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AN INEXACT TRUST-REGION FEASIBLE-POINT ALGORITHM FOR
NONLINEAR SYSTEMS OF EQUALITIES AND INEQUALITIES?*

M. EL HALLABI' AND R. A. TAPIA?

Abstract. In this work we define a trust-region feasible-point algorithm for approximating solutions of the nonlin-
ear system of equalities and inequalities F(z,y) =0,y > 0, where F': IR™ x IR™ — IRP is continuously differentiable.
This formulation is quite general; the Karush-Kuhn-Tucker conditions of a general nonlinear programming problem
are an obvious example, and a set of equalities and inequalities can be transformed, using slack variables, into such
form. We will be concerned with the possibility that n, m, and p may be large and that the Jacobian matrix may be
sparse and rank deficient. Exploiting the convex structure of the local model trust-region subproblem, we propose
a globally convergent inexact trust-region feasible-point algorithm to minimize an arbitrary norm of the residual,
say ||F(z,y)|la, subject to the nonnegativity constraints. This algorithm uses a trust-region globalization strategy
to determine a descent direction as an inexact solution of the local model trust-region subproblem and then, it uses
linesearch techniques to obtain an acceptable steplength. We demonstrate that, under rather weak hypotheses, any
accumulation point of the iteration sequence is a constrained stationary point for f = ||F||a, and that the sequence

of constrained residuals converges to zero.

Key Words: constrained nonlinear systems, hybrid method, trust-region, interior-point, feasible-point, line-
search, inexact Newton’s method, global convergence, equalities, inequalities, singular Newton’s method.
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1. Introduction. In this paper we consider the problem of solving the nonlinear system of

equations and inequalities
(1.1) Flz,y)=0,y>0

where F': R™ x IR™ — IR? is continuously differentiable. We will be concerned with the possibility
that n,m, and p may be large, and that the Jacobian of F' at (z,y), say F'(z,y), may be sparse
and rank deficient.

Problem (1.1) is quite general; the Karush-Kuhn-Tucker conditions of a general nonlinear
programming problem are an example of such a problem, and a general set of equalities and
inequalities can be transformed into problem (1.1) using slack variables.

Recently in El Hallabi [6], the author proposed a globally and g-quadratically convergent hybrid
algorithm to solve a nonlinear system of equations. The algorithm uses an arbitrary norm of the

residual as merit function. It calculates a search direction as an approximate solution of a local
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model, then uses linesearch techniques to obtain an acceptable steplength. Moreover, for a specific
choice of the norm, it can be implemented as a sequential linear programming method, and hence
be solved by a simplex type method or by the more recent primal-dual feasible-point methods for
linear programming. See Kojima, Mizuno, and Yoshise [10], Zhang and Tapia [19], Zhang, Tapia,
and Dennis [20], and Lusting, Marsten, and Shanno [12]).

Also, recently there has been considerable activity in the area of feasible-point methods for
general nonlinear programming problems. We cite for example Yamashita [18], Wright [16], Wright
[17] Lasdon, Yu, and Plummer [11], McCormick [14], and Martinez, Tapia, and Parada [13]. El-
Bakry, Tapia, Tsuchiya, and Zhang [3], propose a primal-dual Newton feasible-point method to
solve the Karush-Kuhn-Tucker conditions of a general nonlinear programming problem using the
squared l; norm of the residual as a merit function. Very much influenced by this latter approach,
we extend the hybrid approach of El Hallabi [6] to problem (1.1).

We propose an inexact trust-region feasible-point (ITRFP) algorithm to solve problem (1.1) in

the equivalent form

minimize (z,y)€ER"xR™ f(:v,y) = HF($73/)H11

subject to Yy > 0,

(1.2)

where || ||, is an arbitrary (but fixed) norm on IRP. The proposed algorithm combines trust-region,
line-search and feasible-point strategies. At each iteration, the search direction (u,vy) is obtained
as an approximate solution of the local model trust-region subproblem

minimize my(u,v) = ||F(zr, yr) + F'(@r, ye) (4, v)||a

(1.3) (LMTR) =< subject to (1—op)yr +v >0
[1(ws 0)lls < A
where Ay > 0 is the trust-region radius, || ||, and || ||; are two arbitrary (but fixed) norms on IR?

and IR™ x IR™ respectively, and o is an arbitrary scalar in [0, 6] for some ¢ € [0, 1). To obtain an
acceptable steplength, a linesearch in the direction (ug,v;) is performed.

In (1.3), the parameter oy is used to ensure the feasibility of the iterates {y;}. We allow this
parameter to be zero to provide a global convergence theory for the feasible-point variant of our
approach. Indeed, with o} equal to zero, the iterates y; are allowed to be on the boundary. On the
other hand, we can force strict feasibility by choosing o to be positive, and hence obtain a global
convergence theory for the interior-point method variant of our approach. In any case, 1 — o has
to be bounded away from zero, which is obtained threw the constant &.

In (1.2) and (1.3) we use arbitrary norms for the convenience of the presentation and for the
sake of mathematical generalization. Our goal is to use polyhedral norms, in which case the local
model trust-region subproblem LMTR in (1.3) can be formulated as a linear programming problem.

In Section 2 we derive optimality conditions for problem (1.2). The inexact trust-region feasible-

2



point algorithm (ITRFP) is described in Section 3. In Section 4 we demonstrate that the ITRFP
algorithm is globally convergent. In Section 5 we prove, under rather weak assumptions, that the
sequence of constrained residuals {F(z, yx)} converges to zero. Finally, we give some concluding
remarks in Section 6.

For convenience, we use z; and (g, yx) to denote the iterate and wy, and (ug, vx) to denote the

search direction or the step. Also, we use z}; to denote the i** component of zy.

2. Optimality Conditions. In this section, we define the optimality condition for problem
(1.2), and we derive a practical condition for optimality in terms of minimizers of LMTR subprob-
lem.

The locally Lipschitz composite function f = || ||, is regular, i.e. at any z and in any direction
win R™ x R™, its generalized directional derivative, denoted by fO(z;w), and its one-sided direc-

tional derivative, denoted by f'(z;w), exist and are equal (see Clarke [2]). They are respectively

defined by
[+ tw) - f(Z)

(2.1) f2(2z;w) = lim sup
zl—z, t|0 t
and
Sa 4 tw) — f(2)
2.2 "(z;w) =1 .
(2.2) f(zw) =1lim .
For more details concerning properties of the various derivatives of f = || F||,, we refer the reader

to Clarke [2].

In this research, we use both derivatives althought they are equal. To study the optimality
conditions, working with the one-sided directional derivative is sufficient. But to analyze the
behavior of the algorithm near an iterate that is not a constrained stationary point of f, the
generalized directional derivative is a powerful tool because its definition uses a hall neighborhood
of z rather just the point z.

We now give the definition of stationarity that will be used in the present work.

DEFINITION 2.1. A point z. = (x.,y«) is said to be a constrained stationary point of f if
Y« > 0 and

(2.3) [(za3w) >0

for all feasible directions w = (u,v), i.e. for all w = (u,v) such that y. + v > 0.
The following lemma shows that the one-sided directional derivatives of both the function f

and its local model

(2.4) m(w) = ||[F(2) + F'(z)wla
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are equal. This is important from an algorithmic point of view.

LEMMA 2.1. [El Hallabi and Tapia [8] Assume that F' : R" x R™ — IR? is a continuously
differentiable function. Let z and w be respectively a feasible point and a feasible direction for
problem (1.2). Then

(2.5) f'(z;w) = mL(0; w).

In the following proposition we give a practical criterion for optimality in terms of minimizers
of the local model trust-region subproblem.

THEOREM 2.1. Assume that z = (z,y) € R" X R™ is a feasible point of problem (1.1).
Assume further that o > 0, and A > 0. Then (u.,v.) = (0,0) solves the local model trust-region

subproblem
minimize  m.(u,v) = ||F(z,y)+ F'(z,y)(u,v)|.
(2.6) subject to ay+v > 0
(@, o)l < A

if and only if (z,y) is a stationary point of f.

Proof. Let w = (u,v) be an arbitrary feasible direction of the minimization problem (1.2). It
is obvious that if 4* = 0 then ay’ 4 v > 0 for all positive £. On the other hand, if * > 0, then for
sufficiently small ¢, say 0 < ¢ < ¢, < 1, we have ay’ + tv' > 0. In summary we obtain

(2.7) ay+tv >0 and |[[H(u,v)|p <A

for sufficiently small ¢, say ¢ € (0, ¢,] for convenience, i.e. {(u,v) is a feasible point of problem (2.6).

Assume that zero solves problem (2.6). This, together with (2.7), implies that

(2.8) HF(%?/)+tF’(way)§uvv)Ha— 1£(z,y)lla

>0,

holds for all ¢ € (0,¢.]. Hence, by passing to the limit as t converges to zero and using Lemma 2.1,

we obtain
(2.9) f'(z;w) > 0.

Finally, since (2.9) holds for all feasible directions w, the feasible point z = (z,y) is necessarily a
stationary point of f.

Now, assume that z = (z,y) is a stationary point of f. Let w = (u,v) be a feasible point of
problem (2.6). If y* = 0 then

(2.10a) ay' +1v' >0, ¥V 1>0.
4



On the other hand, if y* > 0 then there exists ¢ € (0, 1] such that
(2.10b) ay' 4 1v* > 0.

;From (2.10a) and (2.10b), we obtain

t
(2.11) y+ —v >0,
a

1
a

and f’(z;-) is positively homogeneous, we have

ie. L(u,v)is a feasible direction of problem (1.2). Because z = (z,y) is a stationary point of f

(2.12) f(zw) > 0.

On the other hand, since my(-) is convex, we have

(2.13) ml(0;w) < my(s) — my(0),
which, together with Lemma 2.1 and (2.12), implies

(2.13) IE(, 9)lla < 17 (2, y) + F' (2, y)(w, 0)l|a

i.e. zero solves problem (2.6).0

3. The Inexact Trust-Region Feasible-Point Algorithm. In this section we define our

algorithm for approximating a solution of the nondifferentiable optimization problem

ming yernxmm  f(2,9) = |[F(, )l
subject to y >0

where /' : IR" X R™ — IR? is continuously differentiable and || ||, is an arbitrary norm defined on
IRP. To obtain a descent direction, the local model subproblem LMTR is solved for an approximate
solution in the sense given in the following definition.

DEFINITION 3.1. Consider z = (zk,yx) € R™ x R™ such that y, > 0, ¢ >0, 0 < 0 < 1,
and A > 0. Also let || ||, and || ||» be any two norms defined on IRP and IR™ x IR™ respectively .

We say that wi = (uk,vy) is an eg-solution of the local model trust-region subproblem

minimize my(u,v) = |[F(zr,yx) + F'(xr, yr)(u,v)||a
(LMTR) =< subject to (1—op)yp+v >0
(2, v) e < A

if wy satisfies

mi(wr) —mE(0) <0 and my(wy) < mi(w) + e
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for all w = (u,v) satisfying ||w||y < Ag and (1 — ox)yr, + v > 0.
Let (zg,yx) be a feasible point of problem (1.2), i.e yx > 0, and consider any approximate
solution of LMTR subproblem, say (ug,vx). We have

(3.1) Yk + Uk 2 OkYk,

which implies that yi + v is a feasible point of problem (1.2) for o, > 0. However if o5, < 0, then
Yk + v might be negative. Therefore, in the following lemma, we describe the scheme to restore
feasibility.

LEMMA 3.1. Assume that (zk,yx) is a feasible point of problem (1.2). Assume further that
(uk,vr) is a feasible point of problem (1.3). Let

(3.2) Iy={ie[l..m] | wvi<0}.

Then for we have

(3.3) Y + Lrog > 0

and

(3.4) L i<
) 1+o, — ko=

Moreover, if {o > 0} converging to zero, then
Proof. 1t is obvious that (3.2) holds for o, < 0 . Therefore, we consider the case where o > 0.

Let us set

I={ie[l..m] | v <0}
It is obvious that
(3.4) Y+t >0 V >0

holds for all ¢ ¢ Iy,i.e such that v}; < 0. For the indices ¢ € I, we set

(3.5) f, = min (1, - _y’“)

ZEIk L
which implies that
(3.6) yi 1l >0 YV i€l

;From (3.4) and (3.6), we obtain (3.2).



Now, since (ug, vy ) is a feasible point of subproblem LMTR, we have
(14 0yl + 0 >0, Vie[l..m],
which implies that,

=

3.7
( ) vy, 1+ o0

Vi € I.

;From (3.5) and (3.7), we obtain (3.3).
Inexact Trust-Region Feasible-Point Algorithm (ITRFP)
Let ¢;,0=0,...,5, Amin, Amax and fg be constants satisfying:
0<aa<e<l<es 0<eyu<es<1
0<AminK1 1 € Apax < +00
0 < Bo 0<o<l1

Let z9 = (2o, y0) be any point such that yo > 0. Assume that Ag > Apin, 0o € [0,5], and || ||, and
Il [|[s be any two norms respectively on IR? and IR™ x IR™.

Suppose that z; = (ug,vk), Ak, 0k, Br has been determined by the algorithm at the kth
iteration. The algorithm determines zg41, Agy1, Ok+1, and By in the following manner:
STEP 1. Set e = Bi||F(2x)||. and obtain an eg-solution wy = (ug, vx) of subproblem LMTR

STEP 2. Set { =1
Until
Fze + trwy) < f(21) + aa[mie(tewr) — f(21)]
Choose {j such that
caly, <t < csly;
set 1 = 1.
End (Until)
Set wy, 1= tpwyg and zp4q = 25 + wg
STEP 4. If f(2k41) < f(2k) + co[mu(wr) — f(2k)]
choose A1 so that

lwllp < Agyr < max(Ay, esl|wgl]y)

Else
Choose Ag4q such that
callwille < Agpr < lwells
STEP 5. Set Agt1 = min(max(Ax41, Amin), Amax)

Choose  Bry1 € [0, < fo], and  ox41 € [0,0].
7



DEFINITION 3.2 The iterate (Ti41, Ykt1, Dk+1, Okt+1, Okt1) will be referred to as a succes-
sor of (zk, Yk, Dk, 0k, Bk), and t, will be referred to as an acceptable steplength with respect to
(zk, Yk, Ak, Ok, Br) or just an acceptable steplength.

4. Global Convergence for the ITRFP Algorithm. In this section we demonstrate that
the inexact trust-region feasible-point algorithm (ITRFP) is globally convergent in the sense that
any accumulation point of the iteration sequence is a constrained stationary point of f. This result
will be established in Theorem 4.4 using a proof by contradiction. Therefore, a crucial role of
our global convergence analysis is played by the derivation of some important properties of the
ITRFP Algorithm near feasible points that are not constrained stationary points of f. First, in
Theorem 4.1, we analyze the behavior of the eg-solution near such points; second, in Theorem
4.2, we analyze the behavior of the steplenght; and third we analyze the behavior of the successor
iterate in Theorem 4.3.

Throughout this section, unless otherwise stated, ex(fx) is defined by

ex(Br) = Brll F(z1)||a -

We start by proving that any e;-solution of the local model trust-region subproblem (LMTR)
is a descent direction for f = ||F||, at the current iterate, and consequently, we can obtain an
acceptable step by using a linesearch technique.

PROPOSITION 4.1. Assume thal z is a feasible point. If z; is a not a constrained stationary
point of f, then

(4.1) f’(zk; wg) < 0.

for any ey-solution wy obtained in STEP 1 of the ITRFP Algorithm.
Proof. First, we obtain from the convexity of my(-) that the inequality

(4.2) (0 w) < mi(w) = my(0)

holds for all w. Now, the proof follows from (4.2), Definition 1.1, Theorem 2.1, and Lemma 2.1. O

PROPOSITION 4.2. Assume thal a feasible z; is nol a constrained stationary point of f.
Assume further that wy, is given by STEP 1 of the ITRFP Algorithm. Then there exists t € (0, 1]
such that

(4.3) F(zr + trwy) < f2r) + e [mp(trwy) — f(21)] -

Proof. The proof is an obvious consequence of Lemma 2.1 and Proposition 4.1. O
At each iteration, we can consider the local model subproblem LMTR as a parameterized
minimization problem. In the following theorem, we analyze the behavior of the eg-solutions,

considered as functions of the parameters of the LMTR subproblem.
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THEOREM 4.1. Let {(zk,yx), Ak, 0k, Or)}, where yp > 0, 0 < 0 < 6, and fr > 0, be a
sequence converging to ((Z«, Y«), Ax, 0%, 0), where (2., y.) and (z, yx) are not constrained stationary

points of f, and where Ay and A, are positive. Let (ug,vy) be an ex(Bx)-solution of the local

subproblem
minimize  mg(u,v) = (g, yr) + F,(wkvyk)(uv )|l
(4.4) subject to (1 —or)ye +v >0
[ (2, 0)ls < Ap

Then any accumulation point of {(uk, vk)}, say (z«,y«), is an exact solution of the local subproblem

minimize  m.(u,v) = ||F(2s,yx) + F'(2u, y) (4, 0)||a
(4.5) subject to (1 -0y )y +v >0
[[C, ©)]s < A

Proof. Since {A} converges to A, and ||(ug,vi)|[p < Ay for all k, the sequence {(ug,vy)} is

bounded. Consider any accumulation point (u.,v.) of this sequence. We prove that

(4.6) [ (2, 92) + F (s ) (1, 020 < ([ F (20, 90) + F' (2, 92) (0, 0) 0

holds for all (u,v) such that ||(u,v)||s < Asand (1 — o)y +v > 0, i.e., (us, vs) is an exact solution
of the minimization problem (4.5).
Let (u,v) satisfy ||(u,v)|]s < As and (1 — 0,)y + v > 0.

First, we consider the indices ¢ such that
(1- 0.yt +v' >0,

i.e. a feasible point of problem (4.5). Since {(1 — a})y. + ﬁ—’:vi} converges to (1 — 0.yl + v°, we
have for sufficiently large k

Ay

(1—op)yh + N vt > 0.
This implies , since (1 — o)yt > 0, that
AL
(4.7) (1—op)y + tA’W >0

*

for all ¢ € [0, 1].

Now, we consider the indices ¢ such that

(1— 0.yt + ' =0.



Therefore »* < 0 must hold. If »* = 0 it is obvious that (1- Uk)g/fC + tv* > 0 for all positive t. So we
consider the case where v* < 0. This implies that y. > 0 and (1 — ox)yr > 0 for sufficiently large
k, say k > k.. Let us set, for & > k,,

i _ (1 - ox)y;

A mm( , p ),
which implies that
(4.8) (1— o)yl +10" >0

for all ¢ € [0,¢]. Let us define

I_(v)={iel,..,m] | v' <0} n {ie[l,...,m] | (1-0.)y.+v" =0}

and
~ ) o Ay

4. ty = by —— -
(4.9) kigﬁﬂk,A)
We obtain from (4.7), (4.8), and (4.9) that
(4.10a) (1 —or)yr + trv > 0,
and

~ A U, v
(4.10b) HtkA—i(u,v)Hb = Akw < Ay

Observe that {{} converges to one and that {(1 — o%)ys + (xv} converges to (1 — 0,)y. +v. ;From
(4.10a,b) we obtain that (ug,vg) = t}gi—’:(u,v) is a feasible point of the local model trust-region
subproblem (4.4) whose e(8)-solution is (ug, vg). This implies that

1F (e, ye) + F (2, ) (e, o)l < 11F (e, ye) + e 22 F (@, 96) (0, 0)
+ Bkl F (ks ye)lla

and by passing to the limit when & — 400, we obtain (4.6).0

In the folowing theorem, we proove that the acceptable step is bounded away from zero near a
feasible point that is not a constrained stationary point of f.

THEOREM 4.2. Let {(zk, yx, Ak, 0k, Bx)} where yp > 0, Ag > Apin, 0 < 0p < 7, and f; > 0,
be a sequence that converges to some (T, Yx, Ax,04,0). Assume that (z.,y.) and (zy,yx) are not

constrained stationary points of f. Then there exists a positive scalar t(z., yx, Ax) > 0 such that

(4.10) L > U2s, Yuy Ay)
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holds for any accumulation point t. of {t;} where t} is an acceptable steplength with respect to
(Tky Yks Ak, Bk)-

Proof. The proof is very similar to the proof of Theorem in El Hallabi and Tapia [8]. Observe
that Ag > App implies that A, > 0. Assume that for any constant 7 > 0, there exists an

accumulation point of {{x}, say l. ., such that
0 S t*ﬂ/ < 7.

Therefore there exists a subsequence {t{;, k € N C IN} converging to zero. Without loss of generality,
we can assume that {{;} converges to zero. This implies that for sufficiently large k, we have
0 < tx < 1, and that a steplength of one is never accepted. Let {; be the last non acceptable
steplength in the direction (ug,v), an ex(0)-solution of the local model trust-region subproblem

(LMTR). We have that
(411) 0< (2’4157C <ip < 65157]C .

Since {{r} converges to zero, we obtain from (4.11) that {{;} converge to zero. On the other

hand, the steplength ¢ is not acceptable; therefore we have
(4.12) FCGr + trwr) = f(z1) > ealllF(ze) + e F' (zr)willa = 1F(28)]|a

where 2, = (zk,yx) and wi = (ug, vx). Also, since {Ag} converges to A,, the sequence {ug, vy} is
bounded. Let w, = (uy,v.) be any accumulation point of this sequence. Without loss of generality

we can assume that {ug,vr} converges to (u.,v.). Let us rewrite (4.12) as follows

trw,) — F(z L F' wlla = | F a
" [t o) = (1) | [IF(0) + P (1)l = [P
12 1y,
n fzr + trws) — f(zk + thwy)
7
ter |F(2k) + e " (zp)willa — |1 F(2k) + e " (21)wi|a
tr '

But because F' is continuously differentiable, we have

(4.14) 1E (k) + e (1) wslla = [1F(z0)lla > [z + tows) = f(zx) + o(te),

where limg_, 4 % = 0, which, together with (4.13), implies

flze + tklli*) — f(zr) S Fzr + thws) — f(zk) + tewg)

(4.15) (1-¢1) - -

o 1P (k) + be b Gz )wella — [1F(z0) + B (z)wnlla | ollr)
U by

11



Because the function f and the norm || ||, are locally Lipschitz and because ¢; € (0,1), we obtain

ek + t}tli*) — f(z1)

lim sup >0,
k—+4o0 tg,
and hence
lim sup [+ tw;) AG) >0,
£10
ie. fO(ze;wi)) > 0, and because f = ||F||, is regular, we have
(4.16) f’(z*,w*) >0

;From the convexity of m.(-) (see (4.2)), (4.16), and Lemma 2.1, we obtain
(4.17) 1 (z)lla < [1F(20) + F'(z0)ws]fa-

On the other hand, since A, > 0, we obtain from Theorem 4.1 that w, = (u.,v.) is an exact
solution of the local model trust-region subproblem (4.5). This, together with (4.17), implies that
zero is a solution of the local model trust-region subproblem (4.15). Therefore, by Theorem 2.1,
we obtain that w, = (2, y.) is a stationary point of f. This contradicts our hypothesis.

Consequently, there exists a positive scalar ¢(z., y«, As) such that (4.10) holds for any accu-
mulation point ¢, of {{;}. O

COROLLARY 4.1. Let {(z;,y;,Aj,0;,08;)}, wherey; > 0, A; > Apin, 0 < 05 < 6, and 3; > 0,
be a subsequence generated the the ITRFP algorithm that converges to some (%, Yx, Ax,04,0). If
zero is an accumulation point of the sequence of the acceptable steplengths {t;}, then (z«,y.) in
necessarily a constrained stationary point of f.

Now we establish that the ITRFP Algorithm satisfies a property that we call we Local Uniform
Decrease. This property is a very powerful tool for obtaining global convergence results (see El
Hallabi [4], El Hallabi [5], and El Hallabi [7]. It is the most important hypothesis used in Polak
[15] and Huard [9] to obtain the global convergence of some conceptual algorithms.

THEOREM 4.3. Consider (., yx, Ax,0.) where y. > 0, A, > 0, and 0 < 0, < 6. If (24, Yx)
is not a stationary point of f, then there exists a neighborhood of (%, Y«, Ax,04,0), denoted N, =
N(Zs, Ys, A, 04, 0), and a positive scalar p. = p(@«, Ys, Ax, 04) such that for any (z,y,A,0,5) € N,
with A > Apin, 0< 0 <6, and >0

(4.18) J(@4,94) < [T, 90) — pa

holds for any successor (z4,y+, A, 04,04) of (z,y,A,0,0).

12



Proof. We give a proof by contradiction. Assume that the theorem does not hold. Then there
exists a sequence {x, Yk, Ak, 0k, Br}, with 0 < o1, < 6 and F; > 0, converging to (2., ¥x, Ax, 04, 0),
a sequence {pr} converging to zero, and a sequence {(Zg+,Yk+, Dk+,0k+, Okt )} of successors of
(zk, Yk, Ak, Ok, Br), such that

(4.19) T(@ht, Ye4) > f(@0,9) — pi

holds for all k. Therefore, for all k, there exists and ¢; € (0, 1] such that
(Trt Y+ ) = (T, Y) + ek, k)

satisfies (4.19). Because (z,+,yk+) is a successor of (z,yx), we have

Fopp,yee) < flog,u)+a

(4.20) /
1 F(zrs yr) + e F' 2k, yr ) ur, villa — | F (28, yr)|lal -

;From (4.19) and (4.20) we obtain

f(fU*y?J*)—Pk < f($ka’yk)+61

(4.21
F(zks yr) + b (2k, yr )k, vklla = || F(2ks yr)||a]-

The sequence {({x, uk,vr)} is bounded. Let (I, u., v.) be any accumulation point of such a sequence
where, by theorem 4.1, ¢, > 0. We obtain from (4.21) that

(4.22) [ F (2, ) + L (2 y) (s 00)[|la = ([ F (2, ) [la > 0
Let us set
Gu(t) = (| F (2, ) + LF (@, o) (U 0 -

;From (4.22) we obtain

$(0) < du(ts)
and since ¢, is convex and 0 < ¢, < 1, we have necessarily

$+(0) < (1),
or equivalently
(4.23) [F (2w y)lla < [F (@ 9) + F (2, ) (s 0) o -

On the other hand we obtain from Theorem 4.1 that (u.,v,) is an exact minimizer of the local
model trust-region subproblem (4.5), which, together with (4.23), implies that zero is a solution of
13



subproblem (4.5). Therefore, we obtain from Theorem 2.1 that (z., y.) is a necessarily a stationary
point of f, which contradicts our hypothesis. O

Finally, in the following theorem, we demonstrate that the inexact trust-region feasible-point
Algorithm (ITRFP) described in Section 3 is globally convergent.

THEOREM 4.4 Consider a continuously differentiable function F : IR™ x R™ — IR™ x IR™.
Let || ||o and || ||p be arbitrary (bul fized) norms respectively on IRP and IR™ x IR™, let f(z,y) =
| F(z,y)||a, and finally let (zo,y0) € R™ X R™ satisfy yo > 0. Assume that
i) the sequence {0} converges to zero, and
it) the inequality 0 < o, < 6 < 1 holds for all k.

Then any accumulation point of the sequence {(zk,yr)} generated by the ITRFP algorithm of
Section 3 using (xo,yo) as initial iterate is a constrained stationary point of f.

Proof. Let (z.,y.) be an accumulation point of the sequence {zj,yr} generated by the algo-
rithm. Without loss of generality (by considering a subsequence if necessary), we can assume that
the sequence converges to (z, yx), and hence the sequence {(z, yx, Ak, 0k, Bx)} can be assumed to
be bounded. Let {(z;,y;,A;,0;,5;)} be a subsequence that converges to (z, y«, Ay, 04, 0). Because

the sequence {f(zk,yr)} is decreasing, we have
f($]7yj)<f(xk7yk) V]Zka VkEIN,
which implies that

(4.24) flee,ye) < flog,ye) Yk €N .

Suppose that (z.,y.) is not a stationary point of f. Since in (z.,ys, Ax,0x,0), (24, ¥x) is not a
stationary point of f, A, > 0, and 0 < o0, < &, we obtain from Theorem 4.3, there exists a
neighborhood N, = N. (2., y«, Ax, 04,0) and a positive scalar p, such that for any (z,y,A,0,0) €
Ny, with y > 0,8 > 0, and 0 < o < 6, the inequality

g, y1) < f(@a90) — ps

holds for any successor (z4,y+) of (z,y). Now since the sequence {(z;,y;,A;,0;,03;)} converges
to (2, Ys, Ax, 04, 0), there exists an integer j, such that (z;,y;,A;,0;,08;) € Ny for all j > j, and

hence

(4.25) J(@j41,9j41) < J(Tsy) — e V52 Js

Inequality (4.25) contradicts (4.24). Consequently, any accumulation point of the sequence {zx, yr}
generated by the algorithm in Section 3 is a stationary point of f = || F||,. O
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5. Convergence to a Solution of F(z) = 0. In this section we demonstrate that, under
rather weak hypotheses, the sequence of constrained residuals {F(zg,yz)} actually converges to
Zero.

THEOREM b5.1. Assume the hypotheses of Theorem 4.4. Also assume that there exisls a
bounded subsequence {(z;,y;),j € J CIN} and a constant 0 < n < 1 such that

(5.1) 1 (2, 95) + F'(2,95)(ug v5)lla < 0l F (255 95)la

holds for all j € J. Then any accumulation point (z.,y.) of the iteration sequence {(zk,yr)} is a
solution of problem (1.1). Moreover, the sequence of constrained residuals {F(zy,yr)} converges to
zero.

Proof. Let (., y.) be an accumulation point of the subsequence {(z;,y;),j € J C IN}. Without
loss of generality (by considering a sub-subsequence if necessary) we can assume that the subse-
quence converges t0 (Z.,y.). From Theorem 4.4, we obtain that (z,,y.) is a stationary point of f,

which implies that

(5.2) [E (2w g)lla < [[F (205 92) + F (24, 42 )0l

for all feasible direction w of problem (2.1). On the other hand, since {(u;,v;)} is bounded, we
can assume without loss of generality that it converges to, say, (u., v«). Therefore, inequality (5.1)

implies that

(5.3) 1E (@, y4) + F' (20, ) (s, v)lla < 0l E (2, 95) |-
Finally, from (5.2), (5.3), and 0 < 5 < 1, we obtain

(5.4) Fz.,y.) = 0.

This implies that the sequence of residuals {||F(zk,yx)||l«} has zero as accumulation point, and,
since it is decreasing, it converges to zero. O
REMARK. Condition (5.1) can be written as

(5.5) me(wg) < n mg(0)

where wy = (ug,vr). Because, first, at each iteration we minimize, within some tolerance (see
Definition 3.1), the local model trust-region subproblem LMTR, second, zero is a feasible point for
such minimization problem, and third, we are considering a constrained zero residual problem, the

assumption that (5.1) holds for a subsequence does not seem to be restrictive.
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6. Summary and Concluding Remarks. We have presented an inexact trust-region

feasible-point algorithm to solve the nonlinear system of equations and inequalities
(61) F(.T,y)IO, y=>0
where F': IR™ x R™ — IRP is continuously differentiable. The algorithm solves the model problem

minimize (; )errxrm (2, 9) | F(z, )

subject to Yy > 0,

(6.2)

where || ||, can be an arbitrary (but fixed) norm on IR?. It combines trust-region, feasible-point,
and linesearch strategies. At each iteration the search direction is obtained as an approximate

solution of the local model trust-region subproblem

minimize  mg(u,v) = | F(zk, ye) + F'(2r, yr) (4, v)]a
(6.3) subject to (1—op)yr +v >0
[, 0)ls <Ay,

where Ay > A, > 0 is the trust-region radius, 0 < o, < 6 < 1, and || ||, and || ||s are arbitrary
(but fixed) norms on IR? and IR™ X IR™ respectively.

In our formulation, we use arbitrary norms for the convenience of the presentation and the
seek of mathematical generalization. Motivated by the recent advances in the linear programming
research area, our goal is to use a polyhedral norm, ( especially || || = || |[tand || ||s = || ||« ), so that
the local model trust-region subproblem (6.3) can be formulated as a linear programming problem,
which would be adequate for large systems, and hence take advantage of the recent advances in
linear programming area. Also our formulation is adequate for cases where the Jacobian matrix F’
may be singular.

We have established, under rather weak hypotheses, that any accumulation point of the iter-
ation sequence is a stationarity point of f = ||F||,. We also showed that, under a weak forcing
condition, the sequence of constrained residuals converges to zero. Moreover, since we are consid-
ering a constrained zero residual problem, in practice the forcing condition will be satisfied as a
by-product of the local model trust-region subproblem minimization process.

We would like to thank Amr El-Bakry for his valuable and fruitful comments and suggestions.
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