Combining Flow and Dependence
Analyses to Expose Redundant
Array Accesses

FElana Granston
Alexander Veidenbaum

CRPC-TR95545
May 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

To appear in the International Journal of Parallel Programming

Combining Flow and Dependence Analyses
to Expose Redundant Array Accesses

Elana D. Granston
Center for Research on Parallel Computation
Rice University
6100 S. Main Street, Houston, Texas 77005

e-mail: granston@cs.rice.edu

Alexander V. Veidenbaum

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
1308 W. Main Street, Urbana, Illinois 61801

e-mail: sasha@csrd.uiuc.edu

Abstract

The success of large-scale hierarchical and distributed shared memory systems hinges on our ability to
reduce delays resulting from remote accesses to shared data. To facilitate this, we present a compile-time
algorithm for analyzing programs with doall-style parallelism to determine when read and write accesses to
shared data are redundant (unnecessary). Once identified, redundant remote accesses can be replaced by local
accesses or eliminated entirely. This optimization improves program performance in two ways. First, slow
memory accesses are replaced by faster ones. Second, the time to perform other remote memory accesses may
be reduced as a result of the decreased traffic level. We also show how the information obtained through
redundancy analysis can be used for other compiler optimizations such as prefetching and cache management.

Key words: redundancy detection, communication analysis, flow analysis of parallel programs, dependence
analysis, and data reuse.

1 Introduction

Large-scale, high-performance, hierarchical and distributed shared memory systems are currently gaining in pop-
ularity. Although research prototypes of such systems have existed for some time [GKLS83, LP92, LLIt92,
KDCZ94], recently commercial versions such as the Kendall Square Research KSR1 and KSR2 [Ken92], the Cray
T3D [Cra93], and the CONVEX Exemplar [CON93] have appeared on the market, and plans to build others have
been announced. Although there is significant architectural variation between these systems, all of them have
some local storage facilities — for example, cache and software-controllable local memory — that are cheaper to
access than remote memory.

The success of these systems depends heavily on the compiler’s ability to reduce delays due to remote memory
accesses. One method for accomplishing this is by eliminating redundant read and write accesses to remote copies

of shared data. Informally, suppose that a processor performs a read of shared data. The read is redundant if

there was an earlier read and write of those data by that same processor and the data that were read or written at
that earlier point would still be valid at this later read. A write of shared data is redundant if the only processor
that will read those data before they become stale is the processor that performed the write.

If the compiler can detect redundant references, then it can perform compile-time optimizations that make
use of local storage facilities to either replace redundant remote read and write accesses by local accesses or else
eliminate the redundant accesses entirely. Eliminating a redundant access can speed up program execution in
two ways. First, a fast local access replaces a slow remote access. Second, the elimination of remote accesses
decreases the overall traffic level, and hence the amount of contention, which in turn allows the remaining remote
accesses to complete more quickly.

The compiler can detect and eliminate redundant references to scalar data in sequential programs relatively eas-
ily with the use of well-established techniques for eliminating redundant computations [MR79, RWZ88]. However,
handling parallel numerical applications adds additional levels of complexity. First, redundant accesses to array
data become increasingly important to detect.! Second, the partitioning of the computation across processors
must be considered.

In this paper, we discuss the notion of redundancy analysis with respect to data accesses in programs that
have already been manually or automatically parallelized. We also detail a complete compile-time algorithm for
detecting unconditionally redundant reads in such programs and discuss adaptations of this algorithm to provide
other redundancy-related information that would be useful for compiler optimizations such as prefetching and
cache management.

The remainder of this paper is organized as follows. Section 2 describes the parallelism model that we assume
and provides examples that show how information obtained from redundancy analysis can be used to reduce
delays arising from non-local memory accesses. Section 3 formally defines and categorizes redundancies. Section 4
presents the basic forward flow analysis algorithm for detecting unconditionally redundant reads. Section 5 covers
adaptations of the algorithm presented in this paper for computing other types of redundancy information and

for handling other parallel program models. Section 6 addresses related work. Section 7 presents conclusions.

2 Motivation

The algorithm described in this paper computes information regarding both redundant references and those
references that induce or cause these redundancies. In the case of parallel programs, the the compiler’s ability to
detect redundancies depends on the availability of information regarding the scheduling of loop iterations both
within and across loops. In Section 2.1, we present and justify the scheduling strategy assumed in this paper.
In Section 2.2, we demonstrate the importance of computing redundancy information by presenting examples
to show how the results of such analysis could be used to reduce delays due to shared data accesses on today’s

systems.

1 Although Rosen et al. [RWZ88] also handle the case of individual array elements when subscript expressions are equivalent,
handling just this limited case is insufficient when trying to aggressively optimize parallel applications.

doall i=1 to N fork p;=1 to N

enddoall barrier
if my-pid = pseq
then - -
endif
doall i=1 to N barrier
enddoall join

Figure 1: Static inter-epoch scheduling. Original program. (left) Same program after static inter-epoch scheduling.

(right)

2.1 Parallel Program Model

We assume a global name-space and a single level of doall-style parallelism. Data is designated as private or
shared. The doall constructs partition the program into parallel epochs (doall loops) and sequential epochs. In a
parallel epoch, no datum written during one iteration is accessed during another, so all iterations of the doall loop
can be executed in parallel. Each doall loop iteration and sequential epoch constitutes a separate epoch instance.

We can schedule epoch instances using either static or dynamic inter-epoch scheduling. In a dynamically
scheduled program, each epoch boundary (doall or enddoall statement) corresponds to an actual processor reas-
signment boundary. Each doall corresponds to a fork, and each enddoall to a join. We make no assumptions at
compile time regarding the assignment of epoch instances to processors after crossing a processor reassignment
boundary.

A program that utilizes static inter-epoch scheduling, executes one fork at the beginning of the program and
one join at the end. Other epoch boundaries correspond to barriers. Note that static inter-epoch scheduling is
different from classical static scheduling. Classical static scheduling refers to the compile time partitioning of
iterations within a single doall loop. Static inter-epoch scheduling refers to compile time partitioning of iterations
across multiple doall loops. Both types of static scheduling can be combined, for example, by stripmining the
doall loops as a preprocessing step. Further note that static inter-epoch scheduling is essentially SPMD-style
scheduling? which is becoming increasingly popular over the fork-join model (dynamic inter-epoch scheduling).
This popularity is due in part to the lower overhead of SPMD-style scheduling in the presence of short epoch
instances, which are common in practice, and in part to the additional opportunities to exploit locality that can
be exposed at compile time [AL93, AHD93, BGM95].

With static inter-epoch scheduling, the compiler must choose some technique for mapping iterations to proces-
sors. Although there are several methods for assigning loop iterations to processors, advocating specific scheduling
policies is not our goal. Although our algorithm can be applied using any number of strategies, for presenta-
tion purposes, we adopt one simple strategy that we expect will work reasonably well. With this strategy, each

sequential epoch is enclosed by a conditional that ensures that it is only executed by virtual processor pseq. If

2Despite the popularity of the term SPMD, we retain the term static inter-epoch scheduling both for compatibility with our
previous work and because we believe that this term more clearly describes the key scheduling assumptions that are used in this
paper.

shared 4,B,C shared A4,B,C

private x private x,tA,tB
doall i=1 to N doall i=1 to N
A[i]l = - tAli]l = ---
B[i]l = --- A[il = tA[i]
enddoall tB[i] = ---
enddoall
doall i=1 to N doall i=1 to N
x = A[i-1] + A[il x = A[i-1] + tA[i]
do j=1 to N do j=1 to N
B[i] = (x + B[il) / 2 + c[j,il] tC[j,i] = c[j,1]
enddo tB[i] = (x + tB[i]) / 2 + tC[j,1i]
enddoall enddo
enddoall
doall i=1 to N doall i=1 to N
if - .- if ...
then then
do j=1 to N do j=1 to N
. = B[4l + C[j,i] ... = tB[4] + tC[j,4]
enddo enddo
B[i] = 0 B[i] = 0
else else
B[i] = - BI[i] B[i] = - tB[i]
endif endif
enddoall enddoall

Figure 2: The reads of A[i] and B[i] in the second doall loop and the reads of B[i] and C[j,i] in the third
doall loop are unconditionally redundant, as are the writes of B[i] in the the first and second doall loops. The
inducers of these redundancies are the writes of A[i] and B[i] in the first doall loop, the write of B[i] in the
second doall loop, and the read of C[j,1i] in the second doall loop. These redundant references can potentially
cause non-local communication because of false sharing effects; cache conflicts, and/or the use of write-through
caches. (left) The redundant reads and writes of shared variables are eliminated by using private copies. (right)

iteration i of one doall loop is executed on virtual processor p;, then iteration i of every doall loop is executed
on p;. For example, in Figure 1 (right), static scheduling is applied to the set of doall loops from Figure 1 (left).

Without loss of generality, we will henceforth assume that virtual processor p; = ¢ and that ps.q = p1.

2.2 Exploiting Redundancy Information

Suppose that local storage facilities consist of private (per-processor) caches. The results of redundancy analysis
can be used to improve cache utilization both on systems with and without hardware support for coherence. On
the Cray Research T3D, for example, only private data is cached by default. The compiler can override this default
for sets of shared data by using directives or making private copies of data to be cached, but then it assumes the
responsibility of maintaining coherence for these data. Compiler-directed coherence algorithms [Vei86, CKM88,
CV88, DMCK92] must be conservative. Therefore, the number of unnecessary invalidations that the compiler

inserts is inversely proportional to the precision of the information available at compile time.

Because the results of redundancy analysis provide more detailed information on stale data (equivalently, non-
redundant data) than was previously available [CV88], the compiler can be more sparing regarding the number
of invalidation instructions that it inserts. For example, consider Figure 2 (left). Because of our scheduling
assumptions, the references to B[i] are redundant. Therefore, a cache copy of B[i] is definitely valid on entrance
to the third doall loop and should be used, if available. However, a cache coherence scheme that does not
consider both array subscripts and compile-time knowledge regarding the scheduling of loop iterations would
have to conservatively assume that a cache copy of B[i] might be stale. Therefore, the compiler would have to
(unnecessarily) insert an invalidate instruction for B between the second and third doall loops.

In a system such as the Kendall Square KSR1, cache coherence is supported in hardware using an invalidate
protocol. In such a system, the hardware might conservatively invalidate copies of cache lines that contain valid
data that will still be reused. As an example of this, refer to the second doall loop in Figure 2 (left) where array
B may be falsely shared. Moreover, the ping-pong effect resulting from this false sharing can be severe, causing
unnecessary non-local reads and writes as well as non-local communication needed to perform the invalidations.

The false sharing problem can be avoided if each processor makes a local (private) copy of the data it needs and
reads this copy instead.® In general, the compiler should create a private copy or update one whenever a write
of a shared variable is determined to induce a redundancy. Whenever a read of shared variables is determined
to be redundant, the compiler should substitute this shared read with a read of the private copy. These two
optimizations will expose redundant writes of shared variables that the compiler can then eliminate.

The compiler can also apply the technique of making private copies to optimize accesses to A. In this case, data
copying makes a local copy of the value of A[i] that is written in the first doall loop available within the second
doall loop. The compiler can use redundancy information to determine when to create, update, and read these
private copies. Referring to Figure 2 (left), for example, the writes of A[i] and B[i] and the read of C[j,1il]
in the first two doall loops induce redundancies, so the compiler should create or update local copies at these
points. Then the compiler can replace the redundant reads of A[i] and B[i] in the second doall loop and the the
redundant reads of B[i] and C[j,i] in the third doall loop by reads of private copies. Afterwards, the compiler
can eliminate the redundant writes of B[i] in the first and second doall loops and that of A[i] in the second
doall loop. The transformed code is shown in Figure 2 (right). Note that, although the write to A[i] induces a
redundancy, it is not in itself redundant. Therefore, the compiler cannot eliminate the write to the shared copy
of this variable. Further note that to automatically detect that the latter write to B[i] in the second loop is
redundant requires a compile-time algorithm that can handle both conditional code and doall loops.

In all the above cases, the compiler’s ability to replace reads and writes to shared data by reads and writes
to private copies depended on the information that the data being written would not be needed by another
processor. This knowledge can be supplied by redundancy analysis. The ability to make private copies can
improve performance in other situations as well. First, memory access delays take varying amounts of time
depending on the overall traffic level. On systems such as the T3D which employ a write-through cache, applying
the aforementioned technique of making a private copy of B[i] would eliminate N (N 4 1) of the N(N +2) writes
to B in this example, thereby reducing the system traffic level. Second, on systems such as the T3D, where

caches are small and associativity is low, the compiler can apply data copying to significantly reduce the number

3To reduce the size of private variables, loops should be stripmined based on cache capacity whenever possible. For simplicity and
increased readability, we omit stripmining from the examples in this paper.

of shared data misses due to cache conflicts [TGJ93]. Although we did not consider the use of registers in the
examples presented above, the private copies could just as easily have been register-allocated, assuming that a
sufficient number of registers were available [BIEW91].

Therefore, basic redundancy analysis is useful both for optimizing cache coherence protocols and for determining
when private copies can be safely made. As will be discussed briefly in Section 5.4, some minor extensions would
allow this analysis to be used for determining the range in which data can be safely prefetched, so that latencies
resulting from non-redundant reads can be hidden.

Observe that, even for the simple example presented in this section, the analysis technique must consider
array subscript expressions and control flow that includes conditionals, loops, and doall constructs. Therefore, a

combined flow and dependence analysis approach is needed.

3 Definitions

Before we can present our redundancy detection algorithm, we need more precise definitions of the terms redun-
dancy and redundancy inducer. In practice, not all redundancies can be profitably eliminated. Therefore, we also
classify redundancies from most promising to least promising, so that we can restrict ourselves to detecting those
that can be profitably eliminated on the target architecture. Section 3.1 develops formal definitions for sequential

programs and Section 3.2 extends these definitions to parallel programs.

3.1 Redundancies in Sequential Programs

Suppose that reference R is a read. If the data accessed at R are read or written earlier in the program, then R
is redundant. Our algorithm detects read redundancies in two steps. First, it computes the set of data that are
accessed prior to executing R, known as the set of data that downwardly reach R. Then, the algorithm intersects
this reaching set with the set of data read at R to determine whether R is redundant. The redundancy inducers
are the earlier references from which the data in the intersection set reach.

Suppose instead that R is a write reference. If the data written at R are written later in the program, then R is
redundant. Our algorithm for detecting write redundancies also has two steps. First, it computes the set of data
that are written after executing R, known as the set of data that upwardly reach R. Then, the algorithm intersects
this reaching set with the set of data written at R to determine whether R is redundant. The redundancy inducers
are the later references from which the data in the intersection set reach.

Sections 3.1.1 through 3.1.3 formally define the concepts of reaching, redundancy, and redundancy inducer for

sequential programs.

3.1.1 Reaching Data in Sequential Programs

Unless specified otherwise, let a reference R to an array variable X refer to a static read or write of one or more
z, where z is an element of a shared array X. Without loss of generality, each program statement is assumed to
contain at most one shared reference. Let P be a sequential program with one entry point and one exit point, s
be a statement in P, and p be an execution path from the start of P to s, excluding s. If there exists a memory
reference R along p that accesses a variable z, and the value of = after completing the access at R is the same as

that immediately preceding execution of s, then = downwardly reaches s from R along p.

shared A

if - .-
then
do i=1 to N by 2
Ryg : A[i]l = -
enddo
endif
if - .-
then
do i=1 to N by 3
Ry -ooo= Ai]
enddo
endif

Figure 3: Some elements of array A that are read at Ry might be written earlier at Ryg.

The term upwardly reaching can be defined analogously. Let p be an execution path from s to the end of
P, excluding s. If there exists a memory reference R along p that accesses a variable z, and the value of x
immediately after executing s is the same as that immediately preceding the access at R, then & upwardly reaches
s.

The concept of downwardly reaching varies subtly from the classical definition of reaching [ASU86], where data
reach from definitions (writes) only. For our purposes, data can reach from either a read or write reference, since
either can produce a locally available data copy. Furthermore, our goal is to optimize accesses to shared data,
so only references to shared data are considered during the computation of reaching data. We also extend the
concept of reaching so that data can reach both downward (forward) and upward (backward).

Reaching data can be further partitioned into conditionally or unconditionally reaching data. If there exists at
least one path p along which z might be referenced, then = conditionally reaches s. If x is definitely referenced
along every path from the start (end) of P to s, then the stronger statement can be made that z unconditionally
downwardly (upwardly) reaches s. For example, in Figure 3, A[1:N:2] are accessed along some path from the
beginning of the program to R;. Therefore, A[1:N:2] conditionally downwardly reach reference R; from Ry.
Meanwhile, in Figure 4, B[1:N:2] are written along all execution paths from Ry to the end of the program.

Therefore, B[1:N:2] unconditionally upwardly reach reference Ry from the pair of references R; and Rs.

3.1.2 Redundancies in Sequential Programs

Intuitively, a static reference R is redundant if an access to the shared copy at this point is at least partially
unnecessary or could be made so by reusing locally available data. Either an earlier read or write can cause a
read reference to be redundant. In contrast, only a later write can induce another write reference to be redundant.
In other words, read redundancies can arise from either flow or input dependences, but write redundancies can
only arise from output dependencies.

Suppose R references at least one element = of array X. A read reference R is

o fully redundant if every x referenced at R unconditionally downwardly reaches R from one or more read

shared B

do i=1 to N by 2

Rg - B[i] = ---
enddo
if - .-
then
do i=1 to N
Ry : B[i] = ---
enddo
else
do i=1 to N by 2
Ry : B[i] = ---
enddo
endif

Figure 4: Every element of array B written at Ry is also written at both R; and Rs.

references, write references, or a combination thereof;

o partially redundant® if there exists an x referenced at R that unconditionally downwardly reaches R from

one or more read references, write references, or a combination thereof; or

o conditionally redundant if there exists an z referenced at R that conditionally downwardly reaches R from

some read or write reference.
A write reference R 1s

o fully redundant if every z referenced at R unconditionally upwardly reaches R from one or more write

references;

o partially redundant if there exists an = referenced at R that unconditionally upwardly reaches R from one

or more write references; or

e conditionally redundant if there exists an z referenced at R that conditionally upwardly reaches R from

some write reference.

In the case of both read and write redundancies, the first category of redundancies, namely full redundancies, is
retained from classical redundancy detection algorithms. The second category, namely partial redundancies, arises
only when dealing with array region accesses. The third includes all potential redundancies. By definition, every
full redundancy is also partially redundant; every partial redundancy is also conditionally redundant. Full and
partial redundancies are collectively referred to as unconditional redundancies, because at least one datum must
be redundant. Any references involving unresolvable aliases should not be considered as potential redundancies
or redundancy inducers.

For example, in Figure 3, A[1:N:3] are written at R;. A subset of these data, namely A[1:N:6], conditionally

downwardly reaches R; from Ry. Therefore, R; is conditionally read redundant. In Figure 4, recall that array

“The term partially redundant is used differently here than in Morel and Renvoise [MR79].

elements B[1:N:2] unconditionally upwardly reach Ry from the pair of references R; and Ry, because B[1:N:2]

are written along both branches of the if statement. Therefore, Rq is fully (unconditionally) write redundant.

3.1.3 Redundancy Inducers in Sequential Programs

As mentioned earlier, references that cause other references to become redundant are known as redundancy
inducers. Recall that read redundancies are the sinks of flow and input dependences. Therefore, read redundancy
inducers are the sources of flow and input dependences. Meanwhile, write redundancies are the sources of output
dependences, so write redundancy inducers are the sinks of output dependences. Consequently, a read redundancy
can be induced by earlier reads and/or writes, but a write redundancy can only be induced by later writes.

More formally, a read or write reference R

e fully induces read redundancies if every z referenced at R unconditionally upwardly reaches R from one or

more read references;

e partially induces read redundancies if there exists an x referenced at R that unconditionally upwardly

reaches R from one or more read references; or

e conditionally induces read redundancies if there exists an z referenced at R that conditionally upwardly

reaches R from some read reference.
A write reference R

e fully induces write redundancies if every z referenced at R unconditionally downwardly reaches R from one

or more write references;

o partially induces write redundancies if there exists an z referenced at R that unconditionally downwardly

reaches R from one or more write references; or

e conditionally induces write redundancies if there exists an z referenced at R that conditionally downwardly

reaches R from some write reference.

By definition, every fully redundancy-inducing reference is also partially redundancy-inducing; every partially
redundancy-inducing reference is also conditionally redundancy-inducing. Fully and partially redundancy-
inducing references are jointly classified as unconditionally redundancy-inducing references.

Examples of redundancy inducers can also be seen in Figures 3 and 4. In Figure 3, the data written at R,
conditionally upwardly reach Ry, so Ry conditionally induces a read redundancy. In Figure 4, the data written
at Ko unconditionally downwardly reach R; and Rs. Only some of the data written at R; are written at R, so
R, partially (unconditionally) induces a write redundancy at Ry. In contrast, all data written at Ry are written

at Rg, so Ry fully (unconditionally) induces a write redundancy at Ryg.

3.2 Redundancies in Parallel Programs

In the context of a parallel program, when is a reference R redundant? Suppose that R is a read reference and
that the reference to R by processor p (more precisely, the instance of R executed by processor p) causes a read

of array element A[i]. Then R is redundant if and only if

shared A

doall i=1 to N
Ry A[i] = -
Ry <= Afi]

enddoall

doall i=1 to N

Ry: <= Afi-1]
enddoall

Rsz: --- = A[N]
doall i=1 to N

Ry: - = A[i]

Rs: Afi] = ---
enddoall

Figure 5: Ry induces a read redundancy at R;. Ry and R; induce a read redundancy at R4. Ry and Rs prevent
Rs5 from inducing a write redundancy at Rj.

e there is an earlier read or write reference to A[i] by processor p and
e there is no intervening write of A[i] by processor p’ # p in between the earlier reference and R.

These conditions jointly ensure that A[i] is read or written earlier by processor p and that the shared copy of
A[i] is not modified by another processor in between the potential save and reuse points.

If R is redundant, then there exists at least one reference (possibly more) that induces the redundancy. Let R’
be a read or write reference to A[i] by processor p, and assume that R’ is executed before R. Suppose that there
is no intervening write by any processor (including p) between R’ and R. Then the same value is referenced at
R’ and R, so R’ induces a redundancy at R.

Suppose instead that R is a write reference. R is redundant if and only if
e there is a later write reference to A[i] by any processor and
e there is no intervening read of A[i] by processor p’ # p in between R and the later write of A[i].

These conditions jointly ensure that the value of A[i] that processor p writes will never be read by any another
processor.

At least one reference must induce the write redundancy at R. Let R’ be a write of A[i] by any processor
that is executed after R. Suppose that there is no intervening write of A[i] between references R and R’ by any
processor. Then the value of A[i] that is written at R is overwritten at R’, so R’ induces the redundancy.

As an example, consider Figures 5 and 6. Assume that static inter-epoch scheduling is used, as described in
Section 2.1. (A discussion of dynamic inter-epoch scheduling is postponed until Section 5.5.) Let p = p;. In
Figure 5, the value of A written at Ry by processor p is read by p at R; and again at R4. Therefore, reference
Rg induces a redundancy at R;. Both Ry and R; induce the read redundancy at R4. The value written at R

by processor p is also read at Rs and Rz by processors other than p. Therefore, Ry is not write redundant. In

10

shared B

doall i=1 to N
Ryg: B[i]l] = ---
Ry ... = B[i]

enddoall

doall i=1 to N

Ry B[i-1]=---
enddoall
Rs: B[N]=---
doall i=1 to N
Ry: --- = B[i]
Rs: B[i] = ---
enddoall

Figure 6: Ry induces a read redundancy at R;. Ry and R3 prevent Ry and R; from inducing a read redundancy
at R4. Ry and R3 induce a write redundancy at Ry. R4 prevents Rs from inducing write redundancies at R» and

Rs.

Figure 6, B[i] is written at Rp, read at R; and then read at Rs. However, in this case, the value of B written
at Rg by processor p is overwritten at Rs and Rz before being read by any processors other than p. Therefore,
Ry is write redundant. R; and Rs induce this redundancy. R» and Rj3 also prevent R4 from being redundant.
Meanwhile, R4 prevents Rs from inducing write redundancies at Ry and Rs.

Note that, when dealing with parallel programs, the case for write redundancies is not symmetric to the case
for read redundancies. Consider the case of write redundancies. The presence of an intervening read can affect
whether a particular write reference is redundant, but the presence of an intervening write cannot. Meanwhile,
the presence of an intervening write can affect the set of writes that induce a particular write redundancy. In
contrast, in the case of read redundancies, the presence of an intervening write can prevent a read redundancy,
whereas the presence of an intervening read has no effect. Another difference between the case of write and read
redundancies is that a redundant write can be induced by a write of similar data by any processor. A redundant
read can only be induced by a read of similar data by the same processor

A reference R’ can only induce another reference R to be redundant if the data referenced at R’ reaches R. To
extend the definition of reaching to parallel programs, the definition must be constrained so that data cannot reach
across redundancy-preventing intervening references. In the case of write redundancy detection, the definition
must allow data referenced by one processor to reach a reference instance executed by another processor. Unlike
the sequential case, the criteria for a datum to reach a read reference now differs from that for reaching a write

reference.

11

4 Detecting Redundancies and Their Inducers

Recall that redundancy identification proceeds in two steps. First, flow analysis is used to compute the data
sets that reach each basic block and the references from which they reach. Then, these sets are used to identify
redundancies and their inducers. Section 4.1 discusses data set representation. Section 4.2 describes the basic
algorithm for detecting read redundancies in sequential programs. Section 4.3 extends this algorithm to handle
parallel programs, and Section 4.4 addresses complexity issues. Adaptations for identifying write redundancies

and redundancy inducers are postponed until Section 5.

4.1 Data Structures and Operations

Although the sets computed during flow analysis are described as data sets, they are implemented as sets of data

descriptors. A data descriptor D contains the following fields:

VAR(D) — the variable name,
SHAPE(D) — alist of summary shape(s) describing the region(s) of VAR(D) being referenced, and
REF(D) — a list of reference sets. Each reference set in REF(D) corresponds to exactly one

summary shape in SHAPE(D).

There are four binary operations on data descriptors or sets thereof: union (|_J), intersection ([7)), difference
(—), and reference difference (—R). The first three are intuitive. The fourth operator —=r eliminates references
associated with a particular data set without changing the data set itself. Therefore, —nr is similar to —, with
one exception: — modifies both the SHAPE and the REF fields of the left-hand operand, while —=r modifies
only the REF field of the left-hand operand. An example of applying these operators is presented in Figure 7.

As will be seen later, the sets used exclusively as intermediaries to generate array kill information during
flow analysis do not need reference information. Therefore, in the data descriptors of these sets, only VAR
and SHAPE fields are needed. Using only these two fields saves space and simplifies the resulting flow analysis
equations.

The method for representing the summary shapes must meet the following requirements. First, the repre-
sentation must maintain information about the external shape (boundary) and internal shape (contiguity) of
the represented regions. Second, it must be possible to compute the intersection, union, and difference of two
summary shapes. Third, it must be possible to estimate the results of the above operations in either direction.
Last, the shape must be represented as a function of the indices of enclosing loops, so that the reference instance
corresponding to a particular iteration can be represented.

It is straightforward to adapt existing shape representation methods [Bal90, HK91, Sch89] and exact depen-
dence analysis techniques such as [HHL90, Pug92] to meet these requirements. Hence, one of the strengths of
the algorithm that will be presented in Section 4.2 is that it is not dependent on any particular method for
representing array regions and computing set operations. Depending on the complexity of the selected methods

and number of summary shapes used to represent each region, accuracy-space-time trade-offs can be made.

4.2 Algorithm for Detecting Redundancies in Sequential Programs

This section presents our flow-analysis algorithm for detecting unconditional redundancies in programs targeted

for uniprocessors. Section 4.3 covers extensions to handle parallel programs. Although iterative flow-analysis

12

Suppose that A[1:10] are referenced at Ry and A[5:15] are referenced at R;. Let Dy and D; be data
descriptors that describe the regions being referenced at Ry and R, respectively. Then,
o VAR(Dg) = A, SHAPE(Dg) = {{1:10}}, and REF(Dy) = {{Ro}}.

A

Dg: 1 2 3 45 6 7 8 9 10 11 12 13 14 15
| Ro |

o VAR(D:) = &, SHAPE(Dy) = {{5: 15}}, and REF(Dy) = {{R1}}.

A

Dq: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| R1 |

and the result of
D= Do op D1

1s as follows:

e Ifop = J, then VAR(D) = A, SHAPE(D) = {{1:4},{5:10},{11:15}} and
REF(D) = {{Ro},{Ro, Ra}, {R1}}.

A
HEEEEEEEEEEEEEN
D: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| =—Ro—=| Ro,R1 | R1 |

o If op =), then VAR(D) = &, SHAPE(D) = {{5:10}} and REF(D) = {{Ro, R1}}.

A

D: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| =—Rp.R1——=|

o If op= — then VAR(D) = A, SHAPE(D) = {{1 : 4}} and REF(D) = {{Ro}}.
A
BT PP PP
D: 1 23456 7 8 9 1011 12 13 14 15

|<—Ro—=|
o Ifop=— , then VAR(D) = &, SHAPE(D) = {{1 : 4},{5: 10}} and REF(D) = {{Ro}, ¢}.

A

D: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|=—Rp—=|=——@0———=|

Figure 7: Example of applying set operators.

13

UREF(b): Set of data that unconditionally downwardly reach the end of block b from references
within b, and the references from which these data reach.

UIN(b): Set of data that unconditionally downwardly reach the start of block b, and the references
from which these data reach.

UOUT(b): Set of data that unconditionally downwardly reach the end of block b, and the references
from which these data reach.

CREF*¥(b): Set of data that conditionally downwardly reach the end of block b from write references
within b.

CIN¥(b): Set of data that conditionally downwardly reach the start of block b from write references.

COUT™(b): Set of data that conditionally downwardly reach the end of block b from write references.

Table I: Sets of downwardly reaching data (and references, where appropriate) that are computed during forward
flow analysis.

techniques work well when propagating information at a name-only level, interval analysis is needed to preserve
subscript information when propagating reaching information across loops. Therefore, we use a variant of in-
terval analysis that was devised by Gross and Steenkiste [GS90] specifically for combining flow and dependence
analyses. Forward flow analysis is used to compute downwardly reaching references; backward flow analysis is
used to compute upwardly reaching ones. The reasons for restricting ourselves to unconditional redundancies are
twofold: first, the overhead for eliminating conditional redundancies is likely to outweigh the benefits, especially
in the parallel case where non-local communication might be needed to detect whether a redundancy actually
exists. Second, restricting ourselves to detecting unconditional redundancies substantially simplifies the detection
algorithm.

During forward flow analysis, the sets from Table I are computed for each basic block b. In contrast to classical
flow analysis, both unconditional sets and their conditional counterparts are computed for each basic block.
Although ultimately we are interested in information regarding unconditionally reaching data only, computing
the write subsets of the conditionally reaching sets provides array kill information that is needed to conservatively
compute the unconditionally reaching sets. A write subset, denoted by the superscript w, contains the subset of
data from the original set that reach from write references. During forward flow analysis, all the write subsets are
used exclusively to generate kill information. Hence, to conserve space, these write subsets store data information
only (i.e., VAR and SHAPE) as discussed in Section 4.1; reference information (i.e., REF) is unnecessary. After
flow analysis, UIN(b) includes the set of data that unconditionally downwardly reach the beginning of block &
and the set of references from which these data reach. From UIN(b), the set of redundancies in block b can be
computed.

As an example of computing these sets for straight-line code, consider Figure 8. UREF(bg) contains the data
that reach the end of block by from references within bg. Therefore, UREF(by) contains two data descriptors:
the first is for the datum B[i] and the reference list consisting of R; and the second is for the datum A[i]

and the reference list consisting of Rs. Reference Ry is excluded from the reference list associated with A[i]

14

(bo) = ¢
R - = Ali] UREF(bo) = { {B[i], {f1}}, {A[i], {R2}} }
0 o UOUT(bo) = { {B[i],{R:}}, {A[i],{R2}} }
e R : Ai] =... CREF“(by) = {A[i]}
COUTY(bo) = { A&[i]}
Y
_ _ UIN(b1) = { {B[i],{R1}}, {A[i], {R2}} }
R3. = Ali] UREF(b;) = { {&[i], L} }
: = b UOUT(by) = { {B[i],{R:}}, {A[i], L} }
R4'A[fl 1 CIN“(by) = {A[i]}
CREF“(b;) = {A[+]}
| COUT“(by) = { &[]}

Figure 8: Sets of downwardly reaching data (and references, where appropriate) computed for blocks by and by
under the assumption that nothing reaches the start of block b.

because the value of A[i] read at Ry differs from that at the end of block by. CREF"(bg) includes A[i], the
only datum written during block by. Assuming that nothing reaches the start of block bg, UIN(bg) is empty, so
UOUT(bo) = UREF(bg). Based on this same assumption, CIN* (bg) is also empty, so COUT® (bg) = CREF” (bg).

UIN(b1) contains the set of data and references that reach the start of block b;. In this case, this set is identical
to the one that reaches the end of block by, so UIN(b1) = UOUT(bg). Similarly, CIN* (1) = COUT" (b).

If f is unknown at compile time, the compiler cannot determine the precise element of A that is written at
reference R4. To be safe, the compiler must assume that any element of A could be written at this point, while
none is guaranteed to be. Consequently, CREF“(b1) and, hence, COUT"(b;) include every element of A, denoted
by the range *. Moreover, because the compiler cannot determine the precise reference from which elements of 4
reach the end of block by, the REF fields of UREF(b3) and UOUT(b3) contain only the dummy reference L. The
issue of estimation is addressed more thoroughly in Section 4.2.3.

From the flow sets, the set of redundancies can be determined. For example, because UIN(b;) includes a data
descriptor representing the datum A[i] and the reference R, A[i] reaches reference Rg from reference Ry. Thus,
the read of A[i] at Rj is fully redundant.

While the flow sets can be computed in a single step for the simple two-block example above, interval analysis
is needed to handle the general case. In a structured program, two types of intervals arise: those that correspond
to loops, and those for which there are no backward branches to blocks within the interval [RP86, GS90]. These
are termed loop intervals and non-loop intervals, respectively. By definition [ASU86, RP86], each interval has one
entry block. For structured programs, the program flow graph can be constructed such that each loop interval has
not only one entry block but one exit block as well. For example, see Figure 9, where the loop interval consists
of basic blocks b1, b2, and bs. The significance of this property of loop intervals will become apparent later on.

The first phase of flow analysis begins with the innermost loops and proceeds to the outermost. When a loop

15

do i=1 to N b, (entry block)
if Afi] < O
then A[i] = 0
endif :)
end b2 g loop interval

Figure 9: Control flow graph (right) for loop (left). The loop interval, composed of blocks by, bz, and b4, has a
single entry block by and a single exit block b4.

is processed, interval analysis is performed on the loop. Once the loop is reduced to a single interval, the loop
is replaced by a summary block. Once the program is reduced to a single summary block, the second phase of
the analysis begins, and summary blocks are replaced by the intervals they represent in the reverse order of that
in which the summary blocks were created. As each is replaced, the set information is propagated through the

blocks of the interval.

4.2.1 First Phase

During the first phase of analysis, the sets UREF(b) and CREF* () are computed directly for each block b. The
sets UIN(entry_blk) and CIN® (entry-blk) are assumed to be empty. For a non-entry block b, UIN(b) includes only

data that reach the end of all predecessor blocks, and the references associated with these data. More formally,

UIN(b) = mbjEpred(b) UOUT(bJ)a

where pred(b) is the set of predecessor blocks for 5. Meanwhile, CIN* (b) includes the data that reach the end of

any predecessor block:
CIN®(b) = Ubjepred(b) COUT™ (b;).

The computation of sets UOUT(b) and COUT™ (b) is independent of whether block b is an entry block. When

16

computing UOUT(b), block b’s conditionally defined write subset CREF”(b) is used to filter out read and write
references from which data reach the start of block b but not the end, due to writes within & itself. For example,
recall Figure 8, where the write at reference R4 in block by causes reference Ry to be filtered out of the reference
list associated with A[i].

After this filtering step, we add to block b the data referenced within the block itself and the references within
this block from which these data reach. More formally,

UOUT(h) = (UIN(b)_RCREF“’(b)) LJ UREF(b).

In the above equation, note that CREF“(b) is used only to filter out references, not data, since data that
no longer reach from outside now reach from writes within block 6. COUT™(b) is computed similarly, with one

exception: since no reference information is stored, there are no references to filter out. Therefore,
COUT¥(b) = CIN*(b)[_J CREF” (b).

After set information is propagated through all the blocks of an interval I, the entire interval is replaced by
a summary block. Assume that I is a non-loop interval and that b; € exit(I), where exit(I) is the set of exit
blocks for interval I. Because nothing is assumed to reach the entry block of an interval during the first phase,
UOUT(b;) includes data that reach along all paths from the start of the entry block of interval I to the end of the
block b;, as well as the references from which these data reach. UREF(summary_blk) must include the data that
unconditionally reach the end of interval I from references within I as well as the references themselves. Observe
that this latter set is simply the intersection of those sets that unconditionally reach the end of each exit block
b;:

UREF(summary_blk) = mbjEem.t(I) UOUT(b;).

Meanwhile, COUT"(b;) includes data that reach along some path from the start of the entry block of interval
I to end of the block b;. To ensure that CREF" (summary_blk) includes data that conditionally reach the end of

interval I from within 7, data that reach the end of any exit block b; are included:
CREFY (summary_blk) = UbEem.t(I) COUT™ (b;).

Loop intervals are summarized using a separate set of flow equations. Recall that a loop interval has one exit
block. Assume that the loop iterates from 1 to lmaz and that the subscript [is used to denote a set corresponding
to iteration [. At this stage, UOUT;(exit_blk) includes data that unconditionally reach the end of the /th loop
iteration from reference instances executed during that iteration and the references from which these data reach.
COUT/ (exit_blk) includes data that conditionally reach the end of the Ith loop iteration from reference instances
executed during that iteration.

A datum reaches the end of a loop from a reference R contained within the loop interval if and only if the
following two conditions are met. First, there must exist an iteration ! during which the datum is referenced
at R. Second, the datum must not be overwritten later during iteration [nor during any successive iteration.

UREF(summary_blk) contains all data unconditionally referenced during execution of the loop and the references

17

from which these data reach:
UREF(summary_blk) = H-Jlglglmax [UOUT;(emit_blk)—R&Jkl,gm(w COUTY}/ (exit_blk)| .
Meanwhile, CREF* (summary_blk) contains all data conditionally referenced within the loop:
CREF” (summary_blk) = Wi<i<imar COUTY (exit_blk).

The union operators in the above equations are inscribed with a plus sign (+) to indicate that these unions
W, cics h(7) are implemented by translation [Bal90], whereby the range of the union iteration space #mip :
tmag 18 substituted for the union iteration variable ¢ in function h. Therefore, the time to perform such an

operation is independent of the size of the inscribed union’s iteration space.

4.2.2 Second Phase

After the first phase of flow analysis is finished, the computation of sets UREF(b) and CREF*(b) is complete.
However, the computation of the remaining sets is not complete until the end of the second phase. During this
second phase, summary blocks are replaced by the intervals they represent by propagating the sets that reach the
start of each summary block through the blocks of the associated interval. For a non-loop interval, the sets that

reach its entry block are the same as those that reach the summary block itself:

UIN(entry_blk) = UIN(summary_blk)
CIN* (entry_blk) = CINY (summary_blk).

For a loop interval, the data that reach the entry block during a given iteration [are the union of those that
reach the start of the loop and those that reach the end of any preceding iteration. Since reference information is
stored with unconditionally reaching data, the computation of UIN;(entry_blk) further requires the filtering out
of every reference R from which data no longer unconditionally reach due to an intervening write of similar data

between the earlier instance of R and the start of iteration [.
UIN (entry_blk) = [UIN(summary_blk)—RL-_}-Jl <1< COUTE: (emit_blk)] U
|Hicrr (VOUTu(eait blk) — ko o, COUTY(exit bik)) |
Since no reference information is stored with CIN}’ (entry_blk), no filtering is necessary:
CIN (entry_blk) = CIN® (summary_blk)(_| [&Jlgl’d COUT;‘,’(mt_blk)] .

Once reaching information is propagated to the entry block of an interval, it can be propagated through the
blocks composing the interval using the same flow equations as in the first phase.

Once the second phase is finished, UIN(b) contains the data that unconditionally downwardly reach the begin-
ning of block b and the references, when known, from which these data reach. UIN(b) can now be used to compute
the two categories of unconditionally redundant reads. Let data descriptor D describe the region of X referenced

at R in block b, and let D, represent the region of X included in UIN(b). If R is a read reference, then
e Ris fully redundant if and only if SHAPE(D) C SHAPE(D,), whereas

e Ris partially redundant if and only if SHAPE (D) SHAPE(Dy) # ¢.

18

4.2.3 Guidelines for Estimation

Lack of information, space limitations, or time limitations may make it impossible to compute the above sets
with complete accuracy at compile time. For correctness, we must underestimate reaching information when
necessary. Reaching information includes the sets UIN, UOUT, and UREF. Conversely, we must overestimate
kill sets, namely CIN*, CREF", and COUT®Y, when necessary. Because there are trivial defaults (everything or

nothing), clearly we can always do this.

4.3 Algorithm Extensions for Handling Parallel Programs

Recall from Section 3.2 that the definition of reaching for sequential programs must be extended to handle parallel
programs, but the definition of redundancy remains unchanged. Therefore, we must make two changes to adapt
the algorithm from Section 4.2 to detect read redundancies in parallel programs. First, we must parameterize the
computed sets by the processor id p, similar to the parameterization by loop indices discussed earlier. Second, we
must prevent data from reaching across an epoch boundary on processor p if the data might have been modified
by processor p’ # p during the epoch terminating at this boundary. After flow analysis, the identification of
redundancies proceeds as before.

To demonstrate the need for these two changes, consider the situation for processor p = p;. (Recall the
scheduling assumptions that iteration i is executed by processor p; and that pseq = p1.) In Figures 5 and 6, there
are two parallel epochs (corresponding to the first two parallel loops), followed by a sequential epoch, and then
another parallel epoch (corresponding the third parallel loop).

In Figure 5, A[i] is added to processor p’s reaching set during the first epoch. Because A[1i] is not modified
by any other processor p’ # p during any of the first three epochs, the value referenced in the first epoch is still
current in the last epoch. Therefore, A[i] reaches R4 from Ry across all three epoch boundaries, so the read of
A[i] at R4 by processor p is redundant.

In Figure 6, B[i] is added to processor p’s reaching set during the first epoch. Because B[i] is (trivially)
not modified by any other processor p’ # p during the first epoch, B[i] reaches across the epoch boundary to
the start of the second epoch. However, unlike the situation in Figure 5, B[i] is written by a processor p’ # p
during either the second or third epoch. Therefore, processor p’s copy is stale at the of the epoch where this
write occurs, so B[1] must be removed from processor p’s reaching set before crossing the boundary into the next

epoch. Because B[i] does not reach R4, the read of B[i] at R4 by processor p is not redundant.

4.3.1 Processing Boundary Blocks

The representation of a doall loop in the control flow graph for a program P is similar to the representation for
non-doall loops, except that there is no backward edge emanating from the end of the loop back to the beginning.
Each doall statement and enddoall statement corresponds to a basic block in P, collectively referred to as boundary
blocks since each represents a boundary between two epochs. (If two doall loops are always executed in succession,
then the boundary blocks for representing the enddoall statment of the first doall loop and the one for representing
the doall statement of the next doall loop can be trivially merged into one boundary block for analysis.)

The computation of UIN,(boundary blk) and CIN,/(boundary-blk) is the same as for any other block type.
UOUT,(boundary-blk) and COUT, (boundary blk) contain data that reach the start of the boundary block on

19

processor p and are not written by processor p’, p’ # p, during the epoch terminating at this boundary block.
More formally, let KILL_INZ’/(boundary_blk) contain the data that are written by processor p’ during the epoch
terminating at this boundary block. Then UOUT,(boundary blk) and COUT, (boundary blk) are computed as

follows:

UOUT, (boundary_blk) = UIN, (boundary_blk) _H'Jp’;sp KILL-IN (boundary blk)
COUT;U (boundary-blk) = CINZ) (boundary-blk) _L‘Hp’;&p KILL_INZ)/(baundary_blk).

The above two equations can be simplified further when the boundary block corresponds to a doall statement.
Because the epoch that ends at this boundary block must be a sequential epoch, at most one processor (processor
Pseq) could perform any writes during the terminating epoch. Therefore, whenever the boundary block represents

a doall statement,

KILL-IN, _ (boundary-blk) if p# pseq
tl—Jp,#p KILL-IN (boundary . blk) = ¢ ¢ if p = peey.

As an example of processing boundary blocks, consider the code in Figure 6 which consists of four epochs.
There are three epoch boundaries, after the first, second and third epochs, which are numbered 1, 2 and 3,
respectively. Assume that p = p; and recall that p,., = p1. For each boundary block, the sets UIN, UOUT and
KILL_IN® are shown below.

UIN, (boundary_blk 1) = { {B[i], {Ro, R1}} }
W, z, KILLIN: (boundary blk 1)={ B[1:i—1], Bli+1:1] }
UOUT, (boundary_blk 1) = { {B[i],{Ro, R1}} }

UIN, (boundary_blk 2) = { {B[i],{Ro, R1}}, {B[1i—1],{R2}}}
L—|_—Jp,¢p KILL_INZ)/(baundary_blk 2)={B[0:1—2], B[i:N—1] }

UOUT, (boundary_blk 2) { {4l — 1], {2}} } itp#py
g { {B[N], {Ro, R1}}, {BIN —1],{R2}}} ifp=pn
{ {B[0], {R2}}, {B[N],{Rs}} } ifp=p
UIN, (boundary blk 3)= { { {B[i —1],{R2}} } if p#py and p % py
{ {BIN], {Ro, R1}}, {BIN — 1], {R2}} } ifp=pn
o) ifp=p
., KILL_INY (boundary_blk 3 =
H-Jp #p p(Yy { BN]} ifp#p
UOUT, (boundary_blk 3) = { { {B[0], {R2}}, {BIN]. {Ra}} } ifp=ps
g { {B[i — 1], {R=}} } if p# p

Therefore, UIN,(Rs) = UOUT,(boundary_blk 3), and UIN,(Rs)) UREF,(Rs) = ¢, so reference Ry, is not

redundant.

20

KILL_REF‘Z’ (b): Set of data that might be written by processor p within block b during epoch instance

Cexit-

KILL_INZ’ (b): Set of data that might be written by processor p before the start of block & during
epoch instance e.pnsry.

KILL_OUT;U(I)): Set of data that might be written by processor p before the end of block b during
epoch instance €cg;z.

PREV_REF(b): Set of data that might be written by processor p within block b prior to epoch
mmstance e.q;t.

PREV_INZ) (b): Set of data that might be written by processor p prior to epoch instance ecpiry.

PREV_OUT;U (b): Set of data that might be written by processor p prior to epoch instance eeg;t.

Table II: For parallel programs, in addition to the reaching sets from Table I, the above reaching sets must be
computed for each block b. ecpnyry is the epoch instance that is current on entrance to b, and e.q;; is the epoch
instance that is current on exit to b. (Unless b is a boundary block or a block summarizing an interval containing
a boundary block, €cntry = €czit.)

4.3.2 Computing KILL_INY, KILL.OUT", and KILL_REF"

Intuitively, KILL_INZ) (b) tracks data associated with writes by processor p that might kill reaching data on processor
p’ # p. To compute KILL_INZ) (b) correctly for boundary blocks, it must be computed for every other block as well.
Moreover, the corresponding KILL.OUT(b) and KILL_REF; (b) from Table II are also needed. Since KILL_IN,J (b),
KILL.OUT, (), and KILL_REF;(b) are used exclusively to elicit kill information, it is only necessary to keep track
of data, not references.

More formally, let €.,sry be the epoch instance that is current on entrance to block b. Let e..;; be the epoch
instance that is current on exit from block b. Note that epoch instance €.,y is the same epoch instance that is
current on exit to each of block b’s predecessors. Moreover, unless b is a boundary block or a block summarizing
an interval containing a boundary block, €cniry = €ezit- KILL_INZ’ (b) contains data that might be written by
processor p before the start of block & during epoch instance ecpiry, KILL_OUTZ) (b) contains data that might be
written by processor p before the end of block b during epoch instance ez, and KILL_REFZ) (b) contains data
that might be written by processor p within block b during e.z¢.

For example, consider the computation of KILL_REFZ’ (summary_blk) for the intervals that represent the outer
loops in Figures 10 and 11. In Figure 10, every path through the j loop must cross a boundary block. Therefore,
epoch instance e.psry ends at the doall statement executed during iteration j = 1. Epoch instance e..i; starts
after the execution of the enddoall statement during iteration j = N. The only write that occurs during block
summary_blk during epoch instance ez is the write of B[j] at R by processor psey during iteration j = N.
Therefore,

{BIN] } ifp=pscy

@ otherwise.

KILL_REF, (summary_blk) = {

21

shared A,B

do j=1 to N
doall i=1 to N
Ryg : Ali] = ---
enddoall
Ry B[j] = ---
enddo

Figure 10: The interval representing the j loop consists of more than one epoch. All paths through the j loop
must cross boundary blocks.

shared C,D
do j=1 to N
if - .-
then
doall i=1 to N
Ryg : cfil = ---
enddoall
endif
Ry D[j] = ---
enddo

Figure 11: Even though the interval representing the j loop consists of more than one epoch, the j loop might
still be executed in entirety without crossing a single boundary block.

In Figure 11, there is a path through the j loop that does not cross a boundary block. Therefore, it is possible
that €cniry = €eriz. Consequently, KILL_REF;U (summary_blk) contains all the data that might be written during
epoch instance e¢g;t.
if p=pseq
otherwise.

KILL_REFZ) (summary_blk) = { ({Z)D[i :N] }

The computation of these three KILL sets proceeds as follows. During the first phase, the KILL_INZ’ (entry_blk)
is initialized to the empty set. For the remaining blocks, both basic and summary blocks, the data that might be
written by processor p during this epoch prior to the start of block b are the union of those that might be written

during this epoch prior to the end of any of block b’s predecessors:

KILLINY () = U, ¢preacny KILL-OUTY (b)),

22

The above equation is also used during the second phase except when unsummarizing intervals.
When unsummarizing a non-loop interval, the epoch that is current on entrance to the interval’s entry block

is the same as that that is current on entry to its summary block:
KILL_IN;“,U (entry-blk) = KILL_IN;: (summary_blk).

When unsummarizing loop intervals, there are two cases. First consider the case where every path through the
loop body crosses an epoch boundary, as in the loop nest in Figure 10. In this case, the epoch that is current
on entrance to iteration [> 1 cannot be the one that is current on entrance to iteration [— 1. Therefore,
KILL_INZ)J(entry_blk) only contains data referenced during iteration { — 1 that might be written during the epoch

instance that is current on exit to iteration [— 1:

KILL_IN;fy,(entry_blk) = KILL_OUT;f)’l_l(e:vit_blk).
On the first iteration (i.e., = 1), trivially,

KILLLIN, ; (entry blk) = KILL_IN} (summary_blk).

In the second case, at least one path does not cross an epoch boundary, as in the loop nest in Figure 11. Therefore,
KILL_INZ’J(entry_blk) must also include all data that might have been written during the same epoch instance

during earlier iterations.
KILL_IN, ,(entry blk) = [t}jlg,d KILL.OUT] (exit_blk')] (J KILL_IN (summary_blk).

Consider the computation of KILL_REFZ) (b). If b is a basic block, KILL_REFZ) (b) contains all data conditionally
written during the block:
KILL_REF} (b) = CREF,'(b).

Otherwise, b is a summary block for an interval 7. If I is a non-loop interval, then KILL_REF;U (b) contains all

data written along any path during the epoch instance that is current on exit to b:
KILL_REF;”(b) = UbjE€xit(I) KILL_OUT‘Z’(!)J»).

If I is a loop interval, then the computation of KILL_REFZ’ (b) depends on whether every path through I
crosses an epoch boundary. If every path crosses an epoch boundary, KILL_REF;“,U (b) cannot include any data from

iterations other than the last iteration, so

KILL_REFY (b) = KILL.OUTY,. .. (ezit_blk).

Imax

If some path does not cross an epoch boundary, the epoch that is current on exit to b might be the same epoch

that is current on entrance to b. Therefore, KILL_REFZ) (b) can include data written during any iteration as long

23

as the epoch during which they are written is current at the end of that iteration. More formally,
KILL-REF; (b) = H-Jlglglmax KILL.OUT} (exit_blk).

As with other REF sets, the computation of this set is complete after the first phase of flow analysis.
Consider the computation of KILL_OUTZ) (b), which includes all data that might be written during epoch ecgis.
If b is a basic block other than a boundary block, then

KILL-OUTY (b) = KILL_IN® ()| KILL_REF® (b).

If b is a boundary block, then
KILL.OUT, (b) = ¢.

Otherwise, b is a summary block and the computation of KILL_OUT‘Z’ (b) depends on whether every path through
b crosses an epoch boundary. If every path through b crosses an epoch boundary, €.nsry cannot be the same as

€ewit- LTherefore, KILL_OUT;U(b) only includes data written during block b during e.4;:
KILL.OUT,'(b) = KILL_REF; (b).

If some path through b does not cross an epoch boundary, then ecp¢ry might be the same as e.z;¢. In this case,

the computation of KILL.OUT,'(b) is the same as if b were a (non-boundary) basic block:
KILL-OUT, (b) = KILL-IN; (b){_J KILL_REF}] ().

4.3.3 Computing PREV_INY, PREV_OUTY, and PREV_REF"

Section 4.3.4 discusses the extensions for computing UIN, UOUT, UREF, CIN“, COUTY, and CREF” in the
presence of doall loops. However, before we can present these extensions, we need the PREV sets: PREV_INY,
PREV_OUTY, and PREV_REFY. Intuitively, these three sets provide additional kill information that is needed to
track data associated with potentially intervening write references. PREV_REFZ) (b) contains data that might be
written by processor p within block b prior to epoch instance egz;. PREV_INZ)(b) contains data that might be
written by processor p prior to epoch instance ecnry. PREV_OUTZ’ (b) contains data that might be written by
processor p prior to epoch instance e.gz;:.

As an example, consider Figures 10 and 11 again. Assume that p;., = p1. The PREV_REF sets for the intervals

represented by the outer loops are presented below. In Figure 10,

{Al], B[t:N—1]} ifp=p

PREV_REF), (summary_blk) = { . .
{ A[i] } otherwise.

In Figure 11,
{clt], plt:u—1]} ifp=p

PREV_REF (summary_blk) = { . .
{ c[i] } otherwise.

24

How is PREV_REFZ) (b) computed? If block b is not a summary block, then
PREV_REF, (b) = ¢.

The same equation holds for summary blocks representing intervals that do not contain boundary blocks, because
the entire summary block is contained within a single epoch (i.e., €cntry = €cxit)-
In the remaining case, block b summarizes an interval that contains a boundary block. If I is a non-loop

interval, then

PREV_REFY (b) = [, ¢,pr(r) PREVOUTY (5)).

If I is a loop interval, then PREV_REFZ’ (b) includes all data that might be written prior to iteration Imax, as
well as all data that might be written during iteration Imax prior to the epoch instance that is current on exit to
iteration {maz. We exclude data written during the epoch instance that is current on exit to lmaxz, because this

is the same epoch instance that is current on exit to the loop (i.e., on exit to summary block b). More formally,

PREV REFY (8) = (1), <;< e, PREVOUTE (cait b18)) 1 (W), pcimar KILL-OUTE (et blk)) .

The computation of this set is complete after the first phase of flow analysis.

Consider the computation of PREV_OUTZ) (b). If b is a basic block, then no boundary block is crossed, so
PREV_OUT (b) = PREV_IN; (b).

For a boundary block b, the set of data written during the epoch ending at this boundary block must be added
to PREV_.OUT, (b), so
PREV_OUT, (b) = PREV_IN, (b)[_J KILL_IN;'(b).

For a summary block b, the computation of PREV_OUT;U (b) depends on whether the interval represented by b
includes a boundary block. If it does not, then the computation is the same as that for a (non-boundary) basic
block:

PREV_OUT;U (b) = PREV_INZ) (b).

Otherwise, b is a summary block that includes a boundary block, so PREV_OUT;“,U (b) includes the data written

prior to b or during b, except for those written during epoch instance e.g4:

PREV_.OUTY(b) = PREV_INY(b)[_JKILL_IN®(b)
LJ PREV_REF® (b).

During the first phase, PREV_INZ) (entry_blk) is initialized to the empty set. For a block b that is not an entry
block, PREV_INZ) (b) is trivially the union of the corresponding OUT sets of block b’s predecessors:

PREVINY (5) = ;. ¢preaqr) PREVOUTY (5;).

Unlike the other OUT sets, the computation of PREV_OUTY is complete after the first phase of flow analysis.
Since PREV_IN" is used solely to compute PREV_OUTY, the computation of PREV_IN® is also complete after the

25

first phase. The final set of equations for performing forward flow analysis is presented in the Appendix.

4.3.4 Processing Summary Blocks

How is the computation of UIN, UOUT, UREF, CIN*, COUT", and CREF" affected by the presence of doall loops?
If a block is neither a boundary block nor a summary block representing an interval that contains a boundary
block, then the flow equations derived earlier in Section 4.2 can be applied directly to propagate information
across this block. These same flow equations can also be applied directly to summarize and unsummarize an
interval, as long as that interval does not include a boundary block. Since the processing of boundary blocks has
been discussed earlier in Section 4.3.1, all that remains when redundancy-preventing write references are present
is to extend the flow equations to prevent data from reaching across summary blocks representing intervals that
include boundary blocks.

More precisely, let & be a datum that reaches the start of a summary block from a reference by processor
p. Assume that the interval represented by a summary block contains at least one boundary block. Let e.psry
and e.z;; be defined as before. Clearly, there must be some path from €.nsry to €criz that crosses an epoch
boundary. Let e be an epoch instance, if any, that is completely contained within that summary block and executed
between €cniry and €.z Then x reaches across the summary block only if it can be guaranteed that there is no
write of # by a processor p’ # p during either epoch instance e.n¢ry or €. Recall that KILL_IN;U/(summary_blk)
contains all the data that might be written by processor p’ prior to the start of the summary block, and that
PREV_REF;U/(summary_blk) contains all the data that might be written by processor p’ during summary_blk

prior to eqqs;. Thus the set of data written by a processor other than p prior to e.ys; can then be computed as
REFY, = (KILL_IN;”/(summary_blk)U PREV_REF;”,(summary-blk)) .

The computation of UOUT, (summary_blk) and COUTZ) (summary_blk) must be modified to prevent any data

contained in the set
w
) o'Ep REFp,

from reaching across the summary block on processor p. Therefore,

UOUT, (summary_blk) = (UINp(summary_blk) —tI—Jp,#p REFZ),(summary_blk)
—RCREFZ) (summary_blk)) | UREF, (summary_blk)

COUT, (summary-blk) = (C|N$(Summary_blk) W,

o'tp REFZ),(summary_blk))
CREFY (summary_blk).
2

Consider the computation of UREF, (summary_blk) and CREF,(summary_blk), the sets of data that reach the
end of summary_blk. If summary_blk represents a non-loop interval, the equations from Section 4.2 can be used

directly regardless of whether the interval includes a boundary block, because the OUT sets from which these

26

REF sets are computed already account for any boundary blocks:

UREF, (summary_blk) = mbEeMt(I)UOUTp(b]')

CREF, (summary blk) = UbjEex“(I)COUTZ)(bj).

If summary_blk represents a loop interval, the flow equations from Section 4.2 must be extended to filter out
data referenced during iteration ! by processor p that might be written by processor p’ # p either during loop

iteration !’ > [, or within a later epoch instance during iteration /. Therefore,
UREF, (summary blk) = H, 1ciman [UOUprl(exit_blk) — W, sp i<t <imaz KILL.OUT (exit_blk)

— W 2y 1<t <tmar PREVOUTY (ewit blk) — |t < pmae COUTY y(ewit bik)

CREF;U(summary_blk) = L‘Ulglglmax [COUT;f’y,(ea:it_blk) _H‘Jp’;tp,lgl’dmax
— Wy 4y, 1<t/ <tmaz PREV-OUTY i (cait bik)|

KILL.OUTY, | (exit_blk)

With the exception of the handling of entry blocks associated with loop intervals during the second phase of flow
analysis, UIN,(b) and CINZ) (b) are computed as before. During the second phase, the flow equations determining
UIN, i(entry-blk) and CIN; (entryblk) from Section 4.2 must be extended to include data referenced at R by
processor p before iteration [, only if there is no possibility of an intervening write by a processor p’ # p between
R and the start of iteration {. Therefore, the sets that reach the start of the first loop iteration (i.e., [= 1) are
trivially the same as those that reach the start of the loop:

UIN, i(entry_blk) = UIN,(summary_blk)
CINy (entry_blk) CIN; (summary_blk).

For ! > 1, we compute the sets as follows:

UIN, ;(entry_blk) = (UINp(summary_blk) _L"Hp’;ép,lgl”d PREV.OUT,: (it blk)
—H, KILL-IN: (summary_blk) _L'Up’;ép,lgl”d—l KILL.OUT ;u(exit_blk)
— o<y COUTE (et bik))
U [Whcrar (VOUT, p(eait bik) — I8, » v, PREV-OUTE (it bik)

— Wy <ty KILLOUTY (it bIk) — 4y ooy COUTY i (ewit bik))|

CIN,, (entry-blk) (CINZ’(summary_blk) — W, 2y 1<) PREV.IOUTY, 1 (cait blk)
L-i-Jp,#p KILL-IN: (summary_blk) _&Jpl;fp,lsl”<l—l KILL_OUTZ)/J//(ea:it_bl]f))
U [Wrcrar (COUTE p(exit blk) —14), o ooy PREV-OUTY (et bik)

— Wy gy <t crs KILLOUTY pu(exit bik))|

4.3.5 Guidelines for Estimation

As in the case of handling sequential programs, we can safely estimate all sets when exact representation is

not possible. In general, for correctness, we should not overestimate reaching sets and we should not underes-

27

timate kill sets. Clearly, the important reaching set is UOUT. To prevent UOUT from being overestimated, we
must underestimate the kill sets KILL_LIN®, KILL.OUT", and KILL_REF®, when necessary. If we overestimate
KILL_IN®, KILLLOUT", and KILL_REF" then the kill sets PREV_IN*, PREV_OUT", and PREV_REF" will also be
overestimated, which may yield conservative but nonetheless correct results.

Note that, if we overestimate KILL_IN®, then we might end up underestimating COUT". Recall from Sec-
tion 4.2.3, that we previously assumed that COUTY would be overestimated. In actuality, overestimating COUT®
is merely an easy method for ensuring that every datum z that is contained in both the actual set COUT® and
in the estimated set UOUT,(b) is also included in the estimated set COUT", which we can accomplish even when
KILL_IN, () is overestimated.

4.4 Cost Analysis (Worst Case)

Let 8§ and V be the number of statements and variables in a given program. Assume that the upper bounds on the
nesting depth, the number of array dimensions, and the number of summary shapes permitted per data descriptor
are small constants. Then, the total number of basic and summary blocks is O(S) [RP86]. Consequently, the
number of steps is also bounded by O(8). At worst, the time to perform a single set operation is O(S V). Because
there are only a finite number of set operations per step, the time cost per step is also O(SV). Therefore, in the

worst case, the time cost for the redundancy detection algorithm is
O(4tsteps - time_per_step) = O(S?V).

The space required to store the set information associated with a single block is O(S V). Consequently, in the

worst case, the space cost for the redundancy detection algorithm is

O(4tblocks - space_per_block) = O(S*V).

5 Other Variations of Redundancy Analysis

In this section, we briefly explain how the algorithm presented in this paper can be adapted to identify write
redundancies and redundancy inducers, catch promising classes of conditional redundancies, and aggressively
compute ranges in which data can be safely prefetched. We also discuss extensions for handling other parallel

constructs and scheduling strategies.

5.1 Detecting Write Redundancies

Identifying redundant write references is roughly analogous to identifying redundant read references. The key

distinctions are enumerated below:

e Identification of redundant read references requires information on downwardly reaching data, while iden-
tification of redundant write references requires information on upwardly reaching data. Consequently,
backward flow analysis is used instead of forward flow analysis, and the roles of the IN and OUT sets are

reversed.

28

For example, see Figures 5 and 6. Note that what happens before a read determines whether that read is

redundant. In contrast, what happens after a write determines whether that write is redundant.

e Although both read and write references can induce read redundancies, only write references can induce

write redundancies. Therefore, only data reaching from write references are of interest.

As can be seen in Figures 5 and 6, only writes can induce write redundancies. Therefore reads are only of

interest when computing kill information.

e When we compute reaching data for the identification of read redundancies, a datum can only reach a
reference instance executed on the same processor as the reference instance from which it reaches. In
contrast, when we compute reaching data for identifying write redundancies, a datum can reach a reference

instance executed on a different processor.

For example, in Figure 6, consider the write of B[i] at Ry by processor p = p;. This write reference is

redundant because B[i] upwardly reaches Ry on processor p from a write at either Ry or Rz by some
processor p’ # p.

Therefore, the equations for computing the sets of data that unconditionally reach across boundary blocks

must reflect the fact that data can now reach across boundary blocks from other processors as well.

For specific details regarding algorithm extensions, see Granston [Gra92].

5.2 Identifying Redundancy Inducers

Earlier in this paper, an algorithm was presented for identifying the redundant references themselves, as well as
the references that induce each redundancy. The analog in classical flow analysis is use-definition chains [ASUS86].
Alternatively, we can compute the analog of definition-use chains, namely the set of redundancy inducers and,
for each redundancy inducer, the set of redundancies that it induces.

Consider the problem of identifying read redundancy inducers. First, backward flow analysis is needed to
identify the set of data that upwardly reach each read and write reference from later read references. Then we
can determine if a read or write reference induces any read redundancies, and if so, the set of redundant reads
that it induces.

Meanwhile, forward flow analysis is needed to compute the set of data that downwardly reach each write
reference from earlier write references. Then we can determine whether a write reference induces any writes to
be redundant, and if so, which ones it induces.

The manner in which the resulting information will be used dictates whether the computation of redundancy-

inducer chains or inducer-redundancy chains are more appropriate.

5.3 Catching Promising “Conditional” Redundancies

In general, attempting to detect and eliminate conditional redundancies is unlikely to prove worthwhile. Unless
the conditional redundancy occurs frequently in practice, the cost of eliminating the redundancy might outweigh
the benefit. Moreover, simply determining when conditional redundancies can be profitably eliminated can be

expensive.

29

while (error > eps)

do i=1 to N
Ry <= Afi]
enddo
do i=1 to N
Ry: A[i]l = -+
enddo
endwhile

Figure 12: Example of a promising conditional redundancy: Rj is redundant on all but the first iteration. R; is
redundant on all but the last iteration. (This example is extracted from a conjugate gradient routine.)

However, there are several commonly occurring cases of conditional redundancies which are indeed worth
detecting. In these cases, the conditional redundancy is expected to occur frequently in practice. We present two
examples of such cases. The first, depicted in Figure 12, is extracted from a conjugate gradient routine. In this
example, the read at Ry is redundant on all but the first iteration of the while loop. Meanwhile, the write at R;
is redundant on all but the last iteration of the while loop. Both these conditional redundancies lead to actual
redundancies most of the time.

The second example, depicted in Figure 13 has been extracted from an independently manually-optimized key
routine from a two dimensional c¢fd code. In this case, the redundancy at R; appears conditional, since there is
a path along which the data does not reach, namely the one from the entrance of the loop to R; through the
false branch of the if statement. However, this path is never taken. During the first iteration, the true-branch of
the if statement is always taken, so the read at R; is preceded by a write of the same data at Rg. On all other
iterations, the read at R; is redundant due the references in the prior iterations. Therefore, the redundancy is
really unconditional, but symbolic analysis is needed to detect this case.

In both examples, if we could detect and unroll the preamble or postamble of these loops or both, at least
conceptually for analysis purposes, we could detect these redundancies using the algorithm presented earlier in this
paper. In fact, actually performing this unrolling would also allow us to eliminate these redundancies without
incurring the overhead that would otherwise result from needing to conduct a test on every loop iteration to

determine whether a redundancy really exists during that particular iteration.

5.4 Exposing Prefetching Opportunities

Redundancy analysis can also be used to expose prefetching opportunities. In particular, the read references that
are detected as non-redundant are the prefetching candidates. By extending the flow analysis to keep track of
the references that cause these read references to be stale, we can aggressively compute the ranges in which we

can safely insert prefetches for these non-redundant reads.

30

do j=jstart to jend

if j = jstart

then
do i=1 to N
RO: B[l] = ...
enddo
endif
do i=1 to N
R1: =B[l]
enddo
enddo

Figure 13: Example of a promising “conditional” redundancy: R; is actually an unconditional redundancy that
would be detected as conditional. (This example is extracted from an independently manually-optimized key
routine of a two dimensional c¢fd program.)

5.5 Handling Other Parallel Program Models

Suppose that dynamic inter-epoch scheduling is used so that processor reassignments occur at epoch boundaries.
In this case, it cannot be established with certainty at compile time whether any potential redundancies that arise
from dependences that cross epoch boundaries will exist at run time. Note that the benefits of trying to exploit
such opportunities are likely to be slim, whereas the run time cost is likely to be high. Hence, a conservative
approach can be used and these details ignored by assuming that references cannot reach across boundaries where
processor reassignments occur.

Clearly, the choice between implementing an epoch boundary (a doall or an enddoall statement) with a barrier
(static inter-epoch scheduling) or by performing an actual processor reassignment (dynamic inter-epoch schedul-
ing) can be made on a boundary-by-boundary basis. Since the overhead for reassigning processors is generally
high, task granularity (where a task is a maximal region between processor reassignment boundaries) should be
large enough to offset this overhead. Note that static inter-epoch scheduling increases task granularity, thereby
reducing overhead and increasing opportunities for redundancy elimination, whereas dynamic inter-epoch schedul-
ing facilitates the balancing of loads between processors. Hence, in general, static inter-epoch scheduling should be
used to merge small epochs into reasonably sized tasks, which could then be dynamically scheduled. Redundancy
analysis can be performed independently for each program task.

The discussion thus far has focussed on doall-style parallelism. More general classes of parallel constructs
allow data to be written on one processor and accessed by another during the same epoch. A simple, conservative
technique for handling such programs is to consider all references to data accessed in such a manner as non-

redundant. More sophisticated approaches are the subject of future research.

31

6 Related Work

Traditionally, analysis techniques have either focused on one of two approaches: computing dependences between
two references enclosed within a single loop nest or performing precise control flow analysis of scalars in sequential
programs while treating arrays at the name-only level. Anderson and Lam [AL93] have extended the first approach
so that they could analyze multiple loop nests and, based on this analysis, apply transformations to increase the
number of redundancies (equivalently, to increase locality). However, their framework cannot handle conditionally
executed code.

Others have concentrated on extending the second approach. Gross and Steenkiste [GS90] and Rosene [Ros90]
were the first to combine flow and dependence analyses to analyze array dependences in sequential programs at a
more precise level. Cheong and Veidenbaum [CV88], while still treating arrays at a name-only level, were the first
to extend flow analysis to handle programs with doall loops. Their technique handles sequential loops and control
flow constructs as well. Ferrante et al. [FGS94] presented a combined flow and dependence analysis technique that
could be adapted to detect redundancies. While their framework can handle explicitly parallel programs with
cobegin/coend and post/wait constructs as well as conditional code and array subscript expressions, it cannot
handle loops. In contrast, the combined flow and dependence analysis technique presented in this paper can handle
doall loops, sequential loops (including multiple loop nests and non-perfectly nested loops), and conditional code,
while considering array subscript expressions.

While we targeted loop-level parallelism, Gupta et al. [GSS94] and Hanxleden and Kennedy [HK93] concen-
trated on combining flow and dependence analyses with the goal of optimizing the placement of sends and receives
when compiling data-parallel programs. They perform their analysis on the sequential version of the program
before parallelization and then combine the analysis results with distribution information to determine where
communication should be placed. By analyzing the sequential version, they avoid the additional complexities
that arise from doall loops. Because our goal is to handle already parallelized programs, we could not apply the

same approach.

7 Summary

In general, the problem of identifying potentially redundant references and their inducers is non-trivial. However,
when such information is available, it can be used to eliminate redundant memory accesses both in systems that
support software-controlled local storage and in cache-based systems. In this paper, we have developed a formal
terminology for describing redundant memory accesses and their inducers. We have identified three categories
of redundancies and redundancy inducers. We have discussed the limitations of current compiler technology for
exposing array redundancies.

We have derived a set of flow equations to be used within an interval-analysis framework for exposing redundant
references and those references that induce them. Since performing name-only array analysis is too coarse, and
treating arrays at the granularity of individual elements is cost-prohibitive, our algorithm analyzes arrays at the
level of regions. The algorithm itself is independent of the method used to summarize the array regions. It is
straightforward to adapt existing summary methods for use within our framework. Since it is rare that array
regions can be summarized precisely, we have shown how our analysis method can be used even when exact

representation of flow sets is not possible. Ours is the first approach to apply combined flow and dependence

32

analysis to programs with doall style parallelism. Moreover, our technique has the advantage that it can be
run after either manual or automatic parallelization. Our approach can also be used to expose prefetching
opportunities and identify potentially stale data accesses.

It is important to note that our goal has been to develop an analytical tool for exposing ezisting opportunities
to eliminate redundant accesses. The number of opportunities exposed in practice depends on the number that is
inherent in the analyzed codes. Consequently, this tool can be used as a yardstick to “measure” reuse opportunities
and gauge the effectiveness of specific optimizations.

Clearly, the number of redundancies that exists also depends on the scheduling strategy employed and the
information regarding this scheduling strategy that is available to the compiler. When static inter-epoch schedul-
ing is employed, optimizations such as aligning accesses across several doall loops can increase the number of
redundancies that exists [GMB]. Note that, even when reuse is detected, insufficient temporal locality or local
storage space may prevent us from capitalizing on them. Hence, redundancy analysis is most beneficial when

combined with locality-enhancing program transformations.

Acknowledgements

We would like to thank Edward Gornish, Reinhard von Hanxleden, William Jalby, Ken Kennedy, Chuck Koelbel
and David Sehr for their feedback on earlier versions, and Debbie Campbell for proofreading this paper. Dr.
Granston was supported by a Postdoctoral Research Associateship in Computational Science and Engineering
under National Science Foundation Grant No. CDA-9310307, a grant from the International Business Machines
Corporation, and the Center for Research on Parallel Computation under Grant No. CCR-~9120008. Much of this
work was done while Elana Granston was a graduate student at the Center for Supercomputing Research and
Development, where support was provided by the Department of Energy under Grant No. DE-FG02-85ER25001
and Cray Research Incorporated. Dr. Veidenbaum was supported by the NASA Ames Research Center under
Grant No. NASA NCC 2-559 and the National Science Foundation under Grant No. NSF 89-20891.

References

[AHD93] Bill Applebe, Charles Hardnett, and Sri Doddapaneni. Program Transformation for Locality Using
Affinity Regions. In Proceedings of the Sizth Workshop on Languages and Compilers for Parallel
Computing, Portland, Oregon, August 1993.

[AL93] Jennifer Anderson and Monica Lam. Global Optimizations for Parallelism and Locality on Scalable
Parallel Machines. In Programming Languages Design and Implementation, June 1993.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, Massachusetts, 1986.

[Bal90] Vasanth Balasundaram. A Mechanism for Keeping Useful Internal Information in Parallel Program-
ming Tools: The Data Access Descriptor. Journal of Parallel and Distributed Computing, 9(2):154—
170, June 1990.

[BGM95] Frangois Bodin, Elana D. Granston, and Thierry Montaut. Page-level Affinity Scheduling for Elimi-
nating False Sharing. In Fifth Workshop on Compilers for Parallel Computers, Malaga, Spain, June
1995.

33

[BIEW91]

[CKMS8S]

[CON93]

[Cra93]
[CV8s]

[DMCK92]

[FGS94]

[GKLS83]

[GMB]

[Gra92]

[GS90]

[GSS94]

[HHLYO]

[HK91]

[HK93]

[KDCZ94]

[Ken92]

Francois Bodin, William Jalby, Christine Eisenbeis, and Daniel Windheiser. Window-Based Register
Allocation. Technical report, INRIA, 1991.

Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic Management of Programmable
Caches Using Flow Analysis. In Proceedings of the International Conference on Parallel Processing,
volume II, pages 229-238, August 1988.

CONVEX Computer Corporation, 3000 Waterview Parkway, Richardson, TX 75083-3851. Ezemplar
Architecture, November 1993. Order No. DHW-014.

Cray Research, Inc. CRAY T3D System Architecture Querview, 1993.

Hoichi Cheong and Alexander V. Veidenbaum. Stale Data Detection and Coherence Enforcement
Using Flow Analysis. In Proceedings of the International Conference on Parallel Processing, volume I,

pages 138-145, August 1988.

Ervan Darnell, John M. Mellor-Crummey, and Ken Kennedy. Automatic Software Cache Coherence
Through Vectorization. In Proceedings of the International Conference on Supercomputing, pages

129-138, July 1992.

Jeanne Ferrante, Dirk Grunwald, and Harini Srinivasan. Computing Communication Sets for Control
Parallel Programs. In Proceedings of the Seventh Workshop on Languages and Compilers for Parallel
Computing, Ithaca, New York, August 1994.

Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Sameh. Cedar — a Large Scale Multiprocessor.
In Proceedings of the International Conference on Parallel Processing, pages 524-529, August 1983.

Elana D. Granston, Thierry Montaut, and Francois Bodin. Loop Transformations to Prevent False
Sharing. To appear in the International Journal of Parallel Programming.

Elana D. Granston. Reducing Memory Access Delays in Large-Scale, Shared-Memory Multiprocessors.
PhD thesis, Center for Supercomputing Research and Development, Technical Report 1257, University
of llinois at Urbana-Champaign, October 1992.

Thomas Gross and Peter Steenkiste. Structured Dataflow Analysis for Arrays and Its Use in an
Optimizing Compiler. Software — Practice & Erperience, 20(2):133-155, February 1990.

Manish Gupta, Edith Schonberg, and Harini Srinivasan. A Unified Framework for Optimizing Com-
munication. In Proceedings of the Seventh Workshop on Languages and Compilers for Parallel Com-
puting, Ithaca, New York, August 1994.

Lorenz Huelsbergen, Douglas Hahn, and James Larus. Exact Data Dependence Analysis Using Data
Access Descriptors. Technical Report 945, Computer Science Department, University of Wisconsin-

Madison, July 1990.

Paul Havlak and Ken Kennedy. An Implementation of Interprocedural Bounded Regular Section
Analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.

Reinhard von Hanxleden and Ken Kennedy. A Code Placement Framework and Its Application to
Communication Generation. Technical Report CRPC-TR93337-S, Center for Research on Parallel
Computation, Rice University, October 1993.

P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Distributed Shared Memory
On Standard Workstations and Operating Systems. In Winter Useniz Conference, 1994.

Kendall Square Research Corporation. Kendall Square Research Technical Summary, 1992.

34

[LLJ*92]

[LP92]
[MR79]
[Pug9?]
[Ros90]
[RP86)]

[RWZ8S]

[Sch89]

[TGJI93]

[Vei86]

D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The DASH
Prototype: Implementation and Performance. In International Symposium on Computer Architecture,
pages 92-103, May 1992.

Z. Lajormi and T. Priol. KOAN: A Shared-Memory for the iPSC/2 Hypercube. In CON-
PAR/VAPPY2, LNCS 634. Springer-Verlag, September 1992.

E. Morel and C. Renvoise. Global Optimization by Suppression of Partial Redundancies. Communi-
cations of the ACM, 22(2):96-103, February 1979.

William Pugh. The Omega Test: A Fast and Practical Integer Programming Algorithm for Depen-
dence Analysis. Communications of the ACM, pages 102-114, August 1992.

Carl M. Rosene. Incremental Dependence Analysis. PhD thesis, Rice University, Technical Report
COMP TRY0-112, March 1990.

Barbara G. Ryder and Marvin C. Paull. Elimination Algorithms for Data Flow Analysis. Computing
Surveys, 18(3):277-316, September 1986.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global Value Numbers and Redundant
Computations. In ACM Symposium on Principles of Programming Languages, pages 12-27. ACM,
January 1988.

Dale Schouten. An Overview of Interprocedural Analysis Techniques for High Performance Paralleliz-
ing Compilers. Master’s thesis, Center for Supercomputing Research and Development, University of
Illinois at Urbana-Champaign, December 1989.

Olivier Temam, Elana D. Granston, and William Jalby. To Copy or Not to Copy: A Compile-
Time Technique for Assessing When Data Copying Should be Used to Eliminate Cache Conflicts. In
Supercomputing ’93, pages 410-419, November 1993.

Alexander V. Veidenbaum. A Compiler-assisted Cache Coherence Solution for Multiprocessors. In
Proceedings of the International Conference on Parallel Processing, pages 1029-1036, August 1986.

35

Appendix: Equations for Forward Flow Analysis

Basic Equations

Flow equations for propagating reaching information through blocks other than entry blocks and boundary
blocks during the first and second phases of forward flow analysis. Assume pred(b) is the set of predecessors
of block b. (During the first phase of flow analysis, UIN,(entry blk), CIN, (entry blk), KILLIN; (entry blk) and
PREV_IN, (entry_blk) are initialized to ¢.)

UIN, (5) = ;. epreaqs) YOUTH(5;)

(UIN,(6) — 18, , KILLINZ (b)
— W,z PREV_REF:(b) if some execution path through b
UOUT, (b) = — CREF) (b)) (J UREF,(b) crosses an epoch boundary

(UINp(b)_RCREF;f’(b)) LJUREF,(b) otherwise

CINY (5) = Uy, eprears; COUT (55)

[CINZ’ (b) —W, KILL_IN () if some execution path through b
COUTY(b) = — W,z PREV_REF;U/(I))] (J CREF,(b) crosses an epoch boundary
CINy (b)(_J CREF, (b) otherwise

KILLINY (b) = KILL-OUTY (b;)

Ub jEpred(d)
KILL-REF; (b) if every execution path through b
crosses an epoch boundary

KILL-OUTY (b) =

KILL_INY (b)_J KILL_REF® (5) otherwise
PREVIN (b) = [, .4 PREV-OUTY (b))
PREV_IN, (b)(_J KILL_IN,/ (b) if some execution path through b
PREV_OUTY (b) = (U PREV_REF,'(b) crosses an epoch boundary
PREV_IN;(b) otherwise

36

Boundary Blocks

Equations for propagating reaching information across boundary blocks during the first and second phases of
forward flow analysis.

UIN, (boundary_blk UOUT,(b;)

) = mbjEpred(boundary_blk)

UOUT, (boundary_blk) = UIN,(boundary_blk) _H'Jp’;sp KILL-IN: (boundary_blk)

CINy (boundary blk) = UbjEpred(boundary_blk) COUT, (b;)

COUT;U (boundary-blk) = CIN;U (boundary_blk) —tl-Jp, . KILL_INZ’/(boundary_blk)

Z

KILL_INY (boundary_blk KILL.OUTY (b;)

) = UbjEpred(boundary_blk)
KILL.OUT, (boundary blk) = ¢

PREV_INY (boundary_blk PREV_OUTY (b;)

) = UbjEpred(boundary_blk)

PREV_OUT} (boundary blk) = PREV_IN; (boundary blk)|_J KILLIN (boundary blk)

Summarizing Intervals

Equations for summarizing reaching information for intervals during the first phase of forward flow analysis.
(If b is a basic block, UREF,(b) and CREF;“,U(b) can be computed directly, KILL.REF;(b) = CREF,(b), and
PREV REF, (b) = ¢.)

Non-Loop Intervals

Assume [is the non-loop interval represented by block summary_blk and exit (I) is the set of exit blocks included
in interval 7.

UREF, (summary_blk) = mb]Ee:cit(I) UOUT,(b;)
CREF, (summary-blk) = UbjEem.t(I) COUT (b))
KILL_REFZ) (summary_blk) = Ubjeem't(l) KILL_OUTZ) (b;)

PREV_REF, (summary_blk) = Ubjeem't(l) PREV_OUT} (b;)

37

Loop Intervals

Assume that block summary_blk represents a loop interval with exit block exit_blk.

&Jlglglmax [UOUT, i(exit_blk) if some execution
KILL-OUT ;i (exit_blk) path through
PREV_OUT s (ewit-blk) summary_blk crosses

_H-Jp’;ép,lgl'<lma:c
_H_Jp';ép,l<1'§lma:c

UREF, (summary_blk) = _R&Jl<l'§lmaw COUT;UJ/(ecL‘it_blk)] an epoch boundary
Wi<icimar [UOUT, (exit_blk)
_R&Jl<l'§lma:c COUT;U’,/(ewit_blk)] otherwise
&Jlslglma:c [COUT;Uy,(emit_blk) if some execution

L-i-Jp,¢p7.,Sl,<]mM KILL-OUT ;/(ewit_blk) path through

CREFY (summary blk) = — &Jplipyld,gmm PREV_OUT;U/J/ (e:vit_blk)] summary_blk crosses
an epoch boundary
1 <iciman COUT ((exit blk) otherwise
KILL.OUT, 11,0 (eit _blk) if every execution

path through
summary_blk crosses
an epoch boundary

KILL_REF} (summary_blk) =

1 <rcimas KILLOUTY (cxit bik) otherwise
[L—nglgmm PREV_OUT;UJ(emit_blk)] if some execution
U {Lﬂl <i<imas KILL_OUT;”J(e:nit_blk)] path through

PREV REF; (summary_blk) = summary_blk crosses

an epoch boundary

¢ otherwise

Unsummarizing Intervals

Equations for processing entry blocks when unsummarizing loops during the second phase of forward flow analysis.

Non-Loop Intervals

Assume that entry_blk is the entry block of a non-loop interval summarized by summary_blk. (PREV_INY is used
only during the first phase to compute PREV_OUTY | so no equation for unsummarizing this set is presented.)

UIN, (entry_blk) = UREF,(summary_blk)
CINy (entry_blk) = CREF; (summary_blk)

KILL_IN, (entry blk) = KILL_REF, (summary_ blk)

38

Loop Intervals

Assume that entry_blk is the entry block of a loop interval summarized by summary_blk. (PREV_IN™ is only
used during the first phase. Hence, no equation for unsummarizing this set is presented.)

(UIN, (summary_blk)

— W,y 1 <1 s PREV.IOUTY (et blk)

_L-Hp’;ép KILL-IN.)) (summary_blk)

— ey 1 ctrery KILLOUTY (et blk)

— o<y COUTE (et bik))
U [Wicrr (VOUT, y(eait bik) if 1> 1 and
_Lﬂp’;p,ll<l”<l PREV_OUT;U/J//(e;EZ't_b”{?) some execution path
_L-.Up';ép,l'§l”<l—1 KILL.OUT ;u(exit _blk) through summary_blk

— e COUT;UJ,,(emit_blk))] crosses an epoch boundary

UIN, ;(entry_blk) =

(UIN, (summary_blk)

— rHicr o COUT;”V,H(emit_blk))

U [Wicrer (VOUT, o (cait bik)

— ol ey COUTE o (ewit bik))| otherwise

(CIN (summary_blk)
_L-Hp’;ép,1§l”<l PREV_OU ;Ulylll(ezxit_blk)
L-}-Jp,;ép KILL-IN.)) (summary_blk)
— Wy pprcrrary KILLOUTY (cait bik)) if 1> 1and
H < ezt some execution pat
1<r<i COUTZ’J it _blk i h
— I, I i r(exit through summary_
o 1 <1 <1 PREV OUT;UJ it _blk hrough blk

_L-_i-Jp,#p r<l <ot KILL_OUT;U/J,/(emit_blk))] crosses an epoch boundary

CIN, (entry blk) =

CINy (summary_blk)
U (1<re; UOUT, o (exit bik)) otherwise

KILL.OUT, ,_, (ewit_blk) if { > 1 and every
execution path
through summary_blk

KILL_IN, ;(entry blk) = crosses an epoch boundary

(1< e KILLOUTY s (exit bik)
U KILL_INZ’ (summary_blk) otherwise

39

