to the bugs, and also were recognized more often than collections of random
statements from the programs.

The conclusion was that programmers used slices internally to encode knowledge
about programs being debugged. However, there are classes of bugs that cannot be
found using slicing [WL86]. Human reasoning based on innate slicing techniques will
fail on those classes of bugs. It remains to be determined whether similar innate data

dependence techniques and flawed reasoning based on them exist.

Lyle’s Slicing Experiment

Jim Lyle’s dissertation has a description of another slicing experiment [Lyl84].
The initial hypothesis was that an experimental tool called Focus that included a
slicing aid would improve performance on debugging tasks. Focus was implemented
as an experimental test-bed for evaluation of slicing-based tools.

For the slicing experiment, two FORTRAN programs were produced, each with
randomly introduced bugs. All subjects debugged both programs with versions of
Focus, with one program selected at random used with the version with a slicing tool
added, while the other program would be used with the version without it.

Debugging times with and without the slicing tool were compared for the two
programs. There were no statistically significant differences. Despite the lack of con-
clusive results, the slicing experiment provided some interesting information derived
from post-experiment interviews. Most subjects found the tool useful. Negative com-
ments were directed at the user interface rather than the tool itself. This interview
technique can recover data that might be otherwise overlooked.

Another useful technique from the slicing experiment was the use of a small num-
ber of subjects in a pilot study. This allowed small problems in experimental design
and materials to be corrected before time and expense were invested in a large study;

this approach was used extensively in the current study.

Lyle’s Dicing Experiment

The major contribution of Lyle’s dissertation was the introduction of a technique
called dicing based on slicing [Lyl84]. A dice is constructed from a slice of a program
by removing statements that appear in slices on variables known to be correct. The
remaining statements must contain the bug if the original slice did.

This follow-up to the slicing experiment simulated on paper the effects of using
a dicing tool. Lyle expected dicing to improve programmer debugging speed. A
FORTRAN program was used, with three planted bugs. The practice treatment for
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the experimental group explained what dicing was, and how it could help in debugging
programs. Both groups were shown the same practice program, with the experimental
group also being shown sample slices from it. This was followed by an explanation
of the target program both groups were to debug. The control group was provided a
listing of the entire program, while the experimental group was also given slices for
each error with the statements in the dice marked.

The control and experimental groups were statistically analyzed to ensure their
background and experience were not significantly different. This data was collected
with a background questionnaire. Lyle found that there was no significant difference
in the biographical histories of the control and experimental groups. Further, he
found that the dicing group was significantly faster at debugging for two of the bugs,
and on the border of being significantly faster for the third.

Uses of Slicing and Dicing in Debuggers

One variant of slicing described by Korel and Laski [Las90, KL90] is dynamic
slicing, in which a specific set of inputs to a program is considered in the process of
constructing relevant slices by dropping code dependent on control-flow that cannot
occur for that input. The original (or static) form of slicing assumes all control-flow
paths may occur, and presumes no knowledge of content of variables. By taking
advantage of the additional information and by operating on a program trajectory
(list of executed statements) rather than the original static program, a dynamic slice
may be much smaller than a static slice, and so more useful for debugging purposes.
Another significant extension of dynamic slicing is its ability to deal with pointers
and records. Dynamic slicing was used in the implementation of the debugger known
as STAD (System for Testing And Debugging).

Another tool that uses dynamic slicing as well as dicing to reduce slice size is
C-debug, described by Samadzadeh and Wichaipanitch [SW93]. A debugging tool for
C language programs [Sch90], C-debug was designed to operate as a utility program
running under the UNIX! operating system. In the form presented, it did not yet
support structures, unions, or defined-types, but it did handle control structures,

function calls, and pointer expressions.

LUNIX is a trademark of AT&T.
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5.1.2 Control-flow Work: Loops, More Loops, and Learning

Cognitive Strategies and Loops
Soloway, Bonar, and Ehrlich [SBE83] describe an experiment that compared error per-
formance using a programming language designed to support specific loop strategies.
They identified two strategies commonly used: “read/process” and “process/read”.
In the former, an unconditional loop reads data, tests for completion, and if not, then
processes it. In the latter, an initial read precedes a loop that conditionally executes
with a test for completion, embodying processing of the data read and reading the next
data. Soloway et al. believed the process/read approach, commonly achieved with
constructs such as the “while” loop of Pascal, to be more awkward than read/process
designs, that may be implemented directly with Ada’s “loop... leave... again” con-
struct. They hypothesized that people would find it easier to program correctly with
a language that directly supported their preferred strategy, and tested this with a
two part experiment. First, to determine a preferred strategy, they asked subjects
to produce a high-level “plan” for solving a programming problem. Second, they
asked half the subjects to implement their plan using ordinary Pascal, and half with
Pascal-L, a version in which the only loop construct was “loop... leave... again”.
They found that the preferred plan was to use read/process loops, but that subjects
tended to implement a strategy matching the language support; subjects were also
more often correct when using the language-matching strategy. Correctness, ability
to sense the strategy matching the language, and preference for a strategy all seemed

to improve with experience.

Cognitive Strategies and Loops, Revisited

Iselin [Ise88] studied some of the issues raised by Soloway et al. in a larger study
that also addressed conditional statements and learning effects. Iselin using a program
tracing task similar to hand-simulation to control confounding variables better [Pen82]
with the language COBOL, measuring the length of time required to work out what
output would be produced, the number of errors in the output, and the magnitude
of the error in the output variable. Subjects were advised that time taken and errors
produced were being measured and that subjects were not working the same problems.
The results confirmed that experienced programmers did better that students, and
that performance improved with learning. However, read/process loops were only
better for student programmers: there was not even a trace of the expected effect for

professional programmers. This could be an artifact of Iselin’s use of COBOL, but
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he also found a similar effect for positive vs. negative conditional expressions among

the students that did not extend to the professionals.

Learning About Control-Flow

Kessler and Anderson [KA86] conducted two studies that dealt with issues in-
volving learning about iteration and recursion and transfer effects between the two.
Problems were designed to be recursive or iterative, operating on lists or numbers,
accumulating results forward or backward in either failure or success conditions, and
to either skip incorrect occurrences or to eject (terminate) on failure to accumulate;
only the first and the last issues had a measurable effect.

The language used in the first experiment, SIMPLE, uses English-like syntax and
LISP-like semantics, and was designed to study the acquisition of recursive program-
ming skills. Subjects — essentially novices to programming — were randomly assigned
to learn iteration or recursion first, and were required to solve a problem correctly
before moving on to the next. It took between 2 to 5 hours to complete the entire
experiment. Time to criterion and number of errors made were both recorded. The
results showed that the group that learned iteration before recursion did better in
terms of time on the second condition than did the recursion-iteration group; of the
within-subjects conditions, the “on failure to accumulate, skip occurrence” problem
took longer to get correct.

A second experiment replicated the first, using a version of SIMPLE with a sim-
plified loop construct and a slightly different experimental design. In this version, it
took between 2 to 5 hours to complete the experiment. The results confirmed that the
iteration-first group did better on its second trial than did the recursion-first group,
and changing the skip/eject factor was more difficult to deal with than changing the

success/failure factor.

5.1.3 Implications of Control- and Data-Flow Studies

Weiser’s and Lyle’s works were instrumental in pointing out the value of looking at
how programmers deal with data-flow issues in programs, and how the results can
have concrete implications for tools and techniques generally useful in programming;
the manifold uses to which slicing has been put are particularly impressive.

The studies on loop-usage and iteration reveal some of the deep interactions of
language issues with suspected cognitive factors that affect performance; in addition,

experimental design issues involving subject preparation in terms of expectations,
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nature of data collection, and the importance of training are involved. Iselin in
particular discusses some of these issues in some detail in presenting his experimental
design, as well as collecting both time and error data, analogous to the study presented
in Chapter 7.

5.2 Studies of Programmer Variance

Lyle’s dicing study provides a useful example of motivations and techniques for con-
trolling for programmer variance. Variance between experimental groups can generate
statistical noise and obscure results. In Lyle’s biographical questionnaire, subjects an-
swered questions about length of programming experience, number of classes in com-
puter science, number of programming languages used, and how comfortable they
felt using FORTRAN. The factors used by Lyle are also among those identified by

Hammer as useful in controlling programmer variance [Ham84].

5.2.1 Hammer’s Survey: Controlling for Programmer Variance

Hammer discussed such factors in a larger context, using techniques to evaluate the
statistical quality of the conclusions drawn regarding the empirical designs used in the
studies he cited. He found that empirical studies of this type demonstrated adequate
statistical power to warrant the conclusions they reached.

For professional programmers, years of programming experience were a fair pre-
dictor for program reading and writing performance. Experience and number of
computer science courses correlated well with program writing time. For profession-
als with less than 3 years of experience, the number of known programming languages
and the number of familiar FORTRAN programming concepts correlated with debug-
ging performance.

For advanced computer science students, several promising predictive measures
were found. Multiple correlations exist between program comprehension and writing
tasks and the number of computer science courses taken, grade point average in those
courses, and years of programming experience. These three factors also tended to be
mutually independent.

For beginning formal programming students, previous years of programming expe-

rience, SAT? Mathematics scores, or college course grade(s) in introductory program-

2Scholastic Aptitude Tests
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ming, calculus, or chemistry were useful data. Recording experience with personal

computers was also recommended.

5.2.2 Specific Studies in Programmer Variance

The following paragraphs contain further specific examples of research that studied
background data, frequently with error- or time-based measures of performance, to

account for individual variance.

Performance in Computer Programming Courses

A specific example of this approach can be found in the work of Koubek, LeBold,
and Salvendy who correlated the academic achievement in high school and college
of more than 3000 students to their performance in computer programming courses
[KLS85]. Koubek et al. also describe related work that found significant correlations
of programming performance with overall grade point average and SAT Verbal and
Mathematics scores. In their own research, they found that performance in high
school and college mathematics and science courses accounted for up to 50 percent of
individual variance; specifically, they found that high-school mathematics and science
course grades, along with SAT mathematics scores were the best pre-college predictors
of performance in introductory programming courses, independent of the program-
ming language taught or the student’s major course of study. By supplementing these
with college science and mathematics course grades, the regression equations improve
still more, and are able to account for 25 to 50 percent of the variance in performance.
These background factors also significantly correlated with performance in advanced

programming courses.

Benefits of Collaborative Effort

Wilson, Hoskin, and Nosek tested the benefits of collaboration for student pro-
grammers in a study that compared performance on problem-solving involving writing
computer programs for individuals and two-person teams [WHN93]. They found ev-
idence that performance in terms of readability of the solutions was improved by
teamwork, and that the most measurable impact of collaboration was in heightened
post-experiment measurements of confidence in the solution and enjoyment of working
the problem. These latter results show the value of measuring such “soft” indices when
considering performance in inherently reductionist experimentation: in the absence
of performance contraindications, improvements in such indices may validate the ex-

istence of longer-lasting effects, such as reduced fatigue or improved job-satisfaction.
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Student Populations Differences in Motivation

A similar “soft” consideration in background studies involves issues such as moti-
vation. Wilson and Braun presented a study that related choice in different academic
programs to differences in motivation [WB85]. They found that, compared to com-
puter science students, business information systems students thought computer pro-
fessionals should be more practical, could legitimately be more interested in making
money through their work, and did not necessarily have a high mathematical apti-
tude; they also were less likely to consider it reasonable to sacrifice documentation
in the interest of storage efficiency, and were less trusting of computers in general.
Their results also point out possible effects of motivation on general performance,
suggesting that testing for motivation or other related background differences is a

good idea where populations being studied may include different groups.

Debugging Semantic Errors

Oman, Curtis, and Nanja provide some evidence of the effect of programming
experience on debugging error [OCN89]. They compared performance of novice, in-
termediate, and skilled computer science students trying to debug a binary-search
and a median-calculation program. Each program contained a single semantic error
involving either violation of array bounds or use of an undefined variable, and was
presented to subjects with an appropriate error message that either did or did not
include a line number indicating where the error occurred. Subjects were requested
to circle the incorrect statement, to write a corrected version, and to record the time
they completed the debugging process. FErrors were scored in terms of severity on
a scale from 0 to 3: 0 = bug not located, 1 = bug found but not corrected, 2 =
bug found but correction syntactically incorrect, and 3 = bug found and correction
completed. The results support Gould and Drongowski’s conjecture that if a pro-
grammer can find an error, it will be corrected successfully [GD74]: of 386 debugging
trials, there were only seven instances where the bug was located and some form
of corrected statement was not provided. Experienced programmers were most suc-
cessful in locating and correcting the errors, and did so faster than less experienced
programmers. In addition, they were less dependent on debugging clues, such as the
line numbers experimentally provided. For intermediate programmers, inclusion of
the line numbers improved performance but was still less than that of experienced
programmers, while novice programmers were mostly dependent on the line number

clue. This particular study shows the value of including programming experience as
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a background datum of interest, as well as providing an example of an experiment

that records both error severity and time, as does the one I describe in Chapter 7.

Productivity of Programming Teams

A final example concerns the experimental design of Gowda and Saxton for a study
of factors influencing the productivity of programming teams [GS89]. They took ad-
vantage of the opportunity provided by an ACM? regional programming contest held
in Ohio to study the influence of individual and group characteristics on programmer
productivity. To this end, they collected questionnaire data from fifty-seven four-
person teams including questions on graduate/undergraduate status, SAT and GRE*
scores, grade point average, list of courses useful in preparing for the contest, and
programming experience. Their preliminary results focused on team and leadership
style, and indicated that the most successful teams divided labor much more quickly

and worked in coordinated two-person problem-focussed sub-teams.

5.2.3 Implications in Questionnaire Design

The absence of factors relevant uniquely to parallel programming is the result of the
absence of empirical studies directed at parallel programming problems. Based on
these sequential programming studies, | generated an extensive background question-
naire about topics likely to be relevant to measuring variance in parallel programmers,
including years of parallel programming experience, percentage of programming time
spent in parallel programming, number of courses directly addressing concurrent or
parallel programming, and number of parallel programming languages or concepts
known. Questions less certain to be useful examined experience in analogical situa-
tions, such as managing large numbers of people. The data from this questionnaire
was used both as in Lyle’s experiments as a verification of the comparability of exper-
imental groups, and as suggested by Hammer as factors to test for correlation with

success or failure in parallel programming; both uses are reported in Chapter 7.

3 Association for Computing Machinery

4Graduate Record Examination
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Chapter 6

Parallel Programming and Dependence Analysis

Parallel programming is a moderately recent programming paradigm motivated by
the ability of parallel computers to improve execution speed at a fraction of the cost
of increasing the speed of a conventional sequential computer. Unfortunately there
are known data-flow difficulties called data dependences, described in Section 6.2.1,
that prevent some programs from being readily converted to parallel forms. One
technique for identifying and correcting such problems is dependence analysis, using
knowledge of the nature of dependences to detect and correct them where possible.
My research uses dependence analysis in two ways. First, the potential value of
classical dependence analysis is one factor to be empirically studied. Second, depen-
dence analysis techniques are extensively used in the generation of the programming

problems presented to subjects.

6.1 Parallel Programming

Parallel programming is the process of specifying a program designed to execute on
a parallel computer. Just as a conventional sequential computer executes one in-
struction at a time, a parallel computer is capable of executing several instructions
simultaneously. The speedup possible using a parallel computer is thus proportional
to the number of instructions it can execute at one time. To improve a sequen-
tial computer, basic technology must be improved at potentially exponential cost.
Parallel computers on the other hand may be constructed by combining existing se-
quential computers to work in parallel, at a linear cost. Fig. 6.1 gives an example of
this type of cost-benefit analysis. Improving sequential computers may require fun-
damental changes in design or technology. Improving parallel computers may only
require buying more processors; indeed, improvements in sequential computers can
be incorporated in parallel computers simply by taking advantage of new technology

as 1t becomes inexpensive.
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Figure 6.1 Cost-speedup comparison for sequential and parallel computers

One obstacle regarding parallel programming concerns data-flow problems that
prevent parts of programs from executing in parallel, while a program can always
be improved by executing its component statements faster. Consider the statement
“a = 1”7 followed by “a = 2”7. They may be executed at any sequential speed desired
as long as their canonical order is preserved, and the final value for a will be 2, but if
executed in parallel the first statement could complete after the second and produce
the final value 1. This dependence on execution order between data references in a
program’s statements is the central problem of parallel programming that dependence

analysis addresses.

6.2 Data Dependences and Dependence Analysis
6.2.1 Data Dependences

Kuck, Kuhn, Padua and Wolfe identify basic dependence relations between statements
in an algorithm or program [KKP*81]; Bernstein provides a succinct summary of the
underlying data-flow conditions [Ber66]. These have been determined to be critical
to the understanding and construction of parallel programs [AK87, SLY89, Hag90]
and are equally important in sequential programming transformations that affect
execution sequence, such as reversing a loop. Dependences are of two classes. Control
dependences result from the control structure of the algorithm. Data dependences

are concerned with the flow of values in the execution of the algorithm, and imply a
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required ordering to preserve program semantics. Changing the order of statements
involved in a data dependence wiolates or breaks the dependence. There are three

basic types of data dependences:

e An output dependence occurs when two statements define the contents of the
same memory location. The output of the program will depend directly on

which statement executes last.

e A flow dependence ( or true dependence ) occurs when a memory location
is set by a statement and is read by another statement later in a determined

sequential ordering.

e Anti- dependences occur between statements in which one uses the contents
of a memory location that is set by another statement later in a determined

sequential ordering.

In addition to these simple data dependences, the presence of control structures
may affect them. Examples of this include loop-carried dependences, in which one
of the basic types of data dependence occurs between instances of iterations of a
loop body. Thus each of the previous simple data dependences may also appear in a
loop-carried form; the alternative is known as non-loop-carried or loop-independent.
Loop-carried dependences of concern typically involve array references rather than

scalar variables.

6.2.2 Uses of Dependence Analysis

Why are dependences of interest in the empirical study of parallel programming?
Several observations provide the answer.

Allen and Kennedy noted that the concept of dependence as used in an ordinary
data-flow analysis is substantially different than in parallel programming research
[AK87]. In most sequential data-flow analyses, dependence is used to imply which
statements must be present for others to receive the correct values. Anti- depen-
dence and output dependence are not usually needed for those purposes, serving only
to determine the relative order of statements, a function crucial in parallelization.
However, certain classes of loop transformations including reversal and paralleliza-
tion require awareness of all three types of dependences

Shen, Li, and Yew determined in an empirical study of array-based dependences

in FORTRAN programs that flow dependences — used in both sequential and parallel
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data-flow analyses — are most common, producing 63% of the dependences encoun-
tered, with anti-dependences making up 3%, and output-dependences 34% [SLY89].
They insist that the state of the art in data dependence analysis and automatic par-
allel execution techniques was unable to completely fulfill the needs of parallelization,
relying on user assertions to improve performance.

Haghighat, whose work extended the ability of dependence analysis to handle some
of the problems identified by Shen et al., also noted the necessity for user assertions
to supplement automatic techniques [Hag90].

Callahan, Cooper, Hood, Kennedy and Torczon further supported the need for
user interaction, and described uses of dependence analysis techniques for programmer
assistance in PTOOL and in its successor, the ParaScope programming environment
[CCH*88a, CCH*88b].

The conclusion is that direct human involvement in the dependence analysis
process is necessary to guide automatic algorithms, while the lack of empirical studies
to measure human abilities in using dependence techniques suggests a significant
research area that must be investigated. A handful of statements can generate a dense
tangle of dependences, any one of which can prevent parallelization. Dependence
analysis has become a major technique in the study of parallel programs, and is used
as an analytic tool in parallel programming environments, but difficulties humans may
have in applying it effectively remain unknown. The current study attempts to open
this hitherto closed door with the assistance of empirical techniques using Xbrowser,
a program designed to present hypertext experimental materials and collect data for

protocol analysis.
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Chapter 7

An Empirical Evaluation of Dependence Analysis
in Parallel Program Comprehension

The analysis of data dependences resulting from data-flow references to memory lo-
cations in the execution of a program are critical to understanding and constructing
parallel programs. [KKP*81, AK87, SLY89, Hag90] My intent in this study is to
investigate several factors related to dependence analysis that potentially affect pro-
gram comprehension, applying empirical methods commonly used in the study of
sequential programming to measure effects on error severity and time required to
show successful comprehension of simple loop-based program transformations related
to parallel programming. In addition, I investigate correlations of subject background
factors to these same error and time values controlling for significant experimental
results.

The results show that graphical annotation of program source as is done in the
ParaScope parallel programming environment improves the time required to correctly
comprehend the results of parallelizing loops, and that dependence type affects both
time required for successful comprehension and severity of errors made in the attempt.

The investigation of background factors revealed that, controlling for the exper-
imental effects, several factors related to mathematics ability and education such as
standardized test scores, number of courses taken, and grade point average correlated
to improved error and time performance.

These results also demonstrate the efficacy of the Xbrowser hypertext system for
protocol analysis described in Chapter 4, used to administer the experimental mate-
rials, including training and testing of subjects, collection of data in an interactive

questionnaire, and event-level subject protocol recording.

7.1 Related Work

Gowda and Saxton [GS89] describe the administration of an experiment in which

observations were made of a programming contest in which the number of problems
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solved and time to complete problems were recorded. Videotape and audiotape were
used in some cases, and all subjects completed pre- and post-contest questionnaires.
Later work in the same line by Gowda and Chand [GC93] demonstrates the difficulties
in measuring results on programmer productivity derived from background factors:
dependent measures can be swamped by statistical noise if the scale of measurement
is too broad. Difficulties such as these point up the value of survey works such as
Boehm-Davis’ of software comprehension [BD88], making it possible to objectively
consider possible dependent and independent variables in light of previous experience.

Sometimes this itself is difficult: virtually no empirical work has been done on
parallel programming [Wad93], making the task of experimental design harder. Still,
sequential programming studies can provide valuable examples. Oman, Curtis, and
Nanja [OCNB89] describe an experiment in which time to debug and debugging error
severity were measured for subjects with novice, intermediate, and expert program-
ming backgrounds on several problems dealing with program semantic errors including
array bounds and undefined variables: experts were better at finding and correct-
ing bugs, and needed less support to do so, while intermediate subjects were better
but needed more support, and novices suffered without the most extensive support.
Soloway, Bonar, and Ehrlich [SBE83] describe an experiment that compared error per-
formance using programming languages designed to support specific loop strategies;
they found a natural preference for “read/process” loop strategies, that subjects did
better with a language supporting that strategy with a “loop... leave... again” con-
struct, and that experience reduced subjects’ susceptibility to these influences. Iselin
[Ise88] replicated these results in a study that also included effects of conditional
statements and learning: again, experienced programmers did better that students,
and learning improved performance, but the benefits of the read/process strategy
could only be confirmed for programming students, not professional programmers.
Kessler and Anderson [KA86] have studied the process of learning flow of control,
finding that such measures do reflect underlying difficulties for subjects, and that
learning iteration transfers to learning recursion better than the reverse condition.
The work most similar to this research is that of Weiser [Wei82, Wei84] and of Lyle
[Lyl84] [WL86], who describe extensive evidence that programmers are influenced by
control- and data-flow considerations in the context of slicing (selecting only pro-
gram statements relevant to control- and data-flow producing a variable’s contents at
a given program location) and dicing (selecting program statements from a slice on

an incorrect variable by removing statements known to produce correct variables).
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Weiser found evidence that programmers use slices in mental models of programs,
while Lyle extended the slicing model and provides proof supporting the efficacy
of using both slicing and dicing in computer-supported programming environments.
Later uses of slicing and dicing include that Korel and Laski [Las90, KL90], who de-
scribe work related to dynamic slicing in STAD (System for Testing And Debugging),
and Samadzadeh and Wichaipanitch [SW93], who relate experiences using slicing and
dicing concepts in the design of C-Debug, an interactive debugging tool.

The shortage of empirical data on parallel program comprehension also applies
to studies of individual differences in parallel programming, requiring me to look
to sequential programming studies for relevant work. Egan’s survey of individual
differences studies [Ega88] is a good introduction to some of the issues involved,
and also discusses automated “mastery learning” techniques that tend to improve
mean performance and reduce variability in achievement. These techniques, including
modular lessons, hierarchic skill acquisition, and achievement testing coupled with
remedial instruction, were employed in the instructional phases of the current study.

In another survey work on statistical methodology in human factors in computer
programming, Hammer [Ham84] identifies several variables that have been used in
sequential programming studies of individual differences: these contributed greatly to
the design of an online interactive questionnaire used in the current work. Other ex-
amples include the work of Koubek, LeBold, and Salvendy [KLS85] who found that
up to 50 percent of individual variance in performance on computer programming
courses could be accounted for by performance in high school and college mathemat-
ics and science courses, Gowda and Saxton’s consideration of SAT, GRE, grade point
average, and programming experience in his experimental design [GS89], as well as
Wilson and Braun’s study of student background that found motivational differences
in student populations that would appear to affect performance [WB85]. Wilson in
later work with Hoskin and Nosek [WHNO93] used grades and post-treatment satis-
faction indices to show enhanced confidence in solutions and enjoyment of problems
in a study of the positive aspects of collaboration for programming.

In this study, my goal is to investigate the effects of dependence analysis with
the intent of applying the findings to present and future tools supporting parallel
programming. Pilot studies described later were used to identify the five experimental

factors described in the following section as being of immediate interest.
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7.2 Empirical Variables

Dependences used here come in three types and may be thought of as an elaboration of
Bernstein’s Conditions describing circumstances in which memory references from two
different program statements may proceed without regard to the order in which those
statements are executed [Ber66]. In Bernstein’s formulation, the canonical ordering
of a read of a memory location followed by a write to the same location, a write
followed by a read, or a write followed by another write to the same location all must
be preserved to guarantee the semantic result of execution. In dependence analysis as
described by Kuck, Kuhn, Padua, Leasure, and Wolfe [KKP*81] the first form (a read
followed by a write) is called an anti- dependence, the second (a write followed by a
read) is called a flow (or true) dependence, and the last (a write followed by a write)
is called an output dependence, with the first statement in the canonical ordering
called the “source” and the second called the “sink” of the dependence. These three
dependence types, further detailed by Allen and Kennedy [AK87], form the levels of
an experimental factor called DEPTYPE, with examples shown presently.

Any program transformation violating Bernstein’s Conditions or equivalently a
data dependence by changing the canonical ordering of the statements involved can
result in different values being produced. Two such troublesome transformations are
to reverse the execution order of the statements, or to execute them in parallel which
has at least the implied potential of reversal. These two transformations constitute
the levels of REVPAR, a second experimental factor, and are only two cases from a
large class of reordering transformations mentioned by Allen and Kennedy [AKS8T].

In this study, I used reversal or parallelization transformations on loop state-
ments to measure resulting effects on comprehension. In a loop environment, an
additional factor derived from dependence analysis is involved, based on whether
data-flow involved in a dependence occurs within a given iteration of the loop body
or between iterations of the loop body. The former, called a non-loop-carried (or loop-
independent) dependence, in unaffected by transformation of the loop statement since
the order of execution of statements within the loop body is unaffected. The latter,
called a loop-carried dependence, is adversely affected by loop statement transforma-
tions since the canonical ordering of statements involved in different iterations of the
loop body is changed. These two cases make up a third experimental factor called
CARRIED. Note that the source of a non-loop-carried dependence precedes its sink

in a loop body, while the canonical ordering of loop-carried dependence statements is
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determined by the array indices involved and is independent of the order of the source
and sink statements within the loop body. Fig. 7.1 provides examples of all three lev-
els of DEPTYPE for each CARRIED treatment, including source-first and sink-first
loop-carried versions. For this study, source-first and sink-first versions of loop-carried
dependences were randomly assigned, limiting the comparison for CARRIED to data-
flow distinctions only. Kuck et al. [KKP*81] describe both varieties of dependence,
but terminology used here is adapted from that of Allen and Kennedy [AKS87].

One method used to improve comprehension of parallel programs has been au-
tomatic analysis of programs to show dependences to programmers who must deal
with them. One technique of displaying dependences is to annotate program source
with graphical indications of potentially troublesome dependences. The alternative is

to require manual identification of possible dependences to be resolved by program-

location used location set location set < “source”
then set then used then set again || <— ‘“sink”
L i “fow”  J|| “outpur || €= DEPTYPE
DOi=2TO3 DOi=2TO3 DOi=2TO3
x = a(i) a(i+1)=-1 a(i-1) =x r‘non-loop-carried” w
/ \ data-flow within
al) =-1 x= a(i+l) a(-1) =-1 loop iterations
END DO END DO END DO
DOi=2TO3 DOi=2TO3 DOi=2TO3
x = a(i) a(i+l)=-1 a() =x
/ \ < source-first
a(i-1) =-1 x = a(i) a(i-1) =-1 ( “loop-carried” w
END DO END DO END DO
_ _ _ data-flow between
DOi=2TO3 DOi=2TO3 DOi=2TO3 loop iterations
a(i) =-1 x = a(i-1) a(i) =-1
\ / < sink-first T
x = a(i+1) a@i) =-1 a(i+l) =x
END DO END DO END DO CARRIED

Assume array and x values are originally 0: consider the effect of reversing a loop.

Figure 7.1 Examples of DEPTYPE and CARRIED treatments
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mers before troublesome transformations will be successful. These two approaches
are the levels of a fourth experimental factor called ANNOTATION, using annotation
similar to that of Fig. 7.1. The annotation approach to assisting comprehension of
parallel programs has been used in several parallel programming environments, in-
cluding the ParaScope Editor mentioned in Cheng’s survey of parallel programming
tools [Che93] and described in more detail by Calahan, Cooper, Hood, Kennedy, and
Torczon [CCH88a, CCH*88b].

Finally, alternatives to dependence analysis can be considered in this empirical
framework. One possibility is to use a simpler method, since anti- and flow depen-
dences can be treated as special cases of a “read-write” memory access conflict (with
output dependences a “write-write” class of conflict). Similarly, non-loop-carried
dependences do not matter in loop transformation and so their emphasis may be
reduced, providing less distraction from other concepts involving loop-carried depen-
dences. Of course, identifying a dependence is not enough: array elements ultimately
affected by it must be determined as well. In this study, a simple form of more general
algebraic formulae were used for both TRAINING methods for that purpose, derived
from extensive personal techniques developed to understand data-flow consequences
of reversing program loops. This derivation is analogous to that of slicing by Weiser
[Wei79] or dicing by Lyle [Lyl84] from observing programmer behavior. This alterna-
tive method is called “Algebraic Formulation”, a name that reflects those formulae
and was chosen for its suitability as an alternative to “Dependence Analysis” that
together are the levels of the fifth experimental factor, TRAINING.

Given these five experimental factors, several hypotheses may be tested:

e 1 : Do differences in error severity or comprehension time exist for the Anti-,
Flow, and Output dependence levels of DEPTYPE?

e 2 : Of the CARRIED treatments, are Loop-Carried dependence problems more
error-prone or time-consuming than Non-Loop-Carried dependence problems?

e 3 : For ANNOTATION, does the Annotated method provide a benefit to pro-
grammers compared to a Manual method?

e 4 : Contrasting Reversed-loop to Parallelized-loop transformations for REVPAR
allows comparison of similar sequential and parallel programming tasks: is parallel
programming inherently more difficult when the task is similar to sequential program-
ming?

e 5 : Finally, for TRAINING, is simplifying Dependence Analysis in the manner

of Algebraic Formulation an improvement?
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Additionally, interactions of these factors should be tested. Among those with a
reasonable a priori expectation of detectable effects are CARRIED x DEPTYPE (if
dependences matter only for loop-carried dependences), TRAININGxCARRIED (if
glossing over non-loop-carried dependences matters), and TRAININGxDEPTYPE
(if reducing the distinction between anti- and flow dependences matters).

In addition to testing these hypotheses, this study provided opportunities to try
to relate subjects’ background to performance on the measures used.

The effects of these independent variables were gauged on two types of response
variables: an ERROR value that measures the severity of errors that occur when
working on a programming comprehension task involving loop transformation, and a
TASKTIME value that measures the length of time required to demonstrate adequate
comprehension on that task.

These empirical factors were among those identified from the series of pilot studies

described below as most immediately important.

7.3 Pilot Studies

Several pilot studies were used to develop hypotheses and materials. In the earli-
est version, three subjects read paper texts on parallel programming and answered
written questions about the correctness of parallel-extended FORTRAN programs
including both parallel DO and SELECT statements using P-F, a language derived
for this research from FORTRAN 90 [BGA90]. The results suggested measurable re-
sults could be expected and that it would be advisable to concentrate on fundamental
factors and a single programming language construct: the DO loop. The five factors
used in the current study were chosen for specific investigation. One possibility seen
in this first pilot study but set aside for later research concerns the advisability of
creating parallel program constructs simply by adding a “PARALLEL” keyword to
an existing sequential construct: some errors with such parallel constructs seem to
result from confusion about parallel execution semantics influenced by the similar
surface syntax. To lessen any such effect a matching keyword “SEQUENTIAL” was
added to the P-F language used here.

A second pilot study was conducted using paper texts explicitly designed to study
the five core experimental factors identified above. Four subjects were videotaped
reading about parallel programming and working problems by filling in one-page

checklists that identified a precise set of array elements affected by transforming DO
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loops in a program. Colored flags were inserted in the text so that time values could
be collected from the videotapes for each step of the process. A questionnaire derived
from one used previously at a workshop on the use of the ParaScope programming
environment was used to collect data on the background of subjects. Results of this
pilot study suggested both time and error values were worth collecting, but that
collecting time values unobtrusively on the scale required for the complete study
would be difficult using written materials. Thus the Xbrowser hypertext protocol
analysis program described in Chapter 4 was designed, and the textual materials were
adapted to use it for programmed-instruction and automated collection of data.

A final pilot study was performed with four subjects using Xbrowser and hyper-
text versions of the materials used in the current study. The only major difference
from the current protocol was the videotaping of subjects to help verify interaction
with and data collection provided by Xbrowser. The results confirmed the feasibility
of the approach and the value of the data to be expected, and provided an estimate
of time required to complete the experiment that was provided to subjects enrolling

in the study.

7.4 Method
7.4.1 Subjects

Subjects used were volunteers from four advanced computer science courses taught
at Rice University open to both upper-level undergraduate and graduate students.
Volunteers received extra credit for participating. Subjects were randomly assigned to
either the Algebraic Formulation or the Dependence Analysis TRAINING group when
enrolling in the study through use of a shell script using random number generators
to make the assignment, set the subject’s chosen Xbrowser username and password,
install appropriate links to shared hypertext Xbrowser files, randomly generate a
set of 24 problems including answer keys covering all within-subjects experimental
variables, and then produce customized hypertext Xbrowser files for those problems
using IATEX [Lam94] and macros provided with Xbrowser.

Because of hardware and software failures not related to experimental issues only
10 subjects in Dependence Analysis group could be used for data analysis, while 16
subjects in the Algebraic Formulation group were available.

After completing the study, an extensive background questionnaire was adminis-

tered. A post hoc examination of this data revealed no major departures from the
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assumption of TRAINING group background equivalence, and that subjects had an
average of over eight years of programming experience, were extremely confident in
their ability to do sequential programming, knew on average nine programming lan-
guages and had used an average of four within the last six months, spent roughly half
of their working time programming, and had completed an average of eight college-
level computer science courses. A complete report of the questionnaire results may

be found in Appendix B.

7.4.2 Materials

A small computer laboratory was used for this study, containing six Sun 3/50 worksta-
tions configured as X-terminals, each with a 19 inch monochrome display of 1024 x960
pixels with a 14 inch by 10.75 inch usable screen area, a keyboard, and an optical
mouse that could be placed on either side of the keyboard. Instructions for us-
ing Xbrowser were posted by the door. Users were not routinely observed while
participating in the study other than through data collected by Xbrowser, but an
experimenter was available for consultation in another office, and could be reached
by a telephone provided.

Xbrowser was used to present the hypertext programmed-instruction document
summarized in Fig. 7.2, showing some of the hypertext links used for document nav-
igation. Adjacent boxes were sequentially linked from top to bottom. In general,
links branching forward were disabled until the destination was encountered in se-
quential reading. To simplify the diagram, reference shortcut links from the Index
and within sections are not shown. Boxes with rounded borders were identical for
both TRAINING groups except where passing references were made to group names,
as indicated by “*” after the title. Dark rectangular boxes differed substantially for
each group but were constrained to similar amounts and complexities of text. The
number to the far right of each box is the number of individual window displays used
to complete each section: thus the entire study involved showing 797 displays to a
subject, not including optional ones such as the Index or individual review.

Identical Review problems were used for all subjects except for differences in
TRAINING method. Regular problems worked by subjects were generated randomly
by choosing problems from a set of templates covering all possible combinations of the
experimental factors and choosing from a set of template variable names taken from

twelve sample programs. This process produced FORTRAN 77 or C programs with
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Figure 7.2 Overview of the Xbrowser hypertext study document

forward and reversed versions of problem loops that automatically generated answer
keys for each problem as well as customized IATEX code to manufacture Xbrowser
files for each problem set.

A more complete description of materials appears in Appendix A.

7.4.3 Procedure

After an initial scripted demonstration in which they were advised that records would
be kept of their specific interactions with the system, subjects used Xbrowser to
read a version of the document summarized in Fig. 7.2 appropriate to their assigned

TRAINING group and containing randomly generated problem sets. Table 7.1 com-
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Algebraic Formulation Dependence Analysis

“violations” “loop-carried dependences”
“wwrite” violations “output” dependences

“anti-” and

[44 7 : :
wread” violations
“flow” dependences

“near-violations” (not emphasized) “non-loop-carried” dependences (full)
“alpha” references “source” references
“beta” references “sink” references

Table 7.1 TRAINING terminology differences

pares how the terminology used in training differed for each group. In the document,
they were advised that they were all working different problems using different proce-
dures and should not be concerned if others seemed to take different amounts of time
to complete the experiment. The 24 regular problems representing unique combina-
tions of CARRIED (2 levels), DEPTYPE (3 levels), ANNOTATION (2 levels), and
REVPAR (2 levels) were organized into a set of twelve programs each containing two
problem loops. A given problem was initially presented in the context of both the
original and transformed programs. Fig. 7.3 is an example of an Xbrowser screen for
this “Comparison” stage of a problem taken from a problem set generated for but not
used in the experiment. Subjects used either the “Slicer” button for Manual problems
or the “Annotater” button for Annotated problem as in the figure to continue to the
displays for a 16-item checklist designed to isolate array elements ultimately affected
by a dependence, if any. Checklist displays showed a minimal version of the program
similar to a slice as defined by Weiser [Wei82, WL86| containing only statements
relevant to the current problem’s loop in the upper left with optional annotations as
in this example, an automatically updating set of instructions in the upper right for
filling in the checklist, a work sheet of editors for the checklist in the lower left, and a
set of yes/no questions in the lower right; the questions were concealed until the work
sheet for the checklist was completed. Fig. 7.4 shows the last step of the checklist for
the same example problem.

After completing the regular problems, subjects answered an extensive on-line
questionnaire including standard Likert scales covering many topics possibly relevant
to performance on sequential programming tasks. [Par50, Ham84] For example, there

were questions covering high school and college mathematics and computer science
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performance and background [GS89, KLS85, WHN93], programming experience, SAT
and GRE scores [GS89], and measures of confidence in programming ability and
enjoyment of working problems [WHN93]. In all, eighteen question areas provided
more than seventy measures for consideration. The complete text of the questionnaire
may be found in Appendix B. Besides acting as a check on the assumption of the
comparability of the TRAINING groups, the questionnaire data were used for post
hoc correlations with subject performance averages described presently.

Subjects took between 2.7 and 5.6 hours to complete the entire experiment, involv-
ing almost 800 displays and filling in 300 editors, and including an online debriefing
that explained the difference between the TRAINING groups and offered an oppor-
tunity to learn the alternative method. The average time was 3.5 hours, and the

median time was 3.2 hours.

7.5 Results

For both error severity and time to complete the problem checklist, the main tech-
nique employed was analysis of variance (ANOVA), with TRAINING (2 levels) treated
as a between-subjects variable while CARRIED (2 levels), DEPTYPE (3 levels),
ANNOTATION (2 levels), and REVPAR (2 levels) are treated within-subjects to con-
trol for individual variance, using appropriate denominator terms of classical ANOVA

as suggested by McCall [McC86] and Winer [WinT71].

7.5.1 Error Severity Analyses

The 26 subjects — 16 in the Algebraic Formulation and 10 in the Dependence Analysis
TRAINING group — worked 24 problems covering all possible combinations of the
within-subjects experimental variables CARRIED (2 levels), DEPTYPE (3 levels),
ANNOTATION (2 levels), and REVPAR (2 levels). For each problem, mistakes
made were scored as “ERROR”, based on a scale from 0 to 8, with 0 being error-
free performance, 1 being inconsequential procedural or typographical error ete. up
to 7 when affected arrays were misidentified, and 8 when the CARRIED nature of
a dependence was misdiagnosed. Fig. 7.5 compares the relative frequencies of each
class of ERROR score for each TRAINING group for CARRIED. Notice that Non-
loop-carried problems only produced ERROR scores of 0, 1, and 8 since successtul

completion only required entering two values and attesting to the lack of a Loop-
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Figure 7.5 ERROR severity Stem-Leaf and Box Plots
by TRAINING for CARRIED and its levels
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Carried dependence. Thus ANOVA was performed both on the combined error data
and separately for each level of CARRIED.

Results for ERROR analysis are summarized in the graphs of Fig. 7.6. In the
CARRIED-included ERROR analysis greater opportunities for error in Loop-Carried
problems resulted in more severe errors on average than Non-Loop-Carried problems.
Additionally, differences were found between Anti-, Flow, and Output dependence
problems with Anti- problems weakly worse than Flow problems and very strongly
worse than Qutput problems, with Flow problems somewhat worse than Output
problems.

For the CARRIED-separate ERROR analyses the restricted range of error oppor-
tunities for Non-Loop-Carried problems seemed to limit variance as well: while the
order of ERROR means for the levels of DEPTYPE is the same as for CARRIED-
included and Loop-Carried analyses (Anti- > Flow > Output) they are more com-
pacted. Even Anti- and Output dependence problems are only somewhat distinguish-
able, while the other relationships are poorly discriminable at best. In contrast the
Loop-Carried analysis for the combined analysis finds Anti- dependence problems only
poorly discriminable from Flow problems, but Flow problems somewhat worse than
Output problems while Anti- problems are strongly worse than Output problems.

ANOVA results in the CARRIED-included ERROR analysis for the CARRIED
term have F), = 8.7, with p < 0.01. For the DEPTYPE term in that analysis
F}% = 5.4, with p< 0.01. No other main or interaction term of the CARRIED-
included ANOVA has a significance level less than 0.05. A complete set of F-statistics
may be found in Appendix B. Contrasts between each pair of levels of DEPTYPE
shown in the figure are from ANOVA without the uninvolved dependence type: Anti-
vs. Flow overall with £}, = 2.5 and p= 0.13, Flow vs. Output overall with £}, = 3.5
and p= 0.07, and Anti vs. Output overall with Fy, = 8.4 and p< 0.01.

Of the other experimental factors, ANNOTATION has Fy, = 2.4 and p= 0.13,
REVPAR has Fj, = 1.07 and p= 0.31, and TRAINING has Fy, = 0.09 and p= 0.77;
the result for ANNOTATION suggests a possible weak benefit for Annotated prob-
lems indicating further empirical work or another form of annotation is needed, but
the other two are convincingly negative as far as ERROR is concerned. [Coh88] The
weakness of the ANNOTATION result is probably due to the low overall error rate
compounded by the fact that for Non-Loop-Carried Annotated problems, the inten-
tional absence of a graphical dependence annotation was overlooked in six instances,

resulting in severe error ratings that might have been avoided if another form of an-
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Figure 7.6 ERROR severity results for CARRIED and DEPTYPE levels
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notation had been used for Non-Loop-Carried dependences, as is optionally available
in the ParaScope parallel programming environment.

Results of the ANOVA for the a priori interaction term hypotheses give for
CARRIED-included CARRIEDxDEPTYPE the ratio Fi = 1.15 and p= 0.33, for
TRAININGxDEPTYPE FZ = 0.13 and p= 0.88, and for TRAINING x CARRIED
F3, = 0.35 and p= 0.56; these results all fail to support the hypothesized interactions.

For the separate Non-Loop-Carried error analysis, no result has a significance
level less than 0.05: DEPTYPE is only reported here in contrast to the results for
Loop-Carried analysis, with an overall Fi, = 2.2 and p= 0.12. Most of this is from
the Anti- vs. Output contrast, which for Non-Loop-Carried problems has Fj, = 3.3
and p= 0.08, while Flow vs. Output has only F), = 1.5 and p= 0.23, and Anti- vs.
Flow only F), = 1.1 and p= 0.30.

For the separate Loop-Carried error analysis, the only result with significance
level less than 0.05 is for DEPTYPE, with FZ = 3.97, with p= 0.025. Contrasts for
DEPTYPE are Anti- vs. Flow with only F}, = 1.06 and p= 0.31, Flow vs. Output
with Fj, = 3.4 and p= 0.08, but Anti- vs. Output with F}, = 6.0 and p= 0.02.

7.5.2 Time Analyses

The most severe ERROR scores affected the time subjects took to complete the
checklist task (TASKTIME), as when non-loop-carried and loop-carried dependences
were mutually confused. For that reason, only subjects whose most severe ERROR
score was 6 or less were included in the time ANOVA, with 12 subjects in the Algebraic
Formulation and 6 subjects in the Dependence Analysis TRAINING groups. Because
of vast differences in time required to correctly complete Non-Loop-Carried problems
(43 seconds on average) and Loop-Carried problems (176 seconds on average), no
CARRIED-included ANOVA was performed, only separate analyses on each level of
CARRIED: to further improve sampling distribution by reducing skew, ANOVA were
performed on inverse TASKTIME values, a technique frequently used when time to

complete a task is of interest [AC84]. For ease in understanding means are graphed
in seconds as well as —% Of the experimental variables, TRAINING (2 levels)

seconds”
is treated between-subjects, while DEPTYPE (3 levels), ANNOTATION (2 levels),
and REVPAR (2 levels) are treated within-subjects. Figs. 7.7 and 7.8 compare the
relative frequencies of m values for each TRAINING group used in the Non-

Loop-Carried and Loop-Carried analyses, respectively.
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Figure 7.7 TASKTINME

Stem-Leaf and Box Plots by

TRAINING for Non-Loop-Carried problems

Fig. 7.9 summarizes results for TASKTIME with ANNOTATION and DEPTYPE
means and contrasts shown for each level of CARRIED; the indistinct means of Non-
Loop-Carried DEPTYPE are included for comparison. For both Non-Loop-Carried
and Loop-Carried problems the potential of the Annotated method of ANNOTATION

is amply shown, with Annotated problems faster than Manual problems in both cases.
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Figure 7.8 === Stem-Leaf and Box Plots by

TRAINING for Loop-Carried problems

Results for DEPTYPE differ with CARRIED level however: DEPTYPE is very
important in Loop-Carried problems, with Anti- dependence problems only a little
slower than Flow problems, but Anti- and Flow problems both definitely slower than
Output problems. In the Non-Loop-Carried problems however, DEPTYPE does not
matter, varying less than two seconds from the fastest to the slowest mean.

For Loop-Carried problems, ANOVA for the ANNOTATION term has Fjy = 8.7
and p< 0.01, while for Non-Loop-Carried problems F} = 32.5 and p< 0.001. For
the DEPTYPE term, for Loop-Carried problems ANOVA has F%, = 7.6 and p< 0.01,
while for Non-Loop-Carried problems FZ = 0.14 and p= 0.87. No other result of
ANOVA had a significance level less than 0.05. A complete set of F-statistics may
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DEPTYPE overall was not significant, with p= 0.87. Graph contrasts denote significance
level for various contrasts, concentrating on Anti- vs. Flow, Flow vs. Output, and Anti- vs.
Output in the right two graphs with Loop-Carried above and Non-Loop-Carried below.

Figure 7.9 TASKTIME means and contrasts by
CARRIED for ANNOTATION and DEPTYPE levels

be found in Appendix B. The contrasts between each pair of levels of DEPTYPE
shown in the figure are from ANOVA leaving out the uninvolved dependence type:
for Loop-Carried problems, Anti- vs. Flow with F};, = 0.52 and p= 0.48, Flow wvs.
Output with Fjs = 7.3 and p= 0.02, and Anti vs. Output with Fj; = 11.3 and
p< 0.005, while for Non-Loop-Carried problems Anti- vs. Flow with F}}; = 0.2 and
p= 0.66, Flow vs. Output with Fj5; = 0.33 and p= 0.57, and Anti vs. Output with
Fls = 0.02 and p= 0.90.

Of the other experimental factors, Loop-Carried problems have for REVPAR
Fl; = 0.03 and p=0.86, and for TRAINING F; = 1.9 and p= 0.18, while Non-Loop-
Carried problems have for REVPAR F, = 0.49 and p= 0.49, and for TRAINING
Fls = 0.82 and p= 0.38. These results are convincingly negative for REVPAR. For
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TRAINING, the possibility of a weak effect in the Loop-Carried case suggests caution.
[Coh88]

For the a priort interaction term hypotheses, no CARRIED-included ANOVA
was done for CARRIED xDEPTYPE and TRAINING xCARRIED, but for the for-
mer note that DEPTYPE is significant for Loop-Carried problems (p< 0.01) and
insignificant for Non-Loop-Carried problems (p= 0.87), a strong indication that ad-
verse data-flow and not syntactic appearance matters. For the latter, the result for
Non-Loop-Carried TRAINING (p= 0.38) suggests that glossing over non-loop-carried
dependences has no effect worth further consideration. The last specific interaction
term to consider, TRAININGxDEPTYPE, has FZ = 0.79 and p= 0.46 for Non-
Loop-Carried problems, and F%, = 1.36 and p= 0.27 for Loop-Carried problems,
suggesting no possible benefit from reducing the distinction between anti- and flow

dependences.

7.5.3 Subject Background Information Correlation with Performance

Besides confirming the comparability of the two TRAINING groups, the extensive
questionnaire data were used to try to correlate information about the background
of subjects to performance on ERROR and TASKTIME measures. These questions
were based in part on factors thought to be relevant to performance on sequen-
tial programming comprehension as reported by Hammer[Ham84]. Since CARRIED,
ANNOTATION, and DEPTYPE all had effects on ERROR and TASKTIME, the
questionnaire data were tested against both level of CARRIED separately for all pos-
sible combinations of ANNOTATION and DEPTYPE separately and jointly using
Pearson product-moment correlation “R” values [SAS90a]. Only correlations that
have are significant (with p < 0.05), are fairly strong (have |R| > 0.4), and fit a larger
picture reasonably well (i.e., that make sense in context with related correlations that
may not necessarily meet the other two criteria) are reported here, but it is important
to remember that the significant error and time effects described previously required
12 averages for both ERROR and TASKTIME be tested for each level of CARRIED
for correlation with 38 background factors from the questionnaire, and that these
correlations were tested post hoc. 1t is for this reason that the previously mentioned
criteria for reporting were selected. A more complete report of the questionnaire

correlations may be found in Appendix B.4.
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Standardized test scores ...

Question 6.4 in the questionnaire concerned scores on several standardized tests: “Try
to recall your scores for any of these standardized tests, if taken: What were your SAT
(Scholastic Aptitude Test) scores? Verbal:___ Mathematical: __ What were your GRE

(Graduate Record Examination) scores? Verbal:___ Mathematical: __ Analytical: "

. and ERROR and TASKTIME

Both SAT and GRE mathematical scores were found to have significant correla-
tion with several ERROR and TASKTIME averages, summarized in Fig. 7.10. For
Non-Loop-Carried TASKTIME, GRE analytical scores had a strong effect on both
Annotated and Manual problems, with R= —0.81 and p< 0.01, and R= —0.80 and
p< 0.01 respectively. A similar effect held for GRE mathematics scores, with R=
—0.75 and p< 0.05, and R= —0.85 and p< 0.005 for Non-Loop-Carried Annotated
and Manual TASKTIME respectively. Finally, SAT mathematics scores were shown
to correlate with improved ERROR performance, with R= —0.68 and p< 0.001.
In contrast, SAT and GRE verbal scores had virtually no influence on these mea-
sures: SAT verbal scores correlate to Non-Loop-Carried ERROR with R= 0.11 and
p= 0.62, while GRE verbal scores correlated to Non-Loop-Carried Annotated and
Manual TASKTIME values with R= —0.35 and p= .40, and R= —0.05 and p= 0.69,

respectively.

Mathematics and Computer Science background ...

Question 6.5 in the questionnaire was: “How many computer science courses have
you taken in high school and college? High School:___ College:___ In your estimation,
which is closest to your grade point average for them: A/B/C/D/F”, with grade
point averages scored 4.0 to 0.0.

Question 6.6 in the questionnaire was similar: “How many mathematics courses
have you taken in high school and college? High School:___ College:___ In your estima-
tion, which is closest to your grade point average for them: A/B/C/D/F”, with
grade point average scored 4.0 to 0.0.
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Figure 7.11 TASKTIME correlations with

Numbers of Mathematics Courses

. and TASKTIME

Fig. 7.11 depicts some of the significant correlations between the number of high
school and college mathematics courses taken and various TASKTIME measures.
The number of high school courses were negatively correlated to both Annotated
and Manual Loop-Carried TASKTIME with R= —0.46 and R=—0.44 respectively
and p< 0.05 for both. Of the dependence types, the best result was a negative
correlation for Anti- dependence Loop-Carried TASKTIME with R= —0.57 and p<
0.005. The number of college mathematics courses was negatively correlated to Non-
Loop-Carried Manual TASKTIME with R= —0.41 and p< 0.05 and to Loop-Carried
Manual TASKTIME with R= —0.57 and p< 0.005. The total number of high school

and college mathematics courses was a similar and even better negative correlate, to
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Non-Loop-Carried Manual TASKTIME with R= —0.46 and p< 0.05 and to Loop-
Carried Manual TASKTIME with R= —0.61 and p< 0.001.

. and ERROR

Fig. 7.12 shows how estimated grade point averages in high school and college mathe-
matics and computer sciences courses were significantly correlated to various ERROR
measures. For Loop-Carried and particularly Anti- dependence Loop-Carried prob-
lems, worse mathematics grades were significantly correlated to increased average
ERROR with R= —0.43 and p< 0.05, and R= —0.60 and p< 0.001 respectively.
For Non-Loop-Carried ERROR, similar significant correlations were found with both
mathematics and computer sciences grades with R= —0.64 and p< 0.001, and R=
—0.53 and p< 0.01 respectively. The Non-Loop-Carried results are less robust than
those for Loop-Carried problems: dropping “C” grade data points affects correlations

for Non-Loop-Carried problems more.

Non-programming workload percentage ...

Question 6.13 in the questionnaire was: “What percentage of working time do you
spend doing: non-programming-related activities?___sequential programming?___ par-
allel programming?___" Responses for parallel programming were negligible, with the

remaining two choices summing to 100.

. and ERROR

Non-programming work percentages correlated well to ERROR rates on several mea-
sures, with subjects working most commonly at programming doing best. Fig. 7.13
summarizes these results. For Non-Loop-Carried problems, ERROR correlated with
non-programming work percentages with R= 0.56 and p< 0.005. For Loop-Carried
problems, and particularly for Manual Loop-Carried problems, non-programming
work percentages correlated with ERROR with R= 0.48 and p< 0.05, and R= 0.53
and p< 0.01 respectively.

7.6 Discussion

It is not surprising that Loop-Carried problems caused more severe errors and took

longer to complete the checklist on average than Non-Loop-Carried problems, given
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Figure 7.12 ERROR correlations with Mathematics
and Computer Science Grade Point Averages

the experimental design. In the pilot studies, attempts were made to make the check-
list more comparable for both levels of CARRIED by requiring subjects to enter
null or placeholder values in unused checklist editors, but strong subject resistance
prevented use of this design.

The relationships among the levels of DEPTYPE for error severity and for time to
complete the checklist for Loop-Carried problems are similar, with Anti- dependence
problems worst, then Flow dependence problems, then Output dependence problems.
The distinction between Anti- and Flow dependences is much less than between either
and OQutput dependences, suggesting programmers may benefit more from additional
assistance with the former two types of dependences, and that more work is needed

to determine a relationship between them. The correlations of Anti- dependence
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Figure 7.13 ERROR correlations with
Non-Programming Work Percentage scores

Loop-Carried TASKTIME and ERROR with number of high school mathematics
courses and mathematics grade point average suggest that a strong background in
mathematics may be the best preparation for dealing with the hardest dependences.

The mixed picture for ANNOTATION seems to result from difficulties with one
phase of the checklist. While there is no question that Annotated problems were
completed more quickly than were Manual problems, the style of annotation used
was deficient in two ways. First, the lack of apparent annotations in Annotated
Non-Loop-Carried problems was difficult at first for some subjects to recognize: they
treated Annotated Non-Loop-Carried problems as Manual Loop-Carried problems,
resulting in severe ERROR scores in six cases. Secondly, the checklist required tran-

scription of information about the dependence including type, values of source and
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sink expressions at each extreme of the loop, and the array ultimately affected by the
dependence. Annotated problems provided only passive assistance with transcrip-
tion, presenting the information but requiring manual copying of it to the checklist.
Examinations of records of the errors seem to show that subjects had more trouble
with some parts of transcription than with entering the same information using the
Manual method, but that experience with Annotation improved over the course of
the experiment for each subject.

Severe errors are clearly not simply the result of haste however, as correlations
between TASKTIME and ERROR were positive though weak, with poor time per-
formance generally associated with poor error performance, further validating the
conclusions for ANNOTATION and DEPTYPE.

The TRAINING factor had no measurable effect on either error severity or time
to complete the problem checklist, showing no immediate benefit from simplification
of dependence analysis even in the most basic circumstances such as the minimal
problems used here. An experiment using larger programs and loops is suggested to
further explore this conclusion.

The lack of significance for REVPAR is even more telling, suggesting that the
perception of parallel programming being inherently more difficult than sequential
programming is wrong: when the tasks involved are comparable, parallel program-
ming is just another special case of general programming. A simple variation on the
current study using the transformed loop in the checklist displays rather than the
original loop would be a good way to confirm this further.

Finally, the overall effect of the correlations between subject background infor-
mation and performance in this study suggest that those programmers with the best
backgrounds in mathematics and those working most often at programming itself are
most likely to be successful at parallel program comprehension.

Concerning the use of the Xbrowser hypertext system for protocol analysis in this
experiment, the ability to successfully process multi-hour-long event-level protocol
records and to use dozens of subjects is a persuasive indicator of the value of the
system, when common practice in protocol analysis is to use fewer than five subjects
or extremely limited tasks [Fis91, CMN83]. Xbrowser’s provision of hypertext and
support for computer-assisted instruction coupled with protocol recording proved to

be very valuable.
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Chapter 8

Summary, Future Research, and Conclusions

In this chapter, I present a summary of the dissertation, the areas of future research

that could benefit from the continuation of this work, and some concluding remarks.

8.1 Summary
8.1.1 Introduction

This section summarizes the various chapters of this dissertation to provide context for
the sections on future research and concluding remarks. The two major contributions

of the research are presented in two parts.
Part I: The Xbrowser System

First, 1 presented two chapters reviewing the several areas related to the design
and implementation of Xbrowser, and in a third chapter presented the Xbrowser

hypertext system for protocol analysis.

8.1.2 An introduction to protocol analysis

Chapter 1, Protocol Analysis, reviewed some of the history of protocol analysis: much
work has been done using both verbal and behavioral protocols. The Xbrowser
system is unusual in integrating event-level protocol recording of user interactions with
hypertext documents and automated transcription into a general purpose protocol
analysis system. No other system has a comparable range of applicability: the WE
analysis tools [SSK92] are at present dedicated to study of WE, while SHAPA [SJS89]
and PAW [Fis87, Fis91] are essentially limited to verbal protocols and do not support

integrated recording and transcription.
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8.1.3 Hypertext Issues and Computer-Assisted Learning

In Chapter 2, hypertext issues and computer-assisted learning were discussed. Of the
somewhat comparable hypertext systems, Xbrowser is distinguished from texinfo
and HTML- and SGML-based viewers such as Mosaic and SGML-MUCH [ZR93]
by its underlying high-quality pre-formatted text document model, and its support
for the needs of computer-assisted instruction, including constrained displays and
interactive input coupled with author-controlled session variables. These capabilities
allow many models of computer-mediated training to be employed, such as automated

mastery learning [Ega88].

8.1.4 Xbrowser: Hypertext and Protocol Analysis for User Interfaces

Chapter 4 presented my software system, Xbrowser: a general-purpose hypertext
system with support for event-level protocol analysis and computer-assisted instruc-
tion. Of the components of Xbrowser, xbro is capable of unobtrusively recording
user interactions with complex hypertext documents that can provide programmed
instruction and simulate many computer situations. The use of high-quality device-
independent text documents as an underlying element to hypertext annotations makes
xbro useful in its own right as a hypertext medium, since text-layout capabilities are
limited if not completely lacking in such systems. The protocols collected by xbro
can be readily translated into forms suitable for summary and statistical analysis us-
ing catevents. The possible uses of future tools such as xevents are also described.
The potential value of Xbrowser is demonstrated amply by my experiences with it in
the large-scale experiment described there and by the results described in Chapter 7.

The conclusions are that Xbrowser represents a valuable resource in protocol
analysis, combining a flexible high-quality hypertext viewer that supports computer-
assisted instruction with event-level protocol recording, providing a versatile tool

capable of being used in large-scale studies.
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Part II: An Empirical Study of
Parallel Program Comprehension

The second part covers just such a large-scale study. First, [ presented two chap-
ters of work related to the design of the first major empirical study of parallel pro-

gramming comprehension using Xbrowser, and then the study itself in Chapter 7.

8.1.5 Related work in empirical studies of sequential programming

In Chapter 5, Empirical Studies of Programming, I showed that there is a tremendous
body of empirical user-interface research on sequential programming, but virtually
none for parallel programming [Wad93]. Studies in the same vein as the current
line of research such as Weiser’s [Wei82] and Lyle’s [Lyl84] experiments on the data-
flow technique known as slicing, found evidence for the significant effect of data-
flow on sequential program debugging and comprehension. Iselin’s study of cognitive
effects of various loop and conditional structures [Ise88] on error severity and time to
demonstrate comprehension also showed measurable effects on dependent measures
analogous to mine. Numerous background factors considered relevant to individual
variance in programming ability were described by Hammer in a survey of empirical
studies [Ham84]. Several factors used in my background questionnaire were also used
by Gowda and Saxton [GS89], while Oman, Curtis, and Nanja [OCN89] studied the
effect of programming experience in particular in a study that collected debugging
error severity and task completion measures similar to mine. This combined body of

work contributed strongly to the design of this research.

8.1.6 Related work in parallel programming

The prospective value of parallel programming was described in Chapter 6, Parallel
Programming and Dependence Analysis, together with a major obstacle to parallel
programming: data dependences that prevent statements from being successfully
executed in parallel. I also introduced an approach to a solution: dependence analysis,
capable of detecting such dependences and making them known to programmers who
must still bear the responsibility for doing something about them. In particular, the
work of Bernstein [Ber66] was particularly useful for the design of the method of
Algebraic Formulation, while the design of the method of Dependence Analysis is
based in part on Allen and Kennedy [AK87]. The form of graphic annotation used
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with the Annotated method of both TRAINING groups is inspired by that used in
ParaScope [CCH*88a, CCH*88b].

8.1.7 The empirical study

Chapter 7, An Empirical Evaluation of Dependence Analysis in Parallel Program

Comprehension, concluded:

e Annotating program source with graphical dependence arcs describing source,
sink, and dependence type as does the ParaScope parallel programming envi-

ronment improved time required to comprehend loop transformations.

e Loop-carried dependences caused more severe errors on average than non-loop-

carried dependences.

e Loop-carried dependences required more time in comprehending loop transfor-

mations than did non-loop-carried dependences.

e Anti- dependences caused more severe errors than flow or output dependences,

and flow dependences caused more severe errors than output dependences.

e Loop-carried anti- and flow dependences took longer to comprehend than loop-
carried output dependences, but dependence type did not seem to matter for

non-loop-carried dependences.

e Parallel programming was not shown to be more difficult than an equivalent

sequential programming task.

e Simplifying dependence analysis had no significant effect on error severity or

time to comprehend loop transformations.

In terms of individual subject background and performance variance controlling

for the previous effects:

e Time to comprehend manual and annotated non-loop-carried problems im-
proved with better GRE! Analytical and Mathematical scores; no similar im-

provement was noted for Verbal scores.

1Graduate Record Examination
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e Error severity on non-loop-carried problems decreased with better SAT? Math-

ematics scores ; no similar improvement was noted for Verbal scores.

e Time to comprehend manual and annotated loop-carried problems improved
with the number of high school math courses taken; this was particularly true for
anti-dependence problems, while for the number of college math courses and the
combined total of high school and college math courses the improvements were

even more striking for both loop-carried and non-loop-carried manual problem:s.

o A better mathematics grade point average correlated to reduced error sever-
ity for both loop-carried and non-loop-carried problems and particularly for
loop-carried anti-dependence problems; a similar effect was found for computer

science grade point average and non-loop-carried error severity.

e Those who indicated spending the smallest percentage of working time on non-
programming-related tasks had the lowest error severity rates for non-loop-
carried and loop-carried problems; in the latter case, this was particularly true

for loop-carried manual problems.

8.2 Future Research

Several directions lie ahead: these may be categorized as improvements to Xbrowser,
further investigation of topics begun in the current empirical study, and new research

in closely related areas not addressed here.

8.2.1 Improvements to Xbrowser

Xbrowser, useful as it is in its current form, should be improved further. Several re-
quests have been received for its distribution once it is packaged for general use. Even
in its current form Xbrowser provides an admirable tool to tackle these possibilities.
As I suggested in Chapter 4, useful additions may also be added to Xbrowser: a
more extensive IATEX interface to the hypertext features of xbro coupled with im-
proved display speed and an improved editor user interface standard, an expanded
event protocol record for the catevents interface, and new tools building on the old
such as xevents, a protocol event replay and interactive filtering tool. With these,

the already dramatic value of Xbrowser can be increased yet more.

2Scholastic Aptitude Test
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8.2.2 Follow-ups to the current empirical evaluation of dependence anal-

ysis in parallel programming

Further experimentation needs to be done to resolve issues relating to the value of
annotation in dependence analysis and of alternatives to dependence analysis. These
first applications of empirical studies of programming to the field of parallel program-
ming were of necessity highly reductionist, and could not possible begin to cover all
possible combinations of factors involved. The significant relationships from the cur-
rent research that were found between loop-carried and non-loop-carried dependences,
among anti-, flow, and output dependences, and for background factors related to
mathematics experience and ability and work-related programming habits should be
confirmed in larger programs.

Simple variations on the current experimental design could address the failure to
find empirical evidence that parallel programming is inherently more difficult than
a similar sequential programming task by using the transformed (i. e., the reversed
or parallelized) loop rather than the original in the problem displays: if that design
affects performance as the current one did not, there would be evidence that the
perception that parallel programming is inherently more difficult may be due to per-
formance anxiety or other extraneous influences rather than any intrinsic difficulty in
parallel programming. Likewise, the failure to find convincing evidence that graphic
annotation of source code with dependence information reduces error severity must be
studied further: perhaps another form of annotation or a task less prone to extraneous

error could be used.

8.2.3 Other empirical studies related to parallel programming

There are empirical issues beyond those raised by the current study. I mentioned in
Chapter 7 that pilot studies suggested that there may be significant problems with
extending current programming language constructs for parallelism simply by adding
the keyword “parallel”, and this should be tested. The empirical approach should

also address language constructs other than loops, such as case statements.
8.2.4 Proselytization: Encouraging the use of empirical user interface
analysis in parallel programming

Finally, applying empirical user interface research methods to parallel programming

should continue until the research community in parallel programming no longer has



94

to continue repeating the mistakes of past researchers in sequential programming, but
can concentrate on the problems uniquely addressed in their own field. Only then
will the paradigm of parallel programming be able to assume its position as a major
tool for the advancement of computation. With research now beginning in Canada
[SWCB93, Wad93] and thanks in part to motivational discussions I made at two of
the Empirical Studies of Programmers Workshops, this process has now begun. This

dissertation is another major step in that direction.

8.3 Conclusion

In conclusion, the value of the Xbrowser system has been demonstrated by its con-
tributions to proving the relationships that exist between loop-carried and non-loop-
carried dependences, between anti-, flow, and output dependences, and between an-
notated and manual methods of dependence analysis, and to finding correlations be-
tween comprehension performance measures and measures of mathematics experience
and ability and working habits.

Those relationships have been shown to matter even in the most minimal situa-

tions. Now at last, we have a platform on which to build, with a firm foundation.



95

Appendix A

Experimental Materials Detalils

A small computer laboratory was used for this study, containing six identical Sun 3/50
workstations configured as X-terminals arranged as shown in Fig. A.1. Workstations
included a 19 inch monochrome display of 1024 x960 pixels with a 14 inch by 10.75
inch usable screen area, a keyboard, and an optical mouse that could be placed on
either side of the keyboard. The workstations were labeled “One” to “Six” as in the
diagram and were used in numeric order to avoid overcrowding as much as possible.
During the experiment no more than three were ever used at a time, though station
Two was unavailable at one point and stations One, Three, and Four were used.
On the work-surface by the door were sheets to reserve specific time slots for study
participants, and instructions for logging in to Xbrowser. Users were not routinely

observed while participating in the study other than through the data collected by
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Figure A.1 Diagram of Xbrowser Laboratory
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Xbrowser, but an experimenter was available for consultation in another office, and
could be reached by the telephone provided.

Xbrowser was used to present the hypertext programmed-instruction document
summarized in Fig. A.2, showing some of the hypertext links used for document
navigation. Adjacent boxes were sequentially linked from top to bottom. In gen-
eral, links branching forward were disabled until a given section was encountered
in sequential reading. To simplify the diagram, reference links from the Index and
within sections are not shown. Boxes with rounded borders were identical for both
TRAINING groups, except those where reference was made to the TRAINING group

name, indicated by “*”. Dark rectangular boxes highlight material that differed for
Introduction to  Xbrowser 7 j 1 //I
Table of Contents i1 )— Index  (:2) 'éii:\
Section 1: Introduction 1 ) N
Section 2: P-F Programming Language 6 )
( Section 3: P-F Program Comprehension Techniques :32\
( Section 3.1: Introduction to Parallelism* :4]
Section 3.2: Algebraic Formulation OR Dependence Analysis 17
Section 3.3: Another Example Problem with sample Work Sheet 7
L Section 3.4: One More Example, with simulated sample Work Sheet* :3}
( Section 3.5: Answering Questions :1)
> <
Section 4: Review* First two problems loop 133
Review of first two problems loop
Second two problems loop
Review of second two problems loop
> <
Section 5: Problems Problems 1-24 :57%
Section 6: Programming Background Questionnaire* 6 )
Section 7: Debriefing: What the experiment is about...* :1+)
KEY: O shared TRAINING references, differences :# of displays=797+(2)+options

Figure A.2 Overview of the Xbrowser hypertext document used
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each group. The number to the right in each box is a summary count of the number
of displays used to complete that section of the document: thus the entire process in-
volves 797 displays, not including optional displays such as the two for the Index and
post-participation opportunities. Wherever possible, the same text was used for both
groups, and when alternative text was necessary for each TRAINING group the num-
ber of displays used and the text presented were constrained to be of similar amounts
and complexity. The various sections of this document are described in more detail
below. To avoid confusion with section references to the current document, section
references to the experimental materials are presented in italics.

The review problems used were the same for all subjects except for the differences
in TRAINING method. The regular problem sets worked by subjects were generated
randomly by choosing problems from a set of templates covering all possible combina-
tions of the experimental factors, randomly choosing a set of template variable names
taken from twelve sample programs, and generating random numeric expressions to
produce appropriate innocuous or adverse data flow for desired loop behavior. This
process produced FORTRAN 77 or C programs with forward and reversed versions
of problem loops that automatically generated answer keys for each problem, as well
as customized IATEX code to produce Xbrowser dvi-files for each problem set.

Each subject was assigned randomly to a TRAINING group using a program that
also randomly generated twenty-four problems covering all combinations of the other
four experimental factors. After viewing the initial scripted demonstration on the
use of Xbrowser in which they were advised that records were being kept of their
specific interactions with the system, subjects used Xbrowser to participate on their
own. Xbrowser maintained records on progress within the experiment and enforced
breaks every thirty minutes to reduce fatigue, though breaks could be as short as the
subject wished.

The following descriptions present each section of the hypertext document in the
order normally encountered, with differences in materials for the two TRAINING
groups described in detail. The title of each section is shown with Virtual page num-
bers used for document navigational reference and window display counts in paren-
theses if different from page counts.

Pages 1-4
(7 Displays)

Introduction to Xbrowser:

Subjects learned how to use Xbrowser, including standard “control panels” found

on most pages that contain a “Quit” button to exit Xbrowser, a “Contents” button
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to go to the Table of Contents, “Previous” and “Next” buttons to move sequentially
through the document, a “Push” button to mark the present location in the doc-
ument, and a “Pop” button to return to a marked location. For navigation, the
standard control panel includes the current virtual page number and the name of the
current section. Subjects learned to select buttons, use keyboard equivalents, and
enter text in editors, as well as the different combinations of on-screen displays used
in Xbrowser documents. Before proceeding to the main document, subjects had to

enter text correctly in a sample editor.

Table of Contents: Page 5

From the Table of Contents (reachable from any standard control panel throughout
the document) subjects could return to the beginning of any section that they had
reached sequentially, and could visit the “Index” pages to branch to topics explained

throughout the document.

Index: Pages INDEX.1-INDEX.2
The Index contained two pages of terms defined throughout the document, with hy-
pertext buttons to visit the appropriate pages that were only enabled after the pages

had been visited sequentially. Certain terms were different for Algebraic Formulation

and Dependence Analysis, as discussed below.

Section 1: Introduction: Page 6

This page introduced and outlined the procedures used in the study. Subjects were
advised that they were working on different problems using different procedures and

not to be concerned if others seemed to finish at different speeds.

Section 2: The P-F Programming Language: Pages 7-12

This defined the syntax and semantics of the P-F programming language designed
explicitly for the problem sets used in this study. P-F is a subset of FORTRAN 90
[BGA90] extended for parallelism by the addition of two keywords used with DO
loops: “PARALLEL” for parallel loops, and “SEQUENTIAL” for ordinary loops;
the latter was added to even the cognitive load of reading sequential and parallel
programs, and to lessen potential problems with similar surface syntax noticed in
pilot studies. The six types of statements used in P-F included comments, variable
and array declarations with initialization, assignment statements, subroutine CALL
statements used to simulate reading and writing data, SEQUENTIAL DO loops, and
PARALLEL DO loops. The use of “&” to continue long lines was also supported.
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The section on SEQUENTIAL DO loops mentioned that reversing a loop does not
always produce the same results, while the section on PARALLEL DO loops referred

to the equivalent problem for parallelizing loops.

Section 3: P-F Program Comprehension Techniques (5 subsections):

Section 3.1: Introduction to Parallelism: Pages 13-16

This began with a general discussion of the difficulties of correct parallel programming,
including Bernstein’s conditions, similar to parts of Chapter 6 of this dissertation, and
then discussed parallelism in P-F and the relevance of reversing loops to parallelizing

loops.

Section 3.2 < Algebraic Forrnulati(.)n OR> : Pages.17—31
Dependence Analysis (17 Displays)

This (including the title) introduced specific terms and procedures associated with
the TRAINING method, either Algebraic Formulation or Dependence Analysis. For
the former, the concepts of Bernstein’s conditions were reinforced and formalized,

with terminology designed to balance that of Dependence Analysis as follows:

Algebraic Formulation Dependence Analysis

“violations” “loop-carried dependences”

“wwrite” violations “output” dependences

[44 b
. . anti-” and
“wread” violations . .
flow” dependences

“near-violations” (not emphasized) “non-loop-carried” dependences (full)
“alpha” references “source” references

“beta” references “sink” references

Beside the more comparable alternative terms, the primary differences of Algebraic
Formulation materials from those of Dependence Analysis were the simpler treatment
of anti- and flow dependences as special cases of a general “read-write” violation of
Bernstein’s Conditions, and the lack of emphasis on the equivalent of non-loop-carried
dependences, referred to as “near-violations” in passing: otherwise the versions were
similar for both TRAINING groups. Subjects were also told that they would be
working problems using either of two experimental tools under development: a loop
“Slicer” that lets the user view only the statements from a program relevant to the
variables set in a given DO loop in a P-F program, or a loop “Annotater” that

augmented the Slicer by annotating the loop body with graphical arcs providing in-
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formation about any Loop-Carried dependences that were present. Two alternative
checklists — “Manual” for the Slicer, or “Annotated” for the Annotater — were pro-
vided, giving a step-by-step reference for methods to fill in a “Work Sheet” of editors
that determined the precise set of array elements ultimately affected by dependences
(if any) in a given problem. For review problems, all thirty editors on a Work Sheet

could be used; for regular problems, no more than sixteen were used.

Fig. A.3 outlines the steps used in the checklist, including the Work Sheet editors
set and used by each step. Where steps differ owing to differences in TRAINING
groups, the word “TRAINING” appears at the left of the step’s box. If a step makes
use of the violation/dependence arc displayed for Annotated problems, “*”
in the EDITORS USED column to indicate that some editors listed were replaced
or assisted by that use. Fig. A.4 — greatly reduced here to fit — compares part of
the displays for the Annotated loops as shown to each TRAINING group. Note the

variation in terminology and appearance resulting from the differing treatment of

appears

flow, anti-, and non-loop-carried dependences. Here, the example loop contained a

loop-carried output dependence and a loop-carried flow dependence.

I
EDITORS: SET ! USED

Step A: Record basic loop information ) Al A2
-

|
:
|
Step B: If violation/dependence exists, transcribe: /Q ) : *
( Step B.1: Record Array Name involved in violation/dependence ) | Bla | *
( Step B.2: Record Alpha/Source Line number and Min and Max Addresses ) B2ab,c | :
( Step B.3: Record Beta/Sink Line number and Min and Max Addresses ) B3ab,c |
—(_ Step B.4: Record Type of violation/dependence TRAINING ) (B4  |*
C OTHERWISE go to Step ANS: ) :
|
Step C: Generate Invalid Ranges for violation/dependence ) c1c2 : A1,2/B2b,c/B3b,c
|
Step D: Determine ultimately Affected array indeices :
( Step D.1: Determine Affected array name & index expression TRAINI NG) D1 : *Bla,B2a,B3a,B4
( Step D.2: Calculate Adjustment value TRAINING ) | D2 | *B2aB3aD1
Step D.3: Compute the From and To range of Affected set values ) D3,D4 : C1,C2,D1,D2
Step ANS: Answer questions about loop. ) i D1,D3,D4

differences due to TRAINI NG?J Annotation arc use?“\:}

Figure A.3 Outline of Annotated and Manual Checklists
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Dependence Analysis version

Annotated Violation Example 3.2

INTEGER :: i =0
INTEGER(1:1000) :: a, b, ¢, d, e, f, g =0
SEQUENTIAL DO i = 2, 9, 1

a(i-1) = b@) + 1
Ee(i)=c(i+1)—5

a(i) = b(i) - 3

fGA+1) =c(d+1)+4
[:; c(i+ 1) =d(i) + 2

gi) =f(i-1) -6
END SEQUENTIAL DO

Annotated Dependence Example 3.2
INTEGER :: 1 =0
INTEGER(1:1000) :: a, b, ¢, d, e, f, g =0
SEQUENTIAL DO i = 2, 9, 1

a(i-1) = b@) + 1
Ee(i)=c(i+1)—5

a(i) = b(i) - 3

£+ 1) =c(i+1) +4
Eaa c(i + 1) =d(i) + 2

gi) =f(i-1) -6
END SEQUENTIAL DO

KEY: — — KEY: O~ O« O~
(alpha) | WREAD WWRITE (source) | FLOW ANTI- OUTPUT
( beta) ( sink) O = LOOP-CARRIED

Figure A.4 Annotated checklist-specific TRAINING example

Pages 32-36

Section 3.3: Another Example with sample Work Sheet: i
(7 displays)

Subjects were first taught the Annotated method, but the Manual steps required for
the same dependences were also shown. Subjects had to enter the correct information
— provided on-screen with the appropriate reasons for each step — in a sample Work
Sheet for each step of the checklist before being allowed to proceed to the instruc-
tions for the next step. Fig. A.5 continued the programmed instruction with a sample
Manual problem 3.3. In this example there were three dependences in the loop: non-

loop-carried output and flow dependences that required no checklist data entries, and

Algebraic Formulation version Dependence Analysis version

Manual Violation Example 3.3 Manual Dependence Example 3.3
INTEGER :: i =0 INTEGER :: i =0
INTEGER (1:1000) r,s,t,u, v, w, %, y=0 INTEGER (1:1000)

r,s, t,u, v, w, x, y=0

SEQUENTIAL DO i = 1, 8, 1 SEQUENTIAL DO i = 1, 8, 1
u(i) = v(i) + 1 u(i) = v(i) + 1
s(i + 1) =t(1) +5 s(i +1) =t(1) +5
w(i) = x(1 + 1) - 4 w(i) = x(1 + 1) - 4
u(i) = v(i) - 2 u(i) = v(i) - 2
r(i) = s(i+ 1) - 6 r(i) =s(i+ 1) - 6
x(1) = y(i) + 3 x(1) = y(i) + 3

END SEQUENTIAL DO END SEQUENTIAL DO

KEY: — — KEY: O O O
(alpha) | WREAD WWRITE (source) | FLOW ANTI- OUTPUT
( beta) ( sink ) O = LOOP-CARRIED

Figure A.5 Manual checklist-specific TRAINING example
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a loop-carried anti-dependence. For this second example, subjects were able to enter
values before being told the correct answers. If correct, the screen indicated success;
if incorrect, the next page contained correct answers and required subjects to correct

mistakes before proceeding.

Section 3.4: One More Example with . Page 37

simulated sample Work Sheet " (3 displays)

The final example reinforced the importance of watching the title display for program
loops: if the word “Annotated” appeared and there were no dependence/violation arcs
displayed, no loop-carried dependences/violations existed and the subject could skip
the remainder of the checklist. In one pilot version of the study, subjects were re-
quired to page through the unused portions of the checklist rather than proceeding
directly to answer the questions; while this made the time values for Loop-Carried and
Non-Loop-Carried problems more comparable, every pilot subject expressed dislike
of the wasted time and so the shortcut was introduced in the last pilot study and was
retained in the final version. This shortcut was thus used in Example 3.4, containing
no dependences of any form, as seen in Fig. A.6.  The corresponding Work Sheet for
this example would look something like the simulated sample shown in Fig. A.7 taken
from the instructional material and reduced here to fit. The Algebraic Formulation
version was identical except for the TRAINING method name in the title area above
the work sheet. Note that space is provided for up to two loop-carried dependences to

be recorded: the Review problems discussed below had zero, one, or two loop-carried

Algebraic Formulation version

Dependence Analysis version

Annotated Violation Example 3.4

Annotated Dependence Example 3.4

INTEGER :: i =0
INTEGER(1:1000) :: a, s, c, u, e, w, £, y = 0
SEQUENTIAL DO i = 2, 9, 1
a(i) = £(i) + 1
s(i+1) =y(i) +5
c(i-1) =y +1) -4
u(i) = £(i) - 2
e(i - 1) =f(i+1) -6
w(i) = y(@i) + 3
END SEQUENTIAL DO

INTEGER :: i =0
INTEGER(1:1000) :: a, s, c, u, e, w, £, y = 0
SEQUENTIAL DO i = 2, 9, 1
a(i) = £(i) + 1
s(i+ 1) =y(i) +5
c(i-1) =y +1) -4
u(i) = £(i) - 2
e(i - 1) =f(i+1) -6
w(i) = y(@i) + 3
END SEQUENTIAL DO

KEY: — —
(alpha) | WREAD WWRITE
( beta)

KEY: O+ O« O
(source) | FLOW ANTI- OUTPUT
(sink)| O= LOOP-CARRIED

Figure A.6 Annotated example with no dependences
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dependences per loop, while each of the twenty-four regular problems covering all
combinations of the within-subjects experimental factors contained at most one — to

take advantage of “over-training” effects.

Section 3.5: Answering Questions: Page 37

This explained how to answer questions about the transformed program loops used
in problem sets, and reassured subjects that the examples used were carefully chosen
so that reversing or parallelizing loops would fail in exactly those instances detected
by using the checklist for the TRAINING method that they had learned.

Pages 38-42

Section 4: Review with Sample Problems: )
(133 displays)

This section contained two sample problems sets identical to the type that subjects

Dependence Analysis Work Sheet for Example 3.4, Simulated Sample

(A) Iteration Limits Step Value
first = |[2 [|[Redo] < 1 <[|9 || Redol| = fina1 1
(B.1) Array Name : ‘ ‘ ‘ Done‘ (B.2) Source (B-3) Sink

Done Line : I:l

o Tope: oeue]| e |

(¢) Invalid Range Min : ’—' m Min : ’—‘ m
Start : || Finish : [ ]|[Done]| Max: || | Max: || |
(D.1) Name : (D.2) From : (D.2) To : (D.3)-Adjustment :

Affected Set : ‘ ‘ Done‘ ‘ ‘ ‘ Done‘ ‘ ‘ Done‘ ‘ ‘ ‘ Done‘

@(B.l) Array Name : ‘ ‘ Done‘ (B-2) Source (B-3) Sink

(B.4) Type : ‘ ‘Done‘ Line : I:l Line : I:l
(©) Invalid Range Min : ||| Min: |||
Start : ||| Done | Finish : | [[[ Donel|| Max : || ][ Done]|l | Max : [ ][[Done]
(D.1) Name : (D.2) From : (p.2) To : (D.3)-Adjustment :

Affected Set : ‘ ‘ ‘ Done‘ ‘ ‘ ‘ Done‘ ‘ ‘ ‘ Done‘ ‘ ‘ ‘ Done‘

Figure A.7 Simulated example Work
Sheet for problem with no dependences
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would be using later in the study. Each problem set consisted of a program contain-
ing two problem loops that were processed individually using either the Slicer or the
Annotater. A given problem began by displaying the entire program in two versions:
the first used sequential forward DO loops, while the second contained version of the
loops that had been either reversed or parallelized. Fig. A.8 is an example of the ar-
rangement of the Xbrowser display for this “Comparison” stage of a problem taken
from a regular problem set generated for but not used in the experiment. Either the
“Next Loop Slicer” or “Next Loop Annotater” button at the top of the left hand
display is enabled according to ANNOTATION type: Manual or Annotated. Just
below those buttons is an indicator (duplicated on the right side display) that shows
whether the next problem concerned the first or second loop, with the inactive text
blanked out. The control panel on the right side display is initially disabled so that
subjects are required to acknowledge use of the appropriate tool — Slicer or Annotater
— to proceed to the corresponding Manual or Annotated checklist. Thereafter return-
ing to the Comparison Displays enables all but Quit; subjects were warned in advance

that Quit would be disabled for the relatively short duration of a single problem.

The next phase of working a given problem involved the Problem Displays, arranged
as in Fig. A.9, showing the last step of the first problem from the same example. The
upper left display contains the current problem’s loop slice, Annotated for this prob-
lem. The lower left display contains the Work Sheet of editors used with the checklist
to determine the precise array elements affected by the loop transformation.. The
lower right display contains the Answer Sheet of yes/no questions about the problem
loop; text of questions remains concealed until the subject reaches Step ANS either
by stating at the beginning of Step B that there are no loop-carried dependences by
selecting a button, or by completely filling in the appropriate editors on the Work
Sheet through Step D.3. This process is mediated by the checklist display in the
upper right, containing one of twelve instructional displays for the steps of either the
Manual or Annotated checklist as appropriate. In addition, a button beneath the
checklist text returns to the Comparison displays, and the indicators next to it shows
progress through the steps of the checklist, highlighting A, B1-B4, C, D1-D3 as each
was completed and ANS once the Answer Sheet questions were all answered. Subjects
then finished the problem by selecting “Register Answers/Continue” button on the
ANS page of the checklist.
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Figure A.9 Problem Displays for Step ANS

of first problem of problem set 5.3



107

Once a given problem was completed, subjects could take a break or continue. In the
Review, each problem was followed by a twelve-display review of the problem simi-
lar to the Problem Displays with the checklist replaced with corresponding displays
showing correct answers and requiring correction on the Work Sheet as needed before

allowing the subject to continue.

The Review problem set contained one problem set of two problem loops each with
two dependences: the first problem was Annotated, with a Reversed loop containing
a Loop-Carried Anti- dependence and a Non-Loop-Carried Output dependence. The
second problem was Manual, with a Parallel loop with a Loop-Carried Flow depen-
dence and a Loop-Carried Anti- dependence. Including the four sets of checklist and
review pages, the repeated Review problem set Comparison displays, and an inter-
mediate “rest” display between problems, 60 displays in addition to the introductory
material were required to complete the Review.

Pages 43-44

Section 5: P-F Program Problem Sets: .
(578 displays)

Subjects now began the set of twenty-four randomly generated problems covering all
combinations of the four within-subjects experimental factors. Fach problem began
with the Comparison displays for each problem set of two loops; thus there were
twelve problem sets total with each loop’s problem worked individually, requiring
two Comparison displays, a Loop Slice or Annotation display, eighteen Checklist dis-
plays, a Work Sheet, an Answer Sheet, and a “rest” display between problems. With
twenty-four displays for each problem, a subject viewed a total of 576 displays while
working the problems in addition to the two-pages of introductory and concluding

material for the problem section.

Section 6: Programming Background Questionnaire: Pages 45-50

The background questionnaire consisted of 51 questions covering a variety of topics.
Subjects were asked to answer by selecting from alternatives or entering text in re-
sponse to specific questions.

Section T: Debriefing: Page 51

(plus optional material)
The debriefing explained that subjects had completed the study, and about the exis-
tence of the other TRAINING group. If desired, subjects could review their responses
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and correct answers for the twenty-four regular problems, and could use Xbrowser
to learn the alternative method to that which they had learned for the study.

The following appendix contains additional details about the results of the exper-
iment and the questionnaire, correlations tables, and a summary of subjects’ perfor-

mance experience using Xbrowser.



109

Appendix B

Statistical Details

This appendix contains some of the statistical information too detailed to include
in previous chapters. First, the complete results for the various analyses of vari-
ance (ANOVA) are shown for the error severity data for the experiment described
in Chapter 7. Next, the ANOVA results for time to demonstrate comprehension in
that same study are given. Then comes a section on the text and summary statistics
for the interactive background questionnaire administered to the subjects of that ex-
periment is presented. Next is a set of tables reporting some of the most interesting
correlations of the questionnaire data with subjects’ averages for ERROR severity
and TASKTIME performance. Finally, general summary statistics about the sub-
jects’ participation profiles — such as time to complete the hypertext documents, or
number of edit events — are given.

For both error severity and time to complete the problem checklist, the main
technique employed was analysis of variance (ANOVA). The independent variables
were CARRIED with two levels, ANNOTATION with two levels, DEPTYPE with
three levels, and REVPAR with two levels all treated as within-subjects variables,
and TRAINING with two levels treated as a between-subjects variable. Each sub-
ject worked 24 problems randomly covering all combinations of the within-subjects
variables.

The F-statistic for each independent variable term and interaction terms combin-
ing them was constructed from the mean square variance in the appropriate dependent
variable for each source term divided by the mean square variance for an appropriate
denominator error term as suggested by Winer and McCall [Win71, McC86] The sig-
nificance of that ratio was then tested against the F-distribution for the corresponding

numerator and denominator degrees of freedom (DF). These statistics were calculated

using version 6.09 of the GLM! procedure of SAS? [SAS90b].

!General Linear Modeling
28 AS is a trademark of the SAS Institute Inc.
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B.1 Error Analyses

ANOVA were conducted for a dependent variable based on error severity scores rang-
ing from 0 for no error occurring to 8 for total failure to comprehend a dependence.
There were 16 subjects in the Algebraic Formulation TRAINING group, and 10 sub-
jects in the Dependence Analysis TRAINING group. Three full analyses were con-
ducted since the two levels of CARRIED, Non-Loop-Carried and Loop-Carried had
very different distributions of scores: one analysis including both levels of CARRIED,
and one for each level of CARRIED treated separately.

Abbreviations in the following tables are: S for SUBJECTS, T for TRAINING,
C for CARRIED, A for ANNOTATION, D for DEPTYPE, and R for REVPAR. An
asterisk appears between component abbreviations for each interaction term; S(T)
indicates that TRAINING is nested for (i.e. is between-) SUBJECTS.

In addition to these main ANOVA, the relations between each pair of levels of
DEPTYPE were tested by dropping observations for the unused level. Tables B.4 to
B.1 present only these contrasts and corresponding error terms for the CARRIED-
included, Non-Loop-Carried, and Loop-Carried analyses, with AVF an abbreviation
for Anti- vs. Flow, AVO for Anti- vs. Output, and FVO for Flow vs. Qutput.
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Table B.3 ANOVA for Loop-Carried error severity
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CARRIED-included ERROR DEPTYPE Contrasts
~ Source or Error DF Typelll SS Mean Square  F-ratio p>F
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Table B.4 DEPTYPE contrast ANOVA for
CARRIED-included error severity
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Table B.5 DEPTYPE contrast ANOVA

for Non-Loop-Carried error severity
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B.2 Time Analyses

ANOVA were conducted for a dependent variable based on the inverse of time re-
quired to complete a checklist demonstrating comprehension of the effects of a loop
transformation. There were 12 subjects in the Algebraic Formulation TRAINING
group, and 6 subjects in the Dependence Analysis TRAINING group. Since the
times for Non-Loop-Carried and Loop-Carried problems were so different, only the
two separate analyses were performed.

Abbreviations in the following tables are: S for SUBJECTS, T for TRAINING, A
for ANNOTATION, D for DEPTYPE, and R for REVPAR. An asterisk appears
between component abbreviations for each interaction term; S(T) indicates that
TRAINING is nested for (i.e. is between-) SUBJECTS.

In addition to these main ANOVA, the relations between each pair of levels of
DEPTYPE were tested by dropping observations for the unused level. Tables B.9
and B.10 present only these contrasts and corresponding error terms for the separate
Non-Loop-Carried and Loop-Carried analyses, with AVF an abbreviation for Anti-
vs. Flow, AVO for Anti- vs. Output, and FVO for Flow vs. Qutput.
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Table B.7 ANOVA for Non-Loop-Carried comprehension time
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Loop-Carried TASKTIME analysis of variance
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Table B.8 ANOVA for Loop-Carried comprehension time

Non-Loop-Carried TASKTIME DEPTYPE Contrasts
~ Source or Error DF  Typelll SS Mean Square F -ratio p>F
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Table B.9 DEPTYPE contrast ANOVA for

Non-Loop-Carried comprehension time

Loop-Carried TASKTIME DEPTYPE Contrasts
— Source or Error - DF Type lll SS Mean Square F-ratio p>F

AYEI’I |ﬁﬂ IIIIYﬁI'IIF'HmIIIIIIIIIIIIIII‘IIIIIIIII:|I|9Q9|4 ﬁllpﬁlIII1I|99R%EIIgﬁﬁlIIIIQI‘&%QI?%IIIIQ“4§Q§9I

T A e o Ly
“""""""""""""JWB'”@' B SRS L A G R

YO e oTEL 1o N M i o) =i o oM RC ot =T - Atk i £ - oM o E-1
e A

Table B.10 DEPTYPE contrast ANOVA

for Loop-Carried comprehension time
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B.3 Subject Questionnaire and Analyses

After completing the regular problem sets, subjects used Xbrowser to answer a back-
ground questionnaire of multiple choice and editor-entry questions covering topics
considered possibly relevant to general or parallel programming ability as reported
by Hammer [Ham84]. The questions provide two types of data about subjects: con-
tinuous responses — such as the number of years a subject had been programming —
and ordinal responses on standardized Likert scales as described by Parten [Par50] —
such as confidence in programming ability: Not at all/Somewhat/Fairly /Extremely.
For continuous and ordinal responses Wilcoxon rank-sum tests (equivalent to the
Mann-Whitney U statistic) were performed to compare location parameters for the
TRAINING groups [GC92]; ordinal responses also were explored with regular x? tests
for general association and Mantel-Haenszel y? tests for linear association [Fre87].
The complete text for each question below indicates a to be used as an index to
the numeric results and tabular data following. For simple continuous responses a ta-
ble is given comparing the TRAINING groups separately and combined, with number
of responses received (N), mean, standard deviation, minimum, median, and maxi-
mum values, together with the p probability of the associated Wilcoxon test. For most
ordinal responses a table of RESPONSEXTRAINING group is presented with the
response values (and associated ordinal value where applicable), row frequency count,
cell frequency and associated column percent to allow comparison of the TRAINING
groups, together with the p values for the associated x? and Mantel-Haenszel tests;

where appropriate the corresponding Wilcoxon test result is also reported.

Question 6.1 How many years have you been :

programming?T YEARS_PRG parallel programmingﬁ YEARS_PAR

NAME group N mean sd min med max Wilcoxon p
YEARS_PRG AF: |16 |83 3.6 2.0 9.5 14.0
DA: |10 | 8.0 3.1 2.0 9.5 11.0
BOTH: [ 26 |82 3.3 2.0 9.5 14.0 0.83
YEARS_PAR AF: |16 |02 04 0.0 0.0 1.0
DA: 11002 0.6 0.0 0.0 2.0
BOTH: (26 | 0.2 0.5 0.0 0.0 2.0 0.67

Tcontinuous
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Question 6.2 Do you know how to juggle?iYN
If so, how many items can you juggle?T
Have you ever juggled with another person?iYN

JUGGLER x2p=0.34 Mantel-Haenszel p = 0.35
No 16 =| aF 11 68.8% + DA 5 50.0%
Yes 10 =| aF 5 31.2% + DA 5 50.0%
JUGGLE_N x2p =029 Mantel-Haenszel p = 0.16
1 1 = | AF 0 0.0% + DA 1 20.0%
2 1 = | AF 0 0.0% + DA 1 20.0%
3 8 = | AF 5 100.0% + DA 3 60.0%
JUGGLE_PAR x2p=0.29 Mantel-Haenszel p = 0.29
No 23 =| AF 15 93.8% + DA 8 80.0%
Yes 3 =|ar 1 6.2% + DA 2 20.0%

Question 6.3 How confident are you in your ability to do sequential
LUESUION b.J )
+L1

rogramming? SEQ_CONFIDENCE
p

How confident are you in your ability to do parallel programming?iL1

| PAR_CONFIDENCE |

SEQ_CONFIDENCE x?p=0.39 Mantel-Haenszel p = 0.70 Wilcoxon p = 0.95
0 = | AF 0 0.0% + DA 0 0.0%
1 = | AF 0 0.0% + DA 1 10.0%
2 T =|AF D 31.2% + DA 2 20.0%
3 18 = aF 11 68.8% + DA 7T T70.0%
PAR_CONFIDENCE x?p=0.47 Mantel-Haenszel p = 0.75 Wilcoxon p = 0.93
0 6 = | AF 4 25.0% + DA 2 20.0%
1 14 =] aF g8  50.0% + DA 6  60.0%
2 5 = AF 4 25.0% + DA 1 10.0%
3 1 =| AF 0 0.0% + DA 1 10.0%

YN Choice of Yes/No
Ttheoretically continuous but N unreasonably small
IL1Likert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0
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Mathematical:T

What were your GRE (Graduate Record Examination) scores?

Question 6.4 Try to recall your scores for any of these standardized tests, if taken:
What were your SAT (Scholastic Aptitude Test) scores?

Verbal:]L SAT_VERBAL

Verbal:J[ Mathematical:T Analytical:“ GRE_ANALYTICAL

Written:“ TOEFL_WRITTEN ]

What were your TOEFL (Test of English as a Foreign Language) scores?
Oral: [[ToBFL_0RAL]

NAME group N mean sd min med max Wilcoxon p
SAT_VERBAL AF: | 16 | 663 759 510 675 770
DA:| 8| 675 57.8 560 675 760
BOTH: | 24| 667 69.3 510 675 770 0.85
SAT_MATH AF: |16 | 749 41.1 640 760 800
DA:| 8| 764 288 730 755 800
BOTH: | 24| 754 375 640 760 800 0.56
SAT_SUM AF: |16 | 1412 88.0 1260 1415 1530
DA: | 81439 65.1 1310 1445 1520
BOTH: | 24 | 1421 80.7 1260 1435 1530 0.42
NAME group N mean sd min med max Wilcoxon p
GRE_VERBAL AF: | 6 | 697 80.9 580 690 800
DA: | 2| 715 49.5 680 715 750
BOTH: | 8 | 701 71.4 580 695 800 0.87
GRE_MATH AF: |6 | 790 8.9 780 790 800
DA: | 3| 777 25.2 750 780 800
BOTH: | 9|78 15.9 750 790 800 0.50
GRE_ANALYTICAL AF: |6 | 770 33.5 730 775 800
DA: | 3| 710 79.4 650 680 800
BOTH: | 9| 750 56.3 650 750 800 0.28

Tcontinuous
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NAME group N mean sd min med max Wilcoxon p
TOEFL_ORAL AF: | 2]645 21.2 630 645 660
DA: |2 |602 40.3 573 602 630
BOTH: | 4] 623 36.4 573 630 660 0.41
TOEFL_WRITTEN AF: | 1600 0 600 600 600
DA: | 2| 638 21.2 623 638 653
BOTH: | 3] 625 26.6 600 623 653 0.54

and college?

High School:ﬂ HS_CS_COURSES |

Question 6.5 How many computer science courses have you taken in high school

College:ﬂ CO_CS_COURSES |

: : D . +
In your estimation, which is closest to your grade point average for them:+

NAME group N mean sd min med max Wilcoxon p
HS_CS_COURSES AF: |16 |26 2.7 0.0 2.0 10.0
DA: 10|14 1.3 0.0 1.5 4.0
BOTH: | 26 | 2.2 2.3 0.0 2.0 10.0 0.29
CO_CS_COURSES AF: |16 |76 3.3 3.0 7.0 15.0
DA: |10 |87 43 6.0 7.0 20.0
BOTH: |26 |80 3.7 3.0 7.0 20.0 0.54
CS_GPA x2p =051 Mantel-Haenszel p = 0.79 Wilcoxon p = 0.67
(2) C 1 =|aF 1 6.2% + DA 0 0.0%
3) B 10 =| ar 5 31.2% N 5 50.0%
(A 15=|ar 10 625% + |oba 5 50.0%
T continuous

16 Choice of A/B/C/D/F, scored 4.0 to 0.0
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Question 6.6 How many mathematics courses have you taken in high school and

college? High SchoolJf| HS_MATH_COURSES | College“ CO_MATH_COURSES |

: ) . . +
In your estimation, which is closest to your grade point average for them+®
MATH_GPA

NAME group N mean sd min med max Wilcoxon p

HS_MATH_COURSES AF:. |16 | 5.4 22 3.0 4.0 11.0
DA: 1048 25 2.0 4.0 10.0
BOTH: | 26 | 5.2 2.3 2.0 4.0 11.0 0.54

CO_MATH_COURSES AF: |16 | 5.3 2.7 2.0 5.0 12.0

DA: 1038 2.0 20 3.0 8.0
BOTH: | 26 | 4.7 2.5 2.0 4.0 12.0 0.12
MATH_GPA x2p =022 Mantel-Haenszel p = 0.50 Wilcoxon p = 0.32
(2) C 1 =|arF 1 6.2% + DA 0 0.0%
(3) B 6 =| AF 2 125% + DA 4 40.0%
(A 19=|ar 13  81.2% +  |opa 6  60.0%

Question 6.7 How familiar do you feel with Articulated Linkage for parallel pro-
gramming? How confident are you in your ability to use Articulated Linkage? Where

did you first learn about Articulated Linkage?!

Question 6.8 How familiar do you feel with method? for parallel programming?iL1

[METHOD_FAMILIAR |

: o +
How confident are you in your ability to use method?**'[METHOD_CONFIDENCE |

Where did you first learn about method?* METHOD_LEARNED |

METHOD_FAMILIAR x2p =051 Mantel-Haenszel p = 0.90 Wilcoxon p = 0.73
0 2 =| AF 1 6.2% + DA 1 11.1%
1 17 =| aF 12 75.0% + DA 5 55.6%

T continuous

16 Choice of A/B/C/D/F, scored 4.0 to 0.0

!No responses given about this nonezistent TRAINING method used to check reply accuracy.
2Where method is the TRAINING group method learned in the study.

L17 ikert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0

30pen responses, summarized as “here”=This study, or “else” =elsewhere
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2 5 = | AF 2 125% + DA 3 33.3%

1 =1 ar 1 6.2% + DA 0 0.0%
METHOD_CONFIDENCE x2p=0.39 Mantel-Haenszel p = 0.62 Wilcoxon p = 0.76

0 3=|ar 1 6.2% + DA 2 20.0%

1 19 =| AF 13 81.2% + DA 6 60.0%

2 3 =|AF 1 6.2% + DA 2 20.0%

3 1 =] ar 1 6.2% + DA 0 0.0%
METHOD_LEARNED x2p=0.17 Mantel-Haenszel p = 0.18

else 1 =1 arF 0 0.0% + DA 1 11.1%

here 24 =| AF 16 100.0% + DA 8 88.9%

uestion 6.9 How familiar do you feel with alternate* for parallel programmin ?im
y p prog g

| ALT_FAMILIAR ]

: - +
How confident are you in your ability to use alternate?+*[ALT_CONFIDENCE |

Where did you first learn about alternate?’[ ALT_LEARNED |

ALT_FAMILIAR Y2p=- Mantel-Haenszel p = -
1 3= | AF 3 75.0% + DA - -%
2 1 =|aF 1 25.0% + DA - -%
ALT_CONFIDENCE Y2p=- Mantel-Haenszel p = -
0 1 = | aF 1 25.0% + DA - -%
1 2= | AF 2 50.0% + DA - -%
2 1 =|aAF 1 25.0% + DA - -%

Question 6.10 Have you ever managed or controlled a group of people in which each
member was doing something different at the same time? YN
If so, how large was the largest such group you handled?” NUM_MANAGED |

*Where alternate is the TRAINING group method not learned in the study.
L1T ikert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0
50pen responses, but all categorized as Elsewhere

YN Choice of Yes/No

Tcontinuous
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MANAGER x2p = 0.90 Mantel-Haenszel p = 0.90
No 10 = | AF 6 37.5% + DA 4 40.0%
Yes 16 =| AF 10 62.5% + DA 6 60.0%
NAME group N mean sd min med max Wilcoxon p
NUM_MANAGED AF: |10 |72 73 2.0 4.0 25.0

DA:| 6 7.0 7.0 20 3.5 20.0
BOTH: (16 | 7.1 6.9 2.0 4.0 25.0 0.70

Question 6.11 How many informal courses relevant to either sequential or parallel

programming have you taken? Include here any non-credit courses, seminars, work-

shops, etc.:T|INFORMAL_COURSES|

Compared to other learning methods, how useful were these? 11

[INFORMAL_VALUE |

How many of these courses covered parallel programming? Compared to other

learning methods, how useful were these?®

NAME group N mean sd min med max Wilcoxon p

INFORMAL_COURSES AF: 116 105 1.2 0.0 0.0 4.0
DA: |10 0.7 1.1 0.0 0.0 3.0
BOT 26106 1.1 0.0 0.0 4.0 0.36

INFORMAL_COURSES> 07AF: 3127 1.2 20 2.0 4.0

32

DA. 1.8 1.0 1.0 1.5 3.0
BOTH: | 7(21 1.1 1.0 2.0 4.0 0.35

INFORMAL_VALUE x?p=0.14 Mantel-Haenszel p = 0.09 Wilcoxon p = 0.11

0 2 = | AF 0 0.0% + DA 2 50.0%

1 1 = | aF 0 0.0% + DA 1 25.0%

2 4 = | AF 3 100.0% + DA 1 25.0%
HAD_TAKEN x2p =023 Mantel-Haenszel p = 0.24

n=0 19 =| aF 13 81.2% + DA 6 60.0%

fcontinuous
L1T ikert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0

6One subject in the Algebraic Formulation group had taken one informal course and ranked it
“Somewhat” valuable.

statistics for numbers > 0 only
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n>0  T=|ar 3 188% | 4+ |pa 4 400% |

Question 6.12 Compared to formal and informal instruction, how useful have you

found any other experiences you think contributed significantly to your general pro-

gramming ability, such as books or self-taught methods?im| OTHER_VALUE]

How useful have any been to your parallel programming abﬂity?H1

[OTHER_PAR_VALUE |

OTHER_VALUE x?p=0.23 Mantel-Haenszel p = 0.10 Wilcoxon p = 0.11
1 6 = | AF 2 13.3% + DA 4 40.0%
2 T =|AF 4 26.7% + DA 3 30.0%
3 12 =| aF 9  60.0% + DA 3 30.0%
OTHER_PAR_VALUE x?p=0.39 Mantel-Haenszel p = 0.16 Wilcoxon p = 0.17
0 2 = | AF 1 12.5% + DA I 25.0%
1 6 = | AF 3 37.5% + DA 3 75.0%
2 3=1ar 3 31.5% + DA 0 0.0%
3 1 =] ar 1 12.5% + DA 0 0.0%

Question 6.13 What percentage of working time do you spend doing:

non-programming related activities?“ NON_PROG_PCT |

sequential programming?” SEQ_PROG_PCT |

parallel programming?®

NAME group N mean sd min med max Wilcoxon p

NON_PROG_PCT AF: | 15 | 53.1 225 20.0 50.0 99.0
DA: | 10 | 425 25.3 10.0 40.0 80.0

BOTH: | 25 | 48.8 23.8 10.0 50.0 99.0 0.32

SEQ_PROG_PCT AF: | 15]46.9 22,5 1.0 50.0 &0.0

DA: | 10 | 53.5 24.5 20.0 50.0 90.0
BOTH: | 25| 49.6 23.1 1.0 50.0 90.0 0.60

L17 ikert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0
f continuous

80ne subject in the Dependence Analysis group responded 40% for parallel programming.
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Question 6.14 How many programming languages do you know? List as many as

you can recall. If you have used it within the last six months, put an asterisk - “*”

- after it. If it is a parallel language, put it in (parentheses.) *[LANGS_TOTAL]

Most languages appear separately here if used more than once, or as “other” for
non-parallel and “(parallel)” for parallel languages. Full credit is given for multi-
ple dialects. “other” languages include Action!, Ada, COBOL, DBase, Eiffel, forth,
G/Labview II, G2, PL/SQL, RCL, SPICE, and SQL*Plus. “(parallel)” languages
include ANL macros/PARMACS, C*, CSP (Hoare’s Communicating Sequential
Processes), iPSC/2 C, PARCSIM, and PCN from CalTech, and were reported by
only one subject in each TRAINING group. “utility/shell” languages included awk,
perl, csh, sh, etc. Each number pair listed is <LANGS_TOTAL, LANGS_6MOS*>.

assembly = |arF 81" 6,2*% + pa 14,3 16,8%
BASIC = | ar 183 13,5% + |ba  81*  93%
C = | arF 14,10 10,16*% + pa 10,9* 11,24*%
C++ = | aF 14,9 10,15*% + |pa 98 1021"%
FORTRAN = | AF 10,4~ 7,6*% + DA 8,1* 9,3*%
LISP/Scheme = | aAF 19,15* 14,24*% +  |pa 14,8 1621"%
Logo = |aF 3.0 2,00% + |pa 4,00 4,0°%
Maple/Matlab = | AF  9.5* 7,8*% + pa 0,0 0,0*%
ML =|aF  3,3*  25% + |ba 0,00  0,0%
Modula-2 = |arF 1,07 1,0*% + paA  1,0* 1,0*%
Pascal = |ar 14.1*  10,2*% + |ba 10,2 11,5°%
PostScript = | AF 1,0* 1,00% + DA 1,1* 1,3*%
Prolog = |aF  6,0°  4,0°% + |pa 2,00 2,0°%
“other” = |aF  94*  T6"% + |ba 3,2 3.5%
“(parallel)” = |aFr 33 2,5*% + DA 3,1% 3,3 %
“utility/shell” = | AF  6,4* 4,6*% + DA 2,2% 2,5*%
= | ar 138,62*100,100* % + | pa 89,38 98,101*%

9For each subject, LANGS_TOTAL is the total reported, and LANGS_6MOS the sum of those used
within last six months, with full credit given for each dialect.

*when restricted to languages used in last six months
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NAME group N mean sd min med max Wilcoxon p

LANGS_6MOS AF: |16 |39 2.7 0.0 3.5 10.0
DA: {10137 1.8 20 3.0 8.0
BOTH: 26 | 3.8 24 0.0 3.0 10.0 0.98

LANGS_TOTAL AF: |16 |86 3.1 50 8.5 15.0
DA: 10|82 39 50 6.0 17.0
BOTH: | 26 | 85 3.3 50 7.5 17.0 0.63

Question 6.15 How valuable in parallel programming do you think you would find

the Manual method of method™® you learned in this study?im| MANUAL_VALUE |

MANUAL_VALUE x2p =054 Mantel-Haenszel p = 0.83 Wilcoxon p = 0.91
0 1 =] ar 1 6.2% + DA 0 0.0%
1 12 =| arF T 43.8% + DA 5  50.0%
2 11 =] aF 6  37.5% + DA 5  50.0%
3 2 = AF 2 125% + DA 0 0.0%

Question 6.16 Assuming the Annotater was always available, how valuable in par-

allel programming do you think you would find the Annotater method of method'®

: : +
you learned in this study?+*[ANNOTATED VALUE |

ANNOTATED_VALUE X2 p=0.52 Mantel-Haenszel p = 0.62 Wilcoxon p = 0.77
1 3 =|AF 1 6.2% + DA 2 20.0%
2 10 =| aF T 43.8% + DA 3 30.0%
3 13 =| ar 8 50.0% + DA d 50.0%

10Where method is the TRAINING group method learned in the study.
LT ikert scale — Not at all/Somewhat/Fairly /Extremely, scored 0.0 to 3.0
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Question 6.17 Did you enjoy working the problems (as opposed to learning the

+
method)?+FENJOYMENT

ENJOYMENT x?p=0.16 Mantel-Haenszel p = 0.74 Wilcoxon p = 0.91
0 5 = | AF 4 25.0% + DA I 10.0%
1 8 = | AF 3 18.8% + DA ) 50.0%
2 10 =| aF 8 50.0% + DA 2 20.0%
3 3=|ar 1 6.2% + DA 2 20.0%

Question 6.18 Indicate how frequently you use the following programming language

features: +22
IF statements:
sequential DO loop statements: ‘SEQ_DO_FREQ ‘
PARALLEL DO loop statements: ‘PAR_DO_FREQ‘
sequential SELECT/switch/CASE statements: ‘SEQ_CASE_FREQ ‘
PARALLEL REGION/SELECT/switch/CASE statements: |par_CASE_FrEqQ|
recursion: | RECURSION_FREQ |
pointer variables: | POINTER_FREQ |
NAME group N mean sd min med max Wilcoxon p
IF_FREQ AF: |16 | 3.6 06 2.0 4.0 4.0

A: 11037 05 3.0 4.0 4.0
BOTH: (26 | 3.6 0.6 2.0 4.0 4.0 0.66

SEQ_DO_FREQ AF: |16 |27 1.2 0.0 3.0 4.0
DA: |10 34 0.7 20 3.5 4.0
BOTH: |26 |3.0 1.1 0.0 3.0 4.0 0.16

PAR_DO_FREQ AF: 116 10.0 0.0 0.0 0.0 0.0
A:110(0.0 0.0 0.0 0.0 0.0
BOTH: |26 0.0 0.0 0.0 0.0 0.0 1.00

AF: |16 |24 09 1.0 2.0 4.0
DA: |10 |21 12 0.0 2.0 4.0
TH: 2623 1.0 00 2.0 4.0 0.53

SEQ_CASE_FREQ

20 ikert scale — Never/Occasionally /Moderately /Frequently /Constantly, scored 0.0 to 4.0 — only
used numerically here except for RECURSION _FREQ
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NAME group N mean sd min med max Wilcoxon p
PAR_CASE_FREQ AF: 116 | 0.0 0.0 00 0.0 0.0
DA:|10{0.0 0.0 0.0 0.0 0.0
BOTH: (26 | 0.0 0.0 0.0 0.0 0.0 1.00
RECURSION_FREQ AF: 116 | 3.1 0.7 20 3.0 4.0
DA: (10 (24 0.7 1.0 25 3.0
BOTH: |26 [ 2.8 0.7 1.0 3.0 4.0 0.04
RECURSION_FREQ x?p=0.16 Mantel-Haenszel p = 0.028 Wilcoxon p = 0.04
1 1 =] ar 0 0.0% + DA I 10.0%
2 T=|AF 3 18.8% + DA 4 40.0%
3 14 =] aF 9  56.2% + DA 5  50.0%
4 4 = | arF 4 25.0% + DA 0 0.0%
NAME group N mean sd min med max Wilcoxon p
POINTER_FREQ AF: |16 | 3.1 1.0 1.0 3.0 4.0
DA: |10 |34 0.7 2.0 3.5 4.0
BOTH: |26 3.2 0.9 1.0 3.0 4.0 0.46
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B.4 Selected Questionnaire and Performance Correlation
Data

A post hoc analysis was performed using the questionnaire data collected, examin-
ing possible correlations with subjects’ performance on error severity and time to
demonstrate loop transformation comprehension as described in Chapter 7. Only
correlations with p< 0.05 are reported there. Additional correlations of smaller mag-
nitude and significance or that did not fit a reasonable overall picture are presented
here. Results are given in the following tables for Pearson product-moment corre-
lations of subjects’ averages on ERROR severity and TASKTIME comprehension
measures controlling for the effects of CARRIED, ANNOTATION, and DEPTYPE,
contrasted with data from the questionnaire described in Chapter B.3. Each cell of
the Correlation Tables contain the Pearson R correlation, the probability of a greater
R occurring, and the number of observations involved. To be included in these tables,
the data involved had to be involved with at least one correlation with p< 0.10: such
correlations are highlighted in the table with bold text and a heavy outline.

To provide context for these correlations, the following two tables present some
summary statistics for the questionnaire data and subject averages used in the cor-
relations, respectively.

The Questionnaire table gives question number references, a summary of the cor-
responding meaning, a variable name used as an index in the correlations tables, and
the summary statistics.

The Subject Averages table divides the summary statistics for subjects’ aver-
ages into several subtables, contrasting Non-Loop-Carried and Loop-Carried (levels
of CARRIED) with ERROR and TASKTIME results. The various statistics repre-
sent an overall average within each section, and averages for Annotated and Manual
(levels of ANNOTATED) problems, Anti-, Flow, and Output dependences (levels of
DEPTYPE) problems, and their various combinations. Note that all subjects were
able to contribute TASKTIME values for their personal averages: individual obser-
vations resulting from ERROR severity greater than 6 were excluded, not the entire
data set for such subjects as in the time ANOVA.

The Correlations tables following thereafter are in order: ERROR Non-Loop-
Carried, ERROR Loop-Carried, TASKTIME Non-Loop-Carried, and TASKTIME
Loop-Carried. Each table is five pages long, and covers each combination of the

questionnaire data and subject averages summarized below.
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Summary Statistics of
Questionnaire Data Reported in Correlations Tables
Question # Meaning Variable= N Mean SD Min Max
6.01a # of years of programming experience QPROGYRS 26 8.19 3.33 2 14
6.02a Able to Juggle QVJUGGLE 26 0.38 0.50 0 1
6.03a Confidence in Sequential Programming QCNFSQPG 26 265 0.56 1 3
6.03b Confidence in Parallel Programming QCNFPRPG 26 1.04 0.77 0 3
6.04aa SAT Verbal QSATV 24 667.08 69.31 510 770
6.04ab SAT Mathematics QSATM 24 753.75 37.51 640 800
6.04a*/2  SAT Average QSATAVG 24 710.42 40.35 630 765
6.04ba GRE Verbal QGREV 8 701.25 71.40 580 800
6.04bb GRE Mathematics QGREM 9 785,56 15,90 750 800
6.04bc GRE Analytical QGREA 9 750.00 56.35 650 800
6.04b*/3  GRE Average QGREAVG 9 749.26 41.09 693 800
6.05a # of High School Comp. Sci. courses QHSCS 26 215 2.33 0 10
6.05b # of College Comp. Sci. Courses QCoCSs 26 8.04 3.66 3 20
6.05a+b # of H.S. + College Comp. Sci. courses Qcssum 26 10.19 4.36 5 20
6.05¢c Comp. Sci. GPA QCSGPA 26 354 058 2 4
6.06a # of High School Mathematics Courses QHSMATH 26 515 2.29 2 11
6.06b # of College Mathematics Courses QCOMATH 26 473 2.51 2 12
6.06a+b # of H.S. + College Mathematics courses QMATHSUM 26 988 3.95 4 18
6.06c Mathematics GPA QMATHGPA 26 369 055 2 4
6.08a Familiarity of Method Learned QMETHFAM 25 1.20 0.65 0 3
6.08b Confidence in Method Learned QMETHCNF 26 1.08 0.63 0 3
6.11a # of informal courses in programming QNINFRML 26 0.58 1.10 0 4
6.11b Perceived Value of Informal Learning QVINFRML 7 1.29 0.95 0 2
6.12a Eggf;\siil:;efulness of "other" experiences in QGUSEFUL 25 224 0.83 1 3
6.13a Percentage of Time in Non-Programming Work QNPGPCT 25 4884 23.76 10 99
6.13b Percentage of Time in Seq. Programming Work QSPGPCT 25 49.56 23.08 1 90
6.14a # of Programming Languages used at any time QALLLANG 26 8.35 3.35 5 16
6.14b ;:#n(;fnr;]r;)grammmg Languages used within last 6 QACTLANG 25 408 2.08 2 10
6.15a Perceived Value of Manual Method QVMANMTH 26 1.54 0.71 0 3
6.16a Perceived Value of Annotated Method QVANNMTH 26 2.38 0.70 1 3
6.17a Enjoyment of working problems QENJOYED 26 1.42 0.95 0 3
6.18a Frequency of use of: IF statements QIFF 26 3.62 0.57 2 4
6.18b Frequency of use of: Sequential DO QSEQDOF 26 296 1.1 0 4
6.18d Frequency of use of: CASE statement QCASEF 26 231 1.01 0 4
6.18f Frequency of use of: RECURSION QRECURSE 26 2.81 0.75 1 4

Table B.11 Summary Statistics for
Questionnaire Data Reported in Correlations

Tables
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Summary Statistics of
Subject Averages used for Correlations Tables
Non-Loop-Carried Loop-Carried
ERROR N Mean SD Min Max ERROR N Mean SD Min Max
Overall 26 0.51 1.27 0 6.00|overall 26 1.31 1.47 0 5.08
Annotated 26 0.35 1.08 0 5.33|Annotated 26 1.26 1.56 0 467
Manual 26 0.68 1.64 0 6.67|manual 26 1.37 1.55 0 6.00
Anti- dependence 26 0.73 1.58 0 6.00]Anti- dependence 26 1.81 2.29 0 6.50
Flow dependence 26 0.52 1.65 0 8.00|Flow dependence 26 1.49 213 0 6.75
Qutput dependence 26 0.28 0.87 0 4.00 Qutput dependence 26 0.64 0.83 0 225
Anti- dep. Annotated 26 0.65 1.85 0 8.00]Anti- dep. Annotated 26 2.06 2.51 0 7.00
Anti- dep. Manual 26 0.81 1.95 0 8.00]Anti- dep. Manual 26 1.56 2.36 0 7.00
Flow dep. Annotated 26 0.35 1.57 0 8.00|Flow dep. Annotated 26 1.27 218 0 6.50
Flow dep. Manual 26 0.79 2.26 0 8.00|Flow dep. Manual 26 1.71 2.28 0 7.00
Qutput dep. Annotated 26 0.06 0.22 0 1.00 Qutput dep. Annotated 26 0.46 0.86 0 3.00
Qutput dep. Manual 26 0.50 1.73 0 8.00 Qutput dep. Manual 26 0.83 1.52 0 4.50
Summary Statistics of
Subject Averages used for Correlations Tables
Non-Loop-Carried Loop-Carried

TASKTIME N Mean SD Min Max TASKTIME N Mean SD Min Max
Overall 26 559 14.3 38.5 92.5(overall 26 191.4 29.7 139.9 2457
Annotated 26 479 111 30.8 71.3|Annotated 26 183.1 33.6 124.8 246.0
Manual 26 64.0 22.8 40.2 136.5|Manual 26 198.9 32.5 120.0 266.4
Anti- dependence 26 554 22.3 33.5 118.0(aAnt- dependence 26 208.6 40.5 131.5 289.8
Flow dependence 25 56.6 22.8 31.0 143.8|Flow dependence 26 199.9 38.6 149.0 308.5
Output dependence 26 55.0 15,5 33.0 92.0 Output dependence 26 165.6 31.6 104.8 229.5
Anti- dep. Annotated 25 54.0 32.5 30.5 180.0(aAnt- dep. Annotated 25 199.8 53.7 120.0 345.0
Anti- dep. Manual 25 59.8 30.6 28.0 156.5(ant- dep. Manual 25 217.2 38.6 143.0 282.5
Flow dep. Annotated 25 448 14.0 30.0 79.5|Fiow dep. Annotated 26 182.6 50.9 113.5 381.5
Flow dep. Manual 24 69.6 421 37.5 238.5|Flow dep. Manual 25 219.6 47.5 156.0 321.5
Output dep. Annotated 26 471 16.5 20.5 83.5 Qutput dep. Annotated 26 165.2 36.8 112.5 253.0
QOutput dep. Manual 25 63.4 256 36.0 138.0 Qutput dep. Manual 26 165.9 346 80.5 2335

Table B.12 Summary Statistics for ERROR and
TASKTIME Reported in Correlations Tables
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ERROR
Non-Loop-Carried
Question: 6.01a 6.02a 6.03a 6.03b 6.04aa 6.04ab  6.04a%/2
Table Cells Key:
Pearson
Correlation R # of years of Confidence in  Confidence in
Prob > R programming Sequential Parallel SAT SAT SAT
N obs. experience Able to Juggle Programming Programming Verbal Mathematics Average
Variable= QqPROGYRS QVJUGGLE QCNFSQPG  QCNFPRPG QSATV QSATM QSATAVG
Overall 0.09388 0.03365 0.14884 -0.07854 0.10691| -0.68037| -0.22443
Average 0.6483 0.8704 0.468 0.7029 0.619 0.0003] 0.2917
26 26 26 26 24 24 24
Annotated 0.01742 -0.10131 0.00042 -0.12044 0.17423] -0.61556| -0.13648
Average 0.9327 0.6224 0.9984 0.5578 0.4155 0.0014] 0.5248
26 26 26 26 24 24 24
Manual 0.13958 0.13227 0.23666 -0.0425 0.05054| -0.6497| -0.25858
Average 0.4965 0.5195 0.2444 0.8367 0.8146 0.0006] 0.2224
26 26 26 26 24 24 24
Anti- 0.11631 0.16263 0.09347 -0.05655 0.04429] -0.54687| -0.21616
dependence 0.5715 0.4273 0.6497 0.7838 0.8372 0.0057] 0.3104
Average 26 26 26 26 24 24 24
Flow 0.14508 0.00031 0.18925 -0.02395 0.19332] -0.68319| -0.15152
dependence 0.4795 0.9988 0.3545 0.9075 0.3654 0.0002|] 0.4797
Average 26 26 26 26 24 24 24
Output -0.07414 -0.14212 0.12321 -0.19426 0.01811]| -0.67458| -0.29801
dependence 0.7189 0.4886 0.5488 0.3416  0.9331 0.0003] 0.1573
Average 26 26 26 26 24 24 24
Anti-dep. -0.04069 -0.08893 -0.1008 -0.15819 0.16681] -0.53455] -0.1052
Annotated 0.8436 0.6657 0.6242 0.4402 0.4359 0.0071 0.6247
Average 26 26 26 26 24 24 24
Anti-dep. 0.22678] 0.34738 0.24664 0.05799 -0.08643| -0.37744| -0.24968
Manual 0.2652 0.0821 0.2245 0.7784 0.688 0.069| 0.2393
Average 26 26 26 26 24 24 24
Flow dep. 0.08626 -0.15238 0.14161 -0.02792 0.16979] -0.64612| -0.1545
Annotated 0.6752 0.4574 0.4902 0.8923  0.4277 0.0006 0.471
Average 26 26 26 26 24 24 24
Flow dep. 0.17782 0.16439 0.20756 -0.01801 0.16696| -0.56876| -0.12097
Manual 0.3848 0.4223 0.3089 0.9304 0.4355 0.0037] 0.5734
Average 26 26 26 26 24 24 24
Output dep. -0.01604] 0.34498] -0.15873  -0.25351 -0.04371 0.02262 -0.02703
Annotated 0.938 0.0844 0.4386 0.2114  0.8393 0.9165  0.9002
Average 26 26 26 26 24 24 24
Output dep. -0.07296 -0.18681 0.14441 -0.16474 0.02376]| -0.68435| -0.2977
Manual 0.7232 0.3608 0.4815 0.4213 0.9123 0.0002] 0.1577
Average 26 26 26 26 24 24 24

Table B.13 Selected Correlations of Non-
Loop-Carried ERROR with Questionnaire Data




ERROR
Non-Loop-Carried
Question: 6.04ba 6.04bc  6.04b*/3 6.05a 6.05b 6.05a+b
Table Cells Key:
Pearson # of High #of HS. +
Correlation R School # of College College
Prob > R GRE GRE Comp. Sci. Comp. Sci. Comp. Sci.
N obs. Verbal Mathematics Analytical GRE Average courses Courses  courses
Variable= aGRev QGREA QGREAVG QHsSCS Qcocs QCSSUM
Overall -0.33547 0.10143 -0.0056 -0.2136 -0.15987 -0.1614 -0.22065
Average 0.4166 0.7951 0.9886 0.5811 0.4353 0.4309 0.2787
8 9 9 9 26 26 26
Annotated -0.34434 0.13924 0.03289 -0.2034 -0.15751 -0.0844 -0.15479
Average 0.4036 0.7209  0.9331 0.5997 0.4422 0.6819 0.4502
8 9 9 9 26 26 26
Manual -0.3262 0.08073 -0.0251 -0.2157 -0.14404 -0.19997 -0.24456
Average 0.4304 0.8364  0.9489 0.5773 0.4827 0.3273 0.2286
8 9 9 9 26 26 26
Anti- -0.31531 0.08915 -0.01677 -0.20314 -0.16208 -0.25708 -0.30208
dependence  0.4468 0.8196  0.9658 0.6001 0.4289 0.2049 0.1337
Average 8 9 9 9 26 26 26
Flow -0.28673 0.14858 0.04192 -0.15331 -0.15917 -0.10473 -0.17273
dependence 0.4911 0.7028 0.9147 0.6937 0.4374 0.6106 0.3988
Average 8 9 9 9 26 26 26
Output -0.1652 -0.04586 -0.04991 -0.15887 -0.10075 -0.04106 -0.08817
dependence 0.6958 0.9067 0.8985 0.6831 0.6243 0.8422 0.6684
Average 8 9 9 9 26 26 26
Anti-dep. -0.31531 0.08915 -0.01677 -0.20314 -0.19174 -0.17239 -0.24686
Annotated  0.4468 0.8196  0.9658 0.6001 0.3481 0.3997 0.2241
Average 8 9 9 9 26 26 26
Anti-dep. -0.31531 0.08915 -0.01677 -0.20314 -0.08116 -0.25327 -0.25574
Manual 0.4468 0.8196  0.9658 0.6001 06935 0.2119 0.2073
Average 8 9 9 9 26 26 26
Flow dep. 0.04952 0.34069 0.33276 0.18929 -0.17425 0.00107 -0.09202
Annotated  0.9073 0.3696 0.3816 0.6257 0.3946 0.9958 0.6548
Average 8 9 9 9 26 26 26
Flow dep. -0.29002 0.10483 0 -0.17577 -0.11508 -0.18002 -0.21238
Manual 0.4859 0.7884 1 0.651 0.5756 0.3789 0.2976
Average 8 9 9 9 26 26 26
Output dep. -0.14454 0.03706 0.03137 -0.10517] 0.53936] 0.1997] 0.45515
Annotated  0.7327 0.9246  0.9361 0.7877] 0.0045 0.328] 0.0195
Average 8 9 9 9 26 26 26
Output dep. -0.17684 -0.13104 -0.1331 -0.20619 -0.16927 -0.06647 -0.14603
Manual 0.6753 0.7368 0.7328 0.5945 0.4084 0.747 0.4766
Average 8 9 9 9 26 26 26
(Table B.13 continued)
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ERROR
Non-Loop-Carried
Question: 6.05c 6.06a 6.06b 6.06a+b 6.06c 6.08a 6.08b
Table Cells Key:
Pearson # of High #ofHS. +
Correlation R School # of College College Familiarity of Confidence in
Prob > R Comp. Sci. Mathematics Mathematics Mathematics  Mathematics Method Method
N obs. GPA Courses Courses courses GPA Learned Learned
Variable= acscra QHSMATH QCOMATH  QMATHSUM  QMATHGPA  QMETHFAM  QMETHCNF
Overall| -0.563016] -0.01322 0.27323 0.16561| -0.63998] -0.13211 -0.05104
Average| 0.0053 0.9489 0.1768 0.4188 0.0004 0.529 0.8044
26 26 26 26 26 25 26
Annotated| -0.51512| 0.08749| 0.39542| 0.30151] -0.55093] -0.0293 0.03702
Average| 0.0071 0.6708 0.0456 0.1344 0.0035 0.8894 0.8575
26 26 26 26 26 25 26
Manual] -0.48998| -0.08366 0.1542 0.04927| -0.63988] -0.18851 -0.10477
Average| 0.0111 0.6845 0.452 0.8111 0.0004 0.3668 0.6105
26 26 26 26 26 25 26
Anti-| -0.42275] 0.08905 0.21289 0.18665| -0.49037| -0.15254 -0.05886
dependence| 0.0314 0.6653 0.2964 0.3612 0.011 0.4667 0.7752
Average 26 26 26 26 26 25 26
Flow| -0.5394| -0.07629 0.23183 0.10278| -0.66239] -0.10283 -0.03978
dependence| 0.0045 0.7111 0.2545 0.6173 0.0002 0.6248 0.847
Average 26 26 26 26 26 25 26
Output| -0.52421] -0.07728] 0.36021] 0.18362| -0.64848] -0.1053 -0.04073
dependence 0.006 0.7075 0.0707 0.3692 0.0003 0.6164 0.8434
Average 26 26 26 26 26 25 26
Anti-dep.| -0.47077|] 0.21134 0.3676] 0.35569] -0.44418] 0.02059 0.09285
Annotated| 0.0152 0.3 0.0647 0.0745 0.023 0.9222 0.6519
Average 26 26 26 26 26 25 26
Anti-dep. -0.23943 -0.05561 -0.00283 -0.03404| -0.37406] -0.26624 -0.18309
Manual 0.2388 0.7873 0.9891 0.8689 0.0598 0.1983 0.3707
Average 26 26 26 26 26 25 26
Flow dep.| -0.54172] -0.1045 0.3047 0.13263] -0.6383] -0.07273 -0.02816
Annotated| 0.0043 0.6114 0.1302 0.5184 0.0005 0.7297 0.8914
Average 26 26 26 26 26 25 26
Flow dep.|] -0.4568] -0.06285 0.0953 0.02399] -0.58546] -0.11485 -0.0444
Manual 0.019 0.7603 0.6433 0.9074 0.0017 0.5846 0.8295
Average 26 26 26 26 26 25 26
Output dep. 0.22065 0.26442] 0.58459| 0.52408] 0.15584 -0.08808 -0.03409
Annotated 0.2787 0.1918 0.0017 0.006 0.4471 0.6754 0.8687
Average 26 26 26 26 26 25 26
Output dep.] -0.5576] -0.11118 0.29115 0.12017] -0.67515] -0.09542 -0.03692
Manual| 0.0031 0.5887 0.149 0.5587 0.0002 0.65 0.8579
Average 26 26 26 26 26 25 26

(Table B.13 continued)
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ERROR
Non-Loop-Carried
Question: 6.11a 6.11b 6.12a 6.13a 6.13b 6.14a 6.14b
Table Cells Key: Perceived # of # of
Pearson Perceived usefulness of Percentage of Percentage of Programming Programming
Correlation R # of informal Value of "other" Time in Non- Time in Seq. Languages Languages used
Prob > R courses in Informal experiences in  Programming Programming used at any within last 6
N obs. programming Learning programming Work Work time months
Variable= QNINFRML  QVINFRML QGUSEFUL QNPGPCT  QSPGPCT  QALLLANG  QACTLANG
Overall 0.03174 0.01913 0.24146] 0.56126] -0.54996| -0.10644 0.03284
Average 0.8777 0.9675 0.2449 0.0035 0.0044 0.6048 0.8761
26 7 25 25 25 26 25
Annotated -0.15516 0.33113 0.11759] 0.51261| -0.50381| -0.04797 0.03213
Average 0.4491 0.4682 0.5756 0.0088 0.0102 0.816 0.8788
26 7 25 25 25 26 25
Manual 0.17514 -0.01766 0.30607| 0.54647| -0.53442| -0.14371 0.02916
Average 0.3921 0.97 0.1368 0.0047 0.0059 0.4837 0.8899
26 7 25 25 25 26 25
Anti- 0.04676 -0.09227 0.18828] 0.55155| -0.53713 -0.1932 -0.06253
dependence 0.8205 0.844 0.3674 0.0043 0.0056 0.3443 0.7665
Average 26 7 25 25 25 26 25
Flow 0.03863 -0.07211 0.23664] 0.51405| -0.50632| -0.07333 0.04967
dependence 0.8514 0.8779 0.2547 0.0086 0.0098 0.7218 0.8136
Average 26 7 25 25 25 26 25
Output -0.0076 0.33113 0.27138] 0.49204]| -0.48311| 0.02042 0.16159
dependence 0.9706 0.4682 0.1894 0.0125 0.0144 0.9211 0.4403
Average 26 7 25 25 25 26 25
Anti-dep. -0.17303 0.33113 0.01436 0.5026] -0.49143] -0.12216 -0.05175
Annotated 0.3979 0.4682 0.9457 0.0105 0.0126 0.5522 0.8059
Average 26 7 25 25 25 26 25
Anti-dep. 0.23929 -0.11272 0.29128| 0.43176] -0.41849] -0.19734 -0.05219
Manual 0.2391 0.8099 0.1577 0.0311 0.0373 0.3339 0.8043
Average 26 7 25 25 25 26 25
Flow dep. -0.09713 0.33113 0.21475] 0.46639] -0.46398| 0.05634 0.12262
Annotated 0.6369 0.4682 0.3026 0.0188 0.0195 0.7846 0.5593
Average 26 7 25 25 25 26 25
Flow dep. 0.22733 -0.11272 0.24119] 0.49141] -0.48031| -0.19328 -0.01426
Manual 0.2641 0.8099 0.2455 0.0126 0.0151 0.3441 0.9461
Average 26 7 25 25 25 26 25
Output dep. -0.14564 . 0.19061 0.01388 0.00542 -0.08419 0.03462
Annotated 0.4778 0.3614 0.9475 0.9795 0.6826 0.8695
Average 26 7 25 25 25 26 25
Output dep. 0.01052 0.33113 0.2601] 0.49558] -0.48896] 0.03116 0.159
Manual 0.9593 0.4682 0.2092 0.0118 0.0131 0.8799 0.4478
Average 26 7 25 25 25 26 25

(Table B.13 continued)



ERROR
Non-Loop-Carried
Question: 6.15a 6.16a 6.17a 6.18a 6.18b 6.18d 6.18f
Table Cells Key:
Pearson Perceived Frequency of Frequency of
Correlation R Perceived Value of Enjoyment of use of: Frequency of use of: Frequency of
Prob > R Value of Manual  Annotated working IF use of: CASE use of:
N obs. Method Method problems statements Sequential DO  statement = RECURSION
Variable= aqvmanmTH ~ QVANNMTH  QENJOYED QIFF QSEQDOF QCASEF QRECURSE
Overall -0.15351 -0.02582 0.00072 -0.08831 -0.07313 0.07165 0.06119
Average 0.454 0.9004 0.9972 0.6679 0.7226 0.728 0.7665
26 26 26 26 26 26 26
Annotated -0.12761 -0.0102 -0.04088 -0.20342 -0.08245 -0.00563 0.03765
Average 0.5344 0.9606 0.8428 0.3189 0.6889 0.9782 0.8551
26 26 26 26 26 26 26
Manual -0.1614  -0.0391 0.03464 0.00494 -0.05832 0.12192 0.07256
Average 0.4309 0.8496 0.8666 0.9809 0.7772 0.553 0.7246
26 26 26 26 26 26 26
Anti- -0.11566 0.04322 0.01234 -0.03064 -0.10832 0.00385 -0.01168
dependence 0.5737 0.8339 0.9523 0.8819 0.5984  0.9851 0.9549
Average 26 26 26 26 26 26 26
Flow -0.2218 -0.08361 -0.00664 -0.12027 -0.08115 0.12057 0.09942
dependence 0.2762 0.6847 0.9743 0.5584 0.6935 0.5574 0.629
Average 26 26 26 26 26 26 26
Output -0.04245 -0.0354 -0.00326 -0.09723 0.03208 0.08023 0.10057
dependence 0.8369 0.8637 0.9874 0.6365 0.8764 0.6968 0.625
Average 26 26 26 26 26 26 26
Anti-dep. -0.12734 0.06089 0.02994 -0.20699 -0.13315 -0.11202 -0.02111
Annotated 0.5353 0.7676 0.8846 0.3103 0.5167 0.5859 0.9185
Average 26 26 26 26 26 26 26
Anti-dep. -0.06688 0.01242 -0.00832 0.14607 -0.0495 0.11213 0.00105
Manual 0.7455 0.952 0.9678 04765 0.8102 0.5855 0.9959
Average 26 26 26 26 26 26 26
Flow dep. -0.13906 -0.09012 -0.07581 -0.20286 -0.015 0.13211 0.07599
Annotated 0.4981 0.6615 0.7128  0.3203 0.942 0.52 0.7122
Average 26 26 26 26 26 26 26
Flow dep. -0.26378 -0.08578 0.07153 -0.00357 -0.10658 0.11701 0.10476
Manual 0.1929 0.6769 0.7284 0.9862 0.6043 0.5692 0.6105
Average 26 26 26 26 26 26 26
Output dep. 0.18182 -0.02046 -0.32058 0.18731 0.00961 -0.08467 0.19509
Annotated 0.374 0.921 0.1103 0.3595 0.9628 0.6809 0.3395
Average 26 26 26 26 26 26 26
Output dep. -0.06564 -0.03323 0.03676 -0.12172 0.03123  0.0917 0.0773
Manual 0.75 0.872 0.8585 0.5536 0.8796  0.6559 0.7074
Average 26 26 26 26 26 26 26

(Table B.13 ends)
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ERROR
Loop-Carried
Question: 6.01a 6.02a 6.03a 6.03b 6.04aa 6.04ab  6.04a%/2
Table Cells Key:
Pearson
Correlation R # of years of Confidence in  Confidence in
Prob > R programming Sequential Parallel SAT SAT SAT
N obs. experience Able to Juggle Programming Programming Verbal Mathematics Average
Variable= QqPROGYRS QVJUGGLE QCNFSQPG  QCNFPRPG QSATV QSATM QSATAVG
Overall -0.0651] 0.43511 0.19732 -0.3009 -0.16391 -0.33312 -0.29563
Average 0.752 0.0263 0.3339 0.1353  0.4441 0.1117  0.1608
26 26 26 26 24 24 24
Annotated 0.04498| 0.46689 0.23725 -0.17435 -0.21734| -0.35434| -0.35138
Average 0.8273 0.0162 0.2432 0.3943  0.3076 0.0893| 0.0922
26 26 26 26 24 24 24
Manual -0.16938] 0.35711 0.13618] -0.39694| -0.0938 -0.27775 -0.20967
Average 0.4081 0.0733 0.5071 0.0447| 0.6629 0.1888  0.3254
26 26 26 26 24 24 24
Anti- -0.04478 0.3674 0.30422 -0.27258 -0.20365| -0.42294| -0.3715
dependence 0.8281 0.0648 0.1308 0.1779  0.3399 0.0395] 0.0739
Average 26 26 26 26 24 24 24
Flow -0.09708] 0.41142 0.1479 -0.21871 -0.08954 -0.26078 -0.19812
dependence 0.6371 0.0368 0.4709 0.2831 0.6774 0.2184  0.3534
Average 26 26 26 26 24 24 24
Output 0.02586 0.2499 -0.16849 -0.29102 -0.08968 0.05745 -0.05032
dependence 0.9002 0.2182 0.4106 0.1492 0.6769 0.7898 0.8154
Average 26 26 26 26 24 24 24
Anti-dep. -0.02765| 0.43094 0.21326  -0.20708 -0.19724| -0.40172] -0.35614
Annotated 0.8934 0.028 0.2955 0.3101 0.3556 0.0517] 0.0876
Average 26 26 26 26 24 24 24
Anti-dep. -0.05739 0.25366 0.36285| -0.30808 -0.18377 -0.39] -0.33912
Manual 0.7807 0.2112 0.0685 0.1257 0.39 0.0596 0.105
Average 26 26 26 26 24 24 24
Flow dep. 0.00359] 0.45459 0.17696 -0.0656 -0.12974 -0.17512 -0.19284
Annotated 0.9861 0.0196 0.3872 0.7502  0.5457 0.4131 0.3666
Average 26 26 26 26 24 24 24
Flow dep. -0.18469] 0.33233 0.10649] -0.34547] -0.04206 -0.3189 -0.18436
Manual 0.3664 0.0972 0.6046 0.0839] 0.8453 0.1288  0.3885
Average 26 26 26 26 24 24 24
Output dep. 0.31673 0.1299 0.21996 -0.17819 -0.26945 -0.30135] -0.3715
Annotated 0.1149 0.5271 0.2803 0.3838 0.2029 0.1524] 0.0739
Average 26 26 26 26 24 24 24
Output dep. -0.15137 0.19838 -0.30806 -0.21576 0.06664 0.25222 0.17448
Manual 0.4604 0.3313 0.1258 0.2898 0.757 0.2344  0.4148
Average 26 26 26 26 24 24 24

Table B.14 Selected Correlations of
Loop-Carried ERROR with Questionnaire Data



ERROR
Loop-Carried
Question: 6.04ba 6.04bb 6.04bc 6.04b*/3 6.05a 6.05b 6.05a+b
Table Cells Key:
Pearson # of High #of HS. +
Correlation R School # of College College
Prob >R GRE GRE GRE Comp. Sci. Comp. Sci. Comp. Sci.
N obs. Verbal Mathematics Analytical GRE Average courses Courses  courses
Variable= aqGREv QGREM QGREA QGREAVG QHSCS Qcocs QCSSUM
Overall -0.26333 0.26897 0.21142 -0.05787 0.08947 0.10781 0.13815
Average 0.5286 0.484 0.585 0.8824 0.6638 0.6001 0.5009
8 9 9 9 26 26 26
Annotated -0.35915 0.29628 0.21468 -0.11594 0.10406 0.14286 0.17533
Average 0.3823 0.4389 0.5791 0.7664 0.6129 0.4863 0.3916
8 9 9 9 26 26 26
Manual -0.16598 0.23041 0.19739 -0.00286 0.0653 0.06105 0.08603
Average 0.6944 0.5509 0.6107 0.9942 0.7513 0.767 0.676
8 9 9 9 26 26 26
Anti- -0.3198 0.32579 0.26568 -0.06901 0.02457 0.29355 0.25934
dependence 0.44 0.3922 0.4896 0.86 0.9052 0.1455 0.2008
Average 8 9 9 9 26 26 26
Flow -0.18066 0.38915 0.30516 0.07082 0.14184 -0.1272 -0.03106
dependence 0.6686 0.3006 0.4246 0.8563 0.4895 0.5358 0.8803
Average 8 9 9 9 26 26 26
Output -0.287 -0.29214 -0.2511 -0.37623 0.04527 0.09079 0.1003
dependence 0.4907 0.4456 0.5146 0.3183 0.8262 0.6591 0.6259
Average 8 9 9 9 26 26 26
Anti-dep. -0.52715 0.25232 0.18922 -0.23043 0.06002 0.28912 0.27454
Annotated 0.1794 0.5125 0.6258 0.5508 0.7708 0.152 0.1747
Average 8 9 9 9 26 26 26
Anti-dep. -0.07259 0.37166 0.32071 0.10984 -0.01625 0.26142 0.21062
Manual 0.8644 0.3247 0.4001 0.7785 0.9372 0.197 0.3017
Average 8 9 9 9 26 26 26
Flow dep. -0.17313 0.34356 0.26133 0.02124 0.20414 -0.14403 -0.01195
Annotated 0.6818 0.3653 0.497 0.9568 0.3172 0.4827 0.9538
Average 8 9 9 9 26 26 26
Flow dep. -0.18731 0.4283 0.34389 0.11902 0.06911 -0.09941 -0.04653
Manual 0.6569 0.2501 0.3649 0.7604 0.7373 0.629 0.8214
Average 8 9 9 9 26 26 26
Output dep. -0.29002 0.10483 0 -0.17577 -0.12694 0.29933 0.18339
Annotated 0.4859 0.7884 1 0.651 0.5366 0.1374 0.3698
Average 8 9 9 9 26 26 26
Output dep. -0.20797 -0.37164 -0.28442 -0.35787 0.12122 -0.07083 0.00523
Manual 0.6212 0.3247 0.4582 0.3444 0.5553 0.731 0.9798
Average 8 9 9 9 26 26 26
(Table B.14 continued)
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ERROR
Loop-Carried
Question: 6.05c 6.06a 6.06b 6.06a+b 6.06c 6.08a 6.08b
Table Cells Key:
Pearson # of High #ofHS. +
Correlation R School # of College College Familiarity of Confidence in
Prob > R Comp. Sci. Mathematics Mathematics Mathematics  Mathematics Method Method
N obs. GPA Courses Courses courses GPA Learned Learned
Variable= aqcscra QHSMATH QCOMATH  QMATHSUM  QMATHGPA  QMETHFAM  QMETHCNF
Overall -0.26774 -0.00996| 0.38976] 0.24141| -0.43247| -0.08414 -0.03082
Average 0.186 0.9615 0.049 0.2348 0.0273 0.6892 0.8812
26 26 26 26 26 25 26
Annotated -0.1988 0.01061 0.30506 0.19961| -0.42304] -0.1123 -0.07592
Average  0.3303 0.959 0.1297 0.3282 0.0313 0.593 0.7124
26 26 26 26 26 25 26
Manual -0.30911 -0.02967| 0.43417] 0.25814| -0.39637| -0.04774 0.01798
Average 0.1244 0.8856 0.0267 0.2029 0.045 0.8207 0.9305
26 26 26 26 26 25 26
Anti-| -0.39252] -0.1734] 0.33243] 0.11026| -0.59836] -0.14429 -0.16345
dependence| 0.0473 0.3969 0.0971 0.5918 0.0012 0.4914 0.425
Average 26 26 26 26 26 25 26
Flow -0.08461 0.14603] 0.35984] 0.31289 -0.28538 -0.11275 0.00807
dependence  0.6811 0.4766 0.071 0.1196 0.1576 0.5916 0.9688
Average 26 26 26 26 26 25 26
Output -0.12659 0.05124 0.23706 0.18006 0.07979 0.24812 0.26738
dependence  0.5377 0.8037 0.2436 0.3788 0.6984 0.2317 0.1867
Average 26 26 26 26 26 25 26
Anti-dep. -0.25483 -0.07456 0.29801 0.14576] -0.50873] -0.0562 -0.06638
Annotated 0.209 0.7174 0.1392 0.4774 0.008 0.7896 0.7473
Average 26 26 26 26 26 25 26
Anti-dep.] -0.4898| -0.25685 0.32735 0.05864| -0.61867| -0.21913 -0.24625
Manual| 0.0111 0.2053 0.1026 0.776 0.0008 0.2926 0.2253
Average 26 26 26 26 26 25 26
Flow dep. -0.02423 0.18324| 0.33175] 0.31666 -0.19509 -0.09046 0.02808
Annotated  0.9065 0.3703 0.0978 0.115 0.3395 0.6672 0.8917
Average 26 26 26 26 26 25 26
Flow dep. -0.13473 0.09698]| 0.35378 0.2806] -0.34579| -0.12369 -0.01184
Manual 0.5117 0.6374 0.0762 0.165 0.0836 0.5558 0.9542
Average 26 26 26 26 26 25 26
Output dep. -0.27696 -0.18977 -0.05142 -0.14266 -0.32277 -0.21473 -0.29098
Annotated 0.1708 0.3531 0.803 0.4869 0.1078 0.3027 0.1493
Average 26 26 26 26 26 25 26
Output dep. 0.01919 0.16333 0.28717 0.27684 0.26978| 0.41514] 0.45595
Manual 0.9259 0.4253 0.1549 0.171 0.1826 0.0391 0.0192
Average 26 26 26 26 26 25 26

(Table B.14 continued)
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ERROR
Loop-Carried
Question: 6.11a 6.11b 6.12a 6.13a 6.13b 6.14a 6.14b
Table Cells Key: Perceived # of # of
Pearson Perceived usefulness of Percentage of Percentage of Programming Programming
Correlation R # of informal Value of "other" Time in Non- Time in Seq. Languages Languages used
Prob > R courses in Informal experiences in  Programming Programming used at any within last 6
N obs. programming Learning programming Work Work time months
Variable= QNINFRML  QVINFRML QGUSEFUL QNPGPCT  QSPGPCT  QALLLANG  QACTLANG
Overall 0.06262 -0.1653 0.24499] 0.48189| -0.43104| -0.17122 0.01735
Average 0.7612 0.7232 0.2379 0.0147 0.0315 0.403 0.9344
26 7 25 25 25 26 25
Annotated 0.06725 -0.35602 0.2151] 0.38653] -0.34025| -0.14323 0.00944
Average 0.7441 0.4332 0.3018 0.0563 0.0961 0.4852 0.9643
26 7 25 25 25 26 25
Manual 0.05135 0.08671 0.2493] 0.53039| -0.48006] -0.18142 0.02358
Average 0.8033 0.8533 0.2295 0.0064 0.0152 0.3751 0.9109
26 7 25 25 25 26 25
Anti- 0.145 0.04347 0.28011] 0.39693]| -0.34979] -0.07981 0.12816
dependence 0.4797 0.9263 0.175 0.0495 0.0865 0.6984 0.5415
Average 26 7 25 25 25 26 25
Flow 0.08787 -0.35306 0.26876] 0.48918| -0.45376] -0.17388 -0.0056
dependence 0.6695 0.4373 0.1939 0.0131 0.0227 0.3956 0.9788
Average 26 7 25 25 25 26 25
Output -0.29319 -0.13245 -0.15794 0.21735 -0.16694 -0.24699 -0.2446
dependence 0.1461 0.7771 0.4508 0.2967 0.4251 0.2238 0.2386
Average 26 7 25 25 25 26 25
Anti-dep. 0.12483 -0.1776 0.24009| 0.37544| -0.32544 -0.10244 0.08101
Annotated 0.5435 0.7032 0.2477 0.0644 0.1124 0.6185 0.7003
Average 26 7 25 25 25 26 25
Anti-dep. 0.14826 0.26512 0.28969 0.3689] -0.33083 -0.0457 0.16169
Manual 0.4698 0.5656 0.1601 0.0696 0.1062 0.8246 0.44
Average 26 7 25 25 25 26 25
Flow dep. 0.06589 -0.50634 0.22857] 0.44283] -0.41618 -0.1365 0.00326
Annotated 0.7491 0.2462 0.2718 0.0266 0.0385 0.5061 0.9877
Average 26 7 25 25 25 26 25
Flow dep. 0.10089 -0.12083 0.2825] 0.49723] -0.45602| -0.19378 -0.01361
Manual 0.6238 0.7964 0.1712 0.0114 0.022 0.3429 0.9485
Average 26 7 25 25 25 26 25
Output dep. -0.16575 -0.13245 -0.10817 -0.09429 0.13498 -0.1343  -0.19654
Annotated 0.4184 0.7771 0.6068 0.6539 0.52 0.5131 0.3464
Average 26 7 25 25 25 26 25
Output dep. -0.22518 -0.13245 -0.11089 0.29069 -0.25894 -0.19272 -0.15917
Manual 0.2687 0.7771 0.5977 0.1586 0.2113 0.3456 0.4473
Average 26 7 25 25 25 26 25

(Table B.14 continued)
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ERROR
Loop-Carried
Question: 6.15a 6.16a 6.17a 6.18a 6.18b 6.18d 6.18f
Table Cells Key:
Pearson Perceived Frequency of Frequency of
Correlation R Value of  Enjoyment of use of: Frequency of use of: Frequency of
Prob > R Perceived Value Annotated  working IF use of: CASE use of:
N obs. of Manual Method Method problems statements Sequential DO  statement = RECURSION
Variable=  qvmanmth QVANNMTH  QENJOYED QIFF QSEQDOF QCASEF QRECURSE
Overall 0.0649] 0.41681| 0.06598 0.28037 -0.25285 0.09826 0.29273
Average 0.7528 0.0341 0.7488 0.1653  0.2127 0.633 0.1467
26 26 26 26 26 26 26
Annotated -0.02467| 0.35673| -0.04674 0.28249 -0.08607 0.15799 0.18745
Average 0.9048 0.0736 0.8206 0.162 0.6759  0.4408 0.3592
26 26 26 26 26 26 26
Manual 0.1485] 0.43351] 0.17284 0.24865| -0.39459] 0.02757] 0.36816
Average 0.4691 0.0269 0.3985 0.2206] 0.0461 0.8936 0.0642
26 26 26 26 26 26 26
Anti- -0.01381| 0.34295] 0.03913 0.25499 -0.03445 0.24723 0.2051
dependence 0.9466 0.0863 0.8495 0.2087 0.8673 0.2234 0.3148
Average 26 26 26 26 26 26 26
Flow 0.03024] 0.33999] 0.03196 0.29341] -0.37644| -0.00788 0.3504
dependence 0.8834 0.0892 0.8768  0.1457 0.058| 0.9695 0.0793
Average 26 26 26 26 26 26 26
Output 0.30766] 0.40378 0.1622 0.03754 -0.28775 -0.13928 0.09517
dependence 0.1263 0.0408 0.4286  0.8555 0.154  0.4974 0.6438
Average 26 26 26 26 26 26 26
Anti-dep. -0.05206 0.2838 -0.02754 0.25316 0.02229 0.21336 0.14429
Annotated 0.8006 0.16 0.8938 0.2121 0.9139  0.2953 0.4819
Average 26 26 26 26 26 26 26
Anti-dep. 0.02863] 0.36286] 0.10518 0.22493 -0.09053 0.25226 0.24408
Manual 0.8896 0.0685 0.6091 0.2693  0.6601 0.2138 0.2295
Average 26 26 26 26 26 26 26
Flow dep. 0.0579 0.32347 -0.02833 0.27891 -0.2261 0.03347 0.25301
Annotated 0.7787 0.107 0.8007 0.1676  0.2667 0.871 0.2124
Average 26 26 26 26 26 26 26
Flow dep. 0.00096 0.32466 0.08684 0.28042] -0.48607] -0.0468] 0.41165
Manual 0.9963 0.1056 0.6732 0.1653| 0.0118| 0.8204 0.0367
Average 26 26 26 26 26 26 26
Output dep. -0.12932 0.29271 -0.10226 0.09091 0.04022 0.15233 -0.043
Annotated 0.5289 0.1467 0.6191 0.6587 0.8453  0.4575 0.8348
Average 26 26 26 26 26 26 26
Output dep. 0.40816] 0.27359 0.2345 -0.01066] -0.33599| -0.23793 0.12796
Manual 0.0385 0.1762 0.2489  0.9588| 0.0933| 0.2418 0.5333
Average 26 26 26 26 26 26 26
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TASKTIME
Non-Loop-Carried
Question: 6.01a 6.02a 6.03a 6.03b 6.04aa 6.04ab  6.04a%/2
Table Cells Key:
Pearson
Correlation R # of years of Confidence in  Confidence in
Prob > R programming Sequential Parallel SAT SAT SAT
N obs. experience Able to Juggle Programming Programming Verbal Mathematics Average
Variable= QqPROGYRS QVJUGGLE QCNFSQPG  QCNFPRPG QSATV QSATM QSATAVG
Overall -0.29973 0.11692 -0.07285 0.05713 0.04192 0.02252 0.04648
Average 0.1368 0.5695 0.7236 0.7816  0.8458 0.9168  0.8293
26 26 26 26 24 24 24
Annotated| -0.45803] 0.34786| -0.21213 0.01659 -0.1796 -0.04863 -0.17686
Average 0.0186 0.0816 0.2982 0.9359 0.401 0.8215 0.4084
26 26 26 26 24 24 24
Manual -0.16209 -0.01147 0.0122 0.05489 0.12691 0.06704 0.14016
Average 0.4289 0.9556 0.9528 0.79 0.5546 0.7556  0.5136
26 26 26 26 24 24 24
Anti-| -0.34843] 0.01318 -0.22937 -0.05459 -0.14262 0.17623 -0.04058
dependence 0.0811 0.9491 0.2597 0.7911 0.5062 0.4101 0.8507
Average 26 26 26 26 24 24 24
Flow -0.08376 -0.01296 0.12961 0.11886 0.20863 -0.11528 0.13614
dependence 0.6906 0.951 0.5369 0.5715 0.3394 0.6004  0.5357
Average 25 25 25 25 23 23 23
Output -0.22499 0.25483 -0.13807 0.06181 0.06139 -0.02972 0.03891
dependence 0.2691 0.209 0.5012 0.7642  0.7757 0.8904  0.8567
Average 26 26 26 26 24 24 24
Anti-dep.] -0.43919] 0.06953] -0.62637] -0.24135 -0.07728 0.31498 0.04708
Annotated 0.0281 0.7412 0.0008 0.2451 0.726 0.1432  0.8311
Average 25 25 25 25 23 23 23
Anti-dep. -0.15614 -0.09458 0.15333 0.08059 -0.09414 0.02989 -0.06703
Manual 0.4561 0.6529 0.4643 0.7018 0.6692 0.8923 0.7612
Average 25 25 25 25 23 23 23
Flow dep. -0.18645 0.13127 0.28176 0.14246 -0.16787 -0.22049 -0.22171
Annotated 0.3722 0.5317 0.1724 0.4969  0.4439 0.312  0.3093
Average 25 25 25 25 23 23 23
Flow dep. -0.01238 -0.02219 0.0684 0.08182 0.28719 -0.06607 0.22089
Manual 0.9542 0.918 0.7508 0.7039 0.195 0.7702  0.3232
Average 24 24 24 24 22 22 22
Output dep. -0.19723] 0.37063 0.11541 0.19122 -0.06995 -0.13978 -0.12505
Annotated 0.3342 0.0623 0.5745 0.3494  0.7453 0.5148  0.5604
Average 26 26 26 26 24 24 24
Output dep. -0.14228 0.0585 -0.23691 -0.05125 0.14904 0.03267 0.13844
Manual 0.4975 0.7812 0.2542 0.8078  0.4973 0.8824  0.5287
Average 25 25 25 25 23 23 23

Table B.15 Selected Correlations of Non-
Loop-Carried TASKTIME with Questionnaire Data




TASKTIME
Non-Loop-Carried
Question: 6.04ba 6.04bb 6.04bc 6.04b*/3 6.05a 6.05b 6.05a+b
Table Cells Key:
Pearson # of High #of HS. +
Correlation R School # of College College
Prob > R GRE GRE GRE Comp. Sci. Comp. Sci. Comp. Sci.
N obs. Verbal Mathematics Analytical GRE Average courses Courses  courses
Variable= aqGREv QGREM QGREA QGREAVG QHSCS Qcocs QCSSUM
Overall -0.16163] -0.86831] -0.8618]| -0.63993| -0.29666 -0.18784 -0.31577
Average 0.7022 0.0024 0.0028 0.0634 0.1411 0.3581 0.1161
8 9 9 9 26 26 26
Annotated -0.34689| -0.74515| -0.8124| -0.73535] -0.28532 -0.18725 -0.30923
Average 0.3999 0.0212 0.0078 0.024 0.1577 0.3597 0.1242
8 9 9 9 26 26 26
Manual -0.05228] -0.84776] -0.80188| -0.52383 -0.23018 -0.15196 -0.25022
Average 0.9021 0.0039 0.0093 0.1478 0.258 0.4586 0.2176
8 9 9 9 26 26 26
Anti- -0.01891| -0.72829| -0.67327] -0.36038 -0.26592 -0.26995| -0.36826
dependence 0.9646 0.0261 0.0468 0.3407 0.1892 0.1823 0.0642
Average 8 9 9 9 26 26 26
Flow -0.31188] -0.71144| -0.6894| -0.67502] -0.16293 0.04072 -0.05144
dependence 0.452 0.0316 0.0399 0.046 0.4365 0.8468 0.8071
Average 8 9 9 9 25 25 25
Output -0.14717] -0.89856] -0.95593]| -0.70566] -0.21718 -0.15111 -0.24258
dependence 0.728 0.001 0.0001 0.0337 0.2866 0.4612 0.2325
Average 8 9 9 9 26 26 26
Anti-dep. -0.24987| -0.81085| -0.71039] -0.59234] -0.24489 -0.1839 -0.284
Annotated 0.5506 0.008 0.032 0.0928 0.2381 0.3789 0.1689
Average 8 9 9 9 25 25 25
Anti-dep. 0.30298 -0.36454 -0.38426 0.05001 -0.21512 -0.25514 -0.32908
Manual 0.4657 0.3348 0.3072 0.8983 0.3018 0.2184 0.1082
Average 8 9 9 9 25 25 25
Flow dep. -0.50326 -0.12077 -0.21019 -0.46587 -0.05923 0.01134 -0.02162
Annotated 0.2036 0.7569 0.5873 0.2063 0.7785 0.9571 0.9183
Average 8 9 9 9 25 25 25
Flow dep. -0.01073| -0.8697| -0.76541] -0.54476 -0.16707 0.03082 -0.06248
Manual 0.9799 0.0023 0.0162 0.1294 0.4352 0.8863 0.7718
Average 8 9 9 9 24 24 24
Output dep. 0.19807 -0.31222 -0.57468 -0.2578 -0.17927 -0.11879 -0.19525
Annotated 0.6382 0.4134 0.1055 0.503 0.3809 0.5633 0.3391
Average 8 9 9 9 26 26 26
Output dep. -0.25812| -0.93315| -0.88868] -0.72741] -0.17062 -0.11 -0.18259
Manual 0.5371 0.0002 0.0014 0.0263 0.4148 0.6007 0.3823
Average 8 9 9 9 25 25 25
(Table B.15 continued)
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TASKTIME
Non-Loop-Carried
Question: 6.05c 6.06a 6.06b 6.06a+b 6.06c 6.08a 6.08b
Table Cells Key:
Pearson # of High #ofHS. +
Correlation R School # of College College Familiarity of Confidence in
Prob > R Comp. Sci. Mathematics Mathematics Mathematics  Mathematics Method Method
N obs. GPA Courses Courses courses GPA Learned Learned
Variable= aqcscra QHSMATH QCOMATH  QMATHSUM  QMATHGPA  QMETHFAM  QMETHCNF
Overall 0.15914| -0.33213| -0.28189| -0.37139] 0.04533 -0.08367 -0.04905
Average 0.4374 0.0974 0.163 0.0618 0.826 0.6909 0.8119
26 26 26 26 26 25 26
Annotated 0.02651 -0.15695 0.08544 -0.03683 -0.10603 -0.24428 -0.16879
Average 0.8977 0.4439 0.6781 0.8582 0.6062 0.2393 0.4098
26 26 26 26 26 25 26
Manual 0.18857| -0.34256]| -0.40944| -0.45832| 0.11038 0.0225 0.02413
Average 0.3562 0.0867 0.0378 0.0185 0.5914 0.915 0.9069
26 26 26 26 26 25 26
Anti- 0.07838 -0.09816 -0.07498 -0.10448 0.0441 -0.027 0.01276
dependence 0.7035 0.6333 0.7158 0.6115 0.8306 0.8981 0.9507
Average 26 26 26 26 26 25 26
Flow 0.2582 -0.33492 -0.26648] -0.35826| 0.05792 -0.11962 -0.15879
dependence  0.2127 0.1017 0.1979 0.0787 0.7833 0.5777 0.4484
Average 25 25 25 25 25 24 25
Output 0.0145 -0.24349 -0.24183 -0.29457 0.03734 0.0632 0.11683
dependence  0.9439 0.2307 0.234 0.1441 0.8563 0.7641 0.5698
Average 26 26 26 26 26 25 26
Anti-dep. -0.20294 0.18674 0.16014 0.20686 0.02425 0.20722 0.23124
Annotated 0.3306 0.3714 0.4445 0.3211 0.9084 0.3313 0.2661
Average 25 25 25 25 25 24 25
Anti-dep. 0.16835 -0.22699 -0.18635 -0.25074 -0.00639 -0.16413 -0.12881
Manual 0.4211 0.2752 0.3725 0.2267 0.9758 0.4435 0.5395
Average 25 25 25 25 25 24 25
Flow dep. 0.30432 -0.16985 0.23467 0.04575 0.0397 -0.22225 -0.16355
Annotated  0.1391 0.417 0.2588 0.8281 0.8506 0.2966 0.4347
Average 25 25 25 25 25 24 25
Flow dep. 0.13395] -0.34515] -0.40512| -0.4508] -0.02334 -0.06468 -0.12441
Manual 0.5326 0.0986 0.0495 0.027 0.9138 0.7694 0.5624
Average 24 24 24 24 24 23 24
Output dep. 0.08315 -0.22117 -0.14719 -0.2216 -0.14762| -0.4477| -0.44168
Annotated 0.6863 0.2776 0.4731 0.2766 0.4717 0.0248 0.0239
Average 26 26 26 26 26 25 26
Output dep. -0.09912 -0.16617 -0.18645 -0.2111 0.11333] 0.45051| 0.43193
Manual 0.6373 0.4273 0.3722 0.3111 0.5896 0.0272 0.0311
Average 25 25 25 25 25 24 25

(Table B.15 continued)
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TASKTIME
Non-Loop-Carried
Question: 6.11a 6.11b 6.12a 6.13a 6.13b 6.14a 6.14b
Table Cells Key: Perceived # of # of
Pearson Perceived usefulness of Percentage of Percentage of Programming Programming
Correlation R # of informal Value of "other" Time in Non- Time in Seq. Languages Languages used
Prob > R courses in Informal experiences in  Programming Programming used at any within last 6
N obs. programming Learning programming Work Work time months
Variable= aNINFRML  QVINFRML QGUSEFUL QNPGPCT  QSPGPCT  QALLLANG  QACTLANG
Overall 0.03613 0.05093 0.02209 -0.09544 0.04285 -0.16218 -0.07958
Average 0.8609 0.9136 0.9165 0.65 0.8388 0.4286 0.7053
26 7 25 25 25 26 25
Annotated 0.08641 0.23245 0.01836 0.19194 -0.2618 -0.2025 -0.00138
Average 0.6747 0.616 0.9306 0.358 0.2062 0.3212 0.9948
26 7 25 25 25 26 25
Manual 0.03554 -0.08666 0.02315 -0.20706 0.1742 -0.11658 -0.0968
Average 0.8632 0.8534 0.9125 0.3206 0.405 0.5706 0.6453
26 7 25 25 25 26 25
Anti- 0.15557 0.17107 -0.11133 0.09002 -0.10901 0.06287 0.21718
dependence 0.4479 0.7138 0.5962 0.6687 0.604 0.7603 0.297
Average 26 7 25 25 25 26 25
Flow -0.14279 -0.28292 0.12501] -0.36237| 0.34618| -0.03238 -0.09182
dependence 0.4959 0.5387 0.5606 0.0818 0.0975 0.8779 0.6696
Average 25 7 24 24 24 25 24
Output -0.03309 0.08843 -0.02514 0.04861 -0.14909| -0.46529| -0.42535
dependence 0.8725 0.8505 0.9051 0.8175 0.4769 0.0166 0.034
Average 26 7 25 25 25 26 25
Anti-dep. -0.0047 -0.07573 -0.3314 0.27043  -0.2453 -0.1599 -0.03134
Annotated 0.9822 0.8718 0.1137 0.2012 0.248 0.4452 0.8844
Average 25 7 24 24 24 25 24
Anti-dep. 0.28071 0.22495 0.1247 0.03712 -0.08842  0.19804 0.32881
Manual 0.1741 0.6683 0.5615 0.8633 0.6812 0.3426 0.1167
Average 25 6 24 24 24 25 24
Flow dep. -0.08539 0.2109 0.05156 0.11573 -0.18582 0.08446 0.17144
Annotated 0.6849 0.6499 0.8109 0.5902 0.3847 0.6881 0.4231
Average 25 7 24 24 24 25 24
Flow dep. -0.04601 -0.60376 0.16545] -0.40246] 0.40824| -0.09681 -0.15104
Manual 0.8309 0.2044 0.4506 0.0569 0.0531 0.6527 0.4915
Average 24 6 23 23 23 24 23
Output dep. 0.18479 0.38627] 0.39943]| -0.02296 -0.11535 -0.27845 -0.17699
Annotated 0.3661 0.392 0.0479 0.9132 0.583 0.1684 0.3974
Average 26 7 25 25 25 26 25
Output dep. -0.17078 -0.27029 -0.27758 0.12676 -0.17317| -0.38941] -0.39026
Manual 0.4144 0.5577 0.1891 0.555 0.4184 0.0543 0.0594
Average 25 7 24 24 24 25 24

(Table B.15 continued)



TASKTIME
Non-Loop-Carried
Question: 6.15a 6.16a 6.17a 6.18a 6.18b 6.18d 6.18f
Table Cells Key:
Pearson Perceived Frequency of Frequency of
Correlation R Perceived Value of Enjoyment of use of: Frequency of use of: Frequency of
Prob > R Value of Manual  Annotated working IF use of: CASE use of:
N obs. Method Method problems statements Sequential DO  statement = RECURSION
Variable= aqvmanmTH ~ QVANNMTH  QENJOYED QIFF QSEQDOF QCASEF QRECURSE
Overall 0.27583 0.193 0.18974 0.10905 0.15273 -0.21876 -0.08341
Average 0.1726 0.3448 0.3532 0.5959 0.4564 0.283 0.6854
26 26 26 26 26 26 26
Annotated 0.32007 0.21478 0.30545 0.12561 0.03317 -0.14608 -0.07683
Average 0.1109 0.292 0.1292 0.5409 0.8722 0.4764 0.7091
26 26 26 26 26 26 26
Manual 0.18785 0.13767 0.10793 0.08987 0.17578 -0.20346 -0.06473
Average 0.3581 0.5024 0.5997 0.6624 0.3904 0.3188 0.7534
26 26 26 26 26 26 26
Anti- -0.01086 -0.07667 0.26167 -0.17362 0.17575] -0.37983| -0.21361
dependence 0.958 0.7097 0.1966  0.3963  0.3904] 0.0556 0.2947
Average 26 26 26 26 26 26 26
Flow 0.19401 0.22965 -0.11807 0.15931 0.05909 -0.14359 0.01968
dependence 0.3527 0.2695 0.574  0.4469 0.779  0.4935 0.9256
Average 25 25 25 25 25 25 25
Output| 0.50685] 0.31492 0.27693 0.25214 0.08451 0.11371 0.02691
dependence 0.0082 0.1171 0.1708 0.214 0.6815 0.5802 0.8962
Average 26 26 26 26 26 26 26
Anti-dep. 0.1657 0.10722 0.28044 -0.26202 0.09887 -0.29863 -0.21718
Annotated 0.4286 0.61 0.1745 0.2058 0.6382 0.147 0.297
Average 25 25 25 25 25 25 25
Anti-dep. -0.19214 -0.19896 0.14751 -0.0618 0.15562 -0.31128 -0.14105
Manual 0.3575 0.3404 04816 0.7692 04576 0.1299 0.5013
Average 25 25 25 25 25 25 25
Flow dep. 0.05365 0.16877 0.20865 0.15321 -0.20016 -0.24273 0.02344
Annotated 0.799 0.42 0.3169  0.4647 0.3374 0.2424 0.9115
Average 25 25 25 25 25 25 25
Flowdep. 0.17462 0.16958 -0.18475 0.14555 0.14836 -0.03979 0.02205
Manual 0.4144 0.4283 0.3875 0.4974 0.489 0.8536 0.9186
Average 24 24 24 24 24 24 24
Output dep.] 0.38665| 0.22717 0.00168| 0.49009| 0.03726 0.2748 0.08873
Annotated 0.051 0.2644 0.9935 0.011 0.8566  0.1743 0.6664
Average 26 26 26 26 26 26 26
Output dep.| 0.36504] 0.23325 0.3367] -0.02829 0.08069 -0.02832 -0.02021
Manual 0.0728 0.2618 0.0998] 0.8932 0.7014 0.8931 0.9236
Average 25 25 25 25 25 25 25

(Table B.15 ends)
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TASKTIME
Loop-Carried
Question: 6.01a 6.02a 6.03a 6.03b 6.04aa 6.04ab  6.04a%/2
Table Cells Key:
Pearson
Correlation R # of years of Confidence in  Confidence in
Prob > R programming Sequential Parallel SAT SAT SAT
N obs. experience Able to Juggle Programming Programming Verbal Mathematics Average
Variable= QqPROGYRS QVJUGGLE QCNFSQPG  QCNFPRPG QSATV QSATM QSATAVG
Overall -0.01918] 0.44504 0.08975 -0.00648 0.02274 -0.19011 -0.06884
Average 0.9259 0.0227 0.6628 0.9749 0.916 0.3736  0.7493
26 26 26 26 24 24 24
Annotated -0.01066 0.4966 0.10977 -0.10347 0.05936 -0.18731 -0.03609
Average 0.9588 0.0099 0.5935 0615 0.7829 0.3808 0.867
26 26 26 26 24 24 24
Manual -0.03199 0.24234 0.00411 0.08978 -0.00512 -0.20778 -0.10098
Average 0.8767 0.2329 0.9841 0.6627 0.981 0.3299  0.6387
26 26 26 26 24 24 24
Anti- -0.14307 0.29565 -0.00085 -0.19553 0.09244 -0.27597 -0.04889
dependence 0.4856 0.1425 0.9967 0.3384 0.6675 0.1918  0.8205
Average 26 26 26 26 24 24 24
Flow 0.14166] 0.48278 0.12246 0.29195 -0.03623 0.10373 0.0171
dependence 0.49 0.0125 0.5512 0.1478 0.8665 0.6296  0.9368
Average 26 26 26 26 24 24 24
Output -0.03396 0.30769 0.13639 -0.11 -0.00628 -0.28773 -0.13914
dependence 0.8692 0.1262 0.5065 0.5927 0.9768 0.1728  0.5167
Average 26 26 26 26 24 24 24
Anti-dep. -0.12177 0.33047 0.01479 -0.18059 0.26968 -0.26004 0.10236
Annotated 0.562 0.1066 0.9441 0.3877 0.2133 0.2308  0.6421
Average 25 25 25 25 23 23 23
Anti-dep. -0.14758 0.18896 -0.02507 -0.16719 -0.10738 -0.19115 -0.17928
Manual 0.4814 0.3657 0.9053 0.4244  0.6258 0.3823  0.4131
Average 25 25 25 25 23 23 23
Flow dep. 0.08287| 0.41877 0.01192 0.03498 0.04717 0.06206 0.06936
Annotated 0.6874 0.0332 0.9539 0.8653 0.8268 0.7733  0.7474
Average 26 26 26 26 24 24 24
Flow dep. 0.14996] 0.37013 0.22898 0.43552] -0.10199 0.06625 -0.05742
Manual 0.4743 0.0686 0.2709 0.0296] 0.6433 0.7639  0.7947
Average 25 25 25 25 23 23 23
Output dep. 0.0179  0.26253 0.23268 -0.07136 -0.18337 -0.22916 -0.26401
Annotated 0.9308 0.1951 0.2527 0.729  0.3911 0.2814 0.2125
Average 26 26 26 26 24 24 24
Output dep. -0.13275 0.24234 -0.0885 -0.1597 0.18459 -0.26109 0.03718
Manual 0.518 0.2329 0.6673 0.4358 0.3879 0.2178  0.8631
Average 26 26 26 26 24 24 24
Table B.16 Selected Correlations of

Loop-Carried TASKTIME with Questionnaire Data



TASKTIME
Loop-Carried
Question: 6.04ba 6.04bb 6.04bc 6.04b*/3 6.05a 6.05b 6.05a+b
Table Cells Key:
Pearson # of High #of HS. +
Correlation R School # of College College
Prob > R GRE GRE GRE Comp. Sci. Comp. Sci. Comp. Sci.
N obs. Verbal Mathematics Analytical GRE Average courses Courses  courses
Variable= aqGREv QGREM QGREA QGREAVG QHSCS Qcocs QCSSUM
Overall -0.04247 -0.39431 -0.24758 -0.07108] -0.34192] 0.30953 0.0773
Average 0.9205 0.2936 0.5207 0.8558 0.0873 0.1239 0.7074
8 9 9 9 26 26 26
Annotated -0.20632 -0.14287 -0.01048 0.06419 -0.2718 0.32929 0.13127
Average 0.624 0.7138 0.9787 0.8697 0.1792 0.1005 0.5227
8 9 9 9 26 26 26
Manual 0.03239 -0.5569 -0.44238 -0.2094] -0.4289| 0.17187 -0.08455
Average 0.9393 0.1193 0.2331 0.5887 0.0288 0.4012 0.6813
8 9 9 9 26 26 26
Anti- 0.22406 -0.37111 -0.0991 -0.00292 -0.29685 0.09037 -0.0825
dependence 0.5937 0.3255 0.7998 0.994 0.1409 0.6607 0.6887
Average 8 9 9 9 26 26 26
Flow -0.0497 -0.0676 -0.03968 0.17997 -0.28574 0.309 0.10682
dependence 0.907 0.8628 0.9193 0.6431 0.1571 0.1245 0.6035
Average 8 9 9 9 26 26 26
Output -0.45531] -0.62415] -0.58233] -0.56087 -0.18305| 0.37451] 0.21653
dependence 0.2569 0.0724 0.0999 0.1162 0.3708 0.0594 0.288
Average 8 9 9 9 26 26 26
Anti-dep. 0.02403 -0.28073 -0.01748 -0.03904 -0.23654 0.02615 -0.12099
Annotated 0.955 0.4643 0.9644 0.9206 0.2549 0.9013 0.5646
Average 8 9 9 9 25 25 25
Anti-dep. 0.4743 -0.35649 -0.07685 0.10695 -0.24153 0.08585 -0.05481
Manual 0.2822 0.3861 0.8565 0.801 0.2448 0.6833 0.7947
Average 7 8 8 8 25 25 25
Flow dep. -0.53512 0.20191 0.18537 0.31212 -0.15725 0.18996 0.07548
Annotated 01717 0.6024 0.633 0.4135 0.443 0.3526 0.714
Average 8 9 9 9 26 26 26
Flow dep. 0.16246 -0.38718 -0.28936 -0.06682 -0.28726] 0.34977| 0.15245
Manual 0.7278 0.3433 0.487 0.8751 0.1638 0.0865 0.4669
Average 7 8 8 8 25 25 25
Output dep. -0.30143| -0.60109] -0.53147] -0.61074] -0.1489 0.4481] 0.29648
Annotated 0.4681 0.0869 0.1409 0.0806 0.4678 0.0217 0.1414
Average 8 9 9 9 26 26 26
Output dep. -0.44708 -0.33104 -0.33579 -0.2359 -0.22998 0.17897 0.02748
Manual 0.2667 0.3842 0.377 0.5412 0.2584 0.3817 0.894
Average 8 9 9 9 26 26 26
(Table B.16 continued)
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TASKTIME
Loop-Carried
Question: 6.05c 6.06a 6.06b 6.06a+b 6.06c 6.08a 6.08b
Table Cells Key:
Pearson # of High #ofHS. +
Correlation R School # of College College Familiarity of Confidence in
Prob > R Comp. Sci. Mathematics Mathematics Mathematics  Mathematics Method Method
N obs. GPA Courses Courses courses GPA Learned Learned
Variable= aqcscra QHSMATH QCOMATH  QMATHSUM  QMATHGPA  QMETHFAM  QMETHCNF
Overall 0.10174| -0.49556| -0.36704| -0.52016] -0.10553 -0.16585 -0.27647
Average 0.6209 0.01 0.0651 0.0065 0.6079 0.4282 0.1715
26 26 26 26 26 25 26
Annotated 0.09198| -0.46422| -0.23235| -0.41657| -0.12234 -0.13711 -0.21244
Average 0.655 0.0169 0.2534 0.0343 0.5516 0.5134 0.2975
26 26 26 26 26 25 26
Manual 0.04408| -0.44135]| -0.56608] -0.61495| -0.09715 -0.13041 -0.26562
Average  0.8307 0.024 0.0026 0.0008 0.6368 0.5344 0.1897
26 26 26 26 26 25 26
Anti- -0.12241] -0.56581] -0.21854] -0.46672| -0.23359 -0.2017 -0.19742
dependence 0.5514 0.0026 0.2835 0.0162 0.2508 0.3336 0.3337
Average 26 26 26 26 26 25 26
Flow 0.28387 -0.27743 -0.32927] -0.3697| 0.03405 -0.15074 -0.3215
dependence  0.1599 0.17 0.1005 0.063 0.8688 0.472 0.1092
Average 26 26 26 26 26 25 26
Output 0.12706 -0.30772 -0.29796] -0.36742| -0.02873 -0.02486 -0.13401
dependence  0.5362 0.1262 0.1393 0.0648 0.8892 0.9061 0.514
Average 26 26 26 26 26 25 26
Anti-dep. -0.19978| -0.53183| -0.17229] -0.42252] -0.33763] -0.08978 -0.06373
Annotated  0.3383 0.0062 0.4102 0.0354 0.0988 0.6765 0.7622
Average 25 25 25 25 25 24 25
Anti-dep. 0.06987| -0.44172| -0.12916 -0.35402| 0.01668 -0.30342 -0.28239
Manual 0.74 0.0271 0.5383 0.0825 0.9369 0.1495 0.1714
Average 25 25 25 25 25 24 25
Flow dep.] 0.33183] -0.04652 -0.00599 -0.03077 0.15877 -0.09466 -0.13724
Annotated| 0.0977 0.8215 0.9769 0.8814 0.4385 0.6526 0.5038
Average 26 26 26 26 26 25 26
Flow dep. 0.08291] -0.41611] -0.50494| -0.54932| -0.1606 -0.17587| -0.40132
Manual 0.6936 0.0386 0.01 0.0045 0.4431 0.4111 0.0468
Average 25 25 25 25 25 24 25
Output dep. 0.12022] -0.40939| -0.33398| -0.44922] -0.02508 -0.09435 -0.22102
Annotated 0.5586 0.0378 0.0954 0.0213 0.9032 0.6537 0.2779
Average 26 26 26 26 26 25 26
Output dep. 0.07011 -0.06892 -0.19765 -0.16532 -0.02727 0.07199 0.00758
Manual 0.7336 0.738 0.3331 0.4196 0.8948 0.7324 0.9707
Average 26 26 26 26 26 25 26

(Table B.16 continued)
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TASKTIME
Loop-Carried
Question: 6.11a 6.11b 6.12a 6.13a 6.13b 6.14a 6.14b
Table Cells Key: Perceived # of # of
Pearson Perceived usefulness of Percentage of Percentage of Programming Programming
Correlation R # of informal Value of "other" Time in Non- Time in Seq. Languages Languages used
Prob > R courses in Informal experiences in  Programming Programming used at any within last 6
N obs. programming Learning programming Work Work time months
Variable= QNINFRML  QVINFRML QGUSEFUL QNPGPCT  QSPGPCT  QALLLANG  QACTLANG
Overalll 0.40315| 0.50128 -0.12027 -0.20839 0.20921 -0.19398 -0.13893
Average 0.0411 0.2518 0.5669 0.3175 0.3155 0.3424 0.5078
26 7 25 25 25 26 25
Annotated| 0.45864| 0.54739 -0.11358 -0.11532 0.1302 -0.20896 -0.10771
Average 0.0184 0.2034 0.5888 0.5831 0.5351 0.3056 0.6083
26 7 25 25 25 26 25
Manual 0.28021 0.27817 -0.15266 -0.29491 0.28015 -0.20031 -0.21946
Average 0.1656 0.5458 0.4663 0.1524 0.175 0.3265 0.2919
26 7 25 25 25 26 25
Anti-| 0.50828] 0.52034 0.01479 -0.00224 0.05426 -0.31605 -0.08104
dependence 0.008 0.2312 0.9441 0.9915 0.7967 0.1157 0.7002
Average 26 7 25 25 25 26 25
Flow 0.25614 0.03865 -0.12617 -0.33521 0.3082 0.15311 0.01144
dependence 0.2066 0.9344 0.5479 0.1014 0.1339 0.4552 0.9567
Average 26 7 25 25 25 26 25
Output 0.18574 0.23253 -0.17321 -0.17971 0.14385 -0.30462 -0.26266
dependence 0.3636 0.6158 0.4077 0.39 0.4927 0.1303 0.2046
Average 26 7 25 25 25 26 25
Anti-dep.|] 0.65866] 0.43755 -0.00695 0.11294 -0.057] -0.34308] -0.06661
Annotated 0.0003 0.3262 0.9743 0.5993 0.7914 0.0932 0.7571
Average 25 7 24 24 24 25 24
Anti-dep. 0.18018 0.47187 0.0407 -0.08793 0.12241 -0.18981 -0.03659
Manual 0.3888 0.2851 0.8502 0.6829 0.5688 0.3635 0.8652
Average 25 7 24 24 24 25 24
Flow dep. 0.20157 0.23499 -0.21615 -0.19472 0.18564 0.11189 0.00964
Annotated 0.3234 0.612 0.2994 0.351 0.3743 0.5863 0.9635
Average 26 7 25 25 25 26 25
Flow dep. 0.16946 -0.41832 0.09745 -0.29732 0.25973 0.18186 0.08155
Manual 0.4181 0.3503 0.6506 0.1583 0.2203 0.3843 0.7048
Average 25 7 24 24 24 25 24
Output dep. 0.06819 0.10768 -0.04381 -0.13972 0.10885 -0.2646 -0.20958
Annotated 0.7407 0.8183 0.8353 0.5053 0.6045 0.1915 0.3147
Average 26 7 25 25 25 26 25
Output dep. 0.26829 0.29341 -0.32966 -0.16573 0.13248 -0.3097 -0.28837
Manual 0.1851 0.5231 0.1076 0.4285 0.5279 0.1236 0.1621
Average 26 7 25 25 25 26 25

(Table B.16 continued)
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TASKTIME
Loop-Carried
Question: 6.15a 6.16a 6.17a 6.18a 6.18b 6.18d 6.18f
Table Cells Key:
Pearson Perceived Frequency of Frequency of
Correlation R Value of  Enjoyment of use of: Frequency of use of: Frequency of
Prob > R Perceived Value  Annotated  working IF use of: CASE use of:
N obs. of Manual Method Method problems statements Sequential DO  statement = RECURSION
Variable=  qvmanmth QVANNMTH  QENJOYED QIFF QSEQDOF QCASEF QRECURSE
Overall -0.0107 -0.03044 0.08193 0.00737 0.1092 0.03856 -0.19464
Average 0.9586 0.8827 0.6907 09715 0.5954 0.8516 0.3407
26 26 26 26 26 26 26
Annotated -0.08824  -0.0047 0.09141 0.02658 0.00671 0.02213 -0.06609
Average 0.6682 0.9818 0.657 0.8975 0.974 0.9146 0.7484
26 26 26 26 26 26 26
Manual 0.05057 -0.08784 0.08512 -0.05481 0.27311 0.06115] -0.36134
Average 0.8062 0.6696 0.6793  0.7903 0.177  0.7667 0.0697
26 26 26 26 26 26 26
Anti- 0.08531 0.20329 0.09159 -0.02799 0.06022 0.27847 0.19029
dependence 0.6786 0.3192 0.6563 0.892 0.7701 0.1684 0.3518
Average 26 26 26 26 26 26 26
Flow -0.00978 -0.2598 -0.13269 0.0306 0.21202 -0.15462| -0.51558
dependence 0.9622 0.1999 0.5182 0.882 0.2984  0.4507 0.007
Average 26 26 26 26 26 26 26
Output -0.138 -0.02076 0.24166 0.04731 -0.04692 -0.05978 -0.12534
dependence 0.5014 0.9198 0.2343 0.8185 0.82 0.7718 0.5418
Average 26 26 26 26 26 26 26
Anti-dep. -0.0091 0.12765 0.204 0.0512 -0.01738 0.30846 0.27042
Annotated 0.9655 0.5432 0.328 0.808 0.9343 0.1336 0.1911
Average 25 25 25 25 25 25 25
Anti-dep. 0.19421 0.26109 -0.08509 -0.1347 0.06859 0.12369 0.13617
Manual 0.3523 0.2074 0.6859 0.5209 0.7446  0.5558 0.5163
Average 25 25 25 25 25 25 25
Flow dep. -0.17674 -0.25815 -0.16674 -0.14504 0.00887| -0.43104| -0.31112
Annotated 0.3878 0.2029 04156 04796  0.9657| 0.0279 0.1219
Average 26 26 26 26 26 26 26
Flow dep. 0.18583 -0.13092 -0.05638 0.2128 0.2744 0.21112] -0.46913
Manual 0.3738 0.5328 0.789  0.3071 0.1844 0.311 0.018
Average 25 25 25 25 25 25 25
Output dep. -0.01731 0.12048 0.21347 0.16732 -0.0164 0.15844 -0.07384
Annotated 0.9331 0.5577 0.2951 0.4139 0.9366  0.4395 0.72
Average 26 26 26 26 26 26 26
Output dep. -0.24658 -0.16308 0.22867 -0.13366 -0.02913 -0.31094 -0.21088
Manual 0.2246 0.426 0.2612  0.51%1 0.8877 0.1221 0.3011
Average 26 26 26 26 26 26 26

(Table B.16 ends)
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B.5 Summary Subject Performance Statistics

These are statistical summaries of subject overall performance, such as the length of
time required to complete various sections of the hypertext document, the number of
keyboard shortcuts used, etc. Because the experimental materials differed between
the two training groups, the form of presentation is similar to that of Appendix B.3:
a introduction with the variable indicated with its explanation, and since
all values are continuous, a table comparing the TRAINING groups separately and
combined, with number of responses received (N), mean, standard deviation, mini-
mum, median, and maximum values, together with the p probability of the associated

Wilcoxon test. Note that not all statistics were collected for four subjects.

Number of Xbrowser runs to complete experiment:
NAME group N mean sd min med max Wilcoxon p
NRUNS AF: 13192 1.7 7 9 13

DA:| 9194 14 7 10 12

BOTH: 22 |93 15 7 9 13 0.56

Number of edit operations completed with keyboard shortcuts: | NSHORT

Number of edit operations completed with mouse: | NEDITS
Number of edit operations, total: |[NEDTOT
Percentage of edit operations completed with keyboard: | EKEYPCT

NAME group N mean sd min med max Wilcoxon p
NSHORT AF: |16 | 211 1664 0 288.0 499
DA: |10 | 163 171.7 0 128.0 378
BOTH: | 26 | 192 166.7 0 2525 499 0.43
NEDITS AF: |16 | 376  60.3 251 362.0 548
DA: |10 | 379 33.8 341 367.0 457
BOTH: [ 26 | 377 50.9 251 363.5 548 0.60
NEDTOT AF: | 16 | 586 195.8 352 626.5 1047
DA: |10 | 541 176.3 341 533.0 774
BOTH: | 26 | 569 186.2 341 587.0 1047 0.69
EKEYPCT AF: | 16 | 30% 21% 0% 42% 56%
DA: |10 | 23% 24% 0% 22% 49%
BOTH: | 26 | 28% 22% 0% 40% 56% 0.51
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Number of document buttons activated with mouse: [NBUTTONS |
Number of document buttons activated with keyboard shortcuts: | NKEYS

Number of document button events, total: [ NBUTTOT
Percentage of buttons activated with keyboard: | BKEYPCT

NAME group N mean sd  min med max Wilcoxon p
NBUTTONS AF: | 13 ] 406 120.7 265 394.0 639
DA: | 9| 441 133.2 223 467.0 600
BOTH: | 22 | 420 124.1 223 436.5 639 0.55
NKEYS AF: | 13| 119 1084 0 114.0 275
DA:| 9 97  90.7 1 61.0 286
BOTH: [ 22| 110  99.9 0 106.0 286 0.87
NBUTTOT AF: |13 ] 525 65.1 431 508.0 640
DA:| 9] 538 87.0 373 543.0 661
BOTH: | 22| 530 73.1 373 521.5 661 0.42
BKEYPCT AF: | 13 123%  20% 0% 22% 48%
DA:| 9|19% 18% 0% 9% 52%
BOTH: | 22 | 21% 19% 0% 22% 52% 0.95

Total number of editor and document button keyboard shortcuts:
Total number of editor and document button mouse interactions:
Total number of editor and document button interactions:
Percentage of interactions using keyboard shortcuts:

NAME group N mean sd  min med max Wilcoxon p
NSTROKE AF: | 13| 343 2120 0 340.0 598
DA: | 9| 278 204.2 3 369.0 616
BOTH: | 22 | 316 206.5 0 3545 616 0.59
NINTRCT AF: |13 ] 786 161.2 561 788.0 1187
DA: | 9| 824 145.7 587 863.0 980
BOTH: | 22 | 801 152.6 561 814.0 1187 0.39
NTOTAL AF: | 13 ] 1129 256.0 788 1142 1687
DA: | 9| 1101 231.1 737 1210 1368
BOTH: | 22 | 1117 240.8 737 1176 1687 0.92
TKEYPCT AF: | 13| 28% 16% 0% 28% 49%
DA:| 9(23% 15% 0% 2T% 50%
BOTH: | 22 | 26% 16% 0% 28% 50% 0.64
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Time to complete (or time spent in) hypertext document sections
LEARNING PORTION:
Introduction to Xbrowser: | TXBINTRO |
Table of Contents: [ TCONTENT |

Section 1: Introduction (to experiment):

Section 2: P-F Programming Language:

Section 3.1: Program Comprehension Techniques (shared)
Sections 3.2-3.5: METHOLDP, and Examples:

NAME group N mean sd min med max Wilcoxon p
TXBINTRO AF: | 16 | 359  295.0 99 2955 1326
DA: | 10| 334 201.1 64 3295 697
BOTH: | 26 | 349  258.7 64  299.5 1326 0.85
TCONTENT AF: | 15| 132  115.1 24 89.0 390
DA: |10 | 319 5244 21 1720 1784
BOTH: | 25 207 345.9 21 110.0 1784 0.32
TINTRO AF: |16 | 119 39.6 71 110.0 207
DA: | 10| 115 34.3 50  110.0 167
BOTH: | 26 | 117 3.07 50  110.0 207 0.87
TPF AF: | 16 | 634 2433 329  599.0 1321
DA: | 10 610 232.6 315 587.5 1141
BOTH: | 26 | 625 234.8 315 599.0 1321 0.73
TTECHNIX AF: | 16 | 542 233.8 335 474.0 1259
DA: |10 | 570 331.8 266 419.5 1415
BOTH: | 26 | 553  269.5 266 466.5 1415 0.65
TMETHOD AF: | 16 | 2195  526.7 1389 2137.5 3483
DA: | 10 | 2826 1487.4 1552 2235.5 6116
BOTH: | 26 | 2438 1029.9 1389 2137.5 6116 0.51

YWhere METHOD is Algebraic Formulation OR Dependence Analysis
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Time to complete (or time spent in) hypertext document sections

RESEARCH PORTION:

Section 4: Review (working problems + correcting mistakes): | RVIEWTOT |

Section 5: Problems (all parts of all regular problems):

Section 6: Programming Background Questionnaire: | TQUEST
Section T: Debriefing, review of answers to problems, etc.: | TPOST

NAME group N mean sd min med max Wilcoxon p
RVIEWTOT AF: | 16 | 781 262.0 455 691.0 1263
DA: | 10 841 236.1 462 842.0 1258
BOTH: | 26 804 249.2 455 739.0 1263 0.44
PROBTOT AF: | 16 | 5390 731.1 3970 5560.0 6818
DA: | 10 | 6043 995.4 4594 5804.5 7586
BOTH: | 26 | 5641 884.6 3970 5599.0 7586 0.16
TQUEST AF: |16 | 840 379.9 526 6725 1714
DA: | 10| 768 329.6 402 680.5 1451
BOTH: | 26 | 812 356.3 402 679.5 1714 0.81
TPOST AF: | 16 | 492 454 58 325.0 1401
DA: | 9| 367 226.8 105 288.0 781
BOTH: | 25 | 447 386.9 58 310.0 1401 0.93

The Review and Problems sections also break down into interesting components.

Review breakdown

Section 4a: Review (working problems):

Section 4b: Review (reviewing, and correcting any mistakes):
NAME group N mean sd min med max Wilcoxon p
TREVIEW AF: |16 | 331 1526 94 3155 653

DA: |10 | 236  83.5 102 2225 393

BOTH: | 26 | 294 136.8 94 250.0 653 0.13

TRRVIEW AF: | 16 | 451 190.6 212 430.5 832
DA: | 10 | 605 248.2 251 581.0 1048

BOTH: | 26 | 510 223.3 212 462.0 1048 0.11




Section 5a: Problems, introductory: | TPROBS |
Section 5b: Problems, Comparison Displays (24 x):

Problems breakdown

Section He: Problems, Checklist Displays (24 x):

Section 5d: Problems, resting between (23x): | TREST
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| TCOMPARE |

\TCHCKLSN

NAME group N mean sd min med max Wilcoxon p
TPROBS AF: | 16 93 722 20 79.0 306
DA: | 10 68 32 19 72.5 132
BOTH: | 26 83  60.5 19 73.5 306 0.46
TCOMPARE AF: | 16 | 428 149.0 265 378.0 870
DA: | 10 | 409 65.9 288 419.5 490
BOTH: | 26 | 421 1224 265 402.5 870 0.69
TCHCKLST AF: | 16 | 4961 649.9 3705 5059.5 5948
DA: | 10 | 5634 974.9 4208 5478.5 7166
BOTH: | 26 | 5220 840.8 3705 5175.5 7166 0.12
TREST AF: | 16 | 500 110.2 355 476.0 713
DA: | 10 | 553 190.6 365  500.5 1033
BOTH: | 26 | 520 145.1 355  476.0 1033 0.71
Time spent in experiment up to Debriefing:
Time spent in experiment including Debriefing:
NAME group N mean sd min med max  Wilcoxon p
MAINTOT AF: | 15| 11366 1976 8962 10482 17013
DA: | 10 | 13046 2814 10263 12935 20157
BOTH: | 25 | 12038 2440 8962 11364 20157 0.09
EXPTOT AF: | 15| 11880 2244 9833 11062 18414
DA: | 913341 2896 10849 13045 20300
BOTH: | 24 | 12428 2551 9833 11621 20300 0.07
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