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Abstract

The trust-region subproblem arises frequently in linear algebra and optimization
applications. Recently, matrix—free methods have been introduced to solve large—
scale trust-region subproblems. These methods only require a matrix—vector product
and do not rely on matrix factorizations [4, 7]. These approaches recast the trust—
region subproblem in terms of a parameterized eigenvalue problem and then adjust
the parameter to find the optimal solution from the eigenvector corresponding to the
smallest eigenvalue of the parameterized eigenvalue problem. This paper presents
a new matrix—free algorithm for the large—scale trust-region subproblem. The new
algorithm improves upon the previous algorithms by introducing a unified iteration
that naturally includes the so called hard case. The new iteration is shown to be
superlinearly convergent in all cases. Computational results are presented to illustrate

convergence properties and robustness of the method.
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1 Introduction

An important problem in optimization and linear algebra is the trusi—region subproblem:

minimize a quadratic function subject to an ellipsoidal constraint,

1
min ExTAa: + ng

st ||Cz]| <A,

where A € R, A= AT 2,9 € R", C € IR™" is nonsingular, A € IR, , and || - || is the
Euclidean norm. Here IR, denotes the set of the nonnegative real numbers. There are
several applications for this basic problem. Two significant examples are the regularization
or smoothing of discrete forms of ill-posed problems and the trust-region mechanism used
to force convergence in optimization methods.

A solution z, to the problem must satisfy a relation of the form (A +uC*C)z, = —g
with g > 0. The parameter u is the regularization parameter for ill-posed problems and
the Levenberg—Marquardt parameter in optimization. The matrix C' is often constructed
to impose a smoothness condition on the solution z, for ill-posed problems and to incor-
porate scaling of the variables in optimization. With a change of variables, we can assume
that €' = I, the identity matrix, and this will be the case in the following discussion.

If positive—definite matrices of the form A 4+ pI can be decomposed into a Cholesky
factorization, then the method proposed by Moré and Sorensen (cf. [2]) can be used to solve
the problem. In several important applications, factoring or even forming these matrices
is out of the question. This has motivated the recent development of conjugate-gradient
style matrix—free methods that only require matrix—vector products. The recent works of
Sorensen [7] and Rendl & Wolkowicz [4] provide such algorithms. Both approaches recast
the trust-region subproblem in terms of a parameterized eigenvalue problem and rely
upon matrix—vector products. Sorensen’s algorithm provides a superlinearly convergent

scheme to adjust the parameter and find the optimal vector z, from the eigenvector of the
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parameterized problem, as long as the hard case does not occur. The so—called hard case
is characterized whenever the vector g is orthogonal to the eigenspace of A corresponding
to its smallest eigenvalue 61, and the solution p to the system (A — 6;1)p = —g is such
that ||p|| < A. For the hard case, Sorensen’s algorithm is linearly convergent. The
recommended technique used in [7] to find the smallest eigenvalue and corresponding
eigenvector of the parameterized problem is the Implicitly Restarted Lanczos Method (cf.
[6]), which meets the requirements of limited storage and reliance only on matrix—vector
products. Rendl & Wolkowicz present a primal-dual semidefinite framework for the trust—
region subproblem, where a dual simplex—type method is used in the general iteration and
a primal simplex—type method provides steps for the hard—case iteration. In their work the
calculation of the smallest eigenvalue and corresponding eigenvector of the parameterized

problem, required at each iteration, is done using a block Lanczos routine.

The purpose of this work is to present a new matrix—free algorithm for solving the
large—scale trust—region subproblem. Our algorithm is similar to those proposed in [4, 7]
in the sense that the trust-region subproblem is solved through a parametric eigenvalue
problem. However, our algorithm is able to cope with the hard case naturally in the same
basic iteration. It is not necessary to switch between two fundamentally different schemes
when a potential hard case is present. This improved scheme is based upon computing
the two smallest eigenvalues and corresponding eigenvectors of the parameterized problem
and the information concerning the second smallest eigenpair is incorporated whenever
it is appropriate. This does not increase the work or storage required in any substantial
way over the method proposed in [7]. The iteration we propose is based upon a two—point
interpolating scheme that is different from [7]. We show this new iteration is also superlin-
early convergent. Moreover, our convergence results include the hard case naturally, since
no special iterations are performed. Such a unified approach is not achieved in either [4]

or [7].

This work is organized as follows. In §2 we analyze the structure of the problem and
related results. There we give a complete characterization of the hard case with respect

to the parameterized bordered eigenproblems. The detailed algorithm is presented in §3.
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The local convergence analysis is developed in §4. Preliminary numerical experiments are

described in §5. Finally, in §6 we establish some conclusions and ideas for future research.

2 Structure of the Problem

The trust-region subproblem has a tremendous amount of structure which must be ex-
ploited to design an efficient algorithm. The problem we are interested in solving is
: 1. T T
min 5 Az +g'x
(1)
s.t. ||z]] < A
Due to the structure of (1), its optimality conditions are both necessary and sufficient,
as stated in the next lemma, where we follow [7] in the non-standard but more convenient

use of a non—positive multiplier.

Lemma 1: A feasible vector z, is a solution to (1) if and only if x. is a solution to an
equation of the form (A — A1)z, = —g with A — A\.I positive semidefinite, A, < 0 and
A(A = [Ja.]l) = 0.

Proof: See [5]. O

The optimality conditions of (1) are computationally attractive because they provide
a means to reduce the given n—dimensional constrained optimization problem into a zero—
finding problem in a single scalar variable. One possibility is to define the function p(\) =
(A — M)~ 1g|| and to solve ¢(A) = A, monitoring A to be no greater than the smallest
eigenvalue of A, so that the Cholesky factorization of A — Al is well defined. Applying

1 1
Newton’s method to solve —— — — = 0 has a number of computationally attractive

p(A) A
features (cf. [2]) and this is the preferred approach when the Cholesky factorization of
A — Al is tractable. When the cost or storage requirements of a Cholesky factorization

become prohibitive, a new approach is required. The introduction of another parameter

will make it possible to convert the original trust-region subproblem into a scalar problem
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that is suitable for the large—scale setting. The conversion amounts to embedding the
given problem into a parameterized bordered matrix eigenvalue problem. To begin, we

observe that

a 1 a gt 1
5+¢(m)=5(1 xT) : (2)
g A x

where ¥(z) = aT Az + gTx. As in [7], we denote the bordered matrix appearing on the

N | —

right of (2) as B,. Thus, using y = (1 27)7, and denoting by e; the first canonical unit

vector of IR™*!, problem (1) can be rewritten as
min %yTBay
st yly <14+ A% ely=1,
which suggests that the desired solution might be found in terms of an eigenpair of B,. If

an eigenvector ¢ corresponding to an eigenvalue A of B, can be normalized such that its

first component is one, i.e. ¢ = (1 27)7, then

a gt 1 1
g _ X
g A x x
From this it follows that
a—-A=—glz (3)
and
(A= Az =—-g. (4)
Hence,
n 2
_ Y;
a-A=gl(A-A)Tlg=3 —, (5)
j=1"9

where {¢;} are the eigenvalues of A and {7;} are the expansion coefficients of ¢ in the
eigenvector basis. The case where the eigenvector of B, has a zero first component will

be analyzed below. We shall denote the eigenvalues of A by é; and such that
b1 == 8 < b1 << 6, (6)

so that 67 is the smallest eigenvalue of A, with multiplicity £. The eigenvalues of B, shall
be denoted by {A;(a)} with Aj(a) < Az(a) < - < Apiq(a).
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As a consequence of Cauchy’s interlace theorem (cf. [3], p. 186), the eigenvalues
of the matrix A interlace the eigenvalues of the bordered matrix B,. This can also be
seen directly from equation (5). Therefore, the smallest eigenvalue Aj(a) of B, satisfies
A1(a) < 61. This assures the matrix A — Aq(a)/ is positive semidefinite, regardless of the
value of a. Furthermore, A;(«) is well separated from the rest of the spectrum of B, for
small values of A and it is expected that a Lanczos—type algorithm will be successful in
computing this extreme eigenpair.

Equations (3)—(4) express A and hence z implicitly in terms of «, suggesting the

definition of a convenient function as follows:

dAN)=g"(A-M)g=—g"a,

and so,

dN) =g (A-A)g=a"w,

where differentiation is with respect to A and (A — Al)z = —g¢. Figure 1l.a shows the
typical behavior of ¢. It is worthwhile noticing that both ¢ and ¢’ are readily available
and contain valuable information with respect to problem (1).

Finding the smallest eigenvalue and a corresponding eigenvector of B, for a given
value of @ and then normalizing the eigenvector to have its first component equal to one
will provide a means to evaluate the rational function ¢ and its derivative at appropriate
values of A. If a can be adjusted so the corresponding z satisfies ¢'(\) = 272 = A? with
a— A= ¢(A), then

(A= X)z=—-g and AA-|z|)=0

with A — Al positive semidefinite. If A < 0 then z is optimal and solves the trust-region
subproblem.

In case problem (1) has an unconstrained minimizer, A > 0 will be found with
|z]| < A during the course of adjusting . As a consequence, A is positive definite
and the desired interior solution can be computed using the conjugate—gradient method.

It remains to consider the possibility that the eigenvector of the bordered matrix

B, associated to Aj(«) has first component zero and thus cannot be normalized to have
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its first component equal to one. However, this is equivalent to the so—called hard case,
analyzed in [2] for problems where the Cholesky factorization for A — Al is affordable
and discussed in [4, 7] in the large-scale context. Figure 1.b shows ¢ in presence of the
hard case, where one can see that §; is not a pole of ¢. Next, we state the precise result
describing the hard case for problem (1), which can only occur if the vector g is orthogonal

to the eigenspace S; = {q | Aq = ¢} associated to é;.

Lemma 2: Assume ¢ is orthogonal to S and let p = —(A — 61[)Tg, where | denoles
the Moore—Penrose generalized inverse. If 61 < 0 and ||p|| < A, then the solutions to (1)
consist of the set {x |z =p+2, 2€ 81, ||z]| = A}

Proof: See [5]. O

When g is orthogonal to &y, there is a potential hard—case situation. This condition
has an intriguing consequence. In this case it may be impossible to suitably normalize
the eigenvector of interest. For all values of a greater than a certain critical value a, the
eigenvectors corresponding to the smallest eigenvalue of B, will have a zero first com-
ponent. However, in the exact hard case, there is a well defined eigenvector depending
continuously on a that can be safely normalized for all values of a. When o exceeds the
critical value @, this parameterized vector corresponds to the second smallest eigenvalue
of B,. A complete understanding of this case has led to the main algorithm of this paper.

This understanding is based upon the following results.

Lemma 3: For any a € IR and q € Sy, {61, (0 ¢")T} is an eigenpair of B, if and only
if g is orthogonal to 8.

Proof: The proof is straightforward since ¢ L §; and Ag = ¢, are equivalent to

= 617
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independently of a. O

The previous lemma establishes that dim S; < dim Si(e) = dim N(B, — 611) and
shows that {(0 ¢©)T | Aq = ¢é61} C N(B, — é11) where A denotes the null space. These
sets are equal for all but one exceptional value of a. The following result states that there

is a unique value of a such that dim &;(a) = dim Sy + 1.

Lemma 4: Suppose that g is orthogonal to Sy and p = —(A — 61])Tg. Ifa =6, —g'p
then {61, (1 p)1'} is an eigenpair of B~. Moreover, (1 pT is orthogonal to (0 ¢1)T, for

every q € 81.

Proof: Suppose that @ = §; — g’ p with p = —(A—(SlI)Tg. The assumption g L &7 implies
(A=8l)p=—~(A-aI)(A-6D)lg = —g
and thus the eigenvalue relation
a g7 1 1
g A P P

follows immediately. Now, if ¢ € S; then

1
( 0 ¢F ) ¢'p = —¢"(A - 6.0y
p

= qT(A — (51])T(A — (51])]) = qT(A - 61[)(14 - (51])Tp =0 )

since (A —6;1)¢=10. O

The result in Lemma 3 was also stated in [7] and the idea behind Lemma 4 was
presented in [4]. These results are the heart of the algorithm developed in the next section
since they provide the necessary tools for handling the hard case in the same iteration de-

signed for the general case. The next corollary summarizes the main results from Lemmas

3 and 4.
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Corollary: Suppose that g is orthogonal to Sy. If & = 61+g1 (A—6,1)tg then dim S;(a) =
dim & + 1 and for any other value of a, dim & (o) = dim Sy. Moreover, if { ¢1, -+, q }

1s an orthogonal basis for Sy then

1 0

]

P q1 qe

is an orthogonal basis for S1(a) and

is an orthogonal basis for Si(a), a # a.

Numerical difficulties can be expected when the vector g is nearly orthogonal to the
eigenspace Sp. If this happens, there still exist A\, < é; and z. such that (4 — A1)z, =
—g, ||z«]] = A, with A, quite close to 6;. We call this situation a near hard case and
Figure 1.c illustrates it. In the detail shown in Figure 1.d, one can see that the derivative
¢' changes rapidly for A close to é1, so the problem of finding A, satisfying the correct
slope ¢'(A.) = A? is very ill-conditioned, i.e. a small change in data produces a large

change in the solution.

3 The Algorithm

Keeping in mind the availability of a well-suited variant of the Lanczos method, namely
the Implicitly Restarted Lanczos Method (cf. [6]), we will develop a rapidly convergent

iteration to adjust a based on this process. Our goal is to fit a so that
a-A=0¢() , ¢\ =A%,

where

with (A — Al)z = —g.
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The approach of this work is similar to the one in [7] in the following sense. We
compute a function ¢ which interpolates ¢ and ¢’ at two properly chosen points. Then,
from the interpolating function qg we determine A satisfying qg’ (X) = AZ?. Finally, we use p)
and $(X) to update the parameter a and compute the next point {A, z}. The new elements
in our algorithm are the introduction of safeguards for the sequence in «, the usage of the
information relative to the second smallest eigenvalue of matrix B, and the introduction
of a different interpolating scheme, where the currently available information is exploited

to a greater extent.

3.1 Interpolating Scheme

To begin the iteration, we need a single—point interpolating scheme. As in [7], we use

an interpolating function of the form

~2

Let {A\g, 20} denote the point corresponding to the initial ag so that
oa— A= —gT:co with (A — Xol)zg = —9¢ .

Requiring ¢(Ag) = ¢(Ao) = —gLao and ¢'(Xo) = ¢'(Ao) = 21z leads to a straightforward

derivation of expressions for the coefficients ¢ and 2,

T T 2
6=MXo— ngo and %= 7(9 TUCO) .
oo oo
. e Azg . . . e
It is easy to see that 6 = —~——, which has the desirable feature é; < é. Computing A
Iy Lo
such that ¢'(A) = A% we have
X Sy QTQUO
[[zol|A
and, after a little algebraic manipulation, the updating formula for a is shown to be
~ ~ Oéo—Ao A — Hon 1
a; = A+ d(N)=ap + ( A+ . (7)
[[zoll A [zl

This method is linearly convergent and may be slow in some cases, so it will be used just
to obtain a second iterate from an initial guess, to provide the starting values needed in a

method using two points.
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The two—point method is based on using the four pieces of available information at

the k-th iteration, namely ¢(Ar_1), ¢'(Ae—1), é(Ax) and ¢'(Az). We compute A such that

11 ( Ak—X)+ 1 (X—Ak_l) ®)
AV Nem1) \ M — Ak VO AE) \ Ak = Ak—1)

obtaining

Ar—1llzr-1ll(llzell = A) + Aeflerll(A — [Jee-al])

)=
Alllzell = llzx-l)

(9)

This is equivalent to defining

2
H(N) = 1
= (10)
DS 1 1 . . .
for any n and computing A such that ——— = A One can easily verify using (8) that
¢'(A)
2 _ (k= A1)l |l
(&l = [ler-1l])?

and
5 = Mellzill = Ak |zl
ekl = llzk-1ll

~2 ~
Ideally, n = ¢(A) — (5/—X7 where ¢(A) is the value we are going to estimate in order

to update o. Taking advantage of the available values ¢(A;_1) and ¢(A;), we define
2

n; = ¢(A;) — ﬁ, 7 =k—1and j = k. Applying the linear interpolation philosophy
j

and defining the weights by means of the already computed value X, we choose

o M= N A= N
LA VD VI R P P Vi A

It is worthwhile noticing that the pole ¢ in the interpolating function (10) satisfies
6 > max{Az_1,Ar}. Therefore, § is not strongly attached to é;, as in [7], but can move to
the right towards é¢41 (see (6)), depending on the occurrence or not of a potential exact
or near hard case.

As indicated by Lemma 3, an exceedingly small first component vy of the eigenvector
(v ul)T of B,, corresponding to A;(ay) will indicate a potential hard case. However,

according to Lemma 4, there will be an eigenvector corresponding to the smallest eigen-

value, Aj(ay) = 61, with a substantial first component precisely when o assumes the
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special value @ = & — g'p, with (A — §1)p = —g. We propose to use second small-
est eigenpair of the bordered matrix whenever a potential hard case is detected. As we
shall explain, not only can the size of the iterates ||zx|| be kept under control, but also
convergence of {Agz, z} to {é1,p} will be attained by driving the parameter aj to the
value a given by Lemma 4. Moreover, using the second smallest eigenpair of B,, prevents
numerical difficulties in a near hard—case situation. Computationally, the first component

v1 of the unitary eigenvector (v; uf )T of B,, corresponding to the eigenvalue A;(ay) is

declared sufficiently small if the condition ||g|||v1| < e1/1 — v? holds for a given ¢ € (0, 1).

This is motivated as follows. Since (A — Aq(ax)l)ug = —gry, we have
(A = Mler)Dul| _ gl
[l 1— 02

1

and hence ||g|[|v1] < e4/1 — v assures that ||(A—Ay(ag)])us|] < eljuy|], which can be made
scale independent by choosing ¢ = &||A||. In other words, {A1(aj), 41} is an approximate
eigenpair of A, according to Lemma 3. For defining the point {Ag, z;} at each iteration we
compute the two smallest eigenpairs of By, : {A\1(ax), (1 ] )T} and {Ao(ak), (v2 ud)T}. If
|v1] is too small, that is, if ||g|||v1] < ey/1 — v¥ then Ay = Az(ay) and @y, = Z—j Otherwise,
we set Ay = A1(ayg) and zp = %

Since Ap_; and A are nolt constrained to (—o0,61] but might well belong to the

interval (681, 6¢41), the value A given by (9) may be greater than 6;. Therefore, given ég,

a current upper bound for 6y, if A > bs we simply use A= bg. After some manipulation

%7 Orp—1 = ¢(Ag—1) and ¢ = ¢(A), the updating formula
k— Ak-1

for a can be expressed by

and denoting by w =

Qpp1 = Atwdr1 + (1 —w)op
lze—1llllzell(lzell = llzr=1l]) (Ae=1 = M) (Ax = A)

_|_

wllzg| + (1 = w)ller—1l| (Ak = Ak-1)
= wop_1 + (1 —w)ag
o eiallzalesl — e Qus = D= 3) "

Wzl + (1 = w)ller-ll (A = Ap1)

where ap_1 = Ap_1 + ¢p—1 and ap = Ap + ¢
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3.2 Safeguarding

Safeguarding must be introduced to assure global convergence of the iteration. In [4]

bounds are presented for the optimal parameter a, = A, — g% 4:

8 — % <. <6+ |glA (12)

However, computing a good approximation to é; can be as nearly as expensive as solving

the given trust-region subproblem. For this reason, we shall replace the above bounds

T Ay

gives

by some simple alternatives. First, note that any Rayleigh quotient 65 = —F—
vt

an upper bound on é;. If the diagonal of the matrix A is explicitly available, we take
T

6s = min{a;|i = 1,...,n}, otherwise we take 65 = with v randomly chosen. From

T
(12) we see that a, < ay = 65 + [|g||A. Since a < (?))ifnplies B, is not positive definite,
we set ag = min{0, ar/} to assure that A;(ag) < 0. Upon solving for A(ag) and setting
01 = M(ap), we immediately have a lower bound a;, = 67— HX;H < @, since the interlacing
property implies §; < ;. Using this simple scheme to obtain §; and ég as an initial lower

and upper bounds for 6y, we can start with

61—% and ap =ds+||g]|A. (13)

ar, =
From (13) we obtain initial bounds for the sequence in A:
1
A = 61— g <K+A)§/\*§6S:AU. (1)

The upper bound dg is updated every iteration using information from the smallest

. . . . uTA’u,l uTAu1 gTuJ
eigenpair of the bordered matrix: ég = min < g, 17— 5, where —L— = Ay () — v1 L+,
ul Ul u1 Ul ul Ul

As stated in §3.1, whenever a potential hard case is detected, {A\1(ay), w1} approximates
an eigenpair of A and Ai(ay) is a very good approximation to 6;. Thus ds becomes a
sharp estimate of 6.

It is worth mentioning that Ap_; or Ax might not belong to the current interval
[AL, Au]. Nevertheless, such bounds are decisive for updating a;, and ay. In case agyq

ay, + ay

computed by (11) does not belong to [ay, ay], we use apy1 = instead. Observe

that [ar, ay] C [AL 4+ @(AL), Av + ¢(Av)] and so agy1 = A(agg1) + ¢(Ai(art1)) € [Ar +
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d(AL), Au + ¢(Av)]. Therefore, since ¢ is strictly increasing for A < 8; and Aq(ary1) < 6

holds, we have Aj(agy1) € [AL, Au]. Let (14 u{)T be an eigenvector of B corresponding

k41
to AM(ags1). If |Jui/vi|| < A, we update A\, = Aj(ag41) and ar, = agyq. Otherwise,
Av = Ai(ags1) and ay = aggr. In other words, the length of the interval [ayg, ay] is

reduced at every iteration.

3.3 Initializing «

As mentioned in §3.2, there is a simple choice for initializing a: ay = min{0, ay},
where ag; is given by (13). This assures that Aq(ag) < 0 but it has no additional properties.
In an attempt to improve this initial guess, we have developed a more sophisticated hot-

start strategy, based on the Lanczos process for A. To begin, we compute
AV = VT + fel (15)

where VIV = [;, with I; the identity matrix of order j ( j < n ), T € IR’/ tridiagonal,
VTf=0and e; denotes the jth canonical unit vector of IR,
The hot-start strategy consists of changing the variables in (1) using z = Vy and

solving the j-dimensional problem

min %yTTy +¢TVy
s.t. [lyll <A

In other words, a solution {6,, y.} satisfying (T'—0.1)y. = —V7Tg, 0.(||y«||-A) = 0, T—6.1
positive semidefinite, 6, < 0, [|y«|| < A and 6, < 6; is obtained applying the algorithm
proposed in [2], based on Cholesky factorization of the tridiagonal matrix 7' — 61, § < é;.
Then, the initial value to be used is a = 6, — g7 Vy,. The hot start for a may improve
the convergence by reducing the number of iterations.

The Lanczos process for A, given by (15), can be used to compute the smallest
eigenpair of B,,:

ag g7 10 1 0 ag ¢tV 0

g A 0V o v /| \vig 7T 7
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Although in general Vg # Bey, if in the Lanczos process for A no restarts are used, the

choice Ve = g/||g|| provides a tridiagonal matrix on the right side of (16).

3.4 Stopping Criteria

Before introducing the criteria for declaring convergence in the algorithm, we include
for completion the following lemma, which is a restatement of a result given in [2], was

presented in [7] and provides a stopping criterion for the hard case.
Lemma 5: Lete € (0,1) be given and suppose (A— X )p= —g, A < 0 with A— I positive
semidefinite. If |p+ z|| = A and 2T (A — M)z < —¢(gTp + AA?) then

e <P(p+2) < s(1—-e)(g"p+ AA?) < (1 —e)¢hn, (17)

N | —

where ¥, < 0 is the optimal value of (1).

It follows directly from (17) that |¢(p+2) — .| < €|¢4|, and so p+ z is nearly optimal
for (1).

Given the tolerances ea,e,,en. € (0,1), convergence is stated as follows:

(i) If | ||zx]] — A] < eaA, then zj is a binding solution, with corresponding multiplier

Ak

(ii) If the condition [|g|||v1] < €,4/1 — v# holds at least once, we have z = ”u—l”, an
Uy

approximation to an eigenvector of A corresponding to 8. If ||zx|| < A then compute

7 such that ||z + 72| = A. If TQ(ZTAZ - Ax) < —Ehc(gT:ck + ApA?) and Ay, < ds

then the hard case is declared and the solution is given by {Ar, zr + 72}.

(iii) If |Jzg|| < A and 0 < Ag < ég then the solution to (1) is inside the trust region and
it is computed by solving the symmetric positive definite linear system Az = —g,

possibly using conjugate gradients. The corresponding multiplier is zero.

Finally, let us put all these pieces together and establish our algorithm.
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Algorithm 1: Let ¢, €(0,1), A€ R"™™, A= AT, ge R*, Ac R, .
- Initialization
- Compute ég > 6; and initialize «g.
- Compute the two smallest eigenpairs of B,,:
{M(ao), (v1 uf)"} and {Ay(a), (v uf)"}.

- Initialize safeguard bounds using (13)-(14).

- If ||g|||va] < evy/1 — v} then Ao = Az(ap) and zp = =
b2
Else Ao = A(ag) and g = o
151

- One-point interpolation. Compute «; using (7) and safeguard it.

- Compute the two smallest eigenpairs of B, :

{A(er), (n )T} and {Ag(ar), (v2 u3)T}.

- k1.
- Repeat
- If ||g|||lva| < euy/1 — V¥ then A = Az(ag) and zp = Z—j
Else Ap = Ai(ag) and zp = Z—I

- Two-point interpolation. Compute A using (9). If X > 65 then A = ég.

. Update ajp; = A+ ¢(A) using (11) and safeguard it.

- Compute the two smallest eigenpairs of B
{Ai(ekg1), (1 wf)T} and {Ag(arsr), (2 ug )’}

ck—k+1.

Qg4 *

- Update safeguards.

- Until convergence

4 Local Convergence Analysis

In this section it is analyzed the local convergence rate of Algorithm 1. Before presenting
the local convergence result, it is convenient to introduce some notation. The value of «

that gives the optimal parameter A, and corresponding solution vector z, will be denoted
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by a,. The notation A, = A - AJ, Ay = A— 61 and A = A — A1, for any k, will
be used. Also, O(1) will denote a quantity whose absolute value is bounded by a positive

constant.
The next lemma provides useful tools for the convergence analysis. Throughout, we

denote by i the Moore—Penrose generalized inverse.

Lemma 6: Suppose A;x; = —g and Ajz; = —g , where A\; , A\; < ép41. Then

(2= zj)"g = (N = M)i'z; (18)
and
i wi—ajwy=(Ni—X)p(i,j) (19)
where, for \;, \; # 61,
p(i.7) = eT AT a; + 2T AT (20)
and, for \; = 61 or A\; = 6y,
p(i,j)= x;‘FA;er + x;rAZij . (21)

Moreover, if (A — 611)p = —g, then
(zi — 2)Tp = (A — Apal Alp (22)
and
(zi —p)g = (61— A)pTai . (23)
Proof: If either A; = §; or A\; = 6, then g € Range(A — 6;1) and thus
zi=—Al = —Alg and g= A;Alg= A Al
i = 9 5 T;= ;9 and g = A;A;9 = A;A,4.

Since MT = M~! for any nonsingular matrix M and since all of the above matrices
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commute, we have in any case that

ala; - chTx]- = gT(AZT2 - A}z)g
_ TRz AT
= gTAP(4; - A)(A; + 4)AT%g
= (A=Al (Al + A,
= (A= Aj)p(i, ) -

Moreover, in either case
(wi—2;)Tg = g"(Al - Ay
= glAl(A; - AjAlg
= (A —M)afa; .
Furthermore, if (A — 6;1)p = —g, then in both cases we have
(ei—2;)"p = g"(A] - Al
gTAl(A; — 4;)Alp
(A — Azt alp.

Since p = —Alf_g, we also have

(zi—p)Tg = g%(AL - Alyg
= gTAl(4; — Ayp)ALg
= (61 - AZ)‘rsz 9

what completes the proof. O

It should be noted that the formulas obtained in Lemma 6 are easily extended to
any values of A; and A; where the pseudo-inverse is used whenever one of these numbers
happens to be an eigenvalue of A. Moreover, formulas (18)-(23) also hold with either
{Aisz;} or {Aj, 2;} replaced by {A.,z.}.

Through the updating formula (11), we establish the following result relating Ag41— A«

with Ap_1 — A and Ag — A.. The assumption that the trust region constraint binds at the
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solution does not exclude the possibility of a hard case. In fact, in the hard case Lemma 2
implies that (A — é6:1)p = —g, ||p|| < A, and one can choose z, = p + z, with z € §; such
that ||z.|| = A.

Lemma 7: Let {\.,z.} be a solution to problem (1) with ||z.|| = A. Then, there is a
neighborhood B of A\, such that if Ap_1, A\ € B then the iterate Ap4q1 produced by Algo-

rithm 1 using formula (11) satisfies

Mst — A = (Moot — M)k — A)O(1) . (24)

Proof: We divide the analysis in two cases: A, < §; and A, = 6;. First, suppose that
Ax < 6. Then A, is nonsingular and there exists ro € (0,61 — Ay) such that A — A/
is nonsingular for every A € By = {A||A = A < 1o}, Let Ap_y and A € By. Then
Ak—1, g < 61 and from (9) it follows that

lek-1l|Cll2e=1ll + [l2£[)(A = [l2£])

A=A =
A= Al p(k, k— DA

o me—a [z e—1 ] + [[zkl) o, B)[Ax = A
- A(A + lze)p(k, & — 1) : (25)

Let M = max||(A— AI)"'g||, m = min|[(A — AI)"g|| and let p;, and py satisfy 0 < p, <
A€Bg A€Bg

Ta—ant
v ( T ) w§pU,f0raH/\€Boand();éxeﬂ%”. Then
'y
2
k=l (ler—all + llzall) _ M= (26)
A(A + [Jz]]) - om?
Moreover, due to (20),
T 4-1 T 4-1
T T Ap . T TR ATk 2
px, k)=, 2, —=— 4 aaep—=— < 2M*“ppy 27
(1, ) R T (27)
and
T 4-1 T 4-1
. Ty AL Tp
D P o e L L e R P )
T Tk Lp_1Tk—1

Therefore, by (26)—(28), it follows from (25) that

M*py
mipr

A= Ag| < As — Akl -
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.3

Let ry =61 —Ax—19>0and rp = min{;\’;45;’ro}' For Ap_1, A € Bo = {A|[A = A <

r9}, we have |X — M| < 1"2_1 and thus A < 61 < 6s. The neighborhood B is given by By in

this case. Hence, by (9) and (11),

Qg1 = T1+ T2,

where
_ auallziill(legl] = A) + axllarll(A = flzis])
A(llzell = llzr=ll)

and

_ el Ak = Ae—))(A — [[2p-1 DA —[leell)
Alllekll = llex-1l)
Since [|z«|| = A, by (19)-(20) we have

les-allllzellle—1ll + [l2£l]) (A = flzx-1 (A = [[z£]])

T2

p(k—1,k) A
 eimalllzliUleemll + ) e = Aem1)O = Aok, %ok — 1,%)

ok — 1, k) A+ lzxca DA + el
= (it — Ak = A)0(L) (29)

where the O(1) constant in (29) follows from the hypothesis Ax_1, A € B.

Now, observe that

(ap-1 — ad)lzp-all(llzell = A) + (a = ad)l|l2gll(A = [[zx-a])
Alllzrll = llzk-ll)

However, from equations (3)—(4) and (18), for any j we have

+ 7. (30)

Qpp1 — Gy =

a; — o, = /\j—/\*—gT(xj—x*)
= (A =20)01+ x?x*) .
Using this along with (19)-(20), (30) becomes

(Mot = M)A+ 2y z) |z [|(Ak = A)p(k, *)
Alllzrll = llzr-a DUzl + A)

Me1 = A1+ afy2a) =72 =

(Ao = M)A+ af )l (A=t = A )p(k = 1, %)
Alllzsll = llzx-a DUz r-all + A)

(/\k—l - /\*)(Ak - /\*)7—3
A(llzell = llzr-a DUz r-1ll + A)(llell + A) 7
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where
s = (Jek-all = leelDUee-all + okl + A)(1+ afz)p(k - 1,%)
+ al(zho1 = wp)llep-all(lor-al] + A)p(k, *)
+ (k%) = p(k = 1)) Jzr-al| (o]l + A) (1 + zfas) -
Since
ef(wpor —ar) = 2l(A7 = Apl)g
= AT Ak = A A g
= (Meo1— Ap)al A ey
and
p(k, %) —p(k—1,%) = afAZ'ap + 2l A e — 2] (AT 2oy — 2T A 2.

= gTAJATIA g — T A AT A g+ el (AL - AL e
= QT(AIZ—21 - AIZQ):E* + (A — /\k—l)CUiFAJ;IAI:ﬁE*
= (M= M) (@h_ (AL + ATDA e + el AN AL 20)

it follows that

B T (o1 = Ak = A)(Ak = Ak-1)O(1)
Aot = AVAF Thia ) =72 = K T et + D)(Jal] + A)

Therefore, by (19)—(20), (29) and because A;_1, A; € B we have
Akt1 — A = (o1 — A0 (A — A0)0(1)

whenever A\, < §;.

It remains to analyze the possibility of A, = §;. This corresponds to the hard case,
so there exists p € IR™ such that (A — 611)p = —yg, [|p]| = A, < A. Since g L &y,
the function (X)) = ||(A — M)Tg| is strictly increasing for A < &,,1. Moreover, if ¢
is not orthogonal to S;y1 = {q € R" | Aq = qbs41}, then p(A) tends to infinity as A

A
approaches éy41 from the left. So, we can define A, and A, such that ¢(A,) = 727 and

A+ A A+ A
p(Ap) = +2 P, In case g L Spyq and A such that o(X;) = —; L is greater than

01+ o1

boy1 — 0
Op41, we define Ay = . Now, let r3 = min {61 — Xa, Ap — 01, %}, so that

for every A\_1 and A € B3 = {A||X— 61| < r3} we have

A, A+ A,

2p <A1, A <

<A (31)
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and
01— 13 < Ap_1, A <01 13 < Opgr (32)
Thus, by (19) and (31)

o6 = (Ae—1 = é)llzp—all(lzell = A) + Ak = 8[|z |(A = [lzg—al])
A(llzkll = llze-1l])

4 losall(losll + 21 DCA = flzel)

= A p(k,k— 1)A
2
> M-+ %. (33)
Now, by (21) and (32)
plk,k—1) = 35%—1‘4;“—1 + 35{‘42—1”
= HTAZ_l(AL_l + AL)ALQ
< 19[1(265 — Ag—1 — Ak)
T (b1 = Ak—1)* (6041 — Ar)?
2||g[[(6n — 61 + 73)
((5z+1 — 6 — T3)4 .
Again by (32) it follows that
1 < and (5n—(51—|—7‘3§§(6n—51),
Opp1 — 01— 713 = b1 — Oy 2
and so
otk — 1) < 10— 00) (34)

(br41 — 61)*
Therefore, from (33) and (34)

< AZ(A = Ap)(bpg1 — 61)*
A6y >N —6 P b
R T YN PTG

AZ(A = Ap)(be41 — 61)*
192A||g]|(6,, — 61)
rq = min{rs,o}. For Ay_y and A; € By = {A||A— 61| < ry} it follows that, at iteration k,

Let ¢ = > 0. For A\p > 6; — o, we have A > 61. So, let
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A > 61 holds and the ideal safeguard 2= 61 should be used. In this case the neighborhood

B is given by By. From (11) we have

Qky1 = T4+ 75,

where
Ty =wag_1 + (1 —w)oy
and
_ Nepallllzeli(leel] = [lea-al]) (Ar—1 = 61) (A = é1)
wllzg|l + (1 — w)l|ze—1]] (Ak — Ap—1) ’
. A — 01 .
with w = ——————. Since
Ak — A1
(Ak = 61)p(k, k- 1)
wllzgll + (1 = w)l|ee-1l] = [Jzr-1]l + ;

el + [J@r—1l
by (19), (21) and the hypothesis A;_1, Ax € B we have

s lllzelloCk, k= DO = 81)(r — 60
Tl ] + Nensl) + (e — 61)p(k o — 1)
= (A —61)( A1 — 61)O(1) .

T =

Now,
a1 — 0 =w(ogr — @)+ (1l —w)(apg—a)+7s .
However, by formulas (3)—(4) and (23) we have
aj—a& = A6 —g"(z; - p)
= (A - &)1 +phay).
Thus, using (22), equation (36) can be rewritten as

(Ae = 81)(Aem1 — 61)(1 + pTap)

(Akg1 — 61)(1 + PTJCk-H) - T5 =
Ak — Ag_1

(61— M—1) Mk — 61)(1 + pTag_y)

Ak — Ap_1

(Ak = 61) (M1 — 81)pT (zp1 — zk)

Ak — Ap_1

= —(\—61) (M1 — 81)gTALAL p.

(35)

(36)
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Finally, from (35) and since Ag_1, A\r € B we have
Akg1 — 01 = (A1 — 61)( Ak — 61)O(1)

and the proof is complete. O

Remark: The ideal safeguard A= 61 used in the second part of the proof of Lemma 7,
when A given by (9) satisfies x> 61, is in practice replaced by X =ég. As pointed out in
§3.2, it is precisely when the hard case occurs that the upper bound ég is a sharp estimate
for 61. Using g in place of §; greatly reduces the cost of the iteration by avoiding Lanczos
iterations devoted solely to the approximation of §;. Moreover, using s appears to be

just as effective as using é; with respect to obtaining rapid convergence.

Based on Lemma 7, the local convergence result of Algorithm 1 is stated as follows.

Theorem 1: Assume that problem (1) has a solution {A.,z.} with z. on the boundary
of the trust region. Then there exists a neighborhood B of A, such thal the sequence of
iterates produced by Algorithm 1 using the two—point scheme beginning with Ao, A\ € B is
well defined, remains in B and converges superlinearly to A.. Moreover, if A\, < &1, the
sequence {x} converges superlinearly to x. and, if Ax = 61, {1} converges superlinearly

to a vector p such that (A —61)p = —g, |Ip|| < A.

Proof: Let ¢ = Ap — A, and Ag, A; in the neighborhood of A,, with radius r, that is
stated in Lemma 7. From (24) there exists a constant ¢ > 0 such that ex41 < cepep—q.

Thus,

Frsi—1 _Fy Feoa _ (c21)Tk(ego)i
“1 <0

€p+1 S € =
+ c

bl

where F); is the Fibonacci number of order j: Fo = Fy =1, F;41 = F; + F;_1,7 > 1. Let
r=min{r,1/c}. If Ag,A\1 € B={X||A— A <7} then ex41 — 0 and the sequence {A;} is
well defined, remains in B and converges to A,. Again from (24) it follows that Ay — A

superlinearly. If A\, < é;, we have z, = —A_lg, for every k sufficiently large z) = —A;lg
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holds and zj, — z. = (Ax — M)A zg. So, if A\g, A1 € B then z;, — z, superlinearly because

[[ok1 — 2| = [XAe1 — AJO(1). If A, = &, then p = —A;&!] and zp = —Aig for any

ke — 2]
k. Since g = A#A;r#g and g = AkAzg, it follows that zp, —p = (A — 61)14;3%. Thus, if
Ao, A1 € B then z;, — p superlinearly since w = |Agk—1 — 61|O(1). This completes
a1

the proof. O

The next lemma provides a relationship between the function ¢ and the interpolating

function (10), to be used in the analysis of the near hard case below.

Lemma 8: At any iteration k, the intermediate point given by (9) and the interpolating

function (10) satisfy

OE(X) _¢(/\k) _ (X_ /\k) l'g-rk—l + ka—lHkaHP(hk - 1)(’\ - ’\k—l) 7 (37)

(e = Np(k k= 1) + [zt [ (l2all + l2x1])
whith p(k,k — 1) as defined in Lemma 6.

Proof: By (10) and (19) we have

L 2 2 -2
p(A) = 5 + wo(Ap—1) — Wm + (1 =w)o(Ar) — (1 —w)

= o) +wgl(2r — zpo1) +

lzr—allllzell(lzell = lzr-1lDA = Ae)(A = Ar—1)

= A X—A .’ET.’E _ ’
e 0 R S PRI T)Y6 VR VY

~

A — A
Ak — Ap_1

where w = . Thus, (37) follows from (19) and the proof is complete. O

A few comments are in order concerning the near hard case. As mentioned in the

last paragraph of §2, in a near hard case, finding A, < 81 case is a very ill-conditioned
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process. The difference §; — A, can be very small, to the extent of being undetectable
within the given tolerances. The smaller the value §; — A,, the harder it is to determine
{As,;z,}. Furthermore, rounding errors generally will convert an exact into a near hard
case. Although 47 is still a pole of ¢ when ¢ is not exactly orthogonal to &y, the weight
of such pole is very small when compared to the other poles. That is, if {7;} are the
coefficients of ¢ in the basis of eigenvectors of A and (6) holds, then 71, - -,~, are practi-
cally zero. The strategy of Algorithm 1 for dealing with this case consists of building an
interpolating function that ignores the pole é; at early stages. Information concerning the
second smallest eigenpair of B,, is combined with the movable pole § > max{Ax_1, Ax}.
The use of Ay > 6; happens because the first component ;1 of the eigenvector (14 ulT)T
associated to Aj(ay) is too small, so that ||ui/v1|| = ||@k|| is excessively large. There-
fore { Ak, 21} = {M1(ak),u1/1n} is redefined as {Aa(ag), uz/v2}. Intuitively, this is a good
strategy since in the exact hard case this would continuously select the correct eigenvector
that will approach (1 p)T when a tends to @ from either side. Now, at iteration k the
parameter ay is updated as agyq = X—I—&X) with A < bg, where either A< s, cg’(X) =A?
or A = s, (E’((SS) < A%, Since A, < §; < 65, the matrix A, is nonsingular and, by the
same arguments of the first part of the proof of Lemma 7, there exists a neighborhood B
of A\, such that Ap_1, A\ € B and P Ak = (A= Ax)O(1). In other words, the safeguarding
X = g is eventually no longer necessary. By Lemma 8, the neighborhood B and (37)
imply that ¢(A) — ¢(Ag) = (A = AR)O(1) = (A — Ap)O(1). The agreement between A and
Ar and between ¢(A) and ¢(Ay) drive ay, towards a, = A, + ¢(\.). As oy approaches as,,
the reduction of the safeguarding interval [ay, ap/] at every iteration provides a means to
avoid the numerical difficulties associated with a near hard case and there is no need of
using information of the second eigenpair of B,,. At early stages, however, it might be
that A = 6g. Although ¢(6;) is infinite, the interpolating function value ¢(6s) is finite.

Using ag+1 = 6s + 0/5\((55) is essential in keeping the process under control.

The regularization of least squares problems arising from the discretization of ill-
posed continuous problems provides an important class of trust-region subproblems. It is

worth mentioning that, for these problems, Algorithm 1 converges either to the constrained
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solution, if the trust region radius is small enough, or to the mininum norm interior
solution. In fact, these problems are of the form min{||Cz+b|| | ||z|| < A} and for ill-posed
problems the matrix A = CTC will be singular or nearly singular, and the vector g = C1b
will be orthogonal or nearly orthogonal to §;. Therefore, in the process of adjusting the
parameter «a, either A converges to A, < 0 such that (CTC - Az, = —CTp, with
|lz.|| = A and CTC — A, I positive definite or Ay gets arbitrarily close to zero. In this last
case, as ay is driven to & = g7 Atg, the vector zj tends to p = —Afg, with ||p|| < A, that

is, p is the minimum-norm interior solution.

5 Numerical Experiments

In this section we present some numerical experiments to demonstrate the viability of
our approach. We coded Algorithm 1 in MATLAB (version 4.1) and through an interface
between MATLAB and FORTRAN we used the Implicitly Restarted Lanczos Method (IRLM)
implemented in the package ARPACK [6, 1]. All the six sets of tests were run in a SUN
SPARC station IPX. The floating point arithmetic is IEEE standard double precision with
machine precision 27°% ~ 2.2204 - 1076, The first four set of tests are quite similar to the
experiments presented in [7]. To put the performance of our algorithm in a context, we
include the number of matrix—vector products required by conjugate gradients to solve the
systems (A—Al)z = —g, for known A. In the first and second sets we study the sensitivity
of the algorithm, respectively, to different tolerances and several sizes of the trust region
radius, for problems without the hard case. The third set illustrates the local superlinear
rate of convergence. In the fourth set of tests we analyze the behavior of Algorithm 1
for problems where the hard case occurs. In the fifth set we compare the usage of 41,
the smallest eigenvalue of A, versus dg, an upper bound to d;, as well as performance
for several competing choices for ag. Finally, in the sixth set we provide a comparison

between our algorithm and the approach proposed by Rendl & Wolkowicz [4].
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5.1 Different Tolerances

In the first experiment the matrix A on problem (1)is A = L—5I, where L is the standard
2-D discrete Laplacian on the unit square based upon a 5—point stencil with equally—spaced
mesh points. The shift of —57 was introduced to make A indefinite. The order of A was
n = 1024 and the trust-region radius was fixed at A = 100. We solved a sequence of
twenty related problems, differing only by the vector g, randomly generated with entries
uniformly distributed on (0,1). Each of these problems was solved three times, with the
tolerances eo = 107, 107% and 107%. As in [7], we relaxed the accuracy requirement of
the eigenvalue solution computed by the IRLM. The number of Lanczos basis vectors was
limited to nine and six shifts (i.e. six matrix-vector products) were applied on each im-
plicit restart. The stopping criterion to be accomplished by ARPACK is the following: by the
IRLM we have B,V = VT—I—fejT, where VIV = I;, T ¢ IR7*7 is tridiagonal and VT f = 0.
If {u,y} is an eigenpair of T then {u, z} is an approximate eigenpair of B,, where z = Vy
and the error in the approximation is given by ||B,z — zp| = HfH|e?y| Thus, for a
fixed tolerance ep € (0, 1), the stopping condition in ARPACK is (Hf”|e]Ty|)2 < erlplG(j),
which has to hold for the j smallest Ritz pairs {u,y} and where G(7) is the usual gap
separation (cf. [3] pp.206, 222). For this set of experiments, j = 9 — 6 = 3. We

used initially eg = 0.5 and subsequently er = max{min{sg,r% Y, €max}, where

Emazr = 0.125,0.100,0.075 for epo = 107%,107%,1078, respectively. The IRLM was al-
ways started with v = (1,---, 1)T/\/m and subsequently the previously calculated
eigenvector corresponding to the smallest eigenvalue was used as the initial vector. This
choice not only standardized the starting vector across the battery of tests, it also per-
formed slightly better than using a randomly generated normalized vector. We did not
use (0 g7)? to start the IRLM because in a potential hard—case occurrence this might
prevent the algorithm from finding the eigenspace of B, corresponding to é;. The initial
value of @ was min{0, a7} and the initial upper bound for §; was chosen as the minimum

of the diagonal of A.

In Table 1 we report the average number of trust-region iterations (IT), the average

number of matrix—vector products required by the trust-region algorithm (TRMV) and the
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average number of matrix—vector products required to solve the system (A — A.J)z = —g
using the conjugate-gradient method (CGMYV), where A, is the optimal value obtained by

the trust-region algorithm.

~ TRMV
en | IT | TRMV | CGMV | ZBMY

107* | 5.00 | 56.70 43.35 1.31
1076 | 7.30 | 94.20 57.00 1.65
1078 | 8.35 | 124.95 | 71.55 1.75

Table 1: Average behavior for different tolerances.

Here the behavior of the results presented in [7] is reproduced: a trust region solution
requires fewer than twice as many matrix—vector products on average than the number

needed to solve a single linear system to the same accuracy, using conjugate gradients.

5.2 Different Sizes for the Trust—Region Radius

In the second experiment the matrix A on problem (1) is of the form A = UDU? with D

diagonal and U = I — 2uu”, u”

u = 1. The elements of D were randomly selected from
a uniform distribution on (—5,5). Both vectors u and g were randomly generated with
entries uniformly distributed on (—0.5,0.5) and then u was normalized to have unit length.
The matrix A was of order n = 1000. The trust region radius varied by a factor of 10
through the values 100, 10,...,0.0001 and each problem was solved within the tolerance
ea = 1075, The parameters for the IRLM were the following: nine Lanczos basis vectors,

six shifts on each implicit restart, initial tolerance for ARPACK ¢ = 0.03 for A = 100,

er = 0.1 for A = 10 and e = 0.25 for A < 10. Afterwards, the value of ep was kept
Akl
A

the same until ‘ < 0.1, when ep = 0.015 for A = 100, e = 0.05 for A = 10
and eg = 0.125 for A < 10. The initial value of @ and és were min{0, ar;} and —4.5,
respectively.

At each iteration, once A; was determined as the smallest eigenvalue of B,,, we

applied the conjugate—gradient method to solve the linear system (A — Agl)z = —g, for

the sake of comparison. Each system was solved by conjugate gradients to the same level
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of accuracy as the solution provided from the eigenvalue problem. The total number of
matrix-vector products required by the eigenvalue method (TRMV) is to be compared
to the number required by the conjugate-gradient method (CGMV). These results are
presented in Table 2, where IT is the number of trust-region iterations. We selected
these results from a set of ten problems generated with different seeds, most of them with

practically the same behavior.

A 100 10 1 1 .01 .001 | .0001

IT 12 10 4 4 4 4 3

TRMV 636 | 216 48 48 48 48 33

CGMV 1034 | 329 47 34 25 20 13

||9+(A”—£;T|*I)I*II 10-% | 10-7 | 10-11 | 10-16 | 10-16 | 10-16 | 10-15

A—||z]|
A

10711077 1077 | 1079 |10~ | 107 | 1077

Table 2: Behavior for different sizes for the trust—region radius.

The same comments made in [7] are in order: the conjugate-gradient method has a

much easier time for smaller values of A than for larger ones.

5.3 Superlinear Convergence

In the third experiment the matrix A is again set to A = L — 51 with L the 2-D discrete
Laplacian on the unit square, but now n = 256. The vector g was randomly generated
with entries uniformly distributed in (—0.5,0.5). For problems without hard case, the
trust-region radius and the tolerance were set respectively at A = 10 and ex = 107t%
For problems with hard case, we used A = 100, . = 107! and ¢, = 1072. To generate
the hard case, we performed the operation g «— ¢ — q(ng) to orthogonalize the vector
g, randomly generated as before, against ¢, the eigenvector of A corresponding to the
smallest eigenvalue é;. The eigenproblems were solved by the internal solver of MATLAB.

The initial values for @ and ég were the same as in §5.1.
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k| [P k| |5 e
1| 8.4717E-01 1 —

2 | 1.1806E+01 2 | 4.3891E+01
3 | 4.0576E+00 3 | 1.0486E+01
4 | 2.0839E-01 4| 1.9241E-02
5 | 5.3531E-02 5| 1.6997E-02
6 | 2.0518E-03 6| 9.9393E-03
7| 2.4828E—-05 7| 8.6270E-05
8 | 1.2216E-08 8 | 8.8998E-07
9| 8.2245E-14 9| 2.4546E-13

(a) (b)

Table 3: Verifying superlinear convergence: (a) easy and (b) hard case.

In Tables 3.a and 3.b we monitor the progressive decrease in the magnitude of
22T Az—)p)

‘% and o wrval Ik iteration k proceeds. The optimal pair {A,, z.} satisfied
llg+(A=As D)ay]| A”_g"|‘|*l Zxll = 1071 for problem (a) and “W = 107! for problem (b).

5.4 The Hard Case

In the fourth experiment the matrix A is of the same form used in the second set of tests:
A=UDUT, D diagonal and U = I —2uu”, uTu = 1. The elements of D =diag(dy,...,d,)
were randomly generated and uniformly distributed on (—5,5). Then we sorted and set
di = -bsothat dy = ---=dy < dj41 < --- < d,,, allowing multiplicity £ for the smalest
eigenvalue of A. The order of matrix A was n = 1000. Both vectors u and g were randomly
generated with entries selected from a uniform distribution on (—0.5,0.5) and then « was
normalized to have unit length. In this case we know the corresponding eigenvectors of
matrix A: ¢; = e; — 2uu;,t = 1,...,n, where e; is the i-th unit canonical vector of IR" and
u; is the ¢-th component of vector u. Therefore, we have complete control in the generation
of a hard case. In fact, if £ = 1 we orthogonalized ¢ against ¢;. Othergwise we computed
e

an orthonormal basis Z for the null space of @ = [¢; - - -ql]T, set g = Z z;, where z; is the
=1
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i-th column of Z. Finally, we added a noise vector € of norm 10~® to ¢ and normalized it:

g — ||§izll' To ensure that the hard case really occurred, we computed
t tgT 3 7

Apin = ||(A — dy 1 =|[(D—-d1)'U = —_t 38

Ii¢ D'l = I( 1)U | g;ﬂ = ) (38)

where v = UTg and set A = 2A,;n.
The problems were solved to the level ¢;, = 107%, with ¢, = 1072. The param-

eters for the IRLM were chosen as follows: ten Lanczos basis vectors, six shifts on

each implicit restart, the initial tolerance for ARPACK was cg = 10~* and then e =
2¢,T
min {ER, rﬂlaélggﬂ 7(1080((;Ti2-;\:/_1.2) } The initial values of a and és were respectively

min{0, a7} and —4.5. We compared the performance of Algorithm 1 with the the algo-
rithms proposed in [7], using the same parameters specified above in the code.

In Table 4.a we summarize the average results of a sequence of ten problems, generated
with different seeds. We also generated problems with near hard case by adding a noise

vector € to g of norm 1072, The comparative results are reported in Table 4.b.

( IT TRMV llg + (A = Ad)a||
(Alg.1,[7)) | (Alg.1,[7]) (Alg.1, [7])

1| (9.0,7.1) | (2340.6, 2232.8) (1074, 1072)
5 | (11.0, 7.2) | (2940.2, 2221.8) (1074, 1073)
10 | (10.8,7.2) | (2830.8, 2193.6) (1074, 1073)

(a)
( IT TRMV llg + (A — ATz,
Alg.1, [7] (Alg.1, [7]) (Alg.1, [7])

( )
(12.0, 15.2) | (3243.6,4377.2) (1074, 1073)
5 | (12.3,31.8) | (3257.4,9550.8) (1074, 107%)
10 | ( ) | (3271.0, 11552.0) (1074, 107%)

12.4,37.6

(b)

Table 4: Behavior for {~dimensional eigenspace Si: (a) hard case and (b) near hard case
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5.5 Initializing «

In the fifth experiment the matrix A on problem (1) is again A = UDUT, generated as
in §5.4, except that £ = 1 was used. The order of A was n = 1000 and the vectors u
and g had their entries randomly selected from a uniform distribution on (—0.5,0.5). The
vector u was normalized to have unit length. The vector g was orthogonalized against
¢1 = e1 — 2uuq, a noise vector of norm 10~ was added to it and then it was normalized so
that g also had unit length. Computing A,,;,, asin (38), we generated two set of tests: with
and without hard case, respectively using A = 5A,,;, and A = 0.2A,,,;,. The problems
were solved to the level ea = 1076, ¢;. = 1076, with ¢, = 1072, For the IRLM, we used
nine or ten Lanczos basis vectors, respectively when A = 0.2A,,;, or A = 5A,,;. In both
cases six shifts were applied on each implicit restart. Initially, the tolerance for ARPACK

was eg = 1072 when A = 0.2A,,;, and eg = 107* when A = 5A,,;,. Subsequently,

R (S A IE24 2 (2T Az=Ag) -3
€Rr = Inin {CR’I T000A |7 | 1000(gTzp+ e AZ) ;1077

By applying the IRLM initially to matrix A, in this test we were able not only to

replace the upper bound dg in Algorithm 1 by é; but also to adopt the hot—start strategy
for initializing « (see §3.3). By way of comparison, besides using the hot start (HS), we
included g = min{0, ay}, ag = §; and ag = §5 for both family of problems (A = 0.2A,,,i,,
A = 5A,.;,). Initially, 6g = —4.5. The average results corresponding to ten problems

generated by different seeds are reported in Table 5.

g IT | TRMV | IT | TRMV

Using | min{0,ar} | 8.2 | 2122.8 | 12.0 | 3303.8
01 01 7.0 | 1858.2 | 14.1 | 3697.4
HS 7.2 1922.0 | 13.4 | 3562.6

Using | min{0,ay} | 7.6 | 2122.0 | 10.5 | 2973.6
os 0s 6.6 | 1835.4 | 10.0 | 2790.4

Table 5: Average behavior for different ay.

The hot start for a improves the convergence by reducing the number of iterations, es-

pecially when compared with ag = min{0, a;y}. However, it does not outperform ag = §g.
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Moreover, the usage of §; in the algorithm instead of és does not seem worthwhile, as can

be seen by comparing ag = min{0, ars} in both cases.

5.6 Comparison with Rendl & Wolkowicz

In the sixth experiment we solved two different family of problems. First the matrix A is
A = L — 51, with order n = 256. The trust-region radius was set to A = 100. We solved
ten related problems, differing by the vector g, randomly generated with entries uniformly
distributed on (0,1). As in §5.3, an orthogonalization of ¢ against the eigenvector of A
corresponding to 6, generated a hard case. We also added a noise vector to g, with norm
10~8. The second family of problems has A = UDUT, generated exactly as in §5.5, with
order n = 256. The tolerances used for Algorithm 1 were o = 1076, ¢5. = 1076 and
€, = 1072, Ten problems of each type (easy and hard case) were generated with different
seeds for each family and solved by both our algorithm and Rendl & Wolkowicz’s code
(RW). In both codes the eigenproblems were solved by the internal solver of MATLAB. The

average results are reported in Table 6.

IT ||g+(AH—gAH*I)r*|| ‘ Al

A=1-5I | easy | Alg. 1| 5.0 10-13 1077
case | RW | 4.8 1072 10713

hard | Alg. 1| 8.9 1077 10-16

case RW 9.1 10-7 10~15

A=UDUT | casy | Alg. 1| 6.4 10-13 1077
case RW 7.9 10~4 10~

hard | Alg. 1| 7.1 107° 10715

case | RW | 11.5 1077 10712

Table 6: Comparison between Algorithm 1 and Rendl & Wolkowicz’s code.
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6 Conclusions

We have presented a new variant of an algorithm for the large—scale trust—region subprob-
lem. The algorithm is based upon embedding the trust-region problem into a family of
parameterized eigenvalue problems as developed in [7]. The main contribution of this pa-
per has been to give a better understanding of the hard—case condition and to utilize this
understanding to develop a better treatment of this case. The result has been a unified
algorithm that naturally incorporates both the standard and hard—case problems.

Superlinear convergence has been proved for this new algorithm and demonstrated
computationally for both the standard and hard cases. This represents a major improve-
ment over the performance of the method originally presented in [7]. In that approach,
a different iteration was devised for the hard case that was not superlinearly convergent.
Moreover, in practice this seemed to occur often and greatly detracted from the perfor-
mance. OQur computational results show this new approach overcomes these difficulties
while retaining the good performance of the original algorithm for the standard case. We
also compared our approach to the one of Rendl & Wolkowicz [4]. In that comparison we
used the EIG function from MATLAB to supply the eigenvalues so that both methods were
getting the same level of accuracy in the eigenvalue calculation. Thus, only the perfor-
mance of the basic algorithms were compared and the inconsistencies introduced by having
two different eigensolvers and different stopping criteria were avoided. These tests indicate
a marginal advantage for our algorithm in terms of the number of eigenvalue problems
that need to be solved in order to solve the given trust-region subproblem. We believe
this is partially due to the need for the Rendl & Wolkowicz to determine the smallest
eigenvalue §; of A in order to begin the major iteration. Qur approach avoids this extra
calculation. Finally, our approach seems to be better suited to obtaining accuracy in the
final solution to (A — Al)z = —g.

Future work in this area should include a study of this approach for the regularization
of ill-posed problems such as those arising in seismic inversion [8]. We feel that a further
refinement of this approach is likely to be needed for this class of problems. In particular,

near hard—case conditions seem to be associated with these problems.
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Figure 1: Example of the typical pattern of ¢(A) (solid) and the straight line f(A) = a.—A
(dashdotted). The three smallest eigenvalues of A are —2, —0.5 and 2. (a) general case
with the slope at A, also plotted; (b) exact hard case; (c¢) near hard case; (d) detail of the

box indicated in (c).



