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ANALYSIS OF INEXACT TRUST-REGION INTERIOR-POINT SQP
ALGORITHMS

MATTHIAS HEINKENSCHLOSS * AND LUiS N. VICENTE !

Abstract. In this paper we analyze inexact trust—region interior—point (TRIP) sequential quadra—
tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality
constraints and simple bound constraints on some of the variables. Such problems arise in many
engineering applications, in particular in optimal control problems with bounds on the control. The
nonlinear constraints often come from the discretization of partial differential equations. In such cases
the calculation of derivative information and the solution of linearized equations is expensive. Often,
the solution of linear systems and derivatives are computed inexactly yielding nonzero residuals.

This paper analyzes the effect of the inexactness onto the convergence of TRIP SQP and gives
practical rules to control the size of the residuals of these inexact calculations. It is shown that if the
size of the residuals is of the order of both the size of the constraints and the trust-region radius, then
the TRIP SQP algorithms are globally convergent to a stationary point. Numerical experiments with
two optimal control problems governed by nonlinear partial differential equations are reported.

Keywords. nonlinear programming, trust-region methods, interior—point algorithms, Coleman
and Li affine scaling, simple bounds, inexact linear systems solvers, Krylov subspace methods, optimal
control

AMS subject classification. 49M37, 90C06, 90C30

1. Introduction. In this paper we study a class of optimization algorithms that
allow the use of inexact information for the solution of minimization problems with
nonlinear equality constraints and simple bound constraints on some of the variables.
More precisely, the problems we are interested in are of the form

minimize fly,u)
(1.1) subject to  C(y,u)=0,
weEB={u: a <u<b},

where y € R™, w € R"™™, a € (RU{—00})"" ™, b€ (RU{+oc})"™™, f: R" —
R,C:R" — IR™, m < n,and f and C are assumed to be at least twice continuously
differentiable functions. Applications include optimal control problems, parameter
identification problems and inverse problems, and design optimization.

The algorithms investigated in this paper are extensions of the trust-region interior—
point (TRIP) sequential quadratic programming (SQP) algorithms introduced and an-
alyzed in [14]. The TRIP SQP algorithms are SQP methods that use trust regions as
a strategy for globalization and for regularization of the subproblems and that apply
an affine scaling interior—point approach to deal with the bounds on the variables w.
However, the analysis in this paper will also be relevant for other SQP algorithms.
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The minimization problem (1.1) often arises from the discretization of optimal
control problems. Here y are the state variables, u are the control variables, and
C(y,u) = 0 is the discretized state equation. TRIP SQP algorithms utilize the struc-
ture of the problems induced by the partitioning of the variables into states and
controls. Subproblems in the TRIP SQP algorithms are solved iteratively. As a
consequence, only directional derivatives are needed in the implementation of these
algorithms. However, differentiability is required to guarantee convergence. In [14] it is
assumed that derivative information is available exactly and that linearized equations
can be solved exactly. In many applications these assumptions are unrealistic. Deriva-
tive information may be approximated, for example, by finite differences. Moreover,
the linearized equations are often discretizations of partial differential equations and
iterative solvers are used for their solution. The purpose of this paper is to extend the
exact TRIP SQP algorithms to allow inexact calculations in tasks involving derivatives
of C(y,u). Inexactness in derivatives of the objective function f also can be allowed,
but it is not done here to keep the presentation simpler. Since we treat states and
controls as independent variables, and since the objective functions are often rather
simple, e.g. least squares functionals, this does not present a severe restriction. One
goal for our analysis is to derive measures of inexactness and controls of inexactness
that are simple to implement.

To explain how we deal with inexactness and to present the main results of this
paper, we need to introduce some of the structure of problem (1.1) (see also references
[24], [28], [29], [30]). For convenience we write

x:(g).

Due to the partitioning of the variable z into y and w, the Jacobian matrix of C'(x)
can be written as

J@)=( Cylx) Cule) ),

where Cy(z) € R™ ™ and C\(z) € R™*("=m),
In the exact TRIP SQP algorithms, we have to compute quantities of the form
Cu(z)d, and C(z)d,, and we have to solve linear systems of the form

(1.2) Cy(zp)s = by and Cy(zg)'s = by.
Since these systems are solved inexactly, what is computed are s and §; such that
Cy(wk)gk = Bk + e and Cy(wk)T§k = l;k + ég,

where e; and é; are residual vectors. In many iterative methods, like for instance
Krylov subspace methods, the norms ||éx|| and ||éx|| can be computed efficiently with
few extra operations. Such residuals are used to measure inexactness.

We give conditions on the amount of inexactness allowed in the inexact TRIP
SQP algorithms that guarantee global convergence to a point satisfying the first—order
necessary optimality conditions. In the case of the linear solvers, these conditions are
the following;:

(1.3) lexll = O min{6p, [C(ap)l[}) and

3

|=o(Ic@ll),
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where 6y, is the trust-region radius and ||C'(z)|| is the norm of the residual of the con-
straints. Thus as the iterates approach feasibility the accuracy with which the linear
systems are solved has to increase. Moreover, the accuracy of the linear system solves
has to increase if the region where the quadratic model is trusted becomes small. This
also is reasonable since the trust region should not be reduced unnecessarily. Similar
results are derived for the inexactness that arises in the computation of directional
derivatives of C'(z). The details are presented in this paper.

The convergence results presented in this paper rely on the theory given in [13],
[14]. A comprehensive convergence theory is presented in [49].

We have applied the inexact TRIP SQP algorithms to the solution of two optimal
control problems, a boundary control problem for a nonlinear heat equation and a
distributed control problem for a semi—linear elliptic equation. Preconditioned Krylov
subspace methods were used to solve the linearized state and adjoint equations (1.2).
The numerical results reported in Section 9 confirm our analysis.

It should be pointed out that by inexactness we mean inexact derivative informa-
tion and inexact solution of linear systems. Trust-region methods allow another level
of inexactness that is also treated here and in most other papers on trust-region meth-
ods: in trust-region methods the quadratic programming subproblems do not have to
be solved exactly. It is sufficient to compute steps that predict the so—called fraction
of Cauchy decrease condition. This allows the application of a variety of methods for
the approximate solution of subproblems.

In the context of systems of nonlinear equations, inexact or truncated Newton
methods have been proposed and analyzed by many authors. Some of the pioneer work
in this area can be found in [10], [47]. More recent references are [3], [4], [16], [17], [18],
[27]. Most of the recent papers investigate the use of Krylov subspace methods for
the solution of linear systems, like GMRES [44], in inexact Newton methods. These
Krylov subspace methods are attractive because they monitor the residual norm of
the linear system in an efficient way and only require Jacobian times a vector, not
the Jacobian in explicit form. The results for the solution of systems of nonlinear
equations have been extended to analyze inexact Newton methods for the solution of
unconstrained minimization problems, e.g. [11], [37], [39]. In a recent paper [52], the
impact of inexactness in reduced gradient methods for design optimization has been
analyzed.

In nonlinear programming, inexactness has been studied by [2], [9], [12], [20], [32],
[38], [50] among others. The papers [12], [20], [32], [38] investigating SQP methods
mostly study the influence of inexactness on the local convergence rate. In [38] con-
ditions on the inexactness are given that guarantee descent in the merit function. In
the papers mentioned previously, the inexactness is often measured using the residual
of the linearized system of nonlinear equations arising from the first—order necessary
optimality conditions, or some variation thereof. If globalizations are included in the
investigations, then line—search strategies are used. To our knowledge, inexactness for
SQP methods with trust-region globalizations has not been studied in the literature.
Due to the computation of the step in two stages, the computation of the quasi-normal
component and of the tangential component, the analysis of inexactness in SQP meth-
ods with trust-region globalizations requires techniques different from those that can
be used for line search globalizations. Other papers which investigate SQP methods
for large scale problems, but without treatment of inexact linear systems solves and
inexact derivative information include [1], [31], [36].
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This paper is organized as follows. In Section 2, we state the first—order necessary
optimality conditions of problem (1.1). A review of the features of the exact TRIP
SQP algorithms necessary for the inexact analysis is given in Section 3. The inexact
TRIP SQP algorithms are presented in Section 4. Here we also list the assumptions
under which convergence can be guaranteed. In Section 5, we prove global conver-
gence. The remaining of the paper deals with practical issues concerning the step and
multipliers calculations. Each step is decomposed in two components: a quasi—normal
component and a tangential component. In Section 6, we present several techniques to
compute quasi—normal components and show how they fit into the theoretical frame-
work given in Section 4. In Section 7, we discuss conjugate-gradient methods to
compute the tangential component and analyze the influence of the inexactness. The
inexact calculation of the multipliers is discussed in Section 8. In Section 9, we present
our numerical experiments. Section 10 reports on our conclusions and directions of
future work.

We use subscripted indices to represent the evaluation of a function at a particular
point of the sequences {z;} and {A;}. For instance, f; represents f(zj). The vector
and matrix norms used are the {5 norms, and I; represents the identity matrix of order
l. Also (z), and (z), represent the subvectors of z € IR™ corresponding to the y and
u components, respectively.

2. First—order necessary optimality conditions. We say that

satisfies the linearized state equations at z if J(z)s = —C(2) or equivalently if
Cy(z)sy + Cy(z)s, = —C(z).
From the previous equation we can see that the columns of

(2.1) W(z) = ( —Cy(ig:;Cu(w) )

form a basis of the null space of J(z).

The structure of the Jacobian and the definition of its null space using the matrix
W (z) is important for the formulation of the first-order necessary optimality condi-
tions. In the following, we give a brief derivation of the form of the these conditions
used in this paper. Further details can be found in [14]. For box constrained problems
see also [8], [15].

We introduce the Lagrangian function

z,\) = f(z)+ 21 C(2)

and we note that, due to the form of the bound constraints, the invertibility of Cy(z)
implies the linear independence of the active constraints. If z, is a local solution of
problem (1.1), then it satisfies the first-order Karush-Kuhn-Tucker (KKT) conditions:

Aw = —Cy(x*)_TVyf(x*),
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a; < (us); <by = (Vul(zs,A)); =0,
(us)i = @ = (Vul(z+,M0)); 2 0,

It is not difficult to show that V,0(2., ) = W(z.)TV f(2.). Thus, if we define
the diagonal matrix D(z) with diagonal elements given by
(b—w? if (W(@)TV(2)). < 0andb; < +oc,

it (W) (e
(w—a)f it (W)Y
1 if (W(x)TVf(:c )Z > 0and a; = —oo,

T Z

)

)) < 0and b; = 40,
)) > 0 and a; > —oc,
)

t=1,...,n— m, then we can write the first—order KKT conditions in the form
(2.2) Clzs) =0, a <u, <b,
(2.3) D(z ) W(z )TV f(z,) = 0.

3. Exact TRIP SQP algorithms. The algorithms described in this section
have been proposed and analyzed in [14]. They use exact first—order derivative infor-
mation and require that the linear systems are solved exactly. The purpose of this
section is to provide the framework for this class of algorithms. The TRIP SQP al-
gorithms are iterative algorithms. At a given iteration, an approximation z; to the

solution is given, and a step
_ [ (sk)y
Sk = ( (Sk)u ’

of the form s, = s} + 52 is computed. The components s} and 32 of the step are
called the quasi-normal component and the tangential component, respectively. If the
step is accepted, the process continues by setting xxy1, the new iterate, to xy + sg.
Otherwise the step has to be recomputed and tested again for acceptance.

The role of the quasi-normal component s} is to move towards feasibility of the
equality constraints. This component is of the form

(3.1) sl = ( (Sg)y ) :

and it is computed as an approximate solution of the trust-region subproblem
e 1 1
minimize §|]Jk5n + CilI* = 5”031(3716)52 + C|?
subject to  [|sp|| < &%,
where ¢, is the trust radius. This quasi—normal component must satisfy

(3.2) [[sEll < mal|Cll
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and
(3.3) [Ckl1? = ICy(xr)(sR)y + Crll* > wal|Crll min{xs||Ckl], 8},

where K1, ko, and k3 are positive constants independent of k. In Section 6, we describe
several practical ways to compute the quasi-normal component that satisfy conditions
(3.1)-(3.3).

The tangential component minimizes a quadratic model of the Lagrangian function
in the null space of the linearized constraints and subject to a trust-region constraint.
The tangential component is of the form SE = Wi (Sk)u, where Wy, = W(xy) is the
representation of the null space of Ji defined in (2.1). The component (s), must
satisfy the bound constraints

(3.4) or(a@ —ug) < (sk)u < op(b — up),

where o), € [0,1) C (0,1). This ensures that uy + (s), remains strictly feasible with
respect to the bound constraints a < u < b.
For further description on how (si), is computed, consider the quadratic model:

Ui(su) = qu(sp+ Wisy) + s (Ekbgz) Sy

(3.5) -
= D)+ (WE V(D) s + 36T (WEHW, + B.D;?) s,

where gx(s) is the quadratic approximation of the Lagrangian function £(zj + s, A)
given by:

1
k() = g + Vol M) s + §STHk57
and WI'Va(sh) :7W,CT(H;C32 + V fi). The matrix Hj denotes an approximation to

V2 l(zk, ), and Dy and Ej are diagonal matrices whose i—th diagonal element is
given by

—

(b—wy)? it (WIVa(s])) < 0and b < +oc,

5 1 it (WIVa(s])), < 0and b = +oc,

(36) (D = (up, — a)i% if (W,?qu(sz))z > 0and a; > —o0,
1 if (W,;[qu(sZ)) > 0and a; = —oc,

and

7

(Er)i = { ‘(W’?Vf’“) ‘ if (W’?Vf’“)i #0,

0 otherwise,

respectively. The role of these matrices in the quadratic (3.5) is related to the ap-
plication of Newton’s method to the system of nonlinear equations arising from the
first—order KK'T' conditions. See [14] for more details.

Exact TRIP SQP algorithms include two approaches to compute (s;),: a coupled
approach and a decoupled approach.
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The decoupled approach [14] is associated with the trust-region subproblem

(3.7) minimize  Wi(sy)

(3.8) subject to || Dy tsyl| < 6.

In this approach the tangential component (sg), has to satisfy a fraction of Cauchy
decrease condition associated with the trust-region subproblem (3.7)-(3.8). This con-
dition requires (sj), to give as much decrease on the quadratic (3.5) as the decrease
given by —DIW[I'Vg(s]). It can be proved (see [14, Lemma 6.2]) that such a condi-
tion implies

ae(sp) —  qr(sh + Wi(sk)u

)
(3'9) D T n ; D T n
> bl | DeWT V(s | min { || DeWT Vi (sP)|, o },
where k4, k5, and kg are positive constants independent of k.

The use of conjugate gradients to solve trust—region subproblems in unconstrained
minimization has been suggested in [46], [48]. An adaptation of these algorithms to
compute the tangential component that takes into account the problem structure and
the bound constraints is presented in [14] and is given by:

ALGORITHM 3.1 (EXACT COMPUTATION OF s; = s} + Wg(Sk)y USING THE DE-
COUPLED APPROACH).
1 Set s =0, = -WIVaq(sh), ¢° = D% d° = ¢°, and € > 0.
2 For:=10,1,2,...do
i ()7 (¢")
2.1 Compute 7* = @ T (W H Wi+ B, D) (@)

2.2 Compute
7' = max {T >0 : ||[DY(sh + rd)|| < b,
or(a—ug) < st 4 7d' < or(b— uk)}
2.3 If 4* <0, orif v* > 7¢, then set (sg), = s!, + 7°d*, where 7° is given as in
2.2 and go to 3; otherwise set sit! = si + yid’.
2.4 Update the residuals e 72' (I/V];‘FH;J/V;C + Ek[)gz) d
and ¢t = DipitL,

2.5 Check truncation criteria: if % < g, set (sg)u = sttt

to 3.
2.6 Compute o' =

and go
___(w;;;ggz;rl) and set d't! = ¢t 4 o'd’.
3 Compute s = sj) + Wy(sk), and stop.

Step 2 iterates entirely in the space of the w variables. After the u component
(sk)y of the step has been computed, its y component is calculated in Step 3.

The decoupled approach allows an efficient use of an approximation Hy to the
reduced Hessian W,?Hka. In this case only two linear systems are required, one with
Cy(zr)T in Step 1 and the other with C,(zx) in Step 3, cf. (2.1). If the full Hessian
H, is approximated, then the total number of linear system solves is 21(k) 4+ 2, where
I(k) is the number of conjugate-gradient iterations. See Table 1.

In the decoupled approach only the w part of the tangential component is re-
quired to be in the trust region. The coupled approach requires the whole tangential
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component to be in the trust region. The trust-region subproblem is the following:
(3.10) minimize U(sy)

(3.11) subject to H ( (Sz)y - Cﬁéﬁ_’;)sjcu(xk)su )

The tangential component (sy), has to satisfy a fraction of Cauchy decrease condi-
tion associated with the trust-region subproblem (3.10)—(3.11). This condition re-
quires (sg), to give as much decrease on the quadratic (3.5) as the decrease given by
~DIWIVq(sh). It is shown in [14, Lemma 6.2] that this condition also implies (3.9).
Again one can use a conjugate-gradient method to compute the tangential component.

< d.

ALGORITHM 3.2 (EXACT COMPUTATION OF s = s} + Wj(sg)y USING THE COU-
PLED APPROACH).
1 Set s9 =80, 70 = —~WIVq(sh), ¢° = D%, d° = Wyq®, and € > 0.
2 Fori=10,1,2,...do o
2.1 Compute v = — ()7 — .
PR = () THy (@) + () T B, D 2 (@)

( (sp)y = 7Cy(2i) ™' Culai)(d)s )

2.2 Compute

Ti:maX{T>O < g,

TDIZI(di)u
or(a—ug) < st + T(di)u < or(b— uk)}
2.3 If v* < 0, orif 4* > 7%, then stop and set s, = s* 4 7¢d’, where 7¢ is given
as in 2.2; otherwise set sl = gt 4 ﬁ/idi.
2.4 Update the residuals rt! = 7¢ — ~¢ (W]CTdeZ + EkD,;Q(di)u) and
gt = D%r“’l.

2.5 Check truncation criteria: if % < ¢, set s, = s'T1 and stop.

2.6 Compute o' = % and set d't! = Wi(¢"! + o'd").

Note that in Step 2 both the y and the w components of the step are computed.
The coupled approach is particularly suitable when an approximation to the full Hes-
sian Hj, is used. However, the coupled approach can also be used with an approxima-
tion Hj, to the reduced Hessian W,CTH;CW;C. In this case we set

(3.12) Hy = ( 8 f?k ) .

If Hy is given by (3.12), then the definition of W}, implies the equalities

0

(3.13)  Hpd= ( B ) d"Hyd = dTHypdy, and Wl Hpd = Hyd,,
kly

and this shows that the reduced Hessian approximation Hy can be used in Algorithm
3.2. The number of linear systems needed is given in Table 1.

While Table 1 indicates that the decoupled approach is more efficient in terms
of linear system solves, in applications with ill-conditioned C'(z) the coupled ap-
proach may be favorable. The reason is that in this case the decoupled approach may
underestimate the size of Wy (si), vastly and, as a consequence, may require more
unsuccessful iterations. See also [14, §5.2.2].
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TaBLE 1
Number of linear solvers to compute the tangential component. Here I(k) denotes the number of
conjugate gradient iterations.

Linear Decoupled Coupled

solver Reduced flk Full H;, | Reduced flk Full Hy,
Cy(zg) 1 I(k)+1 I(k)+1 I(k)+1
Cy(zp)? 1 I(k)+1 1 I(k) +1

4. Inexact TRIP SQP algorithms. In this section, we assume that the terms
involving Cy(zy) and Cy(z) are computed inexactly. This includes the solution of
linear systems with Cy(zy) and Cy(z))! and the matrix—vector products with C\(z})
and Cy(zx)?. The inexact analysis for the quasi-normal component is presented in
Section 6 and does not interfere with the analysis developed in this section. We
assume that the quasi-normal component s}, no matter how it is computed, satisfies
conditions (3.1), (3.2), and (3.3). We show in Section 6 that this can be accomplished
by a variety of techniques to compute quasi—normal components.

4.1. Representation of the inexactness. The computation of the tangential
component requires the calculation of matrix—vector products of the form Wyd, and
ng. Thus we need to compute quantities like

—Cy(zr)  Culzp)d, and — Cy(zp) Cy(zr)~1d,.

As we have pointed out earlier, often these computations cannot be done exactly.
Therefore we have to incorporate errors originating perhaps from finite difference
approximations of C(z)d, or from the iterative solution of the systems C\(zy)d, =
—Cyu(zk)dy.

In practice, the computation of the y component z, of z = Wyd, is done as follows:
Compute vy = —Cy(zr)dy + ey.

(4.1)
Solve Cy(zp)zy = vy + ey

The u component of Wyd, is equal to d,. In (4.1), e, and e, are the error terms
accounting for the inexactness in the computation of C,(z)d, and the inexactness in
the solution of the linear system C\(zx)z, = v,. Since the u component of W}, is the
identity, we only have an error in the y component z, of Wjd, computed via (4.1). It

holds that
(4.2) 2y = _Cy(xk)_lCU(xk)du + Cy(xk)_l (eu +€y).

Of course, the errors e, and e, depend in general on d,.
Similarly, for given d the matrix—vector product z = W,? d is computed successively
by the following procedure:
Solve Cylzp)v, = —d,+e,.
(4.3) Compute Uy = Cu(wk)Tvy + ey-
Compute z = vy t+dy.



ANALYSIS OF INEXACT TRIP SQP ALGORITHMS 10

Again, e, and e, are error terms accounting for the inexactness in the computation of
Cu(zk) v, and the inexactness in the solution of the linear system C,(z%) v, = —d,.
For simplicity we use the same notation, but the error terms in (4.3) are different from
those in (4.1). The errors e, and e, depend in general on d,. The computed result
can be related to the exact result via the equation

(4.4) 2= —Culap)TCylar) ™ Vdy + dy + Cu(zp) T Cy(zr) Tey, + en.

These two sources of inexactness influence the computation of the following im-
portant quantities:

(4:5) Wi Var(sh) = =Cular)' Cylar) ™ Vygl(s]) + Vuar(sh),
and
(4.6) sp=sp+ Wi(sg)u = st + ( _Cy(x’“)zlgu(xk)(sk)u ) ‘

As we have seen in Section 3, these two calculations are the only ones that appear
in the decoupled approach involving derivatives of C'(y, u) if an approximation Hy to
the reduced Hessian WkTHkW/k is used. This is not the case in all the other situations
(see Table 1). If an approximation Hj to the full Hessian is used, then we have
to account for the inexactness in the calculation of W,;‘FHka. Thus, there is no
guarantee of monotonicity in the quadratic (s, ) in the conjugate-gradient method,
and therefore there is no guarantee that a fraction of Cauchy decrease condition of
the form (3.9) would be satisfied. This raises some interesting problems related to the
computation of the tangential component that are addressed in Section 7. There we
also show that, instead of (4.5) and (4.6), the inexact operations with derivatives of
C(y,u) lead to quantities in the form

(4.7) PEVG(s]) = Ak Vyae(sh) + Vauge(s]),
and

where Ap and By are linear operators representing the inexactness,

—Af -B
(4.9) P = ( In—:z, ), and @ = ( In—:L )

A detailed derivation and analysis of the linear operators Ax and By, is given in Section
7 together with an extension of Algorithms 3.1 and 3.2 for the computation of the
tangential component.

As a consequence of assuming this inexactness, we no longer have condition (3.9).
Instead, we have the following condition:

ar(sk) — qe(sp + Qr(se)w)
(410) > k|| DE P V(s min {5 DF PTVgi(spl, wabe } — izl Cill
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Where once again Ky, K5, kg, and Ky are positive and independent of k. The matrix
DP i 1s a diagonal matrix of order n — m with diagonal elements given by:

=

(b—wp)? it (PIVa(s])), < 0and b < +oc,

Py 1 it (PIVa(s])), < 0and b = +oc,
(D= (ux —a)F i (PIVa(s])), > 0and a; > oo,
1 if ( A V(]k(SZ)) > 0 and a; = —o0,

This matrix is the inexact version of Dy defined in (3.6). We show in Section 7 how
(4.10) can be satisfied. Of course, we still require the tangential component to be
feasible with respect to the trust region constraint (3.8) or (3.11) and to the bound
constraints (3.4).

In the computation of the actual and predicted decreases, we need to evaluate
Ji sk after the step s; has been computed. Since we allow the derivatives of C'(y,u)
to be approximated, we do not have Jis; but rather

(4.11) Jrsi + e,

where e, is an error term.

4.2. Inexact TRIP SQP algorithms and general assumptions. To decide
whether to accept or reject a step sy, we evaluate the ratio ared(sy; pi)/pred(sg; pr),
where the actual decrease ared(sg;px) is given by

ared(sg; pr) = L(xg, Ags pr) — L(Tp + Sky Akg1; Pr)s

and the predicted decrease pred(sg;pr) by

pred(sg;pr) = L(zk, Ak pr)
- (f]k(sk; ex) + AN (Jise + ex + C) + prl| Jesk + e + CkHQ) .

Here AN, = A\gy1 — Ak, L(z, A;p) is the augmented Lagrangian function
L(z, 2 p) = J(x) + ATC(2) + pC(2) C (o),
and the quadratic term gx(sg;er) is given by

ar(seier) = b+ VI Isp+ AT (Jpse + ex) + 351 Hysy,

(4.12)
= q(sp) + A ex.

The update of the penalty parameter pj follows El-Alem [19].

AvrcoriTHM 4.1 (INexacT TRIP SQP ALGORITHMS).
1 Choose zg such that a < ug < b, pick ég > 0, and calculate Ag. Set p_; > 1
and €;,; > 0. Choose ay, 71, 0, dmin, Omaz, and p such that 0 < ay,1m1,0 < 1,
0 < dmin < dmaz, and p > 0.
2 For k=0,1,2,...do
2.1 If ||Ck|| + HD,I:PkTqu(sz)H < €01, stop and return z;, as an approximate
solution for problem (1.1).
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2.2 Compute s} satisfying (3.1), (3.2), and (3.3). Then, compute s = s} +
st = s+ Qr(sk)u, where (s), satisfies (3.4), (3.8) or (3.11), and (4.10).

2.3 Compute A1 and set Adg = Agy1 — Ag.

2.4 Compute pred(sy; px—1)-
If pred(sk; pr—1) > %5 (”CkHQ — || Jksk + ex + Ckl| ) then set pr = pr_1.
Otherwise set

2 (Qk(5k§ er) — qr(0) + AN (Jgsy + e + Ck))
ICkI* = || Jksk + ex + Ckl|?

+p.

Pk =

ared(sg;
2.5 If ﬁ < m, set

041 = o maX{HskH H(DP) (8K )u H} in the decoupled case or

5k+1:a1max{uszu,”< (fj’;%) (ik))(s’“) )}inthe

coupled case, and reject sg.
Otherwise accept s; and choose d;41 such that

max{émina 6k} S 6k+1 S 6ma1?-

2.6 If s was rejected set zp41 = xf and Agy; = Ap. Otherwise set x541 =
25 + si and /\k-l—l = A, + A)g.

Of course the rules to update the trust radius in the previous algorithm can
be much more involved but the above suflices to prove convergence results and to
understand the trust-region mechanism. From these rules we have the following lemma
(see [14, Lemma 6.1]).

LEMMA 4.1. Fvery step satisfies

(4.13) Iskl] < kgbr and bpp1 > Ks|sk||,

where kg is a positive constant independent of k.
For the convergence theory we need the following set of assumptions (see [14]).
For all iterations k, we assume that xy, xz;+ s € 2, where {2 is an open subset of IR".

A.1 The functions f, ¢;, © = 1,...,m are twice continuously differentiable func-
tions in . Here ¢;() represents the +—th component of C'(z).

A.2 The partial Jacobian Cy(z) is nonsingular for all z € Q.

A.3 The functions f, Vf, V2f, C, J, V%¢;, i = 1,...,m, are bounded in Q. The
matrix Cy(z)~! is uniformly bounded in €.

A.4 The sequences {H}, {W}, and {A;} are bounded.

A.5 The sequence {u} is bounded.

Assumptions A.1-A.4 reduce to the weakest assumptions required to prove global
convergence for equality—constrained optimization (see [13] and the references therein).
Assumption A.5 is used in [8], [15] for box—constrained optimization and is trivially
satisfied if a,b € IR"™™. We comment on possible relaxations of some of these condi-
tions in Section 10.

Now we introduce the conditions on the inexact calculations. An important point
here is that Algorithms 4.1 can be particularized to satisfy these conditions. See
Sections 6, 7, and 8.
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IA.1 The sequences {Ay} and {By} are bounded.
IA.2 || (—=Cy(zk)Br + Cu(zr)) (sk)ul| < @min{ks||Cy|, 6%}, where § = min{ L &

Ra' 4 f°
IA.3 The error term e given in (4.11) obeys ||ex|| < 6 min {Hg”CkH, mHskHQ},
where 6 is given in [A.2.
IA.4 lim; H(—A{J + C’u(xk])TCy(xk])_T)quk](szj)H = 0 for all index subsequences
{k;} such that lim; [|C},|| = 0.

The Assumption IA.2 imposes a bound on the distance of Q(sg), to the null
space of the linearized constraints. It is obvious that IA.2 is satisfied when By =
Cy(z) 'Cy(zk). The Assumption IA.4 is only needed to derive Theorem 5.1 and
restricts the accuracy of the reduced gradient calculation. We will be more precise
later. This assumption is satisfied if Ay = C,(zx)TCy(zx)~7L.

For the rest of this paper we suppose that Assumptions A.1-A.5 and Conditions
TIA.1-IA .4 on the inexactness are always satisfied.

5. Global convergence. For the global convergence of the inexact TRIP SQP
Algorithms 4.1 we need conditions (3.1), (3.2), and (3.3) on the quasi-normal compo-
nent s; and condition (4.10) on the tangential component (s),. The following lemma
states a lower bound on the decrease given by s; on the linearized constraints. The
need for this lemma is the fact that, due to the inexactness assumption, s}c might not
lie in the null space of J.

LeMMA 5.1. The step s salisfies

V

(5.1) ICKI? = 1k + ex + Crl* >

K .
fHCkam{HsHCkHaék}-

Proof. ¥From TA.2 we get

1 (=Cy(zr)Bi + Culwk)) (s1)ul”

IN

1 5 .
— 3| Cl| = min{rs||Ci, 64}
R3 4
From TA.3, (4.13), and 8 < 8,45 We obtain
1 K .
lewll® < —rsl|Cull 5 min{msl| Cxll, 64}
K3 4

Using these inequalities, (3.3), si = s) + Qx(sk)u, and the form (4.9) of @, we have

ICRII? = ks + ex + Cell* > [|CklI> = [|Cy(zr)(sh)y + Crll?
— [I(=Cy(zr) By, + Culr)) (s1)ull® = lex]?
|| Cy || min{ k|| Ck||, 1}

v

We also need the following three inequalities.
LEMMA 5.2. There exist positive constants kg, K10, and k11 independent of k such
that

(52) qr(0) = qe(s]) — AN (Jusk + ex + Cr) > —ko||Ckll,

(5.3)  |ared(si; pr) — pred(s; pi)l < sao ([lssll* + pillsell® + pell il [15il?)
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(5.4) |ared(sk; pi) — pred(sk; pr)| < Ku1pl|sil.

Proof. For the proof of the first inequality, we have
ny _ rn 1T n 1 n n
a1 (0) = a(sk) = —(Voln) sp — 58" Hysi 2 — { [IValill + Sl Hll |sell ) [lsell

Also, since ||Cy(zr)(s))y + Ckl| < ||Ck||, we use IA.2 and TA.3, s, = s} + Qr(sk), and
the form (4.9) of @, and get

AN (Jesk +ex +Cr) = = [|AN] (HCy(xk)(SZ)y + Crll
+ 1 (=Cy(wr) Br 4 Cuar)) (se)ull + [lexl])
> =3 A Crll-

Using (3.2), the fact that [|s]|| < 6,4z, and Assumptions A.3 and A.4, we obtain the
desired inequality (5.2).

Now we prove the other two inequalities. If we add and subtract £(z441,Ax) to
ared(sg; pr) — pred(sg; pr) and expand £(-, A\;) around zj, we get

ared(sg; pr) — pred(sg; pr) = %5{ (Hi — V2l(xg + TLsk, Ak)) Sk
+ AN (=Cry1 + Cr + Jisi) + O(||sk]1?)
= pe(ICksa 2 = s+ Cull2 = Okl

for some 7} € (0,1). The terms O(||sx||?) and O(||sk|]*) come from IA.3. The rest of
the proof follows from [14, Lemma 6.5]. 0
The following four lemmas bound the predicted decrease.
LEMMA 5.3. If (sg), satisfies (4.10), then the predicted decrease in the merit
function satisfies

pred(si;p) > kal| D PTVq(sP) | min {ss5]| DE BTV qi(s2), riofs |

(5.5)
— (k7 + ko + V)ICKl + p(ICKI? = [ Tksk + e + Cil|?),

for every p > 0, where from Assumption A.4, v is a uniform bound for ||Ag]|.
Proof. The inequality (5.5) follows from a direct application of the form (4.12) of
qr(sk; ex) followed by (4.10), (5.2), A.4, and IA.3. 0
LemMA 5.4, Assume that (sg), salisfies (4.10) and that HDEPkTqu(sz)H +
|Ck|| > €to1. There exists a positive constant a independent of k such that, if ||Cy|| <
ady then

pred(si;p) > 5| D PIVqy(sP)|| min {rs|| Df PTVae(sD)|, wads |

(5.6) , )
+ p(ICH2 = [ Tasi + e + Cil]?),

for every p > 0.
Proof. The proof is the same as the proof of Lemma 7.2 in [14]. O
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We can use Lemma 5.4 with p = pi_1, and conclude that if \]D,E)P,?qu(sz)ﬂ +
|Ck|| > €tor and [|Cy|| < by, then the penalty parameter at the current iterate does
not need to be increased. This is equivalent to Lemma 7.7 in [13]. The next lemma
states an equivalent result to Lemma 7.8 in [13].

LEMMA 5.5. Let (sg)y satisfy (4.10) and | DY PLV q(sM)|| + [|Crl| > €101, There
exists a positive constant o such that, if ||C|| < by, then

(5.7) pred(sg; pr) > K120k,

where K19 ts positive and does not depend on k.
Proof. See [14, Lemma 7.3]. 0
LEMMA 5.6. The predicted decrease salisfies

(5.8) pred(sii p) 2 B (ICHI12 = 1 usi + ex + Cull?)

for all k.
Proof. 1t follows directly from the Scheme 2.4 that updates py. O

Now we use the theory given in [13], [14] to state the following result. This result
shows that for a subsequence of the iterates, the first-order KKT conditions (2.2)—(2.3)
of problem (1.1) are satisfied in the limit.

THEOREM 5.1. The sequences of ilerates generaled by the inexact TRIP SQP
Algorithms 4.1 satisfy

(5.9) lim inf (IDeW 9 fell + 1Cxll) = 0.

Proof. First, we use the theory given in [13] to show that:
liminf (||DF PY Vau(s)ll + 1 Call) = 0.

In fact, Lemmas 7.9-7.13 and 8.2 as well as Theorems 8.1, 8.3, and 8.4 in [13] can
be applied based on (3.2), (4.10), (4.13), (5.1), (5.2), (5.3), (5.4), (5.7), (5.8) and on
the fact that if HD,EPEV(]ASQ)H + ||Ck|l > €01 and ||Ck|| < aby, then the penalty
parameter at the current iterate does not need to be increased. Thus this result is just
a restating of Theorem 8.4 of [13]. So, there exists an index subsequence {k;} such
that

Jim (|| DF P Var, (sl + IC ) = 0.
Now we apply Assumption IA.4 and the forms (2.1) and (4.9) of W}, = W(zy) and
Py, to obtain
T
lim (Py, = Wy,) Vg, (s],) = 0.

11— 00

Using this and the continuity of D(z)W(z)TV f(z) we get
Jim (| D& W Var, (7l + |C]l) = 0.

The rest of the proof is given in the last paragraph of the proof of Theorem 7.1
in [14]. 0

The condition imposed in TA.4 is related to the computation of the reduced gra-
dient. If the adjoint multipliers are used, then this condition can be interpreted as a
restriction on how accurate these multipliers have to be computed. We comment on
this again in Sections 7 and 8.
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6. Computation of the quasi—-normal component. The quasi-normal com-
ponent s} is an approximate solution of the trust-region subproblem

minimize ||Cy(ax)(s")y + C||?

(6.1) ‘ .
subject to  ||(s")y|| < bk,

and it is required to satisfy the conditions (3.1), (3.2), and (3.3). The property (3.2) is
a consequence of (3.3). In fact, using ||Cy(2r)(s])y+Ck|| < ||Ck|| and the boundedness
of {Cy(zx)™*} we find that

1521 < NG (@) I (ICy(2r)(sD)y + Cill + 1Cxll) < 20ICy () I ICK] -

Whether the property (3.3) holds depends on the way in which the quasi-normal
component is computed. We show below that (3.3) is satisfied for a variety of tech-
niques to compute s. We concentrate on methods that are suitable for the large
scale case and do not require the matrix Cy(zy) in explicit form. The first two
groups of methods tackle the trust-region subproblem (6.1) directly. The first group of
methods are Krylov subspace methods that require the computation of matrix—vector
products Cy(zx)s, and Cy(z)Ts,, while the second group of methods only require
Cy(zg)sy. The third group of methods compute steps by solving the linear system
Cy(zg)(s")y = —C}, approximately. The trust-region constraint is enforced by scaling
the solution.

6.1. Subspace methods. There are various ways to compute the quasi—normal
component s for large scale problems based on Krylov subspace methods. For ex-
ample, one can use the conjugate—gradient method applied to the normal equation as
suggested for the general quadratic case in [46], [48], or one can use the Lanczos bidi-
agonalization as described in [23]. Both methods compute an approximate solution
of (6.1) from a subspace that contains the negative gradient —C(zx)? Cy of the least
squares functional. Thus, the steps s} generated by these methods satisfy ||s}|| < 6
and

1
SICy(@x)(sh)y + Cill”
(6.2) < min {110y (p)s + Cill? + s = —1Cy (k)T Ch, |Is]) < 8} -

We can appeal to a classical result due to Powell, see [42, Theorem 4], [35, Lemma 4.8],
to prove the following result:

LemMMA 6.1. If (s)), satisfies (6.2), then there exist posilive constants ky and ks,
independent of k, such that

ICl® = ICy(zk)(sR)y + Crll* > kol O] min{ss | Cill, 65}

Another method to solve large scale trust-region subproblems is analyzed in [45].
In this approach the trust-region subproblem (6.1) is reformulated as an eigenvalue
problem which is then solved by the implicitly restarted Lanczos method. This method
and the method in [23] compute a step that satisfies the fraction of optimal decrease
condition, i.e. these methods compute steps (s} ), satisfying

ICHI? = 10y (@) (s)y + Crll? 2 BICHI ~ 1Cy(2)(sD), + Cill?).
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where (s0), is the solution of (6.1). Thus, the method in [45] yields a step satisfying
(3.3).

The previous approaches require the evaluation of Cyy(z)v and Cy(z k) u for given
)l is more expensive than
the application of Cy(zy)v, and therefore it may be more efficient to use methods that

v and u. For some applications, the evaluation of Cy(zy

avoid the use of Cy(xk)Tu. In this case one can apply nonsymmetric Krylov subspace
methods based on minimum residual approximations, such as GMRES [44]. In the
context of nonlinear system solving the use of such methods is described e.g. in [4].

If GMRES is used and if
(6.3) SCE(Cylan) + Cylan) Ci = BlICKI?
holds with § > 0, then
ICl* = 1€y (zk)(sR)y + Crll* > kol Crl| min{rs||Cill, 64}

where k; and k3 are positive constants that do not depend on k. The condition (6.3) is
implied by the positive definiteness of the symmetric part of Cy(z}), a condition also
important for the convergence of nonsymmetric Krylov subspace methods. A proof of
this result and more details concerning the use of these methods can be found in [49].

6.2. Scaled approximate solutions. An alternative to the previous procedures

is to compute an approximate solution 8} of the linear system C(zy)s = —C}, and to
scale this step back into the trust region, i.e. to set
5 1 if |87 < 6k
£k 3], kil =Tk
6.4 s = k where =
(6.4) k ( 0 ’ & S5 otherwise.
1551
We assume that the linear system Cy(zy)s = —C} is solved inexactly and that

the residual vector satisfies ||Cy(zx)3) + Ck|| < €]|Ck|| with € < 1. Then we have the
following result (the proof can be found in [49]).

LemMMA 6.2. If ||Cy(zk)3) + Ci|| < €||Ck|| with € < 1 for all k, then the quasi-
normal component (3.1) satisfies

ICklI* = ICy(zk)(R)y + Crll* 2 kol Cll min{rs|| Cill, bk},
where ko and k3 are positive constants independent of k.

7. Computation of the tangential component. Ideally, the tangential com-
ponent minimizes the quadratic model ¥(s,) in the null space of the linearized con-
straints subject to the trust region and the bound constraints. Since the null space
of the linearized constraints is characterized by Wy, the exact tangential component
has the form s}g = Wi(sk)u. The u part of the tangential component is computed by
a conjugate—gradient method and its computation requires the calculation of matrix—
vector products Wid, and Wde. We assume that these calculations are inexact.

7.1. Reduced gradient calculation. For the computation of the tangential
component we first have to compute the reduced gradient W,;[qu(sg) of the quadratic
model Wy(s,). If this is done using (4.3), then we have an approximation to the reduced
gradient W7 Vg (s]) of the form:

(7.1) W,?qu(sz)—l—eA,
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where the error term e4 depends on W[ Vgr(sh). By using the error term in (4.4),
we find that

(7.2) leall < 1Cu(zr)" Cylar) ™ H1(ea)yll + [I(ea)ull

We can interpret the inexact computation of W,;[ Vgi(sy) as the exact solution of
a perturbed equation. If we set

1
Ex HQ €A (Vka(SZ))T7

IVyar(sh)

then
(= Culwn)Cylar)™ + Ea) Vyar(s]) = =Cular) " Cyax) T Vyge(s]) + ea.

Thus we can define Ay, = Cy(z) 1 Cy(zx) — 4 and

(7.3) P, = ( I_ffj; ) _ ( —Cy(wk)_;aniwk) + EY ) .

With this definition we can write W Vg (sh)+es = PLVgg(sD). The linear operator
Ay, satisfies

1= A + Culen)™Cylen)™™ = NEX < lleall/IVyan(sD]
(7.4) < (ICuae) Cylan) I Ieasll + Hea)ul) /1Y yas (DI
and
0= A+ Culen) Cylzn) VeI = 1EGV,ae(sDIl = leal
(7.5) < (IICuler) Cylme) N el + I(ea)all)-

If for given V,gi(s}), the error terms in the computation of the reduced gradient via
(4.3) obey

(7.6) max {[|(ea)y, (ea)ull} < nlICkl,

then (7.5) and Assumptions A.3-A.4 imply the Condition IA.4. Moreover, if

(7.7) max {[|(ea)y [, l(ea)ull} < 0l Vyan(sPIl

then (7.4) and Assumptions A.3-A.4 imply the boundedness of {Ay}. This gives the
first part of Condition TA.1.

7.2. Conjugate—gradient algorithms. In the following, we formulate exten-
sions of the conjugate-gradient Algorithms 3.1 and 3.2 for the computation of the
tangential component. To keep the presentation simple, we continue to use the no-
tation Wy and W,? . However, whenever matrix—vector products with W or W]? are
computed, we assume that this is done using (4.1) or (4.3). The degree of inexactness,
i.e. the size of the error terms e, and e,, is specified later. The reduced gradient
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WIVq(sh) of the quadratic model W(s,) is assumed to be computed by (7.1) with
errors (€4)y, (€4), satisfying (7.6) and (7.7).

In the case where an approximation Hy, to the reduced Hessian W,CTHka is used,
the quadratic

_ <PkTqu(sz))Tsu — %sz (flk + Ek(D,f)_Z) Su

is reduced at every iteration of the conjugate—gradient algorithm. If we use an ap-
proximation Hj to the full Hessian we have to compute matrix—vector multiplications
with WkTHka. One of the consequences of the inexactness is that the quadratic
evaluated at the iterates of the conjugate-gradient algorithms is not guaranteed to
decrease. For instance, the inexact application of W} and WkT may cause WkTHka
to be nonsymmetric. Hence we need to measure the Cauchy decrease at Step 3 of the
algorithm. The extension of the conjugate—gradient Algorithm 3.1 is given below.

ALGORITHM 7.1 (INEXACT COMPUTATION OF s; = s} + Wi(sk), (DECOUPLED
CASE)).
1 Set s2 =0,7 = —PIVg(sh), ¢° = (D,I:)QTO, d’ = ¢° and € > 0.
2 For:=10,1,2,...do
2.1 Compute
()7 (q")
(@)7 ( A+ En(DF)=2) (@)

T ()7 (q") (full Hessian).
(d)T (vv,?HkPVk+Ek(Df)—2) (d')

(reduced Hessian),

2.2 Compute
7 = max {T >0 : H(D,E)_l(si + 7d%)|| < b,
or(a—ug) < st 4 7d' < or(b— uk)}
2.3 If ' <0, or if ¥* > 7%, then set s = s! 4 7'd’, where 7° is given as in
2.2 and go to 3; otherwise set st = si + yid’.
2.4 Update the residuals:

i+1 =y (ﬁk + Ek(bf)_Q) dr (reduced Hessian),
T = ) ) B '
rt =7 (W]?kak + Ek(D;E))_Q) d* (full Hessian),

and ¢'t! = (DE)Q'riH.
2.5 Check truncation criteria: if Tl(fj);(g;;l
to 3. T it
2.6 Compute o' = (T—(W%)—) and set d'T! = ¢*t1 + a'd".
3 Compute Wysr.
If a reduced Hessian approximation is used, set (sy), = s and s = SZ +Wysh.
If a full Hessian approximation is used and if

€, set & = s't! and go

T
— (PIVa(s])) st = L(Wisy)T Hy(Wis)
T
< - (W];‘Fqu(sz)) sk — %S}LTWkTHkaS}“

then set (si), = sl and sy = s + Wisl. Otherwise (sg), = si and s =
sy 4 Wiy,
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The extension for the coupled approach is analogous and is omitted.

7.3. Distance to the null space of the linearized constraints. Let (st),
and (st), = (sg), be the quantities computed by Algorithm 7.1. Since Wj(s), is not
computed exactly in Step 3, it holds that

(sh)y = —Cylae) ' Cular)(sk)u + Cyler) ™ ((eB)u + (eB)y)
= —Cylzp) 1Culzr)(sk)u + €B,

where the error term eg depends on (s), and satisfies

(7.8) lesll < 1Cy(ze) M1 (lI(em)ull + I (en)y ).

cf. (4.2). As before, we can interpret the inexact computation (st), of st = Wi(sp)u
as the exact solution of a perturbed equation. If

1
Ep=———eg(s)L,
[l(sk)ull?

then

(= Cylan) " Culen) + B ) (s1)u = —Cy(mx) 7 Culwr)(sk)u + e = (s5)y-

We define By, = Cy(zx) ' Cyu(zy) — Ep and

(7.9) Qk = ( I:f:; ) _ ( —Cy(wk)_;ijn(xk) + Ep ) .

With this definition, we can write

sk = Qu(sk)u-
The linear operator By satisfies

= Be+ Cylzn) " Culzi)ll = N1EsIl < llesll/II(sk)ull

< (l!Cy(wk)_lH (IteB)ull + H(eB)yH))/H(Sk)uH
and
(= Cy(ar)Br + Culzr))(sk)ull = [[Cy(zr)EB(sk)ull = [ICy(zk)es]|
(7.10) < leB)ull + ll(eB)yll-

If the error terms in the computation of (st), using (4.1) obey

(7.11) max {[|(es)yll [I(en)ull} < gmm{ngucku,ék},

where 6§ and k3 are defined as in IA.2, then one can see from (7.10) that By satisfies
Condition IA.2. Moreover, since {Cyy(z¢)™'} is bounded, if

max {[ley |l lleall} < nll(skull,

then (7.3) implies the boundedness of {By}, cf. IA.1.
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7.4. Cauchy decrease condition. Now we establish the decrease condition
(4.10). We analyze reduced and full Hessians approximations separately.

In the reduced Hessian approximation case, an approximation Hy, for WkTHka
is used and all the calculations of Step 2 of Algorithm 7.1 are performed exactly. In
this case (s ), satisfies the following condition

T 1 ~
— (PEVa(sR)) (s0)u = 5100 Hrlse)
(7.12) > kil | DF PEVqi(s])|| min {5 || DF PT Ve (DI, o}

This is just a consequence of Powell’s classical result ([42, Theorem 4], [35, Lemma 4.8])
adapted to the current context [14, Lemma 6.2].
Now recall that we need to establish (4.10), where the left hand side is given by

T 1
- (Q%V%(Sz)) ($k)u — §(Sk)zQ;€Hka(5k)u-
However, in (7.12) the left hand side is

~

~(FEVa(sD) " (1) = 500 ()

First we use (3.12) and (7.9) to write %(sk)Zﬁk(sk)u = L(su) T QT HrQr(sk)u. Then
we relate the inexactness represented by Py and (); with the constraint residual ||C||.
In fact, by using (7.3) and (7.9), we write

(PEVa(sD) (51

£y

—wwzfczk(swu—vmsz)T( ; )<sk>u+qu<sz>T(%B)<sk>u

T
= — (QFVa(sD) " (sk)u — €hls8)u + B Vyauls]).
The error bounds (7.2), (7.6), (7.8), (7.11), and Assumptions A.3—-A.4 give

eh(se)u = epVyae(sE) < lleallll(se)ull + lesll [IVyau(s)Il < mzllCill,

where k7 is a positive constant independent of k. Hence we have proved (4.10). The
analysis for the full Hessian is given in [49].

8. Computation of the Lagrange multiplier estimates. Note that the only
assumption on Ay required to prove the global convergence result (5.9) is the bound-
edness of the sequence {\;} (see Assumption A.4).

A choice of Ay that is available from the reduced gradient calculation of gx(s) is
A = —Cy(2x) TV, qi(sD). Due to inexactness \j actually satisfies

—Cy(zi) Ak = Vya(sp) + ez,

where 62 is the corresponding residual vector. From Assumptions A.3-A .4, if {62} is
bounded, then {A;} is also bounded.

Another choice for Aj is A\ = —C'y(xk)_TVyfk. We refer the reader to Section
10.3 of [14] for a discussion on these choices of Ag.
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9. Numerical experiments. We implemented the inexact TRIP SQP Algo-
rithms 4.1 and compared them with the exact TRIP SQP Algorithms proposed in
[14]. The numerical test computations were done on a Sun Sparcstation 10 in double
precision Fortran 77. We tested our algorithms on examples that have the structure
described in this paper. The numerical results are satisfactory and revealed interesting
properties of the algorithms. Two examples are described in this section. Numerical
results with two other examples are are documented in [7], [25].

We use the formula (6.4) to compute the quasi-normal component, and conjugate-
gradients to calculate the tangential component. The scheme used to update the trust
radius and the inexact form of diagonal scaling matrices D, and Dy are the same as in
[14]. We have used o, = 0 = 0.99995 for all k; ég = 1 as initial trust radius; p_; = 1
and p = 1072 in the penalty scheme. The tolerances used were €;,; = 10~® for the
main iteration, Algorithm 4.1, and € = 10~ for the conjugate—gradient Algorithm 7.1
and the corresponding coupled version.

The tolerance for inexact solvers with C\(zx) was set to

(9.1) min {1072, 102 min{|| x|, &} }
and for inexact solvers with C,(z1)T to
(9.2) min {10_2, 10_2HCkH}.

This scheme for setting the tolerances satisfies (1.3).

For both, the decoupled and the coupled approaches, we used approximations
to reduced and to full Hessians. We approximate these matrices using the limited
memory BFGS representations given in [6] with a memory size of 5 pairs of vectors.
For the reduced Hessian we use a null-space secant update (see [41], [51]). The initial
Hessian approximation is y7I,,_,, for the reduced Hessian and 71, for the full Hessian,
where 7 is the regularization parameter in the objective function, set in both examples
to 1073,

In both examples the starting vector is z¢ = 0.

Since our algorithms are tailored for problems originally governed by infinite di-
mensional equations, our implementation allows the use of weighted scalar products.
In particular, we use scalar products (u',u?)y and (y',y?)y instead of (u')Tu? and
(y")Ty?. The scalar product for the unknown z is given by (2!, 2?)x = (u*,u?)y +
(y', y*)y. For most applications these scalar products are defined by appropriate dis-
cretizations of the inner products in the infinite dimensional control space and the
state space, respectively. This feature is important for the correct computation of
the adjoint and the appropriate scaling of the problem. Moreover, in many cases,
we could observe a mesh independent behavior of our algorithms. These scalar prod-
ucts are used in the conjugate-gradient algorithms, see e.g. Algorithm 7.1, and in the
quasi—-Newton updates.

It is not the purpose of this paper to explore and analyze this feature of our
algorithms. We refer to [7] for the detailed study of one application and the exposition
of the importance of the scalar product. For a detailed description of how the scalar

products are used and for a comprehensive description of the implementation we refer
to [26].
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9.1. Boundary control of a nonlinear heat equation. The first example is
the boundary control of a nonlinear heat equation. This and similar control problems
are discussed e.g. in [5], [30], [33], [40].

The goal is to control the heating process in such a way that the temperature at
the boundary @ = 1 follows a certain desired temperature profile y4(¢). The control
u(t) acts on the boundary = = 0. The problem can be formulated as follows:

minimize %/()T[(y(l, 1) — ya())? + yu?(1)]dt

subject to

) = qlz,t), (z,1) € (0,1)x(0,T),

’ ))azy(ovt) = g[y((),t) - u(t)]v le (O,T),
) = 0, te(0,7),

y(z,0) = yolz), z€(0,1),

Uow < U < Uypp

where y € L%0,T; HY(0,1)), and w € L*(0,T). The functions 7, k € C*(IR) denote
the specific heat capacity and the heat conduction, respectively. yo € H(0,1) is the
initial temperature distribution, ¢ € L%(0,7; H*(0,1)) is the source term, g is a given
scalar, and 7 is a positive regularization parameter. Here oy, typy € L(0,7) are
given functions.

If the partial differential equation and the integral are discretized we obtain an
optimization problem of the form (1.1). The discretization uses finite elements and
is discussed in [5] (see also [24], [30]). The spatial discretization is done using piece-
wise linear finite elements with N, subintervals of equidistant length in (0,1). The
time discretization is performed by partitioning the interval [0,7] into N; equidistant
subintervals. Then the backward Euler method is used to approximate the state space
in time, and piecewise constant functions are used to approximate the control space.

With this discretization scheme, C'y(z) is a block bidiagonal matrix with nonsym-
metric tridiagonal blocks. In the exact implementation we use the LINPACK subroutine
DGTSL to solve the tridiagonal systems. These calculations are reported in [14]. We
introduce inexactness into this problem by solving these tridiagonal systems inex-
actly. For this purpose we tested several iterative methods like GMRES, QMR, and
BiCGSTAB. The results were quite similar and we report here those obtained with
GMRES(10). Since we have to solve a nonsymmetric tridiagonal system at each time
step, we require the residual norms for these systems to be smaller than the tolerances
given in (9.1) and (9.2) divided by N;.

For this example, the inner products (u!,u?); and (y!,y?)y are chosen to be
discretizations of the L2(0,7) and L?*(0,7; H'(0,1)) scalar products of the control
and the state spaces respectively.

If spatial and time discretization are chosen properly, the partial Jacobian Cy(z)
is invertible with uniformly bounded inverse. This follows from the ellipticity of the
problems that have to be solved in every time step. See [5], [30]. Due to the simple
structure of the objective function, derivatives of f are bounded. Since we use the ad-
joint multiplier, the previous results imply the boundedness of the Lagrange multiplier
estimates.
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The functions in this example are those used in [30, Example 4.1], [14]. The size
of the problem tested is n = 2100, m = 2000 corresponding to the values N; = 100,
N, = 20. The upper and lower bounds are b; = 0.01, ¢; = —1000,¢:=1,....,n — m.

We ran the exact and inexact TRIP SQP algorithms using decoupled and cou-
pled approaches and reduced and full Hessians. The total number of iterations for
each case is given in Table 1. The quantities f(z), ||C(z)||, and ||D(z)W (2)TV f(z)|
are plotted in Figure 9.1. There were no rejected steps. In all the cases the algo-
rithms took less than fifty iterations to attain the convergence criteria. The coupled
approach did not perform as well as the decoupled approach. This is explained by the
accumulation of errors due to inexactness. In fact, if the decoupled approach is used,
the y component of the tangential S}C is computed only in Step 3 of Algorithm 7.1,
and although this computation is inexact, there is no accumulation of errors. In the
coupled approach, the y part of the tangential component s}c of the step is updated
at every conjugate—gradient iteration through an inexact linearized state solver. This
destroys the symmetry of the subproblem and the conjugate—gradient method requires
more iterations. As the number of conjugate—gradient iterations increases, this error
propagates, and the steps that are computed are farther away from the null space of
the linearized constraints.

We illustrate this situation in Figure 9.2, where we show how far ||Jys}| and
| Jk(sR 4 sb)|| are from each other. The dotted line shows the size of the residual of
the linearized state equation after the computation of the quasi—-normal component.
If the tangential component is in the null-space of the Jacobian, then this would be
the size of the residual of the linearized state equation for the whole step. In other
words, we would have ||Jps|| = || Jr(s] + st)||. However, due to the inexactness in
the application of Wy and W,;[, the size of the residual of the linearized state equation
for the whole step is larger and is given by the solid line. It can be seen that the
difference grows as Wy or W,? are applied more often in the computation of the
tangential component. In particular, the difference is larger if the coupled approach

is used.
TABLE 1
Number of iterations to solve the optimal control problems.
Optimal control Decoupled Coupled

problem governed by Reduced flk Full H; | Reduced flk Full Hy,

heat equation (exact solvers) 16 18 17 19

heat equation (inexact solvers) 16 18 29 48
semi-linear elliptic equation 18 20 27 36(39)

9.2. Distributed control of a semi-linear elliptic equation. The second
example is the distributed control of a semi-linear elliptic equation. The control
problem is given by

1
(9.3) minimize 5/ [(y — yq)* + yu?]dz
Q
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Decoupled with reduced Hessian Decoupled with full Hessian

of o}
-5 -5
_10 -10
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Fig. 9.1. Performance of the inexact TRIP SQP algorithms applied to a boundary control prob-
lem of a nonlinear heat equation. Here logiof(zk) (dotted line), logio||C(zk)|| (dashed line), and
log10||D(:Ek)ﬂf(:ck)TVf(rk)|| (solid line) are plotted as a function of k.

over all y and u satisfying the state equation

-Ay+g(y) = u, in Q,

9.4
(94) y = d, on 01,

and the control constraints
(95) Ulow S u < Uypp

where y € H'(Q), u € L*(Q), @ow, tuppy € L°(Q) are given functions, and Q is a
bounded domain of IR?, with boundary 9. In our examples we choose Q = (0,1)?,
d =0, g(y) = ¢, and yq = sin(27zy) sin(27z2). In this case the state equation
(9.4) is a particular Bratu problem. Solvability and applications of the state equation
are discussed e.g. in [21, Section IV.2], [22]. For the discretization of the problem,
we use piecewise linear finite elements with a uniform triangulation obtained by first
subdividing the z and the y subinterval into a sample of subintervals and then cutting
each resulting subsquare into two triangles. The same discretization was used for the
states and the controls.

Since the linearizations of the infinite dimensional state equation is elliptic and is
discretized by conforming finite elements, the matrices C'y(z)~! are uniformly bounded.
As in the previous example, the simple structure of the objective function implies that
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Decoupled with reduced Hessian Decoupled with full Hessian
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FiGg. 9.2. [llustration of the performance of the inexact TRIP SQP algorithms applied to a boundary
control problem of a nonlinear heat equation. These plots show the residuals of the linearized state

equations log10||Jks,T|| in dashed line and log10||Jk(s,T + SE)” in solid line.

the derivatives of f are bounded. This also implies the boundedness of the adjoint
multiplier estimates.

The norms used for the states and controls are the discretizations of the H'(Q)
and L?(Q) norms. The linearized state equation and the adjoint equation are solved
using GMRES(20) preconditioned from the left with the inverse Laplacian. To apply
this preconditioner, one has to compute the solution of the discrete Laplace equa-
tion with different right hand sides. This was done using multilevel preconditioned
conjugate gradients. Note that for g(y) = €Y, the problem is self-adjoint. There-
fore a conjugate—gradient algorithm could have been used instead of GMRES. How-
ever, the implementation was done for the more general problem with state equation
—Ay + ¢(y, Vy) = u, which in general is not self-adjoint.

In this example, the number of controls is equal to the number of states. In the
computations reported below we use m = n = 289 which corresponds to a uniform
triangulation with 512 triangles. The upper and lower bounds are b; = 5, a; = —1000,
t=1,....,n—m.

The total number of iterations needed by the inexact TRIP SQP algorithms to
solve this problem are presented in Table 1. In all situations but one, all the steps
were accepted. (The situation we refer to is the coupled approach with full Hessian
approximation where there were 36 accepted steps among the 39 computed.) The
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Decoupled with reduced Hessian Decoupled with full Hessian

5 10 15 0 5 10 15

Fig. 9.3. Performance of the inexact TRIP SQP algorithms applied to a distributed control problem
of a semi-linear elliptic equation. Here logiof(zx) (dotted line), logio||/C(zk)|| (dashed line), and
log10||D(:Ek)ﬂf($k)TVf(zk)|| (solid line) are plotted as a function of k.

quantities f(z), [|C(2)||, and [|D(z)W (2)TV f(z)|| are plotted in Figure 9.3. The
convergence behavior of the inexact TRIP SQP algorithms is similar to the convergence
behavior for the other example. Again the decoupled approach performs better than
the coupled one due to the fact that less errors are accumulated. See Figure 9.4.

The last experiment that we report consisted of applying the inexact TRIP SQP
Algorithms 4.1 to solve large instances of the distributed semi-linear control problem.
In this experiment, we used the decoupled approach with a limited memory BFGS
update to approximate the reduced Hessian matrix as described above. The number
of iterations corresponding to four instances of this control problem are given in Table
2. These instances were generated by decreasing the mesh size, i.e. by increasing
the number of triangles in the discretization. In this table we include the number of
linearized state and adjoint equations of the form (1.2) solved by the algorithms.

We point out that in this example the control is distributed in {2 and the number
of components in u is 5. For the values b; = 5, a; = —1000, 7 = 1,...,n — m of the
upper and lower bounds that we chose, the number of control variables u active at the
solution is roughly equal to {5. These observations are important for the conclusions
we draw in the next paragraph.

It is well known that in many interior—-point algorithms for linear and convex

programming problems the number of iterations is a polynomial function of the size
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Decoupled with reduced Hessian Decoupled with full Hessian
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FiGg. 9.4. Illustration of the performance of the inexact TRIP SQP algorithms applied to a distributed
control problem of a semi-linear elliptic equation. These plots show the residuals of the linearized state
equationslog10HJk52||in dashed line andlogloﬂjk(sg %—SE)H in solid line.

of the problem. On the other hand, most active set methods have a exponential
worst—case complexity. In interior—point algorithms, as we increase the dimension of
the problem we should observe at most a polynomial increase in the number of the
iterations. We can see from Table 2 that this is clearly the case for the TRIP SQP
algorithms. These results once more show the effectiveness of these algorithms for
optimal control problems with bound constraints on the controls. (If there are rejected
steps, then the number of iterations in brackets corresponds to all the accepted and
rejected iterations.)

10. Conclusions and future work. In this paper we have investigated the
theoretical and numerical behavior of a class of trust-region interior—point SQP al-
gorithms under the presence of inexactness. These algorithms have been proposed in
[14] for problems of the type (1.1), where the equality constraints often come from the
discretization of partial differential equations. We have generalized the global conver-
gence result given in [14] to the case where linear solvers and directional derivatives
associated with these constraints are inexact. We proved that global convergence to
a point that satisfies the first-order KKT conditions (2.2)-(2.3) can be guaranteed
if the absolute error in the solution of linear systems with Cy(zx) and Cy(zx)? and
in the calculation of directional derivatives of C' at zj is O (min{ég, [[Ck||}). Numer-
ical experiments with two optimal control problems has confirmed our analysis and
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TABLE 2
Number of iterations to solve large distributed semi-linear control problems.

variables (n) | constraints (m) | iterations | C,(xz) solvers | Cy(z)T solvers
578 289 18 54 37
2178 1089 22 66 45
8450 4225 26 (31) 83 58
33282 16641 49 147 99

showed how the inexact calculation of the quantities Wyd, and W,? d can affect the
use of conjugate gradients to compute the tangential component of the step and the
overall performance of the algorithms.

The conditions on the inexactness described in this paper, summarized in (1.3),
are suflicient to guarantee global convergence to a stationary point. However, as it
is the case for systems of nonlinear equations, the practical implementation of condi-
tions greatly influences the performance of the algorithm. Issues like oversolving and
forcing faster rates of local convergence are of importance and will be the subject of
future investigations. Since the quasi-normal component can be viewed as one step of
Newton’s method (with a trust-region globalization) towards feasibility for given u,
there is a close relationship with the studies of inexact Newton methods for systems
of nonlinear equations [17], [18].

The computation of the tangential component using the coupled approach is an-
other issue that will be investigated further. In particular the loss of symmetry due the
inexactness deserves attention and the use of nonsymmetric methods for the solution
of these subproblems will be investigated. See also [34].

In our applications the uniform boundedness of Cy(z)~" can be shown. However,
the uniform boundedness of Cy(z)™!, or even the global invertibility is not guaranteed
in other important applications. Possible relaxations of this condition will be inves-

1

tigated along with relaxations of other assumptions. For example, the requirement
of the boundedness of {Hy} might be relaxed using the ideas in [43] for trust-region
methods for unconstrained optimization.
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