The RUF 2.3 User Manual

Philip Keenan

CRPC-TR95538
March 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

The RUF 2.3 User Manual!

Philip T. Keenan?

March 1, 1995

!This research was supported in part by the Department of Energy, the State of Texas
Governor’s Energy Office, and project grants from the National Science Foundation. The
author was also supported in part by an NSF Postdoctoral Fellowship.

?Department of Computational and Applied Mathematics, Rice University, P.O. Box
1892, Houston, TX 77251-1892. WWW http://wuw.cs.rice.edu/~keenan/

Contents

1 Introduction
1.1 Whatis RUF?
1.2 Supported Platforms oo oo

2 The Single Phase Flow Equation

3 Input Commands

3.1 Mesh Specification Commands
3.2 RUF Commands
3.3 Arithmetic and String Variables
3.4 Argument Types
3.5 Boundary Conditions L o o
3.6 Variable Names for plot, write and norm
3.7 Labelsin plots
3.8 OQutput streams Lo
3.9 Flux Postprocessors for Triangles and Tetrahedra
3.10 Solver Preconditioners
3.11 Reference solution kinds L.
3.12 Stochastic Tensor Generation Methods
3.13 Tensor Averaging Methods
3.14 Transformations for variables in plot, write and norm commands

3.15 Colorranges L e
3.16 Solution Methods L
3.17 Parallel mesh distribution methods

4 Some Mathematical Details

5 Running the Programs
5.1 Command Line Arguments
5.2 Advanced Features L o
5.3 Sample Input Fileso oo

[\

oe]

11
12
12
13
14
15
15
15
16
18
18
19
19
19
20

21

Chapter 1

Introduction

This manual describes the user interface to RUF, the Rice Unstructured Flow pro-
gram. RUF solves scalar linear second order elliptic equations on general unstruc-
tured meshes in two or three space dimensions using mixed finite element methods
[1, 2, 3]. It is applicable to steady state flow calculations in porous media, such
as arise in petroleum reservoir simulation and groundwater contaminant modeling.
Extensions to nonlinear time dependent systems such as arise in multi-phase flow
and transport are under development.

Version 2.3 uses the kScript application scripting language [8] as the user inter-
face programming language. It also supports stochastic tensor coeflicient fields and
averaging methods, and Robin (Type III) boundary conditions. Version 2.0 added
parallel computation and support for domain decomposition algorithms. Version
1.0 included many features including a command based user interface, full tensor
coeflicients, general boundary conditions, and general reference solutions for doing
convergence studies, and general unstructured meshes.

1.1 What is RUF?

RUF models the flow of fluid through a porous medium. It can be applied to the
study of both petroleum reservoirs and groundwater aquifers. RUF models single
phase flow; future programs are planned which will handle multi-phase, multicompo-
nent flow and transport. Reservoirs and aquifers are modeled geometrically as a grid
or mesh consisting of polygonal or polyhedral elements. Unlike some models which
require rectangular or brick elements arranged in a two or three dimensional lattice,
RUF allows using unstructured meshes in which elements of a variety of shapes may
be combined without restriction. In particular, it supports tetrahedral elements in
three dimensions, as well as hexahedra and bricks, and triangular elements in two
dimensions, as well as quadrilaterals and rectangles.

RUF has a number of other features. It handles general boundary conditions. It
allows general permeability tensors, not just diagonal ones. It can refine the meshes
it builds. It can set up test problems with known analytic solutions from a wide
range of polynomial and non-polynomial reference solutions. It can output text or
graphics files describing the mesh, the solution, the gradient and the flux; and when
using a known reference solution it can also compute and plot errors and their norms.
It allows wells to be represented directly as sources or sinks within elements; one can
also use face boundary conditions to model a variety of wells. RUF also includes
a flux postprocessor for triangular and tetrahedral elements, which increases the
accuracy of the computed fluxes on unstructured meshes, as described in [6, 4].

RUF uses a very simple mesh geometry input language. While simple meshes
can be constructed by hand, RUF is intended to be used in conjunction with a
commercial mesh generation package. Any package will do, as long as its output
mesh description can be translated into RUF’s input format. The problem of chop-
ping up a general unstructured mesh in an optimal way for parallel computation is
a very difficult one computationally. In parallel settings RUF therefore expects a
commercial mesh generator to supply an already chopped mesh, or else chops the
mesh itself in a quite simplistic way.

1.1.1 Disclaimer

RUF is a research tool, not a commercial product. It is made available to other
researchers subject to the following restrictions and disclaimers.

Copyright (C) Philip Thomas Keenan and the Subsurface Modeling
Group at Rice University, 1994, 1995. All rights reserved. No portion of
this document or program may be reproduced, transmitted or otherwise
copied without prior written permission of the copyright holder. The
author makes no representations or warranties about the correctness of
any program code or documentation in this or any other document or
program file, nor about the correctness of the executable program or
its suitability for any purpose, and is in no way liable for any damages
resulting from its use or misuse. Any program source code made available
is for non-commercial use only, and is subject to the same restrictions
on copying and modification. Modified versions must cite the original
author and include a disclaimer stating the modified nature of the code.

Moreover, any publications, technical reports or other research which
incorporates results from, or is based on or extends, RUF, kScript, or the
Keenan C++4 Foundation Class Library, must include acknowledgment
and citation of the appropriate manuals, including this one. The author
also requests that such projects be undertaken as joint collaborations

with him.

The user interface to this program was built with ‘kScript’, a flexible
user interface generator and application scripting language, which is part
of Philip T. Keenan’s C++ Foundation Class Library.

While RUF has been extensively tested on hundreds of convergence studies with
all sorts of meshes and other options, it is entirely possible that bugs remain. Bug
reports may be sent to the author at keenan@rice.edu, but there is no promise that
they will be fixed — the author must primarily concentrate on publishing papers so
he can get tenure, so he is currently unable to provide support for the program.

1.2 Supported Platforms

RUF is written entirely in C++ and builds on the Keenan C++ Foundation Class
Library, which is subject to the same terms and conditions as RUF. In the experi-
ence of the author [5], C++ currently provides a powerful and efficient mechanism
for writing highly complex software for scientific computation. The resulting code is
very portable and has been run on a variety of machines including Sun Sparc work-
stations, IBM RS6000 workstations, the Intel Hypercube and the Intel Paragon.
The last two machines mentioned are distributed memory parallel supercomputers;
RUF can read parallel mesh specifications, or distribute a sequential mesh (in a sim-
plistic way) across multiple processors, to achieve substantial speedups in a parallel
environment.

RUF does not require a native C++ compiler for the target machine: after using
the standard cfront C++ to C translator, the resulting C code can be compiled on
any machine with an ANSI C compiler.

On many modern machines C/C++ and FORTRAN achieve the same level of
efficiency in numerical computation [5]. However, in the event that you wish to
run on a machine for which the manufacturer did not put the same effort into the
C compiler as the FORTRAN one, the Keenan C++ Foundation Class Library
allows you to represent vectors and matrices in FORTRAN format, so that you can
link with any previously developed FORTRAN linear algebra routines you wish.
Indeed, FORTRAN and C/C++ can be mixed throughout the code, subject to the
restriction that FORTRAN only understands very simple data structures and will
therefore have a hard time with the trees and other pointer based data structures
found in much of RUF.

RUF has been written in a modular style which should be easy to extend and
modify. However, this manual addresses only the user interface and does not attempt
to describe the source code itself. The user interface is flexible enough to describe
a wide variety of application scenarios.

Chapter 2

The Single Phase Flow
Equation

RUF 2.3 consists of a series of libraries which may be linked to form four executable
program versions. The choices are between 2-D and 3-D, and between the hybrid
mixed finite element method and the extended mixed finite element formulation.

The programs all use the lowest order Raviart-Thomas approximating spaces,
just like the cell centered finite difference method when that is viewed as a mixed
method with quadrature.

The programs are otherwise identical and build on a substantial C4++ library
of tools for partial differential equations, general geometry, linear algebra and user
interfaces. The various numerical methods are defined in detail in [1, 2, 3], which
also presents numerical examples and explains which methods are preferred. RUF
1.0 [7] included versions for the saddle-point formulation of the mixed finite element
method, which has been dropped in subsequent versions because it is too inefficient.
The stencil version in RUF 1.0 is now part of the enhanced or extended version in
RUF 2.3.

All the versions solve the scalar linear elliptic partial differential equation

V- (K(x)Vp(x)) + a(x)p(x) = f(x), x€ Q.

In two dimensions, € is a two dimensional polygonal region defined by triangles,
rectangles and quadrilaterals; in three dimensions it is a polyhedral region defined
by tetrahedra or by hexahedra and bricks. 2 need not be convex; it also need not
be simply connected; for instance wells may be represented as actual holes drilled
in the domain.

a is a non-negative function of position. K is a symmetric positive definite
tensor function of position. The scalar p represents a potential and is called pressure;
u = —KVpis called velocity. If n is a unit normal to an edge then u - n is called

the normal flux across the edge in the direction of the normal. On each external
boundary edge, one of the following three boundary conditions must be supplied:
either a scalar boundary condition

p(x) = po(x),

or a flux boundary condition

u(x)-n = go(x),

or a mixed boundary condition

u(x) - i = go(x)(p(x) = po(x))-

Note that all three types of boundary conditions may be mixed throughout the
boundary of 2. The boundary functions pg and gg, the coefficient tensor K, and
the source/sink function f must all be specified. The programs also allow “wells”
to be specified as point sources and sinks within elements.

Chapter 3

Input Commands

The user interface reads commands from a kSecript input file. kScript is a com-
plete programming language with comments, numeric and string variables, looping,
branching and user defined commands. It includes predefined commands for online
help, include file handling, arithmetic calculations and string concatenation, and
communication with the UNIX shell. Applications can define additional commands
and objects which enrich the vocabulary and power of kScript.

For a complete introduction to kScript, see the kScript User Manual [8]. The
present manual primarily discusses those additional commands and objects defined
by RUF.

For complete and up-to-date lists of commands and objects, run the program to
access on-line help. Type

help

to get started.

Commands specific to RUF are listed below. Each command’s name is followed
by a list of arguments. Most arguments consist of a type name and a descriptive
name, enclosed in angled brackets. These represent required arguments that must
be of the stated type.

Arguments enclosed in single square brackets are optional prepositions. They
can be used to create English sentence-like scripts which are easy to read, or they
can be omitted with no change in the meaning of the script. Sometimes several
alternatives are listed, separated by a vertical bar.

Arguments enclosed in double square brackets are optional keywords which do
change the meaning of the script if they are supplied. Arguments enclosed in triple
square brackets are lists of alternative keywords, exactly one of which must be used.
Occasionally, triple square brackets contain type names rather than literal keywords.

In kScript, a space-delimited sharp or pound symbol comments out the rest of the
line on which it occurs. Mathematical expressions must be written with no internal

spaces. String expressions must either have no internal spaces or be enclosed in

curly braces. In all other contexts, white space (spaces, tabs, line breaks, and so

on) serves only to delimit commands and their arguments.

3.1

3.2

Mesh Specification Commands

v <char* name> <double x> <double y> <double z>
Define a vertex by its coordinates.

e <char* name> <char* id1> <char* id2>

Define an edge by its vertices.

tri <char* name> <char* id1> <char* id2> <char* id3>

Define a triangle by its edges.

rect <char* name> <char* id1> <char* id2> <char* id3> <charx*
id4>
Define a rectangle by its edges.

quad <char* name> <char* idl1> <char* id2> <char* id3> <char*
id4>
Define a quadrilateral by its edges.

tetra <char* name> <char* id1> <char* id2> <char* id3> <char*
id4>
Define a tetrahedron by its faces.

brick <char* name> <char* id1> <charx* id2> <char* id3> <char*
id4> <char* id5> <charx* id6>
Define a brick by its faces.

hexahedron <char* name> <char* id1> <char* id2> <charx id3>
<charx* id4> <char* id5> <char* idé6>
Define a hexahedron by its faces.

RUF Commands

overlap <intArray procNumbers>
Specify the set of processors sharing subsequent mesh objects. The first
one listed is the owner for subsequent elements. The first two listed are
the owner and other for subsequent faces; use -1 for the other on exterior
boundary faces.

endOverlap
This must end each overlap section.

distribute <distributionMethod* method>
As an alternative to using the overlap command, use this command after
globally reading a coarse mesh, to create a default processor assignment
to elements.

pad [by] <int nlLevels>
After calling distribute and possibly subdividing, call pad to specify 0 or
more layers worth of padding for each processor’s subdomain.

bndy <bndyConds* bc> <mathExpr value>
Select the type of boundary condition to impose on subsequent faces.

setBndy [of] <stringExpr faceName> [=|to] <bndyConds* bc>
<mathExpr value>
Modify the boundary condition for a given face.
pin
If when using all flux boundary conditions, the solver does not converge,
use this command to set one boundary to scalar=0.

unpin
This clears the effect of the pin command. Do this before subdividing
a pinned mesh, otherwise after subdivision, multiple faces will share the
scalar=0 condition.

force [by] <mathExpr value>
Specify a right-hand-side forcing value for subsequent elements.

setForce [of] <stringExpr eltName> [to|=] <mathExpr value>
Modify the right-hand-side forcing value for a given element.

alpha [is] <mathExpr value>
Specify a lowest-order-term coeflicient value for subsequent elements.

setAlpha [of] <stringExpr eltName> [=]|to] <mathExpr value>
Modify the lowest-order-term coeflicient value for a given element.

tensor [is] <doubleArray tensor>
Specify the components of the symmetric coefficient tensor for subsequent
elements.

setTensor [of] <stringExpr eltName> [to|=] <doubleArray tensor>
Modify the components of the symmetric coefficient tensor for a given
element.

subdivide <mathExpr N> [times]
Globally subdivide the mesh N times.

solve
Solve the partial differential equation.

solnMethod <solnMethods method>
Select a solution method.

preCond <preconditioners method>
Select a preconditioner.

postProc <postprocessors method>
Select a method for postprocessing fluxes.

colorRange <ranges* r>
Select the range of values to show in color.

plot <transforms* t> <colorVariables* var>
Append a plot of the specified variable to the plot file.

write <transforms* t> <colorVariables* var>
Append transformed values to the log file.

norms <transforms* t> <colorVariables* var>
Append norms of the indicated variable to the log file.

up
Go up one level to a coarser mesh solution.

down
Go down one level to a finer mesh solution.

averageTensor <tensorAveragingMethod* ave>
Use the finer mesh solution to construct an averaged permeability tensor
at the current mesh level.

stochastic <stochasticMethod* method>
Stochastically generate a tensor coefficient field.

label <labels* obj>
(2-D only) Label the specified top level objects in the current plot.

plotCommands <stringExpr text>
(2-D only) Append low level kplot commands to the plot file.

redirect <outputFiles* file> [to] <stringExpr newFileName>
Redirect an output file. Use ‘-’ to restore the original output file as spec-
ified on the command line.

10

refSoln <refSolnKinds* kind> <intArray maxIndices> <doubleArray
coefficients>
Specify a reference solution.

info
Print information about this program.

showState
Print the internal state variables in input format.

dump
Print the internal solution arrays.

well <stringExpr name>
Define a well. Use the wellHelp command for detailed information, since
well definitions depend on the kind of PDEs being solved.

wellHelp
Explains how to define wells in the context of this program. Well defini-
tions depend on the kind of PDEs being solved.

3.3 Arithmetic and String Variables

Many commands take arithmetic or string expressions as arguments. Math ex-
pressions can mix numbers, arithmetic and logical operators, and symbolic names.
String expressions are enclosed in curly braces and can expand references to other
string or numeric variables by preceding their names with a percent sign. Symbolic
names can represent constant or variable values. Predefined ones are listed below;
users can define additional ones using the define and set commands.

verbosity
0, 1, 2, ... produce increasingly detailed debugging information.

dimension
The number of space dimensions. (Constant)

iterRelTol
Relative error tolerance to use as stopping criterion in iterative solution
processes.

nElts
The current number of elements in the global mesh. (Constant)

nFaces
The current number of faces in the global mesh. (Constant)

11

1Elts
The current number of owned elements in the local mesh. (Constant)

1Faces
The current number of owned faces in the local mesh. (Constant)

nProc
The number of processors running the application. (Constant)

use_quadrature
If true, use the trapezoidal rule on rectangles, quadrilaterals, hexahedra
and bricks, in the tensor inner product; otherwise use exact integration.

Currently, the mesh element and face counts are only available after a solve
command. Future versions may make the subdivide command update them as
well.

3.4 Argument Types

The formal argument types in command descriptions generally correspond to C++
classes. The actual argument must be in the correct format for the specified
type. For an explanation of the syntax for a particular type X, use the command
describe type X. The command

describe all types

will list all of the type names for which on-line help is available. Some of these
types are keyword types, which are lists of alternatives. These are described in the
following subsections.

3.5 Boundary Conditions

An argument of type bndyConds can take any of the following values.
scalar
p0 : Type I (Dirichlet) condition: p = p0.
flux
g0 : Type II (Neumann) condition: u*n = g0.
mixed

k, p0: Type III (Robin) condition: u*n = k(p - p0).

In the expression u*n, n is the unit outward normal to 0€2. In plots of boundary
conditions, scalar faces are colored according to pg, flux faces have a normal vector

12

drawn from their center with length based on gg, and mixed faces do both, with the
face colored by pg and the vector based on the case where p — pg = 1.

3.6 Variable Names for plot, write and norm

An argument of type colorVariables can take any of the following values.

mesh
This draws the mesh.

edges
2-D only: This draws the mesh edges in black.

measure
The measure (area or volume) of each element.

map
The determinant of each element’s map to the reference element.

regularity
For each element, the shortest edge length divided by the longest.

bndy
The boundary conditions on each face.

force
This displays the forcing term value for each element.

alpha
This displays the lowest order coefficient value for each element.

stoch
The stochastic value for each element.

tensor
The determinant of the coeflicient tensor for each element.

tensoril
The 1,1 entry of the tensor.

tensori2
The 1,2 or 2,1 entry of the tensor.

tensor22
The 2,2 entry of the tensor.

tensori3
The 1,3 entry of the tensor in 3-D.

13

tensor23
The 2,3 entry of the tensor in 3-D.

tensor33
The 3,3 entry of the tensor in 3-D.

scalar
The scalar solution at the element center.

gradient
The gradient of the scalar solution: a vector at the element center.

flux
The flux: the tensor coeflicient times the gradient: a vector at the element
center

normalFlux
The normal component of flux across each face: a vector at the face center.

divergence
The divergence of the flux.

There is also an owner color variables which can be used to display the owning
processor number of each element in a parallel mesh distribution.

3.7 Labels in plots

An argument of type labels can take any of the following values.

vertices
Vertex names.

edges
Edge names.

faces
Faces names.

boundary
Boundary faces only.

elements
Flement names.

wells
Label wells.

14

Note: a label may be optionally preceded by a processor number, in which case
only that portion of the mesh seen by that processor will be labeled. When a mesh
is parallelized with the distribute and pad commands, however, any label commands
must be executed before the pad command, so the owner color variable should be
used instead to determine element ownership.

3.8 Output streams

An argument of type outputFiles can take any of the following values.
plot
The plot file.

log
The log file.

out
The standard output.

3.9 Flux Postprocessors for Triangles and Tetrahedra

An argument of type postprocessors can take any of the following values.
none

Use the ordinary RT-0 fluxes.

12
Use the Keenan-Dupont linear least squares flux postprocessor.

12 div
Use the Keenan-Dupont divergence preserving linear least squares flux
postprocessor.

Other postprocessors may be defined as well; consult the online documentation
for complete details.

3.10 Solver Preconditioners

An argument of type preconditioners can take any of the following values.

none
No preconditioning.

inherit
Use the previous coarser mesh solution as an initial guess.

15

Other preconditioners may be defined as well; consult the online documentation
for complete details. Some preconditioning methods may be experimental in concept
or implementation.

3.11 Reference solution kinds

An argument of type refSolnKinds can take any of the following values.
poly
Sum of polynomials, like Taylor series.
trigSum
Sum of trigonometric functions, like Fourier series.

trigProd
Sum of products of trigonometric functions.

bump
Sum of bump functions on an integer lattice.

exp
Sum of exponential functions.

property
Use the supplied mesh properties to determine the forcing term, coeffi-
cients and boundary data. No analytic reference solution is used.

user
Use user defined functions for the forcing term, coefficients, boundary data
and reference solution.

approx
This uses the finest mesh solution as the reference solution. Use the ‘up’
command to move to a coarser mesh before calling ‘norm’.

The user case only works if user defined coefficient functions have been written
and linked into the code. The property case makes the forcing term f a piecewise
constant function defined by the element property values, and makes the boundary
functions pg and go piecewise constants defined by the property values of boundary
faces.

In addition to being used when the user reference solution has been chosen,
externally linked user defined reference solution subroutines are called to provide
reference solution values when the property solution is selected, so that the user may
supply approximate analytic solutions for comparison. The user solution module

16

includes a hook for posting additional commands or variables to serve as parameters
to these functions.

The array arguments to the refSoln command are omitted for the property and
approx cases. To use the approx choice, first select another reference solution type
so that appropriate boundary conditions (and right hand side function) are avail-
able during execution of the solve command. Then switch to the approx method
before computing norms. The approx case compares the coarse mesh solution on
an element or face to the average of the corresponding solution values on the finest
available mesh.

The remaining cases, listed below, specify an analytic solution of the form (writ-
ten here for n space dimensions)

ky kn
p(z1,. .. a0) = Z Z Ciyoviin fiy.in (T15 1 T

11 =0 in=0

Here f is a primitive function selected by name:

poly
fil...in('r17 .. '7wn) - H .’Eklk
k=1
trigSum
Jirin (@1, 25) = co8 (E lkﬂik) :
k=1
trigProd
Jiy (@1, zn) = H cos (1xx) -
k=1
bump
n -1
Jiy i (T1, 0y 2p) = (1 + > (2 - ik)Q) .
k=1
exp

k13
Jirin (@150, 2y) = exp (E ikwk) :
k=1

The second argument to the refSoln command is the array of maximum indices
{k1...kn}. The coeflicients ¢;, ;
the refSoln command, as a linear array, ordered lexicographically, as in the nested

are supplied by the second array argument to

n

loop sequence

17

for i1 = 0 to ki
for i2 = 0 to k2

for in = 0 to kn
read c(il,...,in)

3.12 Stochastic Tensor Generation Methods

An argument of type stochasticMethod can take any of the following values.
prepare
This should be used first, and after any subdivision, to ensure each element
has its own stochastic value and tensor to adjust.

scalar

mathExpr : This adjusts the stochastic value of each element using the
supplied formula. You can use ’'x’, 'y’, and ’z’ as the element center
coordinates, and ’val’ for the current stochastic value,

tensor

mathExprll mathExprl2 ... mathExprNN : This adjusts the tensor value
in each element. The 3 (in 2-D) or 6 (in 3-D) formulas define the entries

of the symmetric tensor and can use the same variables as in the scalar
case.

3.13 Tensor Averaging Methods

An argument of type tensorAveragingMethod can take any of the following values.

arithmetic

Arithmetic average.
multiplicative

Multiplicative average (pseudo geometric mean).
kw

The new Keenan-Wheeler averaging method.

Tensor averaging methods, also known as up-scaling or homogenization methods,

are a focus of current research. Consult the on-line documentation for possible
additional methods.

18

3.14 Transformations for variables in plot, write and
norm commands

An argument of type transforms can take any of the following values.
id
This is the default. No transformation is applied to the computed solution.

ref
Use the reference solution rather than computed solution.

err
The error = computed - reference solution.

relErr

The relative error = (computed - reference)/reference.

abs
The absolute value.

logl10Abs
The base-10 logarithm of the absolute value.

The transforms argument to the plot, write and norms commands is optional
and defaults to id. Moreover, two transforms may be given instead of one, if the
combination makes sense. For example,

abs err

yields the absolute error in whatever color variable is specified.

3.15 Color ranges

An argument of type ranges can take any of the following values.

auto
The full range present in the data is used.

range
min max : Values outside this range are converted to black.

3.16 Solution Methods

An argument of type solnMethods can take any of the following values.

default
The default method for this program.

19

Other solution methods may be defined as well; consult the online documentation
for complete details. For instance, the enhanced method defines three solution
methods which control which faces receive Lagrange multipliers (see [1] for details).

all-faces
Use multipliers on all faces.

top-level
Use multipliers on top level mesh faces, and their refinements, only.

external
Use multipliers on external boundary faces, and processor subdomain
boundaries, only.

3.17 Parallel mesh distribution methods

An argument of type distributionMethod can take any of the following values.

block
Assign elements to processors in large blocks by index.
cyclic
Assign elements to processors by taking indices mod the number of pro-

CeSSsors.

Programmers can add custom mesh distributions easily, simply by supplying a
function mapping elements to processor numbers.

20

Chapter 4

Some Mathematical Details

This section summarizes the hybrid formulation of the mixed finite element method
and its implementation in RUF. For a more in-depth treatment of both the hybrid
and enhanced methods, see [1].

The programs solve the elliptic partial differential equation

=V (K(x)Vp(x)) + a(x)p(x) = f(x), xe,

with boundary conditions

p(x) = po(x), x € Iy,
u(x)-n = go(x), x€ Iy,
u(x) - i = go(x)(p(x) — po(x)), x € 1,

where the three boundary subsets partition all of Q2. Here u = —K'Vp.

Let (-, -) denote the L? inner product on Q, and < -, > the L? inner product on
09).

Multiplying by suitable test functions, integrating, applying the divergence the-
orem, one has the system:

(K~'a,v)=(p,V-v) =< p,v-n >,
(V- uw) = (f,w).

Under appropriate assumptions, this system of equations is equivalent to the
original partial differential equation. In particular, p € L% and u € H(div), the
system is equivalent provided it holds for all v € Hg(div) and all w € L2. Here
Ho(div) = {v € H(div) : v-n = 0 on 0Q; U 0Qqrr}. Thus the term < p,v-n >
becomes < pg,v -0 >aq,,.

21

Now let {w, : e € E} be a basis for a finite dimensional subspace of L%, and
{V/f : f € F} be a basis for a suitable corresponding finite dimensional subspace of
H(div). In RUF 2.3 we use the lowest order Raviart-Thomas spaces corresponding
to a decomposition of into mesh elements, so E is the set of elements, F is the set
of faces, the w, are piecewise constants element by element and the V} are certain
discontinuous piecewise linear vector functions with continuous normal components
across element faces. The support of w, is the element e, and the support of V}
consists of the at most two elements sharing face f.

To describe the hybrid formulation of the mixed finite element method we also
introduce basis functions uy which piecewise constants on faces; the support of py is
face f. Next, we define a preferred normal direction to each face, and say that each
interior face consists of two semi-faces, one for each element on either side of the
face. We then define basis functions {v, : s € 5}, where S is the set of semi-faces.
Each v is the restriction to e of V}, where semi-face s is on the element e side of
face f. These new basis functions have support in only one element each, and are
fully discontinuous.

We write [v, - 0] to mean the jump in the normal component of v, across face
f. We also let Fy be the set of interior faces, and Fy, Fy, F3 the sets of type I, 11,
and III boundary faces, respectively.

In the hybrid formulation, the unknowns are

U=> Uv,

sES
P=>" Puw.,
ecly
and
A= Asug
feEF

The unknown coefficients Uy, P, and Ay must satisfy

(K7'U,v,) = (P,Vvy) = > < A [v,-d]s >,
feF
for all s € 9,
(V : U7we) + (aP, we) = (f7 we)7
forall e € F,

< [Uﬁ]vluf >5=0,

for all f € Fy,
As = po(f);

22

for all f e Fy,
<U ﬁv:uf >r=<go, iy >f,
for all f € F3, and

<U-n,pup>5 — < goA, py >=< gopo, s >7,

for all f € F3.

In matrix form, this discrete system takes the form

MU~ BP + L\ =0,
BT'U +AP=F,
LTU 4+ G\ = Gy,

and
Ab = Po,

where L, denotes the columns of L that are not associated with type I boundary
faces, and A, denotes the rows that are associated with type I boundary faces.
Note that G5 and G3 have non-zero entries only in association with Type II or II1
boundary faces, respectively.

One can eliminate all the unknowns except Ay, which results in a sparse, sym-
metric and positive definite system for the Ay, which can be solved using for instance
Conjugate Gradients.

For additional details and a description of the relationship between mixed finite
element methods and cell centered finite differences, see [1].

23

Chapter 5

Running the Programs

5.1 Command Line Arguments

Executing a command like
elliptic_hybrid_2d -usage

will bring up a complete list of the command line options and C-shell environ-
ment variables used by the program. In particular, the -echo option displays input
commands as they are processed, which may help with debugging input files. The
standard command line is

elliptic_X_Nd inputFileName plotFileName logFileName

Using - in place of a file name makes the program read from the keyboard or
send output to the screen, which also happens if the output files are omitted. Two
dimensional versions of RUF write graphics files suited for display with Phil Keenan’s
kplot program, which runs under X-11/Motif on workstations; three dimensional
versions write graphics files designed for Wavefront’s commercial Data Visualizer
program, which runs on Silicon Graphics machines. Both kinds of graphics files are
simply text files in a straightforward format, so user conversion for other display
programs should be possible. Moreover, the write command provides an easy way
to write out the solution in numeric form, which (at least when using rectangular
grids) can then be imaged using commercial products such as Matlab.

5.2 Advanced Features

5.2.1 Parallelizing Mesh Descriptions

This section explains how to take a sequential mesh description and decompose it
for use with RUF 2.3 for computation on a parallel architecture.

24

There are two ways to decompose the mesh. The easy way is to use the
distribute and pad commands. This requires that the top level (coarsest) mesh
be small enough that a complete copy fits on each processor. The distribute com-
mand then assigns each element to a unique “owner” processor, currently in a very
simplistic way. The pad command then deletes all mesh objects on a given processor
not needed for that processor’s subdomain, which is the owned elements plus any
padded ones plus supporting faces, edges and vertices. The result is reasonable for
experimentation, but the subdomains may be far from optimal in terms of surface
to volume ratio, so this is mainly for simple cases and timing studies.

The number of layers of padding to use depends on the solver algorithm. In
RUF 2.3, none of the solvers require an overlap region and some might fail if one is
used, so pad O is the appropriate command. Future versions may incorporate other
preconditioning schemes or solver algorithms which do require additional levels of
padding.

The harder, but more general, way to specify a parallel mesh requires the user (or
mesh generator) to determine what the subdomains should look like. The program
is then informed of the decomposition through the overlap command. The overlap
command is used on vertices, edges, faces, and elements to tell the processors which
ones need to pay attention to the following objects, until a matching endOverlap is
encountered.

To understand arbitrarily overlapping subdomains, first picture the complete
mesh, with each element assigned to a unique processor called its “owner”. Every
face has two element neighbors, unless it is on the external boundary of the domain
Q. We look at the processors which own the neighbor elements and use the smaller
as the face’s owner. The other (or -1 for external boundary faces) is not surprisingly
called the face’s “other” processor.

The convention for element definitions is that the first processor in the overlap
command’s list is the owner. Any additional processors in the list simply get a copy
of the element in their overlap region.

The convention for face definitions is that the first two processors in the overlap
command’s list are the owner and the other processor for the face, respectively. Any
additional processors in the list simply get a copy of the face in their overlap region.
If only one processor is listed, or if the first two processor numbers are identical, the
face is an interior face for that processor’s owned region. If the second processor
number is -1, the face is an exterior boundary face.

Example: Non-overlapping subdomains

Both mechanisms are general enough to handle both overlapping and non-overlapping
subdomains. With distribute and pad, all processors know the global layout. With

25

overlap, the user must ensure that each processor builds all the objects in its subdo-
main, and can determine the connections between subdomains. That is, the owner
of each element, and the owner and other of each face, must be known to every
processor which shares a given element of face.

Here is a very simple 2 triangle mesh in which each element is in exactly one
subdomain. Interface faces are in exactly two; all other faces are in exactly one.

overlap { 0 }
va-10
endOverlap
overlap { 0 1 }
vbOol1
vecoO-1
endOverlap
overlap { 1 }
vd1lo
endOverlap
overlap { 0 -1 }
e ab a b
e ac a c
endOverlap
overlap { 0 1 }
e bcbc
endOverlap
overlap { 1 -1 }
edbdb
e dc dc
endOverlap
overlap { 0 }
tri abc ab bc ac
endOverlap
overlap { 1 }
tri dbc db bc dc
endOverlap

The mesh is illustrated in Figure 5.1. The distribute/pad version is much
shorter: remove all overlap/endOverlap commands, and at the end append
distribute block pad 0. Note that for a large mesh, the overlap commands will
take up a much smaller fraction of the input file than they appear to here.

26

Figure 5.1: Non-overlapping mesh decomposition

27

5.2.2 Running Multiple Scenarios

RUF allows related multiple scenarios to be run from within the same input file.
While unrelated scenarios can always be handled by a shell script which repeat-
edly runs the program, running related scenarios together offers some advantages,
primarily related to doing convergence studies.

A typical convergence study looks like this: one defines a coarse mesh and chooses
an analytic reference solution. Omne then subdivides the mesh, solves the PDE,
computes norms of errors, and repeats several times. This is straightforward to do
with RUF, as the repeat, subdivide, solve and norms commands work exactly as
one would expect in implementing this construction.

In addition, however, RUF allows more complex collections of scenarios. This
section explains what kinds of scenarios can be run together.

Related scenarios must use the same domain 2. In particular, once subdivide
has been called, no further changes in the domain are allowed: commands such as v,
e, tri and rect cannot be used once the mesh has been subdivided. This ensures
that all levels of the mesh correspond to the same domain, thereby allowing one to
compare solutions obtained at different levels of refinement.

Coeflicient and boundary data are propagated by the subdivide command and
so should generally not be changed thereafter, except by using the pin, unpin, and
averageTensor commands. Otherwise the changes may propagate further, or less
far, than you expected. Of course, user defined reference solutions and coeflicient
functions can always be used to provide complete control.

The subdivide command applies to the finest mesh yet constructed and refines
it, making the result the new current mesh. The solve command applies to the
current mesh. The up and down commands change the current mesh, allowing one
to solve on a coarser level after having created a finer one. This is useful in studying
effective parameters, such as the averaged tensor coeflicient, in which fine scale data
is averaged up to coarse scale values.

The approx reference solution choice uses the finest solution available as the
reference solution. We say “available”, because one can create intermediate mesh
levels with subdivide without necessarily calling solve on each one. The up and
down commands are used to select the coarse grid.

The inherit preconditioning method uses the solution from the mesh one level
up, if available, as the initial guess for the solver on the current mesh, thereby
speeding up convergence in the iterative solver.

The plot, norms, and write commands all apply to the solution corresponding
to the current mesh; it is an error to call these functions if there is no solution
attached to the current mesh, except when plotting the mesh itself.

The selected postprocessor only impacts plot, norms, and write commands

28

involving the vector flux variable. Thus it can be repeatedly adjusted to observe the
impact of different postprocessing methods on the same solution.

5.2.3 Generating Stochastic Tensor Fields

The stochastic command family enables one to define very general stochastic
tensor fields. The basic model is as follows. Each element stores a tensor coeflicient
K and a stochastic value s. Initially, groups of elements share common values of
the tensor as set by the tensor and setTensor commands, with the identity tensor
as the default. The command

stochastic prepare

ensures that each element gets its own independent copies of K and s to work with.
The command

stochastic scalar normal(0,1)

assigns a standard normal variate to each s value — a different one for each element.
The command

stochastic scalar exp((val>0)*val)

sets all negative s values to zero, and then exponentiates the result. One can also
refer to the element’s center coordinates in the formula as x, y, and z. Finally, the
command

stochastic tensor val 0.1%val 2%val

in the two space dimensional setting creates a tensor field; on each element, the
tensor will look like

v 0.1v
T = ;
0.1v 2w
where v is the scalar stochastic value constructed by the previous commands. Again,
one can use X, y, and z in the formulas to define non-stationary fields.

If you now subdivide the mesh, the K and s values are inherited, providing
a certain amount of local correlation in space. Alternatively, one can repeatedly
subdivide, prepare, adjust the scalar, and subdivide again, until the scalar field has
the required spatial statistics; then construct the corresponding tensor field. The
tensor field formulas can contain calls to the normal function, or any other kSecript
mathematical function, as well.

The averageTensor command produces effective tensor coefficients on a coarse
mesh from data on a finer scale. It is experimental and is intended to facilitate
ongoing research of the author’s. Results for various averaging methods will be
described in a future research report.

29

5.2.4 User Defined Coefficients and Reference Solutions

The user reference solution choice provides access to custom reference solutions,
boundary data and coefficient values. Library link overloading means that a pro-
grammer need only recompile the main executable driver and one new C++ source
file defining the user functions. The presence of this file will cause the linker to
ignore the default user functions in the library, when the program is linked.

This one new file is quite shielded from the messy details of the code internals.
In it, the programmer must define 10 functions, based on the model in userSoln.C.
In the default case, they all do nothing, or return zero.

Applications of this technique include non-smooth reference solutions arising
from jumps in the coeflicient tensor: in simple geometries one can work out the
solution and its derivatives and plug it in, allowing convergence studies in this
interesting non-smooth case.

5.3 Sample Input Files

Suppose the file twistM contains the following lines:

a pair of triangles stretched along the normal direction

v a -10
v b 01

Vv C 0 -1
vd 2 1.5

boundary edges
e ab ab
e ac ac

bndy flux O # the default is scalar O
e db db
e dc dc

internal edges

e bc bc
tri t ab ac bc
tri tt db dc bc

It defines a domain made from two triangles, as shown in Figure 5.2. Two boundary
edges use Type I boundary conditions, and two others use Type II ones.
Next, suppose the file demo contains the following lines:

30

Mesh

Figure 5.2: Sample coarse mesh

31

a sample driver file
tensor { 1 0.5 3 }
include twistM # this reads in the above mesh description

plot mesh
plotCommands { new }

refSoln poly { 3 3 } {
1 -3 1.7 -4.1

2 2.43.1 0
-1.12.1 0 0
1.2 0 0 0 }
plot edges
plot bndy

plotCommands { new }

subdivide 3 times
solve

plot scalar
plot edges
plotCommands { new }

plot ref scalar
plot edges
plotCommands { new }

plot abs err scalar
plot edges
plotCommands { new }

norms abs err scalar
norms abs err flux

The script subdivides the mesh and solves the PDE using a cubic polynomial as
a reference solution, with a non-diagonal tensor for K. We set the tensor before
reading the mesh to avoid having to use setTensor commands afterward on each

32

element to override the identity tensor default. This is because settings for alpha,
tensor, and so on apply only to subsequently defined mesh objects. The script
produces several informative plots as well as discrete norms for the error in both
pressure and velocity. If run via a command like

elliptic_enhanced_2d demo demo.plot demo.log

the plots will be in the file demo.plot, while the norms and other convergence
information will be in demo.log. For instance, Figure 5.3 is a grayscale rendition of
the color plot produced for the pressure solution.

The output log shows, for instance, that the error in the pressure on this mesh,
which is still a relatively coarse mesh, is already fairly small: a maximum error
of 0.456 (as shown by the [° norm), while pressure itself is on the order of 20.
Subdividing the mesh further yields more accurate answers, at the cost of additional
computing time. For complete details on the convergence rates for each numerical
method in RUF, see [2, 3].

Switching topics for a moment, Figure 5.4 shows a realization of a non-stationary
permeability field constructed with RUF for use in geostatistical simulations. This
particular field is spatially uncorrelated but with spatially dependent variance in-
creasing to the right.

Finally, as a further example of the code’s flexibility in representing general
geometry, Figure 5.5 shows the pressure and velocity fields surrounding a two di-
mensional horizontal well. The injection well is perforated only along the horizontal
segment; the other well is a production well.

33

eeeeee

Figure 5.4: A non-stationary permeability field

35

Pressure and Flow Field

? 2 & & & & & &
6559 1 2 &« & & & & & v 4
:'66“25’ ,'\'\\\\\\i
:gg:g;rf\\\\\\\t
68,92 ?\\\\\\x:

NR R RSyt

j/\ 0 S Y W T W R O

AL

T,\'\'\'\'\\\‘xtt

BN EEEERER

ANt rt

1\\\\% s .

t AN Yy,

x\\'\\ el 1

.~ s&(\(\(—(—'(’(’(’(—ev v

Figure 5.5: A Partially Perforated Horizontal Well Example

36

Bibliography

[1]

[4]

[5]

[6]

[7]

[8]

Arbogast, T., Dawson, C., and Keenan, P. T., Efficient Mized Methods for
Groundwater Flow on Triangular or Tetrahedral Meshes, Computational Meth-
ods in Water Resources X, (Peters et. al., editors), Kluwer (1994), pp. 3-10.

Arbogast, T., Dawson, C., and Keenan, P. T., Mized Finite Element as Finile
Differences for Elliptic Equations on Triangular Elements, Dept. of Computa-
tional and Applied Mathematics Tech. Report #93-53, Rice University, 1993.

Arbogast, T., Dawson, C., Keenan, P. T., Wheeler, M. F., and Yotov, L.,
Implementation of Mized Finite Flement Methods for FElliptic Equations on
General Geomelry, Dept. of Computational and Applied Mathematics Tech.
Report #95-77, Rice University, 1995, and To Appear.

Dupont, T. F. and Keenan, P. T., Superconvergence and Poslprocessing of
Fluzes from Lowesl Order Mized Methods on Triangles, Dept. of Computa-
tional and Applied Mathematics Tech. Report #95-03, Rice University, 1995,

and To Appear.

Keenan, P. T., C++ and FORTRAN Timing Comparisons, Dept. of Computa-
tional and Applied Mathematics Tech. Report #93-03, Rice University, 1993.

Keenan, P. T., An Efficient Postprocessor for Velocities from Mized Methods on
Triangular Elements, Dept. of Computational and Applied Mathematics Tech.
Report #94-22, Rice University, 1994.

Keenan, P. T., RUF 1.0 User Manual: The Rice Unstructured Flow Code,
Dept. of Computational and Applied Mathematics Tech. Report #94-30, Rice
University, 1994.

Keenan, P. T., kScript User Manual, Dept. of Computational and Applied
Mathematics Tech. Report #95-02, Rice University, 1995.

37

